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A dynamical neural network approach for solving stochastic two-player zero-sum
games

Dawen Wua,∗, Abdel Lissera

aCentralesupelec, Université Paris-Saclay

Abstract

This paper aims at solving a stochastic two-player zero-sum nash game problem studied in (Singh & Lisser, 2019). The

main contribution of our paper is that we model this game problem as a dynamical neural network (DNN for short). In this

paper, we show that the saddle point of this game problem is the equilibrium point of the DNN model, and we study the

globally asymptotically stable of the DNN model. In our numerical experiments, we present the time-continuous feature

of the DNN model and compare it with the state-of-the-art convex solvers, i.e., Splitting conic solver (SCS for short)

and Cvxopt. Our numerical results show that our DNN method has two advantages in dealing with this game problem.

Firstly, the DNN model can converge to a better optimal point. Secondly, the DNN method can solve all problems, even

when the problem size is large.

Keywords: Stochastic two-player zero-sum game, Saddle point, Dynamical neural network,

1. Introduction

In 1928, von Neumann (1928) studied the equilibrium concept in game theory and showed that there always exists

a saddle point equilibrium for a finite action two-player zero-sum games. Nash (1950) generalizes this result to n-player

games and shows that there always exists a Nash equilibrium for any finite action and finite players general-sum game.

Charnes (1953) studied a new type of two-player zero-sum games where the mixed strategy of each player is linearly5

constrained. The saddle point of such games can be obtained by solving the primal-dual pair of linear programs. Recently,

Singh & Lisser (2019) studied a stochastic version of two-player zero-sum games, namely chance-constrained two-player

zero-sum games. They show a saddle point exists if the random vectors defining stochastic linear constraints follow

elliptically symmetric distributions.

There is a vast literature on saddle points or Nash equilibrium in game theory. Dantzig (1963) shows that solving10

the saddle point of a two-player zero-sum game can be formulated as a linear program. Lemke & Howson (1964) provide

a method to solve two-player general-sum games, namely the Lemke-Howson algorithm. For n-player general-sum cases,

van der Laan et al. (1987); Govindan & Wilson (2003); Blum et al. (2006) studied several algorithms to find Nash

equilibrium. However, all the above-mentioned learning methods can only obtain the Nash equilibrium of deterministic

games. There is a lack of dedicated learning algorithms for games with stochastic payoff.15

The state-of-the-art approach for solving such stochastic games consists in converting the problem into a convex

constraint problem. Then solve it by well-studied convex optimization algorithms (Boyd et al., 2004; Nocedal & Wright,

2006).
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Besides the convex algorithms, there are many other alternatives to solve optimization problems. Bangyal et al. (2020,

2021) study various types of metaheuristic algorithms to solve combinatorial optimization problems. Hopfield & Tank20

(1985) pioneered the study of using dynamical systems in optimization, i.e., dynamical neural networks. Since then,

DNNs have been used on various mathematical problems. For example, DNNs were used to solve Linear programming

problems (Wang, 1993; Xia, 1996b), Quadratic programming problems (Xia, 1996a; Nazemi, 2014; Feizi et al., 2021),

Second-order cone programming problems (Nazemi & Sabeghi, 2020), Nonlinear programming problems (Kennedy &

Chua, 1988; Forti et al., 2004; Nazemi & Tahmasbi, 2013), Minimax problems (Gao et al., 2004; Nazemi, 2011), and25

Nonlinear complementarity problems (Liao et al., 2001; Dang et al., 2004), Manipulator problems (Zhang et al., 2020).

DNN models usually expect two properties: 1. The equilibrium points of the DNN models should coincide with the

solutions to the original problems. 2. The DNN models should be globally convergent. Compared to convex optimization

algorithms, DNN methods use a different strategy, deemed more straightforward. Once the DNN model and initial

points are known, this approach converges towards the optimal solutions. It does not require decomposing the original30

problem into multiple sub-problems and solving them iteratively. DNN models can achieve an arbitrary required accuracy

independent of the problem size thanks to the global convergence property. With regards to numerical solutions of DNN

models, Runge-Kutta and backward differentiation are two classical methods (Curtiss & Hirschfelder, 1952; Gottlieb &

Shu, 1998; Teschl, 2012). Furthermore, there are emerging studies of deep learning on differential equations (Lagaris et al.,

1998; Raissi et al., 2019; Flamant et al., 2020), which make it possible to connect our DNN models with deep learning.35

This paper uses a DNN method to obtain the saddle point of stochastic two-player zero-sum games. To the best of

our knowledge, DNN methods have not been used to solve this game problem in the literature. The main contributions

are provided as follows: 1) We formulate a stochastic two-players zero-sum game as a DNN model. We show that the

equilibrium point of the DNN model coincides with the saddle point of the stochastic two-players zero-sum game. Then,

we prove that the equilibrium of the DNN models is global asymptotic stability. 2) Our experimental results show that40

the DNN method can provide high accuracy solutions and remains robust to the problem size.

The remaining of the paper is organized as follows. Section 2 shows the stochastic two-player zero-sum game problem

together with its SOCP reformulation. Section 3 gives the KKT conditions related to the SOCP problem and the DNN

model. Numerical experiments are given in Section 4.

The following notations are used in the remainder of the paper.45

• x and y denote the strategies of player 1 and player 2 respectively. m and n denote the sizes of the action set of the

player1 and the player2, respectively.

