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Identification of Maya ruins 
covered by jungle using Sentinel‑1
Florent Michenot 1,2*, Israel Hinostroza 1,2, Regis Guinvarc’h 1,2 & Laetitia Thirion‑Lefevre 1,2

Archaeologists commonly use airborne LIDAR technology to produce 3D models of structures, 
even when obscured by a forest canopy. However, this technology has a high cost, both from the 
plane itself and from the processing of the LIDAR point cloud. Furthermore, this technique can only 
be used over limited regions. This paper proposes a technique that uses SAR satellite imagery to 
identify man‑made structures hidden by a forest canopy. To do so, we exploit the Ascending and 
Descending passes of Sentinel‑1 so that we obtain two images of the candidate site but from different 
sight directions. Because of cardinal effects, a large enough building will sign differently from the 
comparatively isotropic forest canopy it is obscured by. Practically, the technique is based on the ratio 
of backscattered intensity from these two illumination angles and is well adapted for large areas. The 
advantages and shortcomings are discussed for the specific case of Sentinel‑1 SAR images over two 
Maya archaeological sites in Central America. Our analysis shows that SAR satellite imagery might 
provide a free, global‑scale way of preselecting sites with large or tall structures to complement LIDAR 
technology.

In addition to fieldwork, archaeologists today use different technologies to discover the remains of man-made 
objects, such as Airborne LIght Detection And Ranging (LIDAR, also known as Airborne Laser Scanning or 
ALS). Its performance, both in terms of resolution and forest  penetration1, has made it an alternative to earlier 
techniques for more than 15 years. In particular, recent technological progress has led to a further refinement 
in image resolution, which in turn has led to the relatively rapid spread of this technique, especially among 
 archaeologists2–4. However, the prohibitively high cost of airborne LIDAR missions restricts its use to relatively 
small areas and to known or suspected sites.

Synthetic aperture radar (SAR) images can potentially be a low-cost global-scale alternative to LIDAR if 
provided by a spaceborne sensor. SAR has already been used for detecting man-made  objects5, and in particular 
 buildings6 and  roads7, for at least 30  years8. The techniques used for building detection are diverse: statistical 
 approaches9,  polarimetry10 or polarimetric  interferometry11, and machine learning  algorithms12,13. When build-
ings are obscured by forest, SAR penetration properties can be exploited. Some authors proposed visual photo-
interpretation for building  detection14,15.

Additionally, SAR is a useful tool available to archaeologists even for other applications than building detec-
tion. Through interferometry (InSAR), it is possible to create Digital Elevation Models (DEM) for large areas. 
One notable example is  SRTM16, a free global-scale DEM provided by NASA at a 30m resolution. This overview 
of a region’s topography enables archaeologists to find plausible sites for human settlements or explain why sites 
were abandoned and populations  migrated17. InSAR also enables the monitoring of ground movements and 
subsidence affecting cultural heritage  sites18. Polarimetry (PolSAR) is another aspect of SAR that archaeologists 
benefit from. Either  directly19 or through the combination of SAR sensors working at different  frequencies20, it 
is possible to reveal buried structures in deserts or other dry open areas.

SAR benefits from exploiting buildings’ anisotropy, which leads to the non-uniformity of their radar backscat-
ter when measured from different azimuthal  angles21. As the SAR synthesis process returns a unique azimuth 
value for each row of pixels, these multiple azimuthal points of view are generally obtained using sub-apertures 
on either  polarimetric22,23 or non-polarimetric24 data. However, using sub-apertures degrades the image’s azi-
muthal resolution, and the angular range is limited by the antenna’s real aperture. As this aperture is quite small 
for spaceborne SAR ( 0.23◦ for Sentinel-1), the benefits of using sub-apertures are pretty limited in our case.

Anisotropy causes shadows. This is still true for SAR shadows, whose shape depends on the angle of incidence 
and the azimuthal angle. By detecting the shadow, one can leverage how the building breaks the isotropy of the 
scene (along the range axis) instead of the anisotropy of the structure  itself25. This detection can reveal a building 
even when obscured by a  jungle15.
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Forest penetration (FoPen) by a radar signal is easier at lower frequency (typically P- and L-band26). At higher 
frequencies (C-band in our case), SAR is generally considered  inadequate27. Some hypotheses must then be made: 
either there is no penetration, and any building signature detected is due to a reproduction by the forest canopy 
of the shape of the structure below, or there is some penetration, in which case backscattered signal from the 
ruin (surface scattering or possibly double-bounces) is received by the SAR sensor. In either case, the presence 
of the building leads to an increase in the anisotropy of the scene.

This paper processes multiple images taken by the same sensor from different points of view (multiple flights 
of a plane, multiple orbits of a satellite), thereby combining range and azimuth anisotropy to identify possible 
buildings, even through forest canopies. With this method, archaeologists could easily preselect candidate sites 
worldwide and for free before further exploration campaigns.

