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A B S T R A C T

This research studies the use of copula theory to model dependencies in joint probabilistic
constrained geometric programs with dependent rows. The row vectors are assumed to follow
an elliptical distribution, and their dependencies are modeled through a Gumbel–Hougaard
copula. We use a log transformation to convert the chance-constrained geometric program into
a deterministic optimization problem. Then we solve the resulting deterministic program using
a dynamical neural network. The stability and convergence of the proposed neural network
approach are demonstrated. The primary characteristic of our framework is its ability to solve
the dependent joint chance constrained geometric programs without resorting to any convex
approximation methods. This feature sets our approach apart from the current state-of-the-art
solving techniques. The neurodynamic algorithm is finally applied to solve three geometric
optimization problems.

1. Introduction

Chance-constrained optimization appears as an approach for solving optimization problems where uncertainty is present in
he constraints. Chance-constrained optimization dates back to the early work of Charnes & Cooper [1]. Since then, chance-
onstrained optimization attracted the attention of researchers and was applied to deal with numerous real-world problems,
.g., power management [2], finance [3,4], scheduling [5], healthcare [6] and wireless communication [7]. Joint chance-constrained
ptimization is a special case of chance-constrained optimization that has the advantage of assuring the satisfaction of all constraints
t a certain level. Lejeune et al. [8] propose a Boolean modeling framework to solve linear programs with joint probabilistic
onstraints. Nemirovski et al. [9] give some convex approximations to solve joint chance-constrained optimization problems. Chen
t al. [10] provide worst-case bounds to approximate the solution for both individual and joint chance-constrained problems. Cheng
Lisser [11] use a piecewise linear approximation and a piecewise tangent approximation to come up with an upper and a lower

ounds for linear programs with joint probabilistic constraints. Based on the optimality conditions of the deterministic equivalent of
he linear programs with joint probabilistic constraints, Tassouli & Lisser [12] design a convergent neurodynamic neural network to
pproximate the optimal value. An other way to deal with uncertainties in chance-constrained optimization is the fuzzy theory
nitialized by Zadeh [13] in the early 1960s. Since then, the theory has been applied to solve a variety of problems. Sharma
t al. [14] introduce a novel approach to address the challenges of solving multi-objective bi-level chance-constrained optimization
roblems within an intuitionistic fuzzy framework. The technological coefficients and objective function coefficients are represented
sing Triangular Intuitionistic fuzzy numbers, while normal random variables are employed to represent resource coefficients. Rani
t al. [15] present some generalized techniques for solving intuitionistic fuzzy multi-objective non-linear optimization problems. A
etailed survey on fuzzy chance-constrained can be found in [16].
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Geometric programming (GP) is a mathematical technique designed to determine the constrained minimum value of a generalized
olynomial objective function. The first work involving geometric optimization appeared in 1971 by Kochenberger [17]. Geometric
ptimization has been a subject of study for several decades. Maranas & Fouldas [18] propose a deterministic global optimization
lgorithm that can locate the global minimum of generalized geometric problems. Rijckaert and Martens [19] propose a dual
ondensation algorithm to come up with a solution to generalized geometric programs. Bricker and Rajgopal [20] describe
n algorithm for the geometric programming dual problem using an adaptation of the generalized LP algorithm. Kortanek
t al. [21] present an infeasible interior-point algorithm for solving primal and dual geometric programs. The application of
eometric programming spans various domains, such as engineering design, power control, and finance. However, the conventional
eterministic geometric programming method relies on deterministic values for decision variable coefficients and exponents.
his approach becomes inadequate when dealing with complex real-life problems that involve uncertainty and impreciseness

n parameters and data. Mondal et al. [22] solve chance-constrained geometric programming problems by using triangular and
rapezoidal uncertainty distributions for the uncertain variables. Liu [23] proposes a procedure to obtain the lower and upper
ounds of the objective function for posynomial geometric programming problems in the presence of uncertain cost and constraint
arameters and [24] develops a procedure to determine the fuzzy objective value of fuzzy posynomial geometric programming
roblems, where the exponents of decision variables in the objective function, the cost and constraint coefficients, and the right-
and sides are represented by fuzzy numbers. Shiraz & Fukuyama [25] introduce a rough geometric programming method that
ombines deterministic geometric programming with rough set theory. The proposed method exhibits three main characteristics:
he coefficients in the objective function and constraints are treated as rough variables, the expected-value operator is applied to
ough variables, and it can determine both the lower and upper bounds of the objective function at a specific trust level. Shiraz
t al. [26] employ fuzzy variables to formalize the uncertainty surrounding the coefficients of GP problems. Three variants of chance-
onstrained GP are formulated based on the possibility, necessity, and credibility approaches. The paper demonstrates how these
ariants can be transformed into equivalent deterministic GP problems, which can be solved using the duality algorithm. Nodeh
nd al. [27] explore the constrained shortest path problem, specifically focusing on the scenario where the arc resources follow a
ependent normal distribution. A model is proposed to maximize the probability of meeting all constraints while staying within a
pecified limit. A Copula-based marginal distribution approach is employed to handle the dependency between the constraint matrix
ows, utilizing an appropriate Archimedean Copula. The joint chance-constrained problems are then transformed into deterministic
roblems using second-order cone programming.

The neurodynamic system approach is a significant method for addressing optimization problems. Artificial recurrent neural
etworks are utilized as a tool to convert optimization problems into a specific dynamic system represented by first-order differential
quations. This dynamic system is expected to converge to a static state or equilibrium point, which corresponds to the solution of the
riginal optimization problem, starting from an initial point. Additionally, neural networks designed for optimization problems can
e implemented in hardware using integrated circuits, making them readily deployable. Two compelling features of neural networks
or optimization problems are parallel information processing and hardware implementability. Neural networks have inherent
arallel processing capabilities. The structure of neural networks allows for the simultaneous evaluation of multiple inputs and the
omputation of corresponding outputs. This parallelism enables efficient and concurrent processing of information, resulting in faster
ptimization performance compared to sequential algorithms. Neural networks can be implemented using specialized hardware, such
s integrated circuits or dedicated processing units. This hardware implementation takes advantage of the parallel nature of neural
etworks, further enhancing their computational speed and efficiency. By leveraging hardware resources, neural networks can be
eployed in real-time applications or embedded systems, enabling efficient and rapid optimization in various domains. Over the
ast few decades, recurrent neural networks (RNNs) have been extensively studied for solving optimization problems. One of the
arly breakthroughs in this field was made by Hopfield & Tank in 1985 [28], where they developed a linear programming neural
etwork. This network was specifically designed for online optimization applications. Since then, numerous RNN architectures have
een proposed for solving constrained optimization problems. Xia & Feng [29] introduce an RNN for solving nonlinear projection
quations. The neural network architecture comprises a single layer and is well-suited for parallel implementation, leveraging
he advantages of parallel computing. Under mild conditions of the underlying nonlinear mapping, the neural network is proven
o converge to an accurate solution. Liu & Qin [30] present a neurodynamic approach for addressing nonlinear optimization
roblems that involve affine equality and convex inequality constraints. By incorporating the time-varying auxiliary function,
he proposed neural network is designed to converge to the feasible region of the optimization problem in a limited CPU time.
nce the neural network enters the feasible region, it remains within it throughout the optimization process. Leung & Wang [31]