• J1, J2 denote the probabilistic constraints sets for player 1 and player 2, respectively. J1, J2 denote the sets sizes.

• A,µ1, µ2,Σ1,Σ2, b, d denotes the data for a stochastic two-players zero-sum game. A denotes the payoff matrix.

µ1, µ2,Σ1,Σ2 are the means and the variances of the probability distributions, respectively. φ1
k

(
t2
)
and φ2

l

(
t2
)
are50

the characteristic functions of the probability distributions, respectively.

• α1 and α2 are the settings of the players’ confidence levels.

• Ψ−1
ξ2l

(
α2
l

)
,Ψ−1

ξ1k

(
α1
k

)
are quantile functions of 1-dimensional distribution functions induced by characteristic functions

φ1
k

(
t2
)
and φ2

l

(
t2
)
, respectively.
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• s = (y, v, δ, λ) are the decision variables of the optimization problem. u is the dual variable of the optimization55

problem. r = (s, u) = (y, v, δ, λ, u) are the variables of the neural network.

• nr, ns, nu are the number of r, s, u variables, respectively. Moreover, nu also denotes the number of constraints of

the optimization problem.

• f(s) = f(y, v, δ, λ) and g(s) = g(y, v, δ, λ) are the objective function and the constraints of the optimization problem

respectively. Also, f(s), g(s),∇f(s),∇g(s),∇2g(s) are abbreviated as f, g,∇f,∇g,∇2g, respectively.60

• Φ(r) = dr
dt denotes the DNN model.

2. Problem formulation

In this section, we present the stochastic two-player zero-sum game with chance constraints. A two-player zero-sum

game involves two persons called player 1 and player 2, respectively. These games are described by a matrix A with m

rows and n columns. Matrix A represents the payoffs of player 1, and matrix −A represents the payoffs of player 2. Let65

I = {1, 2, . . . ,m} be the action set of player 1 and J = {1, 2, . . . , n} be the action set of player 2. A pure strategy refers

to a single action from the action set. A mixed strategy refers to a probability distribution defined over the action set.

Let X = {x ∈ Rm|1Tx = 1, x ≥ 0} and Y = {y ∈ Rn|1T y = 1, y ≥ 0} the sets of mixed strategies of player 1 and player 2,

respectively. The payoffs of player 1 and player 2 are defined by xTAy and xT (−A)y, respectively, for a given strategy pair

(x, y) ∈ X × Y . von Neumann (1928) showed that there exists a saddle point equilibrium in mixed strategies in zero-sum70

games. Dantzig (1951) showed that the saddle point equilibrium is a solution of primal-dual pair of linear programs.

Charnes (1953) studied a linear constrained two-player zero-sum game problem. For a given strategy y of player 2, the

objective of player 1 is to choose a strategy x which solves the linear programming problem (1).



max
x

xTAy

s.t.

Bx ≤ b

1Tx = 1

x ≥ 0,

(1)

Similarly, the aim of player 2 is to choose a strategy y that solves problem (2) for a given strategy x of player 1.



min
y

xTAy

s.t.

Dy ≥ d

1T y = 1

y ≥ 0,

(2)

where B ∈ RJ1×m, D ∈ RJ2,n, b ∈ RJ1 and d ∈ RJ2 . A strategy pair (x, y) is said a saddle point equilibrium for the above

constrained zero-sum game if x is an optimal solution of (1) for a given y, and y is an optimal solution of (2) for the given75

x.
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Singh & Lisser (2019) consider the problem where each row vector Bk and Dl follows an elliptical distribution

i.e. Bw
k ∼ Ellipm

(
µ1
k,Σ

1
k, φ

1
k

)
and Dw

l ∼ Ellipn
(
µ2
l ,Σ

2
l , φ

2
l

)
. Ψ−1

ξ2l

(
α2
l

)
and Ψ−1

ξ1k

(
α1
k

)
are the quantile functions of

1-dimensional distribution functions induced by characteristic functions φ1
k

(
t2
)
and φ2

l

(
t2
)
, respectively. The chance

constrained optimization problem can be written as80



max
x

xTAy

s.t.

P {Bw
k x ≤ bk} ≥ α1

k, ∀k ∈ J1

1Tx = 1

x ≥ 0,

(3)

and 

min
y

xTAy

s.t.

P {Dw
l y ≥ dl} ≥ α2

l , ∀l ∈ J2

1T y = 1

y ≥ 0.

(4)

We use the SOCP reformulation from Kataoka (1963) to rewrite the probabilistic constraints in (3) and (4) as follows

xTµ1
k +Ψ−1

ξ1k
(α1

k)∥(Σ1
k)

1
2x∥ ≤ bk, ∀k ∈ J1, (5)

and

−yTµ2
l +Ψ−1

ξ2l
(α2

l )∥(Σ2
l )

1
2 y∥ ≤ −dl, ∀l ∈ J2. (6)

We denote the stochastic two-players zero-sum game by G(α) and the feasible strategy sets of the two players by

S1

(
α1
)
and S2

(
α2
)
,

S1

(
α1
)
=
{
x ∈ Rm | 1Tx = 1, x ≥ 0, xTµ1

k +Ψ−1
ξ1k

(α1
k)∥(Σ1

k)
1
2x∥ ≤ bk, ∀k ∈ J1

}
, (7)

and

S2

(
α2
)
=
{
y ∈ Rn | 1T y = 1, y ≥ 0,−yTµ2

l +Ψ−1
ξ2l

(α2
l )∥(Σ2

l )
1
2 y∥ ≤ −dl, ∀l ∈ J2

}
. (8)

Assumption 1.