For testing the method, we studied some warehouses located in Saint-Martin-de-Crau, France, and the Pyra-
mid of the Sun in Teotihuacan, Mexico. We validated the technique on two areas of interest: the archaeological 
site of Lamanai in Belize and the Calakmul Biosphere Reserve in Mexico. Both are in Central America, as the 
region contains dense jungle, rugged terrain, and hidden Maya structures.

Study areas and datasets
Study areas
The main archaeological site studied in this paper is Lamanai, in northern Belize. It is a known Maya site, open 
to tourists, with its own local museum. Parts of the site have been cleared of trees, and the buildings there were 
cleaned but not restored. This was the case for High Temple (Fig. 13). Other parts of the site were mapped but left 
to the jungle. This area was the most interesting, as it provided us with known and more or less geolocated build-
ings hidden by the forest canopy. In particular, structures P8-1 and P9-25 (Fig. 14) were large enough to be clearly 
visible using the technique presented in this article while still being undetectable from satellite optical imagery.

We also used our technique on suspected sites identified by  LaRocque15 in the Calakmul Biosphere Reserve, 
at Mexico’s border with northern Guatemala. They are called Site A, B and C (Fig. 17). The area also contains 
several known Maya sites. Although we focused our work on Central America, our approach is generic: it only 
requires access to SAR time series taken from two different directions over your area of interest.

We have also looked at two areas without trees: some warehouses (Fig. 1) in Saint-Martin-de-Crau, southern 
France, and the Pyramid of the Sun in Teotihuacan (Fig. 11), Mexico. The warehouses were useful because of 
their simple geometry, large size and the probable presence of double bounces. The pyramid was our next step 
on our way toward hidden pyramids, as its geometry was expected to be closer to theirs than the warehouses’, 
even though it was not built by Mayans.

Information about the AoIs was summarized in Table 1.

Figure 1.  Optical  image28 of the warehouses used to illustrate the technique. The footprint of the picture is 
identical to the one in the radar images. North is up.

Table 1.  Summary of the areas of interest studied in this article.

Area Name Coordinates Area Type

Lamanai 17.770, − 88.650 Site covered by jungle

Site A 17.990, − 90.170 Site covered by jungle

Site B 17.895, − 90.050 Site covered by jungle

Site C 17.920, − 90.140 Site covered by jungle

Warehouses 43.620, +04.790 Group of warehouses near fields

Pyramid of the Sun 19.693, − 98.845 Lone pyramid in flat terrain
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To our knowledge, meso-american buildings are not perfectly aligned with the cardinal directions. This is 
for instance the case of the structures shown in this article.

Sentinel‑1
We looked for a SAR satellite capable of providing us with SAR time series from different points of view over 
our areas of interest. Some candidates are presented in Table 2. For forest penetration (FoPen) applications, a 
lower frequency is preferred (P- or L-band26). For building detection purposes, HH is preferred (because of its 
increased backscatter intensity in the presence of double-bounces29, for example). Among the satellites that pro-
vide free data, only Sentinel-1 has time series from different directions (called ascending and descending, due to 
the direction the satellite is moving with regard to the ground). It operates at a higher frequency than we would 
have liked, and generally does not generate HH images over land.

In this article, Sentinel-1 refers to a pair of C-band SAR imaging satellites. Sentinel-1A was launched in April 
2014, and Sentinel-1B (recently rendered inoperative) in April 2016.

These satellites from the European Space Agency (ESA) have a heliosynchronous orbit with a 12-day repeat 
cycle, meaning that a point on the planet is in range of a particular satellite every 12 days but visible by either 
every 6 days. This makes Sentinel-1 one of the first SAR sensors to give access to dense time series over the entire 
globe for free.

Moreover, each satellite actually covers the same spot twice during each orbital repeat cycle: once when going 
from the South pole to the North pole (ascending path), and once when going the other way around (descending 
path) 6 days after. Because they are right-looking sensors, this gives us two distinct points of view over a target, 
fulfilling the requirement for exploiting anisotropy. The line of sight comes roughly from the West on ascending 
images and the East on descending images.

Dataset characteristics and Preprocessing
In this study, we make use of Sentinel-1 Ground Range Detected (GRD) images taken with the Interferometric 
Wide (IW) swath mode. The images have a square resolution of about 20 m and a square pixel spacing of 10 m.

This square pixel spacing is due to the multi-looking used by ESA during the GRD image generation. The 
multi-looking factor they used was 5 in range and 1 in azimuth.

The polarization available in this mode over most places is VV+VH. We choose to use VV-only. The technique 
can be indifferently applied to VH.