ntroduce a collaborative neurodynamic approach for tackling multiobjective optimization problems. The approach aims to achieve
wo key objectives: Pareto optimality and solution diversity. To address the multiple objectives, a weighted Chebyshev function
s employed to scalarize the objectives. This scalarization enables the transformation of the multiobjective problem into a single-
bjective problem. Leung and al. [32] apply neurodynamic optimization techniques to portfolio selection, considering both variable
eights and cardinality constraints. Neurodynamic approaches are also applied to solve chance-constrained optimization. Nazemi &
ahmasbi [33] present a neural network model to solve linear optimization problems with individual chance constraints. Tassouli
Lisser [34] propose a neural network approach to solve geometric programs with joint probabilistic constraints with normally

istributed coefficients and independent matrix row vectors. Tassouli & Lisser [12] solve linear programs with joint probabilistic
onstraints with normally distributed and dependent rows using a dynamical neural network.

Building upon prior research, this paper introduces a novel neurodynamic approach for solving dependent joint chance-
onstrained geometric programs where the row vectors are assumed to follow an elliptical distribution and their dependencies are
odeled through a Gumbel–Hougaard copula. The main contributions of the presented network in this paper can be summarized

s follows.
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(i) The paper addresses the challenging problem of solving dependent joint chance-constrained geometric programs. These
programs involve interdependent variables and constraints, adding complexity to the optimization process. The proposed
network offers a solution approach tailored to this problem setting.

(ii) The presented network incorporates a Gumbel–Hougaard copula to model the dependencies among the row vectors. This copula
allows for capturing the underlying dependencies accurately, enabling more realistic and precise optimization solutions.

(iii) To the best of our knowledge, the only work involving dependent joint chance constrained geometric program is the one of
Shiraz et al. [35]. Compared with [35], the presented neurodynamic optimization model in this paper does not rely on any
convex or linear approximation to solve the optimization problem.

(iv) We establish the neurodynamic model’s stability and global convergence properties using Lyapunov theory and applying
LaSalle’s invariance principle.

(v) Our numerical experiments show that our dynamical neural network provides a high-quality upper bounds for the original
geometric program when compared to the state-of-the-art and assess the robustness of the solutions by generating random
samples of the variables and checking the satisfaction of the constraints.

The rest of the paper is organized as follows. In Section 2, we introduce the copulas theory as a tool to deal with dependencies
between the random variables. In Section 3, we derive the deterministic equivalent of the studied problem and present its optimality
conditions. In Section 4, we propose a dynamical neural network to approximate the optimal value and show its stability and
convergence. In Section 5, we apply our proposed algorithm to solve three geometric programs.

2. Preliminaries

To capture the dependencies between the random coefficients, we use the copula theory to derive joint distributions. Fisher gave
two mean reasons why copulas are of interest to statisticians: First, they provide scale-free measures of statistical dependence; and
second, they enable building classes of joint distributions. The Copula theory dates back to 1959 [36]. Since 1990s, the interest in the
copula theory grew markedly. Jouini & Clemen [37] discuss the use of multivariate distributions that are functions of their marginals
for aggregating information from various sources. Patton [38] presents a review of the many applications of copulas in finance and
economics. Houda & Lisser [39] use copulas to model the dependence between the random variables in joint chance-constrained
optimization. Liu et al. [40] present a collective neurodynamic approach with multiple interconnected recurrent neural networks
for distributed constrained optimization.

This section serves as an introduction to the concept of a copula and the associated properties that are used in this paper.

Definition 1. A copula, denoted as C ∶ [0, 1]𝑑 ⟶ [0, 1], is a joint cumulative distribution function with a dimension of 𝑑. It is
characterized by having uniformly distributed marginals within the interval [0, 1].

Theorem 1 (Sklar’s Theorem 1959). Let F be a d-dimensional cumulative distribution function with marginals F1, F2,… , F𝑑 . In this case,
there exists a copula C such that

∀𝑥 ∈ R𝑑 , F(𝑥) = C(F1(𝑥1), F2(𝑥2),… , F𝑑 (𝑥𝑑 )).

If all the marginals F1, F2,… , F𝑑 are continuous, then the copula C is unique and given by

C(𝑢) = F(F1−1(𝑢1), F2−1(𝑢2),… , F𝑑−1(𝑢𝑑 )),

Otherwise, C is uniquely determined within the range rang(F1) × rang(F2) ×⋯ × rang(F𝑑 ).

Definition 2. If a copula C has a density, then it is expressed as follows

C(𝑢1, 𝑢2, .., 𝑢𝑑 ) =
𝜕𝑑C(𝑢1, 𝑢2, .., 𝑢𝑑 )

𝜕𝑢1𝑢2..𝑢𝑑
To capture dependencies between stochastic parameters, explicit copulas known as Archimedean copulas are commonly

mployed, as many copulas, such as the Gaussian copula, lack an explicit analytical expression.

efinition 3. A copula C is Archimedean if it is represented as follows

C(𝑢1, 𝑢2, .., 𝑢𝑑 ; 𝜃) = 𝜓 [−1](𝜓(𝑢1; 𝜃), 𝜓(𝑢2; 𝜃), .., 𝜓(𝑢𝑑 ; 𝜃); 𝜃),

where 𝜓 ∶ [0, 1] × 𝛩 ⟶ [0,∞) a strictly continuously declining function called generator of C, such that 𝜓(1; 𝜃) = 0. 𝜓 [−1] is a

pseudo-inverse of 𝜓 defined by 𝜓 [−1](𝑡; 𝜃) =
{

𝜓−1(𝑡; 𝜃) if 0 ≤ 𝑡 ≤ 𝜓(0; 𝜃)
0 if 𝑡 ≥ 𝜓(0; 𝜃)

and 𝜃 is a dependency parameter.

We give in Table 1 some examples of Archimedean copulas often used in the literature.
In this research, we adopt the assumption that the random vectors follow an elliptical distribution. Consequently, we provide a

brief overview of the definitions and properties associated with the elliptical family.
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Table 1
Examples of some commonly used Archimedean copulas.
Name of copula Parameter 𝜃 Generator 𝜓𝜃 (𝑡)

Clayton 𝜃 > 0 1
𝜃
(𝑡−𝜃 − 1)

Frank 𝜃 > 0 −ln( 𝑒
−𝜃𝑡−1

𝑒−𝜃−1
)

Gumbel–Hougaard 𝜃 ≥ 1 𝑒−𝑡
1
𝜃

Joe 𝜃 > 1 −ln(1 − (1 − 𝑡)𝜃 )

Table 2
Table of selected elliptical distributions.
Law Characteristic generator Radial density Quantile function Convexity condition