1. The set S1(α
1) is strictly feasible, i.e., there exists an x ∈ Rm which is a feasible point of S1(α

1) and the inequality

constraints of S1(α
1) are strictly satisfied by x.

2. The set S2(α
2) is strictly feasible, i.e., there exists an x ∈ Rn which is a feasible point of S2(α

2) and the inequality

constraints of S2(α
2) are strictly satisfied by y.85

In the remaining of the paper, we suppose that assumption 1 holds. Otherwise, the game would not have a saddle

point.
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(x∗, y∗) is called a saddle point equilibrium of G(α) if the following inequality holds:

xTAy∗ ≤ x∗TAy∗ ≤ x∗TAy,∀x ∈ S1

(
α1
)
, y ∈ S2

(
α2
)
. (9)

The following theorem shows the saddle point existence of the stochastic two-player zero-sum game problem.

Theorem 1 (Singh & Lisser (2019), Theorem 3.5). Consider a constrained zero-sum matrix game where the matri-

ces Bw and Dw defining the constraints of both the players, respectively, are random. Let the row vectors Bw
k ∼90

Ellipm
(
µ1
k,Σ

1
k, φ

1
k

)
, k ∈ J1, and Dw

l ∼ Ellipn
(
µ2
l ,Σ

2
l , φ

2
l

)
, l ∈ J2. For all k and l, Σ1

k ≻ 0 and Σ2
l ≻ 0. Then,

there exists a saddle point equilibrium for the game G(α) for all α ∈ (0.5, 1]J1 × (0.5, 1]J2 .

We refer the reader to Singh & Lisser (2019) for more details about the proof of this theorem and the related results.

Proposition 1. The chance constrained optimization problems (3) and (4) can be reformulated as the following SOCP

problems (P) and (D).

miny,v1,(δ1k)k∈J1
,λ1 v1 +

∑
k∈J1

λ1
kbk

s.t.

(i)Ay −
∑

k∈J1
λ1
kµ

1
k −

∑
k∈J1

(
Σ1

k

) 1
2 δ1k ≤ v11m

(ii)− yTµ2
l +Ψ−1

ξ2l

(
α2
l

) ∥∥∥(Σ2
l

) 1
2 y
∥∥∥ ≤ −dl, ∀l ∈ J2

(iii)
∥∥δ1k∥∥ ≤ λ1

kΨ
−1
ξ1k

(
α1
k

)
, ∀k ∈ J1

(iv)1T y = 1

(v)y ≥ 0

(vi)λ1
k ≥ 0, ∀k ∈ J1



(P)

maxx,v2,(δ2l )l∈J2
,λ2 v2 +

∑
l∈J2

λ2
l dl

s.t.

(i)ATx−
∑

l∈J2
λ2
l µ

2
l −

∑
l∈J2

(
Σ2

l

) 1
2 δ2l ≥ v21n

(ii)xTµ1
k +Ψ−1

ξ1k

(
α1
k

) ∥∥∥(Σ1
k

) 1
2 x
∥∥∥ ≤ bk, ∀k ∈ J1

(iii)
∥∥δ2l ∥∥ ≤ λ2

lΨ
−1
ξ2l

(
α2
l

)
, ∀l ∈ J2

(iv)1Tx = 1

(v)x ≥ 0

(vi)λ2
l ≥ 0, ∀l ∈ J2



(D)

Proof. We show the process that generate (P) from (3).
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The chance constrained optimization problem (3) with the second-order cone reformulation (5) is

maxx x
TAy

s.t.

(i)xTµ1
k +Ψ−1

ξ1k
(α1

k)∥(Σ1
k)

1
2x∥ ≤ bk, ∀k ∈ J1

(iii)1Tx = 1

(v)x ≥ 0.

(10)

Given a strategy y of player 2, the problem can be written as the following SOCP problem, where (t1k)k∈J1 are auxiliary

variables, 

maxx,(t1k)k∈J1
xTAy

s.t.

(i)− xTµ1
k −Ψ−1

ξ1k
(α1

k)∥tk∥+ bk ≥ 0, ∀k ∈ J1

(ii)t1k − (Σ1
k)

1
2x = 0, ∀k ∈ J1

(iii)1Tx = 1

(iv)x ≥ 0

(11)

The saddle point of the lagrangian of (11) is

min
v1,(δk)1k∈J1

,λ1≥0
max

x,(t1k)k∈J1

[
xTAy + v11Tx+

∑
k∈J1

(
δ1k
)T (

t1k − (Σ1
k)

1
2x
)
+
∑
k∈J1

λ1
k

(
−xTµ1

k −Ψ−1
ξ1k

(
α1
k

)
∥tk∥+ bk

)]
(12)

For the fixed v1, (δk)
1
k∈J1

, λ1, we have95

max
x,(t1k)k∈J1

[
xTAy + v11Tx+

∑
k∈J1

(
δ1k
)T (

t1k − (Σ1
k)

1
2x
)
+
∑
k∈J1

λ1
k

(
−xTµ1

k −Ψ−1
ξ1k

(
α1
k

)
∥tk∥+ bk

)]