Preprocessing steps are required for time series analysis, particularly coregistration and georeferencing. In 
this paper, they have been done using ESA’s SNAP tools. The preprocessing operation themselves were taken 
from an ESA  tutorial30. A flowchart of the preprocessing is shown in Fig. 3. Note that the time series from the 
two directions must be preprocessed separately. More details and justifications can be found in the tutorial. We 
do have some recommendations:

• * In the Terrain Correction step, we recommend disabling “Radiometric Normalization” to preserve the 
original intensities. For the same reason, “Nearest Neighbour” image resampling method should be used.

• * Still during Terrain Correction, we recommend using the UTM coordinate reference system instead of the 
default one (in the “Map Projection” menu), because the latter will use the angular pixel spacing (in ◦ ) leading 
to potentially not-square pixels whereas the former uses the linear pixel spacing (in m).

• ** The ESA tutorial simply “stacks” the different images. This is generally enough for GRD images. The 
more computation-intensive “coregistration” algorithm can also be used. Note that, for GRD images or for 
intensity-only applications, “coarse” coregistration is enough.

• ** If you do use coregistration, be aware that it can fail on areas of dense forest. In our case, we have used 
larger subsets also covering non-forest zones to enable the coregistration.

Table 2.  Summary of recent SAR satellites capabilities, adapted  from18. When multiple beam modes were 
provided, only “Strip Map” was kept (or “Interferometric Wide” for Sentinel-1). time series availability 
depends on the existence of a long enough (15+ images) dataset over Guatemala from both the ascending and 
descending directions. The age of the data is irrelevant for our application. Indicated polarization might not be 
available for all beam modes.

Name Band Polarization Resolution (m) time series availability Free

Radarsat-1 C HH 10-100 No Yes

PALSAR L Full 10-100 No Yes

Radarsat-2 C Full 3-100 Yes No

COSMO-SkyMed X Single or Dual 3 Yes No

TerraSAR-X X Single or Dual 3 Yes No

Sentinel-1 C Single or Dual 5x20 Yes Yes

PALSAR-2 L Full 3/6/9 Yes No



4

Vol:.(1234567890)

Scientific Reports |         (2024) 14:3293  | https://doi.org/10.1038/s41598-024-53068-2

www.nature.com/scientificreports/

• ** We recommend using the “Nearest Neighbour” resampling method whenever interpolation is needed 
during the coregistration or the stacking.

• ** Be sure to choose a master image of the same size in both directions, otherwise you will not be able to 
compute the ratio.

The time series we are using are composed of every image taken between 18/11/2019 and 18/11/2020 (one 
year) over each target area but are separated by orbits (and directions) to keep the different incidence angles 
apart. The stacks generally include around 60 images each (when both Sentinel-1 A and B are available). This 
can drop to about 30 images depending on the area surveyed (when only one of the two satellites’ output is 
provided by ESA).

This 30-date criterion impacts the speckle filtering performance and reduces the effects of the variation in 
the scene moisture along the year.

After the preprocessing is done, the pixels represent σ ◦ and are georeferenced. Because of this, it is possible 
to overlay the time series taken from the ascending and descending directions together. A particular pixel repre-
sents the backscattering from the same area on both images, except for some geometrical artifacts. We propose 
to leverage that spatial diversity to detect man-made structures.

Method
In this section, we present a generic remote sensing building identification method before detailing the particu-
larities of its SAR implementation.

General principle
For simplicity, let us first consider a building in flat terrain. When illuminated from a particular direction (dif-
ferent from nadir), the structure will cast a shadow (Fig. 4). Any point in the scene is then either a shadow (S) or 
not a shadow (NS). If the illumination source moves around the object, so does the shadow on the opposite side 
of it (Fig. 5). Suppose a sensor sensitive to this shadowing effect was to capture the scene at two different times, 
with the illumination source being at two different positions. It should then be possible to generate a ratio image 
(Fig. 6) highlighting the difference caused by the shift in illumination direction.

For convenience, let us focus on the case where the two illumination directions are on opposite sides of the 
building. The problem becomes planar: the directions can now be referred to as left and right from the observer’s 
point of view. Let us divide the scene into three distinct areas: the left part of the building, the right part, and the 
neighboring environment.

When illuminated from the left, the right part of the building is shadowed. The left part and the environment 
are not. Conversely, when illuminated from the right, the left part of the building is shadowed, but the right part 
and the environment are not. By computing the ratio, pixel-by-pixel, between an image where the scene is illu-
minated from the left and another image where it is illuminated from the right, a single ratio image is obtained. 
This image is made up of the following values:

• The left part of the building contains NS/S.
• The right part of the building contains S/NS.
• The environment contains NS/NS.

If we suppose that the quantity returned by the sensor for NS is greater than for S, then these three ratios are 
respectively greater than 1, smaller than 1, and equal to 1. On a logarithmic scale, this would correspond to, 
respectively, a positive value, a negative value, and zero.