Normal 𝑒−
1
2
𝑡 𝑒−

1
2
𝑡2

√

2erf−1(2𝛼 − 1) 1
2
≤ 𝛼 ≤ 1

Laplace (1 + 1
2
𝑡)−1 𝑒−

√

2|𝑡| ln(2𝛼), if 0 ≤ 𝛼 ≤ 1
2

1
2
≤ 𝛼 ≤ 1

−ln(2(1 − 𝛼)), if 1
2
≤ 𝛼 ≤ 1

Cauchy 𝑒−
√

𝑡 (1 + 𝑡2)−
𝑛+1
2 tan(𝜋(𝛼 − 1

2
)) 1

2
≤ 𝛼 ≤ 1

Logistic 2𝜋
√

𝑡
𝑒𝜋

√

𝑡−𝑒−𝜋
√

𝑡

𝑒−𝑡2

(1+𝑒−𝑡2 )2
ln( 𝛼

1−𝛼
) 1

2
≤ 𝛼 ≤ 1

Definition 4. An n-dimensional vector 𝑋 follows an elliptical distribution if there exists a function 𝛹 such that its characteristic
function is given by

𝜙(𝑧) = E[𝑒𝑖𝑧𝑇𝑋 ] = 𝑒𝑖𝑧
𝑇 𝜇𝛹 (𝑧𝑇𝛴𝑧). (1)

where 𝜇 is the location parameter, and 𝛴 is a positive-definite matrix. The function 𝛹 is called a characteristic generator of the
elliptical distribution. We note 𝑋 ∼ Ellip(𝜇,𝛴, 𝜙).

Definition 5. When the density function of an elliptical distribution exists, it must have the structure

𝑓 (𝑥) = 𝐶
√

det𝛴
𝑔
(
√

(𝑥 − 𝜇)𝑇𝛴−1(𝑥 − 𝜇)
)

. (2)

where 𝑔 ∶ R+ → R++ is a so-called radial density and 𝑐 > 0 is a normalization factor ensuring that 𝑓 integrates to one.

Remark 1. A collection of various multivariate elliptical distributions, their characteristic generators, radial densities, quantile
functions of the standard distribution, and the convexity conditions of the quantile function are presented in Table 2.

3. Chance-constrained geometric programming

A standard geometric program is given as follows

min
𝑡∈R𝑀++

𝐼0
∑

𝑖=1
𝑐𝑖

𝑀
∏

𝑗=1
𝑡
𝑎𝑖𝑗
𝑗 ,

s.t
𝐼𝑘
∑

𝑖=1
𝑐𝑖

𝑀
∏

𝑗=1
𝑡
𝑎𝑖𝑗
𝑗 ≤ 1, 𝑘 = 1,… ., 𝐾, (3)

where 𝑐𝑖 > 0, 𝑖 = 1,… , 𝐼𝑘, 𝑘 = 0, 1,… , 𝐾 and 𝑎𝑖𝑗 , 𝑖 = 1,… , 𝐼𝑘, 𝑗 = 1,… ,𝑀 are real constants.
The joint chance-constrained version of the geometric program is then given by

min
𝑡∈R𝑀++

E

[ 𝐼0
∑

𝑖=1
𝑐𝑖

𝑀
∏

𝑗=1
𝑡
𝑎𝑖𝑗
𝑗

]

,

s.t P

( 𝐼𝑘
∑

𝑖=1
𝑐𝑖

𝑀
∏

𝑗=1
𝑡
𝑎𝑖𝑗
𝑗 ≤ 1, 𝑘 = 1,… ., 𝐾

)

≥ 𝛼, (4)

with 𝛼 ∈ [0.5, 1).

Assumption 1. We assume that the row vectors are dependent and elliptically distributed and that the dependence is captured
by a Gumbel–Hougaard copula, i.e., 𝐶0 = (𝑐1,… , 𝑐𝐼0 ) ∼ Ellip(𝜇0, 𝛴0, 𝜙) and 𝐶𝑘 = (𝑐1,… , 𝑐𝐼𝑘 ) ∼ Ellip(𝜇𝑘, 𝛴𝑘, 𝜙). Where 𝜇𝑘 is a mean

vector and 𝛴𝑘 =
⎡

⎢

⎢

𝜎11 𝜎12 … 𝜎1𝐼𝑘
⋮ ⋮ … ⋮

⎤

⎥

⎥

is a positive definite matrix, 𝑘 = 1,… , 𝐾.

⎣𝜎𝐼𝑘1 𝜎𝐼𝑘2 … 𝜎𝐼𝑘𝐼𝑘⎦

4
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𝑦

Assumption 2. In this research, we consider only the elliptical distributions present in Table 2.

Using the theory of copula and Sklar’s properties, a deterministic equivalent of (4) is given by [41]

min
𝑡∈R𝑀++

𝐼0
∑

𝑖=1
𝜇𝑖

𝑀
∏

𝑗=1
𝑡
𝑎𝑖𝑗
𝑗 ,

s.t
𝐼𝑘
∑

𝑖=1
𝜇𝑖

𝑀
∏

𝑗=1
𝑡
𝑎𝑖𝑗
𝑗 + 𝜙−1((𝛼𝑦𝑘 )

1
𝜃 )

√

√

√

√

√

𝐼𝑘
∑

𝑖=1

𝐼𝑘
∑

𝑙=1
𝜎𝑖𝑙

𝑀
∏

𝑗=1
𝑡
𝑎𝑖𝑗+𝑎𝑙𝑗
𝑗 ≤ 1, 𝑘 = 1,… , 𝐾, (5)

𝐾
∏

𝑘=1
𝑦𝑘 ≥ 𝛼, 0 < 𝑦𝑘 ≤ 1 , 𝑘 = 1,… , 𝐾,

here 𝜙−1 is the quantile function of a standard elliptical distribution.
Problem (5) is not convex, we apply then a logarithmic transformation by setting 𝑡𝑗 = 𝑒𝑟𝑗 . Problem (5) becomes then,

min
𝑟∈R𝑀

𝐼0
∑

𝑖=1
𝜇𝑖exp

{ 𝑀
∑

𝑗=1
𝑎𝑖𝑗𝑟𝑗

}

,

s.t
𝐼𝑘
∑

𝑖=1
𝜇𝑖exp

{ 𝑀
∑

𝑗=1
𝑎𝑖𝑗𝑟𝑗

}

+ 𝜙−1((𝛼𝑦𝑘 )
1
𝜃 )

√

√

√

√

√

∑

𝑖∈𝐼𝑘

∑

𝑙∈𝐼𝑘

𝜎𝑖𝑙exp
{ 𝑀

∑

𝑗=1
(𝑎𝑖𝑗 + 𝑎𝑙𝑗 )𝑟𝑗

}

≤ 1, 𝑘 = 1,… , 𝐾,

𝐾
∑

𝑘=1
−ln(𝑦𝑘) ≤ −ln(𝛼), (6)

−𝑦𝑘 < 0 , 𝑘 = 1,… , 𝐾,

𝑦𝑘 ≤ 1 , 𝑘 = 1,… , 𝐾.

Theorem 2. Problem (6) is biconvex.