=max
x

[
xT

(
Ay −

∑
k∈J1

λ1
kµ

1
k −

∑
k∈J1

(
Σ1

k

) 1
2 δ1k − v11

)]
+ max

(t1k)k∈J1

[∑
k∈J1

((
δ1k
)T

t1k − λ1
kΨ

−1
ξ1k

(
α1
k

)
∥t1k∥

)]
+ v1 +

∑
k∈J1

λ1
kbk

(13)

The first and the second maximization problems are unbounded unless the following conditions hold,

Ay −
∑
k∈J1

λ1
kµ

1
k −

∑
k∈J1

(
Σ1

k

) 1
2 δ1k ≤ v11 (14)

∥δ1k∥ ≤ λ1
kΨ

−1
ξ1k

(
α1
k

)
, ∀k ∈ J1 (15)
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The Lagrangian dual of the inner maximum problem is given by the following SOCP problem,

minv1,(δ1k),λ
1 v1 +

∑
k∈J1

λ1
kbk

s.t.

(i)Ay −
∑

k∈J1
λ1
kµ

1
k −

∑
k∈J1

(
Σ1

k

) 1
2 δ1k ≤ v11m

(ii)
∥∥δ1k∥∥ ≤ λ1

kΨ
−1
ξ1k

(
α1
k

)
,∀k ∈ J1

(iii)λ1
k ≥ 0,∀k ∈ J1

(16)

With the second-order cone constraint (6) for y, we finally get the first SOCP (P).

miny,v1,(δ1k)k∈J1
,λ1 v1 +

∑
k∈J1

λ1
kbk

s.t.

(i)Ay −
∑

k∈J1
λ1
kµ

1
k −

∑
k∈J1

(
Σ1

k

) 1
2 δ1k ≤ v11m

(ii)− yTµ2
l +Ψ−1

ξ2l

(
α2
l

) ∥∥∥(Σ2
l

) 1
2 y
∥∥∥ ≤ −dl, ∀l ∈ J2

(iii)
∥∥δ1k∥∥ ≤ λ1

kΨ
−1
ξ1k

(
α1
k

)
, ∀k ∈ J1

(iv)1T y = 1

(v)y ≥ 0

(vi)λ1
k ≥ 0, ∀k ∈ J1



(P)

The dual problem (D) can be generated similarly.

The following theorem shows the existence of the saddle point for the chance constrained zero-sum game G(α).

Theorem 2 (Singh & Lisser (2019), Theorem 3.7). Consider a constrained zero-sum game where the matrices Bw and Dw

defining the constraints of player 1 and player 2, respectively, are random. Let the row vector Bw ∼ Ellip m

(
µ1
k,Σ

1
k, φ

1
k

)
, k ∈

J1, where Σ1
k ≻ 0, and the row vector Dw

l ∼ Ellipn
(
µ2
l ,Σ

2
l , φ

2
l

)
, l ∈ J2 where Σ2

l ≻ 0. Let Assumption 1 holds. Then,100

for a given α ∈ (0.5, 1]p × (0.5, 1]q, (x∗, y∗) is a saddle point equilibrium of the game G(α) if and only if there exist(
v1∗,

(
δ1∗k
)
k∈J1

, λ1∗
)
and

(
v2∗,

(
δ2∗l
)
l∈J2

, λ2∗
)
such that

(
y∗, v1∗,

(
δ1∗k
)
k∈J1

, λ1∗
)
and

(
x∗, v2∗,

(
δ2∗l
)
l∈J2

, λ2∗
)
are opti-

mal solutions of primal-dual pair of SOCPs (P) and (D), respectively.

We refer the reader to Singh & Lisser (2019) for more details about the proof of this theorem and the related results.

3. Methodology105

This section studies a DNN approach to solve the second-order cone programming problem given in section 2. We

provide the necessary and sufficient KKT conditions of problem (P). We use a DNN to solve the KKT conditions problem

as the equilibrium point of the DNN model corresponds to the KKT point. Then, we study the stability of the equilibrium

point by analyzing a Lyapunov function.

We transform the equality constraint 1T y = 1 in (P) into inequality 1T y − 1 ≤ 0, 1− 1T y ≤ 0. For sake of simplicity,

we consider only the primal problem. Denote s = (y, v, δ, λ) = (y, v1, (δ1k)k∈J1
, λ1), where δ = (δ1k)k∈J1

= [δ11
T
, . . . , δ1J1

T
]T

7



and λ = λ1 = [λ1
1, . . . , λ

1
J1
]T . The optimization problem (P) can be written as

min
s

f(s)

s.t.

g(s) ≤ 0,

(17)

where the objective function f : Rns → R, and the constraints g : Rns → Rnu.110

3.1. KKT conditions

Since the SOCP constraints of g(s) are not differentiable, we introduce the following perturbation ϵ = 10−6, i.e.,√
∥s∥2 + ϵ2. Thanks to this smoothness technique, the KKT conditions of the SOCP are necessary and sufficient optimality

conditions.