Proof. The convexity on 𝑟 is straightforward. We have for Gumbel–Hougaard copula that 𝜃 ≥ 1, it follows that 0 < 1
𝜃 ≤ 1. Since

0 < 𝑦𝑘 ≤ 1, we obtain 0 < 𝑦𝑘
1
𝜃 ≤ 1. We have then, (𝛼𝑦𝑘 )

1
𝜃 ≥ 𝛼 ≥ 0.5. From Table 2, 𝑦𝑘 ↦ 𝜙−1((𝛼𝑦𝑘 )

1
𝜃 ) is convex. The conclusion

follows. □

We present in the rest of the section the optimality conditions of (6). First of all, we give the feasible set of (6) by

U =

{

(𝑟, 𝑦) ∈ R𝑀 × R𝐾 |

∑

𝑖∈𝐼𝑘

𝜇𝑖exp
{ 𝑀

∑

𝑗=1
𝑎𝑖𝑗𝑟𝑗

}

+ 𝜙−1((𝛼𝑦𝑘 )
1
𝜃 )

√

√

√

√

√

∑

𝑖∈𝐼𝑘

∑

𝑙∈𝐼𝑘

𝜎𝑖𝑙exp
{ 𝑀

∑

𝑗=1
(𝑎𝑖𝑗 + 𝑎𝑙𝑗 )𝑟𝑗

}

≤ 1,

0 ≤ 𝑦𝑘 ≤ 1 , 𝑘 = 1,… , 𝐾 and
𝐾
∑

𝑘=1
−ln(𝑦𝑘) ≤ −ln(𝛼)

}

.

We define additionally

U(r) =
{

𝑦 ∈ R𝐾 |

∑

𝑖∈𝐼𝑘

𝜇𝑖exp
{ 𝑀

∑

𝑗=1
𝑎𝑖𝑗𝑟𝑗

}

+ 𝜙−1((𝛼𝑦𝑘 )
1
𝜃 )

√

√

√

√

√

∑

𝑖∈𝐼𝑘

∑

𝑙∈𝐼𝑘

𝜎𝑖𝑙exp
{ 𝑀

∑

𝑗=1
(𝑎𝑖𝑗 + 𝑎𝑙𝑗 )𝑟𝑗

}

≤ 1,

0 ≤ 𝑦𝑘 ≤ 1 , 𝑘 = 1,… , 𝐾 and
𝐾
∑

𝑘=1
−ln(𝑦𝑘) ≤ −ln(𝛼)

}

.

and

U(y) =
{

𝑟 ∈ R𝑀 |

∑

𝑖∈𝐼𝑘

𝜇𝑖exp
{ 𝑀

∑

𝑗=1
𝑎𝑖𝑗𝑟𝑗

}

+ 𝜙−1((𝛼𝑦𝑘 )
1
𝜃 )

√

√

√

√

√

∑

𝑖∈𝐼𝑘

∑

𝑙∈𝐼𝑘

𝜎𝑖𝑙exp
{ 𝑀

∑

𝑗=1
(𝑎𝑖𝑗 + 𝑎𝑙𝑗 )𝑟𝑗

}

≤ 1,

𝑘 = 1,… , 𝐾

}

.

efinition 6. (𝑟∗, 𝑦∗) ∈ R𝑀 ×R𝐾 is a partial optimum of (6) if ∑𝑖∈𝐼0 𝜇𝑖exp
{

∑𝑀
𝑗=1 𝑎𝑖𝑗𝑟𝑗

∗
}

≤
∑

𝑖∈𝐼0 𝜇𝑖exp
{

∑𝑀
𝑗=1 𝑎𝑖𝑗𝑟𝑗

}

, ∀𝑟 ∈ U(𝑦∗) and
∗ ∈ U(𝑟∗)
5
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Definition 7. Let (𝑟∗, 𝑦∗) ∈ R𝑀 × R𝐾 and 𝑔𝑘(𝑟, 𝑦𝑘) = 𝜙−1((𝛼𝑦𝑘 )
1
𝜃 )
√

∑

𝑖∈𝐼𝑘
∑

𝑙∈𝐼𝑘 𝜎𝑘𝑖𝑙exp
{

∑𝑀
𝑗=1(𝑎𝑘𝑗𝑖 + 𝑎𝑘𝑗𝑡)𝑟𝑗

}

. If there exist 𝛾𝑟, 𝛾𝑦, 𝛽+,
𝛽− and 𝜆 such that

⎡

⎢

⎢

⎢

⎣

∑

𝑖∈𝐼0 𝜇𝑖𝑎𝑖1exp
{

∑𝑀
𝑗=1 𝑎𝑖𝑗𝑟𝑗

}

⋮
∑

𝑖∈𝐼0 𝜇𝑖𝑎𝑖𝑀exp
{

∑𝑀
𝑗=1 𝑎𝑖𝑗𝑟𝑗

}

⎤

⎥

⎥

⎥

⎦

+
𝐾
∑

𝑘=1
𝛾𝑟𝑘

⎡

⎢

⎢

⎢

⎣

∑

𝑖∈𝐼𝑘 𝑎𝑖1exp
{

∑𝑀
𝑗=1 𝜇𝑖𝑎𝑖𝑗𝑟𝑗

}

+ ∇𝑟1𝑔𝑘(𝑟, 𝑦𝑘)
⋮

∑

𝑖∈𝐼𝑘 𝜇𝑖𝑎𝑖𝑀exp
{

∑𝑀
𝑗=1 𝑎𝑖𝑗𝑟𝑗

}

+ ∇𝑟𝑀 𝑔𝑘(𝑟, 𝑦)

⎤

⎥

⎥

⎥

⎦

= 0,

∑

𝑖∈𝐼𝑘

𝛾𝑦𝑘∇𝑦𝑘𝑔𝑘(𝑟, 𝑦) + 𝛽+𝑘 − 𝛽−𝑘 −
𝜆
𝑦𝑘

= 0, 𝑘 = 1,… , 𝐾 (7)

𝛾𝑟 ≥ 0,
∑

𝑖∈𝐼𝑘

𝛾𝑟𝑘

{

∑

𝑖∈𝐼𝑘

𝜇𝑖exp
{ 𝑀

∑

𝑗=1
𝑎𝑖𝑗𝑟𝑗

}

+ 𝑔𝑘(𝑟, 𝑦)

}

= 0, 𝛾𝑦 ≥ 0,
∑

𝑖∈𝐼𝑘

𝛾𝑦𝑘

{

∑

𝑖∈𝐼𝑘

𝜇𝑖exp
{ 𝑀

∑

𝑗=1
𝑎𝑖𝑗𝑟𝑗

}

+ 𝑔𝑘(𝑟, 𝑦)

}

= 0,

𝛽+ ≥ 0, 𝛽+𝑘(𝑦𝑘 − 1) = 0, 𝛽− ≥ 0, 𝛽−𝑘(𝑦𝑘) = 0, 𝜆 ≥ 0, 𝜆 ≥ 0, 𝜆(ln(𝛼) −
𝐾
∑

𝑘=1
ln(𝑦𝑘)) = 0, 𝑘 = 1,… , 𝐾

then (𝑟∗, 𝑦∗) is called a partial KKT point of (6).

Theorem 3. Let (𝑟∗, 𝑦∗) ∈ R𝑀 × R𝐾 . If (6) is satisfied with partial Slater constraint qualification at (𝑟∗, 𝑦∗), then (𝑟∗, 𝑦∗) is a partial
optimum of (6) if and only if (𝑟∗, 𝑦∗) is a partial KKT point of (6). Furthermore if 𝛾𝑟 = 𝛾𝑦, then (𝑟∗, 𝑦∗) is a KKT point of (6).

4. A neurodynamic approach

In this section, we present a dynamical neural network that converges to a solution of (6). We consider then two time-dependent
variables 𝑟(.) and 𝑦(.) and the following dynamical equation

𝑑𝑟𝑗
𝑑𝑡

= −

(

∑

𝑖∈𝐼0

𝑎𝑖𝑗exp
{ 𝑀

∑

𝑗=1
𝑎𝑖𝑗𝑟𝑗

}

+
𝐾
∑

𝑘=1

(

𝛾𝑘 +

{

∑

𝑖∈𝐼𝑘

𝜇𝑖exp
{ 𝑀

∑

𝑗=1
𝑎𝑖𝑗𝑟𝑗

}

+ 𝑔𝑘(𝑟, 𝑦)

})

+

×

(

∑

𝑖∈𝐼𝑘

𝑎𝑖𝑗𝜇𝑖exp
{ 𝑀

∑

𝑗=1
𝑎𝑖𝑗𝑟𝑗

}

+ ∇𝑟𝑗 𝑔𝑘(𝑟, 𝑦𝑘)

) )

, 𝑗 = 1,… ,𝑀,

𝑑𝑦𝑘
𝑑𝑡

= −

(

∑

𝑖∈𝐼𝑘

∇𝑦𝑘𝑔𝑘(𝑟, 𝑦) ×

(

𝛾𝑘 +

{

∑

𝑖∈𝐼𝑘

𝜇𝑖exp
{ 𝑀

∑

𝑗=1
𝑎𝑖𝑗𝑟𝑗

}

+ 𝑔𝑘(𝑟, 𝑦)

})

+

+ 𝛽+𝑘(𝛽+𝑘 + 𝑦𝑘 − 1)+ + 𝛽−𝑘(𝛽−𝑘 − 𝑦𝑘)+ − 𝜆
𝑦𝑘

(

𝜆 + ln(𝛼) −
𝐾
∑

𝑘=1
ln(𝑦𝑘)

)

+

)

, 𝑘 = 1,… , 𝐾,

𝑑𝛾𝑘
𝑑𝑡

=

(

𝛾𝑘 +

{

∑

𝑖∈𝐼𝑘

𝜇𝑖exp
{ 𝑀

∑

𝑗=1
𝑎𝑖𝑗𝑟𝑗

}

+ 𝑔𝑘(𝑟, 𝑦)

})

+

− 𝛾𝑘, 𝑘 = 1,… , 𝐾, (DNN)

𝑑𝛽+𝑘
𝑑𝑡

=
(

𝛽+𝑘 + 𝑦𝑘 − 1
)

+
− 𝛽+𝑘, 𝑘 = 1,… , 𝐾,

𝑑𝛽−𝑘
𝑑𝑡

=
(

𝛽−𝑘 − 𝑦𝑘
)

+
− 𝛽−𝑘, 𝑘 = 1,… , 𝐾,

𝑑𝜆
𝑑𝑡

=
(

𝜆 + ln(𝛼) −
𝐾
∑

𝑘=1
ln(𝑦𝑘)

)

+
− 𝜆.

Let 𝑟 =
(

𝑟1,… , 𝑟𝑀
)𝑇 , 𝑦 =

(

𝑦1,… , 𝑟𝐾
)𝑇 , 𝛾 =

(

𝛾1,… , 𝛾𝐾
)𝑇 , 𝛽+ =

(

𝛽+1,… , 𝛽+𝐾
)𝑇 and 𝛽− =

(

𝛽−1,… , 𝛽−𝐾
)𝑇 . For the sake of simplicity,

we can write (DNN) as
𝑑𝑟
𝑑𝑡

= 𝐴(𝑟, 𝑦, 𝛾), (8)
𝑑𝑦
𝑑𝑡

= 𝐵(𝑟, 𝑦, 𝛾, 𝛽+, 𝛽−, 𝜆), (9)
𝑑𝛾
𝑑𝑡

= 𝐶(𝑟, 𝑦, 𝛾), (10)
𝑑𝛽+
𝑑𝑡

= 𝐷(𝑦, 𝛽+), (11)
𝑑𝛽−
𝑑𝑡

= 𝐸(𝑦, 𝛽−), (12)
𝑑𝜆
𝑑𝑡

= 𝐹 (𝑦, 𝜆). (13)
6
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F
F

P

Fig. 1. A simplified implementation of the neural network (8)–(13).

or ease of understanding, we provide a pseudocode in Algorithm 1 and a simplified circuit implementation of Eqs. (8)–(13) in
ig. 1. Where, the symbol ∫ represents the integration operator for reference.

Algorithm 1 A neurodynamic algorithm
Step 1. Select an arbitrary starting point, denoted as 𝑧0 = (𝑟0, 𝑦0, 𝛾0, 𝛽+0, 𝛽−0, 𝜆0).
Step 2. Initialize the iteration counter 𝑖 = 0.
Step 3. Update 𝑧𝑖+1 = 𝑧∗, where 𝑧∗ is an equilibrium point of the dynamical system (8)-(13) with the starting point 𝑧𝑖.
if A stopping criterion is satisfied, i.e, ||𝑧𝑖+1 − 𝑧𝑖|| ≤ 𝜖 then

STOP.
else
𝑖 = 𝑖 + 1.

end if

Theorem 4. Suppose that (𝑟∗, 𝑦∗) is a partial optimum of (6) and 𝛾∗, 𝛽∗+, 𝛽
∗
− and 𝜆∗ the corresponding Lagrange multipliers, then

(𝑟∗, 𝑦∗, 𝛾∗, 𝛽∗+, 𝛽
∗
−, 𝜆

∗) is an equilibrium point of (DNN). Additionally, every equilibrium point of (DNN) is a KKT point of (6).

Proof. Let (𝑟∗, 𝑦∗, 𝛾∗, 𝛽∗+, 𝛽
∗
−, 𝜆

∗) an equilibrium point of (DNN), then all the left side derivatives in (DNN) are equal to zero. We
use the fact that

(

(𝑎 + 𝑏)+ = 𝑎
)

⇔
(

𝑎 ≥ 0, 𝑏 ≤ 0 and 𝑎𝑇 𝑏 = 0
)

and we obtain the partial KKT system (7) with 𝛾𝑟 = 𝛾𝑦 = 𝛾. Now if
(𝑟∗, 𝑦∗) is a partial optimum of (6) and 𝛾∗, 𝛽∗+, 𝛽

∗
− and 𝜆∗ the corresponding Lagrange multipliers, then it is straightforward that

(𝑟∗, 𝑦∗, 𝛾∗, 𝛽∗+, 𝛽
∗
−, 𝜆

∗) is an equilibrium point of (DNN). □

To establish the convergence and the stability for the neural network proposed to solve (4), we first provide the following
definition and lemma.