The KKT conditions of the SOCP problem (P) are

∇f(s) +∇g(s)Tu = 0

g(s) ≤ 0, uT ≥ 0, uT g(s) = 0
(18)

where the ∇f, u, g,∇g are as follows115

∇f(s) =


∂f
∂y

∂f
∂v

∂f
∂δ

∂f
∂λ

 =


0

1

0

b

 (19)

u =



u1

u2

u3

u41

u42

u5

u6


(20)

g(s) =



g1

g2

g3

g41

g42

g5

g6


=



Ay − v1−
∑

k∈J1

(
Σ1

k

) 1
2 δk −

∑
k∈J1

λkµ
1
k

(−yTµ2
l +Ψ−1

ξ2l

(
α2
l

) ∥∥∥(Σ2
l

) 1
2 y
∥∥∥+ dl)l∈J2

(∥δk∥ −Ψ−1
ξ1k

(
α1
k

)
λk)k∈J1

1T y − 1

−1T y + 1

−y

−λ


(21)
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∇g(s) =



∂g1
∂y

∂g1
∂v

∂g1
∂δ

∂g1
∂λ

∂g2
∂y

∂g2
∂v

∂g2
∂δ

∂g2
∂λ

∂g3
∂y

∂g3
∂v

∂g3
∂δ

∂g3
∂λ

∂g41
∂y

∂g41
∂v

∂g41
∂δ

∂g41
∂λ

∂g42
∂y

∂g42
∂v

∂g42
∂δ

∂g42
∂λ

∂g5
∂y

∂g5
∂v

∂g5
∂δ

∂g5
∂λ

∂g6
∂y

∂g6
∂v

∂g6
∂δ

∂g6
∂λ


=



A −1 (−(Σ1
k)

1
2 )k∈J1

(−µ1
k)k∈J1

(−(µ2
l ) + Ψ−1

ξ2l
(α2

l )
Σ2

l

1
2

T

Σ2
l

1
2 y

∥Σ2
l

1
2 y∥

)Tl∈J2
0 0 0

0 0 ( δk
∥δk∥ )k∈J1

(−Ψ−1
ξ1k

(
α1
k

)
)k∈J1

1T 0 0 0

−1T 0 0 0

−I 0 0 0

0 0 0 −I


(22)

The stationarity, primal feasibility, dual feasibility, and complementary slackness can be written as follows,


0

1

0

b

+



A −1 (−(Σ1
k)

1
2 )k∈J1

(−µ1
k)k∈J1

(−(µ2
l )

T +Ψ−1
ξ2l

Σ2
l

1
2

T

Σ2
l

1
2 y

∥Σ2
l

1
2 y∥

)l∈J2 0 0 0

0 0 ( δk
∥δk∥ )k∈J1

(−Ψ−1
ξ1k

(
α1
k

)
)k∈J1

1T 0 0 0

−1T 0 0 0

−I 0 0 0

0 0 0 −I



T 

u1

u2

u3

u41

u42

u5

u6


= 0 (23)



Ay − v1−
∑

k∈J1

(
Σ1

k

) 1
2 δk −

∑
k∈J1

λkµ
1
k

(−yTµ2
l +Ψ−1

ξ2l

(
α2
l

) ∥∥∥(Σ2
l

) 1
2 y
∥∥∥+ dl)l∈J2

(∥δk∥ − λkΨ
−1
ξ1k

(
α1
k

)
)k∈J1

1T y − 1

−1T y + 1

−y

−λ


≤ 0 (24)



u1

u2

u3

u41

u42

u5

u6


≥ 0 (25)
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u1

u2

u3

u41

u42

u5

u6



T 

Ay − v1−
∑

k∈J1

(
Σ1

k

) 1
2 δk −

∑
k∈J1

λkµ
1
k

(−yTµ2
l +Ψ−1

ξ2l

(
α2
l

) ∥∥∥(Σ2
l

) 1
2 y
∥∥∥+ dl)l∈J2

(∥δk∥ − λkΨ
−1
ξ1k

(
α1
k

)
)k∈J1

1T y − 1

−1T y + 1

−y

−λ


= 0 (26)

The four decision variables of problem (P), namely y, v, δ, λ, have n, 1, J1∗n, J1 components, respectively. The function

g is composed of g1, g2, g3, g41, g42, g5, and g6, with m,J2, J1, 1, 1, n, J1 components, respectively. The gradient ∇f is a

(J1 + 1) ∗ (n+ 1)−vector. The Jacobian ∇g is (2 +m+ n+ 2 ∗ J1 + J2)× (J1 + 1) ∗ (n+ 1)−matrix.

3.2. Neural network model

We now propose a neural network model with a given initial value. Let r = (y, v, δ, λ, u)T be the variables of the neural120

network. The DNN model is given as follows,

dr

dt
=



dy
dt

dv
dt

dδ
dt

dλ
dt

du
dt


=



−
(
∇fy +∇gTy (u+ g)+

)
−
(
∇fv +∇gTv (u+ g)+

)
−
(
∇fδ +∇gTδ (u+ g)+

)
−
(
∇fλ +∇gTλ1(u+ g)+

)
(u+ g)+ − u


, (27)

r (t0) = r0, (28)

where (u+ g)+ = max{0, u+ g}.

The complexity for solving the neural network (27) is highly dependent on the number of variables. The number of the

decision variables y, v, δ, λ is ns = (J1+1)∗ (n+1), and the number of the dual variables µ is nu = 2+m+n+2∗J1+J2,

leading to a total number of variables nr = 3 +m+ 2N + (3 + n) ∗ J1 + J2 for the neural network.125

Theorem 3. The point r∗ = (y∗, v∗, δ∗, λ∗, u∗)T is the equilibrium point of the neural network (27) if and only if it is

also the KKT point of the SOCP problem.