Definition 8. A function 𝐹 ∶ R𝑚 → 𝛺 ⊂ R𝑚 is said to be monotone on 𝛺, if for each 𝑥, 𝑦 ∈ 𝛺

(𝐹 (𝑥) − 𝐹 (𝑦))𝑇 (𝑥 − 𝑦) ≥ 0.

Lemma 1. If the Jacobian matrix of a function 𝐹 is positive semidefinite, then 𝐹 is monotone. [42]

Theorem 5. The neurodynamic model (DNN) is stable and globally convergent to a KKT point (𝑟∗, 𝑦∗, 𝛾∗, 𝛽∗+, 𝛽∗−, 𝜆∗) of (6).

roof. Let 𝜇 = (𝑟, 𝑦, 𝛾, 𝛽+, 𝛽−, 𝜆), we consider the following Lyapunov function

𝑉 (𝜇) = ‖𝛷(𝜇)‖2 + 1
‖𝜇 − 𝜇∗‖2,
2 2 2

7
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h

where 𝛷(𝑦) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐴(𝑟, 𝑦, 𝛾)
𝐵(𝑟, 𝑦, 𝛾, 𝛽+, 𝛽−, 𝜆)

𝐶(𝑟, 𝑦, 𝛾)
𝐷(𝑦, 𝛽+)
𝐸(𝑦, 𝛽−)
𝐹 (𝑦, 𝜆)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. Similar to the analysis of Lemma 3 in [34], the Jacobian matrix ∇𝛷 is negative semidefinite. We

ave 𝑑𝑉 (𝜇)
𝑑𝑡 = ( 𝑑𝛷𝑑𝑡 )

𝑇𝛷 +𝛷𝑇 𝑑𝛷
𝑑𝑡 + (𝜇 − 𝜇∗)𝑇 𝑑𝜇

𝑑𝑡 . Observe that 𝑑𝛷
𝑑𝑡 = 𝑑𝛷

𝑑𝜇
𝑑𝜇
𝑑𝑡 = ∇𝛷(𝜇)𝛷(𝜇), we write then

𝑑𝑉 (𝜇)
𝑑𝑡

= 𝛷𝑇 (∇𝛷(𝜇)𝑇 + ∇𝛷(𝜇))𝛷
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≤0 since ∇𝛷 is negative semidefinite

+ (𝜇 − 𝜇∗)𝑇 (𝛷(𝜇) −𝛷(𝜇∗))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≤0 by Lemma 1

.

There follows that 𝑑𝑉 (𝜇)
𝑑𝑡 ≤ 0, thus 𝑉 (𝜇) is a global Lyapunov function for the dynamical system (DNN) and (DNN) is stable in the

sense of Lyapunov.
According to LaSalle’s invariance principle, the trajectories 𝜇(𝑡) of system (DNN) converge to the largest invariant set  =

{

𝜇 |

𝑑𝑉 (𝜇)
𝑑𝑡 = 0

}

. It is easy to see that 𝑑𝜇
𝑑𝑡 = 0 if and only if 𝑑𝑉

𝑑𝑡 = 0, therefore, the proposed neural network converges globally to the
solution set of problem (6). □

5. Numerical experiments

In this section, we consider three geometric problems to evaluate the performance of our neurodynamic approach. All the
computations were performed using Python on an Intel Core i7-10610U CPU. The random data was generated using numpy.random
and the solution of ODE systems was obtained using the function solve_ivp of scipy.integrate. The gradients and partial derivatives
were computed using autograd.grad and autograd.jacobian. We only account for the quality of the solution and do not record the
CPU time as current ODE solvers are time consuming.

5.1. Example 1 : A posynomial model of inductors

When dealing with the optimization of power electronic converters for multiple objectives, such as power density and
efficiency, optimizing the magnetic components can be particularly challenging and time-consuming. To expedite and streamline
the optimization process, it would be beneficial to formulate converter optimization as a geometric program. Stupar et al. [43]
formulate the optimization of inductors for multiple design objectives as a geometric program. The resulting program is given by.

min 𝛾
PL

PL, max
+ (1 − 𝛾)

VolL
VolL,max

,

s.t Tcore ≤ Tmax, (14)
Twinding ≤ Tmax,

Sat ≤ 1.

where,

PL = 𝛼1L1.1813N0.0718(1000𝑙𝑔)−1.0063𝛥I2.3202L I0.2450L 𝑓 1.0821F−0.0343F

+ 𝛼2L−0.5766N1.1049(1000𝑙𝑔)0.2825𝛥I0.4946L I1.2980L 𝑓−0.6408F−0.4949F ,

VolL = 𝛼3L−0.7187N0.5152(1000𝑙𝑔)−0.5337𝛥I−0.1637L I−0.0107L 𝑓−0.5213F1.2685F

+ 𝛼4L1.1614N−1.9220(1000𝑙𝑔)0.7552𝛥I0.2451L I0.1116L 𝑓 0.2422F0.0446F ,

Tcore = 𝛼5L−5.1598N1.3502(1000𝑙𝑔)−0.5282𝛥I−4.8747L I−1.4170L 𝑓−4.5997F0.0413F

+ 𝛼6L0.6982N−0.2495(1000𝑙𝑔)1.2176𝛥I0.0256L I1.4824L 𝑓 0.6125F−0.1169F ,

Twinding = 𝛼7L0.4714N−0.0047(1000𝑙𝑔)−0.0695𝛥I0.6719L I0.6318L 𝑓 0.4644F0.0202F

+ 𝛼8L−2.1699N2.0525(1000𝑙𝑔)0.3287𝛥I−1.1485L I0.3329L 𝑓−1.8299F−0.4741F ,

Sat = 𝛼9L0.3952N−1.3325(1000𝑙𝑔)−0.1931𝛥I−0.3167L I−0.4861L 𝑓−1.4066F−0.3525F + 1,

where PL is the total losses, VolL is the boxed volume, Tmax is the maximum allowable temperature of the inductor, Tcore is the
core temperature, Twinding is the winding temperature and Sat is the saturation condition. The design variables are the inductance
L, the number of turns N, the air gap 𝑙𝑔 , the current ripple 𝛥IL, the average DC current IL, the frequency f and the fill factor FF. The
normalization factor PL, max, which represents the maximum possible losses within the given design space, is obtained by solving (14)
while considering only the volume (i.e., setting 𝛾 = 0). Similarly, the normalization factor VolL,max, which represents the maximum
possible volume within the given design space, is derived by solving (14) while considering only the losses (i.e., setting 𝛾 = 1).
8
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Fig. 2. Convergence of the optimal solution.

Table 3
Results for different values of 𝛾 and 𝜃.
𝛾 𝜃 = 1 𝜃 = 2 𝜃 = 10

(independent constraints)

Obj value VS Obj value VS Obj value VS

0.0 2, 0.10−6 5 1, 5.10−6 8 1, 4.10−6 10
0.5 7, 1.10−5 3 6.8.10−5 12 6, 9.10−5 15
1.0 8, 7.10−5 4 7, 2.10−5 9 5, 9.10−6 16

We assume in our case that 𝛼1, 𝛼2,… , 𝛼7 are dependent random variables. We rewrite then (14) as follows

min 𝛾
P̄L

PL, max
+ (1 − 𝛾)

̄VolL
VolL,max

,

s.t P
(

Tcore ≤ Tmax,Twinding ≤ Tmax, Sat ≤ 1
)

≥ 1 − 𝜖. (15)

For the numerical experiments, we set PL, max = 10 W, VolL,max = 10 m3, Tmax = 50 ◦C, the mean values of 𝛼𝑖, 𝑖 = 1,… , 7 are equal
o the deterministic values given in [43]. For the sake of simplicity, we set the values of the diagonal coefficients of the covariance
atrix to 0.1 and the remaining coefficients to 0.05. We assume that the variables 𝛼𝑖, 𝑖 = 1,… , 7 are normally distributed and that

their dependence is driven by Gumbel–Hougaard copula. We first solve (15) for 𝛾 = 0 𝜖 = 5% and 𝜃 = 5, we follow the convergence
of the optimal solution in Fig. 2. We observe that the final loss converges to 0. We fix now 𝜖 = 10% and we solve (15) for different
alues of 𝛾 and 𝜃. We test the robustness of the different solutions by generating 100 random samples of the variables 𝛼𝑖, 𝑖 = 1,… , 7

using the function numpy.random.multivariate_normal. Then we count the number of times over 100 when one of the constraints of
(15) was not satisfied. We call every counted time a violated scenario (VS). The obtained results are shown in Table 3. First column
gives the value of 𝛾. Second and third columns give the obtained objective value and the number of VS when 𝜃 = 1.0, respectively.
Columns four and five show the obtained objective value and the number of VS when 𝜃 = 2.0, respectively. Finally, columns six
and seven present the final value and the number of VS when 𝜃 = 1.0, respectively. We observe that as 𝜃 increases, the number of
violated scenarios increases.

5.2. Example 2 : A shape optimization problem

To assess the performance of our dynamical neural network, we employed the multidimensional shape optimization problem
with joint chance constraints from [44].

min
𝑥∈R𝑀++

𝑚
∏

𝑖=1
𝑥−1𝑖 ,

s.t P

(𝑚−1
∑

𝑗=1
( 𝑚 − 1
𝐴𝑤𝑎𝑙𝑙𝑗

𝑥1
𝑚
∏

𝑖=1,𝑖≠𝑗
𝑥𝑖),

1
𝐴𝑓𝑙𝑜𝑜𝑟

𝑚
∏

𝑗=2
𝑥𝑗 ≤ 1

)

≥ 1 − 𝜖, (16)

1
𝛾𝑖,𝑗

𝑥𝑖𝑥
−1
𝑗 ≤ 1, 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑚.

In our numerical experiments, we fixed the following parameters: 𝑚 = 10, 1
𝛾𝑖,𝑗

= 0.5, 𝜖𝑤𝑎𝑙𝑙 = 0.15, 𝜖𝑓𝑙𝑜𝑜𝑟 = 0.15 and 𝜖 = 0.15.

he inverse of floor’s area ( 1 ) and the inverse of wall area ( 1 ) for each 𝑗 = 1,… , 𝑚 were considered as dependent
𝐴𝑓𝑙𝑜𝑜𝑟 𝐴𝑤𝑎𝑙𝑙𝑗

9
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Table 4
Neural network vs. the sequential algorithm for normal distribution.
m Neural network VS Sequential algorithm VS GAP

3 0.283 5 0.334 8 15.3
7 0.399 0 0.444 9 10.1
10 0.601 1 0.667 9 9.9
15 0.253 3 0.277 6 8.6
20 0.663 4 0.685 5 3.2

Table 5
Results for different values of 𝑚 for normal distribution.
𝑚 𝜃 = 1 𝜃 = 2 𝜃 = 10

(independent constraints)

Obj value VS Obj value VS Obj value VS

10 2.78 11 1.97 14 1.06 21
15 13.91 11 10.46 22 6.19 31
20 1.07 8 0.85 9 0.60 10
30 3.13 1 2.50 7 1.75 9

Table 6
Results for different values of 𝑚 for Laplace distribution.
𝑚 𝜃 = 1 𝜃 = 2 𝜃 = 10

(independent constraints)

Obj value VS Obj value VS Obj value VS

10 2.30 24 1.34 30 0.86 36
15 4.22 19 2.47 26 1.53 31
20 5.19 10 3.79 15 2.33 18
30 11.49 2 6.83 5 4.21 8

Table 7
Results for different values of 𝑚 for Logistic distribution.
𝑚 𝜃 = 1 𝜃 = 2 𝜃 = 10

(independent constraints)

Obj value VS Obj value VS Obj value VS

10 0.75 1 0.28 4 0.21 7
15 2.21 4 1.35 5 0.75 6
20 3.30 5 2.37 7 1.38 9
30 4.98 1 3.56 5 2.05 9

variables. The mean value of 1
𝐴𝑓𝑙𝑜𝑜𝑟

was set to 1.0∕20.0 and the mean values of 1
𝐴𝑤𝑎𝑙𝑙𝑗

, 𝑗 = 1,… , 𝑚 were randomly selected from
the range [1.0∕60.0, 1.0∕40.0]. For the sake of simplicity, the values of the coefficients of the covariance matrix is set to 0.01. We
irst compare the results of our approach with those of the sequential convex approximation algorithm from [35] for 𝜃 = 10.0 (i.e,

high dependency). We test the robustness of the different approaches by creating 100 random samples of the variables 1
𝐴𝑤𝑎𝑙𝑙𝑗

and
1

𝐴𝑓𝑙𝑜𝑜𝑟
using the same mentioned moments. We then examine if the solutions from the three methods meet the constraints of (16)

for all 100 cases. If the solutions are not feasible for a particular case, it is referred to as a violated scenario (VS). The numerical
results are displayed in Table 4. Column one gives the number of variables 𝑚. Columns two and three show the objective value and
he number of VS obtained through our neural network, respectively. Columns four and five present the objective value and the
umber of VS obtained using the sequential algorithm. The sixth column gives the gap between the two objective values, calculated
s follows: GAP = (Obj valueSA−Obj valueNN)

Obj valueSA
× 100, where Obj valueNN and Obj valueSA represent the objective values obtained by

the neural network and sequential algorithm, respectively. Table 4 indicates that our neural network outperforms the sequential
algorithm, as the upper bounds obtained are better and fewer scenarios are violated.