Proof. Let r∗ = (y∗, v∗, δ∗, λ∗, u∗)T be the equilibrium of the neural network (27). It follows that dr∗

dt = 0,

−
(
∇f∗

y +∇gTy
∗
(u∗ + g∗)+

)
= 0

−
(
∇f∗

v +∇gTv
∗
(u∗ + g∗)+

)
= 0

−
(
∇f∗

δ +∇gTδ
∗
(u∗ + g∗)+

)
= 0

−
(
∇f∗

λ +∇gTλ
∗
(u∗ + g∗)+

)
= 0

(u∗ + g∗)+ − u∗ = 0

(29)
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Substituting the first four lines by the last line u∗ = (u∗ + g∗)+, we have

−
(
∇f∗

y +∇gTy
∗
u∗
)

= 0

−
(
∇f∗

v +∇gTv
∗
u∗
)

= 0

−
(
∇fδ +∇gTδ

∗
u∗
)

= 0

−
(
∇f∗

λ +∇gTλ
∗
u∗
)

= 0,

(30)

where the KKT conditions stationarity holds. Moreover, u∗ = (u∗ + g∗)+ result in

g∗ ≤ 0, u∗ ≥ 0, u∗ Tg∗ = 0, (31)

where the primal feasibility, the dual feasibility, and the complementary slackness hold.

Conversely, let r∗ = (y∗, v∗, δ∗, λ∗, u∗) be the KKT point of the problem (P), then we have

∇f∗
y +∇gTy

∗
u∗ = 0

∇f∗
v +∇gTv

∗
u∗ = 0

∇fδ∗ +∇gTδ
∗
u∗ = 0

∇f∗
λ +∇gTλ

∗
u∗ = 0,

(32)

g∗ ≤ 0, u∗ ≥ 0, u∗ Tg∗ = 0. (33)

Conditions (33) lead to u∗ = (u∗ + g∗)+. By substituting this into (32), we obtain

−
(
∇f∗

y +∇gTy
∗
(u∗ + g∗)+

)
= 0

−
(
∇f∗

v +∇gTv
∗
(u∗ + g∗)+

)
= 0

−
(
∇f∗

δ +∇gTδ
∗
(u∗ + g∗)+

)
= 0

−
(
∇f∗

λ +∇gTλ
∗
(u∗ + g∗)+

)
= 0

(u∗ + g∗)+ − u∗ = 0

(34)

which is the equilibrium point of the neural network.

130

3.3. Stability analysis

In this subsection, we study the uniqueness and the stability of the equilibrium point.

Lemma 4. The equilibrium point of the proposed neural network (27) is unique.

Proof. Since the problem (P) has the unique optimal solution (y∗, v∗, δ∗, λ∗), the necessary and sufficient KKT conditions

(18) have the corresponding unique solution. From Theorem 3, we see that the equilibrium point of the proposed neural135

network is a necessary and sufficient condition for being a KKT point (18). Thus the equilibrium point of the neural

network is unique.

Lemma 5. For an initial value problem (27) and (28), there exists a unique continuous solution r(t).

11



Proof. Since g,∇f and ∇g are locally Lipschitz continuous, and the operations +, ·, (·)+ would not change the locally

Lipschitz property, such that ∇f + ∇gT (u + g)+ and (u + g)+ − u are locally Lipschitz continuous. According to the140

Cauchy-Lipschitz theorem, the neural network (27) with an initial point r(t0) = r0 has a unique solution r(t), t ∈ [t0, T ),

for some T > t0. Additionally, if r(t) is globally bound, the interval [t0, T ] expand to [t0,+∞).

Lemma 6. The Jacobian matrix ∇Φ(r),∀r ∈ Rnr is a negative semidefinite matrix.

Proof. We separate the situations into three cases, depending on the different status of (u+ g)+ ∈ Rnu
+ , and show under

all three situations ∇Φ(r) is negative semidefinite .145

For the case where (u+ g)+ has zero and non-zero components, such that 0 < p < nu

(u+ g)+ = (u1 + g1, . . . , up + gp,︸ ︷︷ ︸
p

0, . . . , 0︸ ︷︷ ︸
nu−p

), (35)

the Jacobian matrix ∇Φ(r),∀r ∈ Rnr is

∇Φ(r) =

 −
(
∇2f +

∑p
k=1

(
(uk + gk)∇2gpk

)
+∇gpT∇gp

)
−∇gpT

∇gp S

 , (36)

where

S =

 0p×p 0p×(nu−p)

0(nu−p)×p −I(nu−p)×(nu−p)

 . (37)

∇g and ∇2gk denote the Jacobian matrix of the function g and the Hessian matrix of the function gk. ∇gp and ∇2gpk are

the same as ∇g and ∇2gk for first p row but the remaining nu− p row are all zero.

The matrix ∇gpT∇gp is positive semidefinite. Since the functions f and g are assumed to be convex and twice

differentiable, the Hessian matrices ∇2f and ∇2gk, k = 1, 2, . . . , p, are positive semidefinite matrices. Furthermore, the150

positive semidefiniteness of ∇2gk implies that ∇2gpk is positive semidefinite matrix. Moreover, it is clear that matrix S is

negative semidefinite matrix. Putting those all together, the Jacobian matrix ∇Φ is a negative semidefinite matrix.