We solve (16) for different values of 𝑚 and different values of 𝜃; the dependence parameter of Gumbel–Hougaard Copula. Tables 5,
6, 7 show the obtained results of the normal distribution, Laplace distribution and the logistic distribution, respectively. For the
three tables, column one gives the number of variables 𝑚. Columns two and three give the objective value and the number of VS
when 𝜃 = 1, respectively. Columns four and five show the objective value and the number of VS when 𝜃 = 2, respectively. Finally,
columns six and seven present the objective value and the number of VS when 𝜃 = 10, respectively. We observe that for the different
distributions, the objective value decreases as the dependency between the random variables becomes higher. The last observation
is coherent since the joint chance constraint becomes less restrictive as 𝜃 increases. Nevertheless, the number of violated scenarios
increases for the problems with high dependency.
10
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Table 8
Neural network vs. the sequential algorithm for normal distribution.
K 𝜃 Neural network VS Sequential algorithm VS GAP

5 1 24.91 5 25.14 11 0.9
5 2 25.43 4 25.63 9 0.78
5 10 26.43 2 26.62 8 0.71
10 10 61.58 11 61.95 16 0.59
10 2 62.23 5 62.53 14 0.47
10 10 63.55 1 63.73 11 0.28
15 2 76.59 6 76.63 11 0.05
15 10 83.01 1 83.08 8 0.08
20 10 106.98 13 107.11 15 0.12
20 2 122.67 3 122.76 8 0.07
20 10 136.58 0 136.65 7 0.05

5.3. Example 3 : maximizing the worst user signal to interference noise ratio

In this subsection, our focus is on optimizing the maximum Signal to Interference Noise Ratio (SINR) for users in Massive Multiple
nput Multiple Output (MaMIMO) systems from [45]. The optimization problem involves selecting a subset of antennas from a larger
et, while ensuring that the interference in the system remains within a maximum limit. We consider a single cell area composed
f a set of users  = 1,… , 𝐾, with each user using only one antenna to receive data from the base station. The base station has 𝑇
ntennas and the aim is to maximize the worst user signal-to-interference noise ratio (SINR) while limiting the power assigned to
ach user. The optimization problem is formulated to maximize the minimum SINR of all users subject to constraints on the power
ssigned to each user and given by

max
𝑝∈R𝐾++

min
𝑖∈

𝑝𝑖|𝑔𝐻𝑖 𝑔𝑖|
2

∑

𝑗∈ ,𝑗≠𝑖 𝑝𝑗 |𝑔
𝐻
𝑖 𝑔𝑗 |

2 + |𝜎𝑖|
2
, (17)

s.t 𝑃𝑚𝑖𝑛 ≤ 𝑝𝑖 ≤ 𝑃𝑚𝑎𝑥,∀𝑖 ∈  , (18)

where 𝑝𝑖 is the power to be assigned for each user 𝑖 ∈  . 𝑔𝑖 ∈ C𝑇×1, 𝑔𝐻𝑖 ∈ C1×𝑇 and 𝜎2𝑖 are the beam domain channel vector
ssociated to user 𝑖 ∈  , its Hermitian transpose and Additive White Gaussian Noise (AWGN), respectively.

Taking 𝑎𝑖𝑗 = |𝑔𝐻𝑖 𝑔𝑗 |
2
|𝑔𝐻𝑖 𝑔𝑖|

−2 and 𝑏𝑖 = |𝜎𝑖|
2
|𝑔𝐻𝑖 𝑔𝑖|

−2, a geometric reformulation of (17)–(18) is given by

min
𝑝∈R𝐾++ ,𝑤∈R++

𝑤−1, (19)

s.t
∑

𝑗∈ ,𝑗≠𝑖
𝑎𝑖𝑗𝑝𝑗𝑝

−1
𝑖 𝑤 + 𝑏𝑖𝑝−1𝑖 𝑤 ≤ 1,∀𝑖 ∈  , (20)

𝑃𝑚𝑖𝑛 ≤ 𝑝𝑖 ≤ 𝑃𝑚𝑎𝑥,∀𝑖 ∈  . (21)

We assume that the coefficients 𝑎𝑖𝑗 and 𝑏𝑖 are dependent and normally distributed and that the dependence is driven by
umbel–Hougaard copula. As a result, we replace (19)–(21) by the following joint optimization problem

min
𝑝∈R𝐾++ ,𝑤∈R++

𝑤−1, (22)

s.t P

{

∑

𝑗∈ ,𝑗≠𝑖
𝑎𝑖𝑗𝑝𝑗𝑝

−1
𝑖 𝑤 + 𝑏𝑖𝑝−1𝑖 𝑤 ≤ 1,∀𝑖 ∈ 

}

≥ 1 − 𝜖, (23)

𝑃𝑚𝑖𝑛 ≤ 𝑝𝑖 ≤ 𝑃𝑚𝑎𝑥,∀𝑖 ∈  . (24)

or the numerical experiments, we set 𝑃𝑚𝑖𝑛 = 0.1, 𝑃𝑚𝑎𝑥 = 0.5 and 𝜖 = 0.15. The mean vectors are uniformly generated in [3.0, 7.0],
he diagonal coefficients of the covariance matrices are uniformly taken in [0.1, 0.3] and the remaining coefficients are set to 0.1.
he results are presented in Table 8. Column one gives the value of 𝐾. Column two shows the value of the dependency parameter
. Columns three and four give the optimal solution value and the number of VS for the dynamical neural network, respectively.
olumns five and six present the optimal solution value and the number of VS for the sequential algorithm, respectively. Finally,
olumn seven gives the value of the gap between the two obtained solutions. We observe that the dynamical neural network gives
etter solutions compared to the sequential algorithm and ensures better robustness. Fig. 3 shows that the outperforming of the
ynamical neural networks is ensured for different values of 𝜖 and 𝜃.

. Conclusion

This study introduces a new neurodynamic approach to solve joint chance-constrained geometric programming problems with
ependent row vectors based on Copula theory. The joint chance constraint was first transformed into an equivalent deterministic

onstraint. Then a standard variable transformation was used to derive a biconvex reformulation of the deterministic optimization
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Fig. 3. Sensitivity of the optimal solution to the values of 𝜖 and 𝜃.

odel. Later, based on the optimality conditions of the obtained deterministic equivalent we construct a recurrent neural network
o approximate the solution of the stochastic initial problem.

One of the major benefits of this research is the ability to solve dependent joint chance-constrained geometric programs without
sing any convex or linear approximation techniques. Three numerical examples are presented in the numerical Section to show
he quality of the proposed method. The results indicate that our approach approximates well the optimal solution compared to the
tate-of-the-art existing methods and covers well the risk area by providing robust solutions.

Our innovative approach using dynamical neural networks can be applied to a wide range of optimization and game theory
roblems. Specifically, it can handle various types of constrained nonlinear optimization problems, including convex smooth and
onsmooth optimization, pseudo-convex nonsmooth optimization, variational inequalities, nonlinear complementarity problems,
uadratic optimization, dynamic optimization, as well as stochastic and distributionally robust optimization problems. In the field of
ame theory, our approach enables the computation of Nash equilibrium for finite n-player chance constrained games and differential
ames. Additionally, we foresee the potential application of our dynamical neural network in chance constrained Markov Decision
rocesses.

However, it is important to acknowledge that the current version of the algorithm is time-consuming due to the iterative solutions
f the dynamical differential system that describes the model. Nevertheless, there are opportunities to enhance the algorithm’s
fficiency and quality through further research and development. One approach can be improved by implementing ODE (Ordinary
ifferential Equation) solvers based on artificial intelligence techniques. AI techniques such as neural networks or reinforcement

earning can potentially improve the speed and accuracy of solving the dynamical differential system. Additionally, other computing
echniques, e.g., parallel computing, GPU acceleration, or distributed computing can be employed to speed up the algorithm’s
xecution time further. These approaches can take advantage of hardware advancements to process computations in parallel,
educing the overall time needed for solving the system.
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