For the case where (u+ g)+ has all non-zero components, such that p = nu

(u+ g)+ = (u1 + g1, . . . , unu + gnu), (38)

the Jacobian matrix ∇Φ(r) is

∇Φ(r) =

 −
(
∇2f +

∑m
k=1

(
(uk + gk)∇2gk

)
+∇gT∇g

)
−∇gT

∇g 0nu×nu

 , (39)

Similar to the previous case, we can see that ∇Φ(r) is a (ns+ nu)× (ns+ nu) negative semidefinite matrix.

For the case where (u+ g)+ has all zero components, such that p = 0

(u+ g)+ = (0, . . . , 0), (40)
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the Jacobian matrix ∇Φ(r) is

∇Φ(r) =

 −∇2f 0ns×nu

0nu×ns −Inu×nu

 . (41)

In this case, it is easy to see that ∇Φ(r) is a negative semidefinite matrix. This completes the proof.

Definition 1. A mapping F : Rn → Rn is said to be monotonic if:

(x− y)T (F (x)− F (y)) ≥ 0, ∀x, y ∈ Rn (42)

Lemma 7 (Ortega & Rheinboldt (2000)). A differentiable mapping F : Rn → Rn is monotonic, if and only if the Jacobian155

matrix ∇F (x),∀x ∈ Rn is positive semidefinite.

Theorem 8. The equilibrium point r∗ = (y∗, v∗, δ∗, λ∗, u∗) of the proposed neural network (27) is globally asymptotically

stable.

Proof. Consider the following Lyapunov function

E(r) = ∥Φ(r)∥2 + 1

2
∥r − r∗∥2 . (43)

E(r) is a positive definite function because E(r∗) = 0 and E(r) > 0, ∀r ̸= r∗.

dΦ

dt
=

∂Φ

∂r

dr

dt
= ∇Φ(r)Φ(r) (44)

Ė(r(t)) =

(
dΦ

dt

)T

Φ+ ΦT

(
dΦ

dt

)
+ (r − r∗)

T dr(t)

dt

= ΦT
(
∇Φ(r)T +∇Φ(r)

)
Φ+ (r − r∗)

T
Φ(r)

(45)

By Lemma 6, we have

ΦT (r)
(
∇Φ(r)T +∇Φ(r)

)
Φ(r) ≤ 0, ∀r ̸= r∗. (46)

By lemma 7, we have

(r − r∗)
T
(Φ(r)− Φ (r∗)) = (r − r∗)

T
Φ(r) ≤ 0, ∀r ̸= r∗. (47)

This means that Ė(r(t)) ≤ 0.160

According to Lyapunov globally stable theorem, the equilibrium r∗ of the neural network (27) is globally stable.

Moreover, it follows from (27), (28), (46) and (47) that Φ(r) = 0 ⇔ Ė(r) = 0. This means that Ė(r) = 0 is true only

for the equilibrium point, such that Ė(r) is a negative definite function. Therefore, the equilibrium point of the neural

network is globally asymptotically stable.

165

Figure 1 summarizes the complete process of obtaining a Nash equilibrium point of a stochastic two-player zero-sum

game using the DNN method. The original game problem (3)-(4) can not be solved directly. It needs to be converted

into a SOCP problem first. Then a DNN is constructed to come up with the optimal solution. Once a DNN model

has been developed, the model needs an initial point and a solution interval as an input. The choice of the initial point

13



Figure 1: Overall flowchart for obtaining Nash equilibrium of a stochastic nash game using DNN method. The left side describes how to
construct a DNN model for a stochastic nash game. The right side shows how to obtain a desired solution from the constructed DNN model.

significantly affects the convergence and quality of the solution. The closer the initial point is to the optimal point, the170

faster the convergence of the DNN model. The solution interval determines which part of r(t) is considered. According to

the globally asymptotically stable Theorem 8, the DNN model should provide a more accurate solution when T is large.

4. Numerical Experiments

In section 4.1, we give the setup for conducting the experiments, including software description, hardware description,

the definition of KKT error, and the way to generate problem data. In section 4.2, we give experimental results of our DNN175

model and compare them with other solving methods, i.e., Splitting conic solver (SCS for short) and Cvxopt (O’donoghue

et al., 2016; CVX Research, 2012).

4.1. Settings

The experimental computer has CPU i7-10610U and 16 GB RAM. We use Python3.8 as our programming language,

Scipy 1.6 to solve differential equations.180

The following definition is a metric to evaluate the accuracy of a solution point (Andreani et al., 2008; Conn et al.,

2000)
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Definition 2. The point (s, u) is an approximate KKT point with ϵ-error if it satisfies

∥∥∥∇f (s) +∇g (s)
T
u
∥∥∥ ≤ ϵ,

||u ◦ g(s)|| ≤ ϵ,∥∥g (s)+∥∥ ≤ ϵ,

∥u−∥ ≤ ϵ,

(48)

where ◦ is the element-wise product, g(s)+ = max{0, g(s)}, u− = min{u, 0}.

We generate the problem data through the following uniform distributions, i.e., A ∼ U(0, 10), b ∼ U(7, 10), d ∼

U(3, 6), µ1 ∼ U(0, 10), µ2 ∼ U(0, 10). For the sake of simplicity, we only consider uniformly distributed diagonal matrices185

Σ1 and Σ2, i.e., Σ1,Σ2 ∼ U(0, 3).

4.2. Numerical results

(a) Splitting conic solver (b) Dynamical neural network

Figure 2: Solution processes of SCS and DNN for a 10 ∗ 10 game instance. Figure (a) shows the objective values with respect to iterations
provided by the SCS method. Figure (b) shows the objective values with respect to t by our DNN model.

Figure 2 shows the difference between SCS and DNN solving processes. Both SCS and our DNN approaches find the

optimal solution by addressing the KKT conditions. A key feature of our DNN model is that it is time-continuous. This

advantage allows our DNN model to provide more information about how primal and dual variables move toward optimal190

solutions.

Table 1 shows the comparison of the DNN, SCS, and CVXOPT methods in terms of numerical performances. The

different instances are generated as described in Section 4.1. Our DNN model chooses the initial point all-zero and the

solution interval [0, 100]. Compared to SCS, our DNN model can reach a better solution point with smaller ϵ-error.

Compared with Cvxopt, our DNN model can solve all instances, while Cvxopt fails to find a solution when the game sizes195

are large.

Figure 3 shows the quality of the convergence of our DNN model. Thanks to the globally asymptotically stable theorem,

the KKT error of our DNN method can keep decreasing, and the model will converge to the optimal solution. The figure

shows that our DNN model has a faster convergence rate and better numerical accuracy solution than the SCS method.

When facing tricky stochastic games, traditional convex methods might have numerical convergence difficulties. Our200

DNN approach remains robust in dealing with these hard problems thanks to the use of a completely different solution

strategy. According to the shown CPU time, our DNN approach may be time-consuming. However, this is due to the

numerical integration methods and the current standard ODE software. Our DNN method is highly promising, mainly
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Game
size

Probability
distribution

α DNN SCS CVXOPT
α1 α2 CPU time Value ϵ-Error CPU time Value ϵ-Error CPU time Value ϵ-Error

(4, 4)
Normal

0.8 0.8 1.79 4.59 0.12 0.015 5.03 8.20 0.031 4.39 0.00
0.9 0.9 1.79 4.30 0.05 0.015 4.75 3.23 0.015 4.39 0.00

Laplace
0.8 0.8 1.66 4.40 0.11 0.015 4.74 4.63 0.015 4.39 0.00
0.9 0.9 1.28 4.67 0.02 0.015 4.80 2.86 0.015 4.64 0.00

(10, 10)
Normal

0.8 0.8 2.39 5.51 0.01 0.015 5.64 0.45 0.015 5.54 0.00
0.9 0.9 2.67 5.78 0.09 0.015 5.80 0.25 0.015 5.88 0.00

Laplace
0.8 0.8 2.61 5.53 0.03 0.015 5.66 1.00 0.015 5.59 0.00
0.9 0.9 2.65 6.08 0.05 0.015 6.15 0.03 0.031 6.14 0.00

(50, 50)
Normal

0.8 0.8 56.33 5.26 0.18 0.063 4.71 4.59 0.271 5.15 0.00
0.9 0.9 68.78 5.17 0.09 0.062 4.87 4.71 0.249 5.16 0.00

Laplace
0.8 0.8 58.37 5.25 0.15 0.055 5.04 7.33 0.257 5.15 0.00
0.9 0.9 47.07 5.16 0.08 0.046 5.17 2.18 0.249 5.18 0.00

(100, 100)
Normal

0.8 0.8 381.33 5.02 0.02 0.111 4.69 1.77 1.48 5.00 0.00
0.9 0.9 369.88 4.99 0.04 0.105 4.97 1.56 1.59 5.00 0.00

Laplace
0.8 0.8 319.04 5.00 0.02 0.109 4.82 1.63 Failed Failed Failed
0.9 0.9 359.95 5.04 0.04 0.109 4.99 1.84 Failed Failed Failed

(200, 200)
Normal

0.8 0.8 8984.51 4.97 0.03 0.283 4.75 5.14 10.45 4.96 0.00
0.9 0.9 8862.24 4.99 0.04 0.281 4.90 2.06 Failed Failed Failed

Laplace
0.8 0.8 8381.08 4.98 0.04 0.252 4.77 4.18 Failed Failed Failed
0.9 0.9 11218.82 5.00 0.05 0.265 4.96 0.94 Failed Failed Failed

Table 1: The numerical results of DNN, SCS, and Cvxopt. The game size refers to the size of the action set for each of the two players. The
probability distribution represents the distribution followed by each row vector Bk and Dl in (3) and (4). α is the confidence level of the
probability constraint. CPU time is calculated in seconds. The value represents the objective function value. The ϵ-Error measures the degree
to which the solution point satisfies the KKT condition.

Figure 3: Comparison of the convergence of DNN and SCS methods. The instance is with game size 10 ∗ 10. The x-axis represents the number
of iterations (SCS method) or time (DNN method). The y-axis represents the ϵ error for the KKT conditions.
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with future efficient ODE numerical methods and solvers. The performance will be substantially improved in the future

with the help of these studies of ODE.205

5. Conclusion

In this paper, we studied a dynamical neural network approach to solve a two-player zero-sum game with stochastic

linear constraints problem. We reformulated our problem as a second order conic problem. We show that the equilibrium

point of the DNN model is the optimal solution for the original problem. By using the Lyapunov stability theory, we

prove the globally asymptotically stable and the uniqueness of the equilibrium point of the proposed DNN. Our numerical210

experiments show the solution process of the DNN model. Our DNN model can give more accurate Nash equilibrium

points and remains robust with respect to game size. Finally, our approach opens up new research directions for solving

various types of game problems using dynamic neural networks.
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