In principle, this method should be usable with any imaging system, as long as it is sensitive to the shadows 
cast by buildings and that different illumination directions are available. We will now apply it using SAR.

Ascending/descending ratio
We will start with SAR images of a group of large warehouses surrounded by fields, a small forest and the edge 
of a town (Fig. 1). A SAR sensor is an active sensor: it is its own illumination source. The walls and slopes of the 
structure facing the sensor should strongly reflect the radar signal by single, double, or even multiple bounces 
(high-intensity backscatter, HI). Parts of the building and terrain on the other side will be shadowed from the 
satellite’s point of view and will, therefore, have a low backscattering coefficient (S). As a reminder, in the case 
of Sentinel-1, it is the western and eastern faces which will be either strongly illuminated or shadowed. The ter-
rain around the building will also produce a low intensity, depending primarily on its roughness (low-intensity 
backscatter, LI). It should, however, still be higher than the shadows. It is safe to assume the following:

The scattering mechanisms are shown in Fig. 7a, and the corresponding SAR image of the warehouses is dis-
played in Fig. 7b.

Were we to look at the building from the opposite direction, the scattering mechanisms for each part of the 
building would now be different. More importantly, the backscattered intensities (part by part) would be differ-
ent from the previous direction (Fig. 8).

In the case of Sentinel-1, the two directions are called ascending and descending (Fig. 2). The ascending path 
corresponds to the parts of the orbit where the satellite goes from South to North, and the descending path to 
where it goes from North to South. The difference �σ ◦ (in dB) between an ascending and a descending image 

(1)HI > LI > S
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Figure 2.  Illustration of Sentinel-1 orbit © SkyGeo. A descending path follows an ascending path, and vice-versa.
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Figure 3.  Flowchart describing the preprocessing protocol used. The protocol comes from a  tutorial30 by the 
European Space Agency. It must be applied to each direction separately.
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Figure 4.  Illustration of the illumination of a man-made structure from the left.
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(see Equation 2) is strong for pixels where the scattering mechanisms lead to a great variation between the two 
directions. Conversely, a near-zero difference implies that the mechanisms are identical from both directions, 
i.e. that the scene is locally symmetrical with regard to these directions. The difference image, therefore, high-
lights pixels where the East-West symmetry is broken (Fig. 9). As earlier, the difference image can be divided 
into three distinct areas:

• The western part of the building contains HIdB − SdB.
• The eastern part of the building contains SdB −HIdB.
• The environment contains LIdB − LIdB.

Not shadow Not shadowShadow Not shadow

Figure 5.  Illustration of the illumination of a man-made structure from the right.

NS / NSS / NSNS / SNS / NS

Figure 6.  Illustration of a ratio image between both directions. The left and right parts of the building can be 
distinguished both from each other and from the neighboring environment.
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Figure 7.  Example of an ascending (illuminated from the West) SAR image: (a) the scattering mechanisms in 
play over a man-made structure, from the ascending direction (b) an ascending SAR image of some warehouses, 
with speckle. Image taken by Sentinel-1, preprocessed using  SNAP31, processed using Python. The axes for the 
image are in pixels. One pixel is 10 m by 10 m. North is up. The satellite trajectory was indicated in red, some 
SAR lines of sight were drawn in yellow. Note the brightness of the western sides and the shadows, particularly 
visible between the two smaller warehouses in the top right corner.
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Because of Eq. 1, these three differences are, respectively, positive, negative, and zero.

with σ ◦
a (x, y, t1) and σ ◦

d (x, y, t2) the backscattering coefficients for the (x, y) pixel as seen from (respectively) the 
ascending and descending directions, at respectively the dates t1 and t2 , and �σ ◦(x, y, t1, t2) the difference (in 
dB) between said coefficients.

Because of the three areas we expect to find (West, Both and East in Fig. 9a), we recommend displaying the 
difference images using a three-colored linear colormap. In this article, we have used red, green and blue. This is 
NOT an RGB composite. Some assumptions were made when defining the colormap: it is centered on 0 dB (on 
average, similar intensity from both directions) and is symmetrical (neither direction is preferred, on average 
over the whole image). In the article, the bounds are arbitrarily always set to ±10 dB, as we have found it to be 
visually appealing over our various study areas. The reader is free to change this value, either arbitrarily or by 
using statistics.

(2)�σ ◦(x, y, t1, t2) = 10 log10

(

σ ◦
a (x, y, t1)

σ ◦

d (x, y, t2)

)

= σ ◦

adB
(x, y, t1)− σ ◦

ddB
(x, y, t2)
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Figure 8.  Example of a descending (illuminated from the East) SAR image: (a) the scattering mechanisms 
in play over a man-made structure, from the descending direction (b) a descending SAR image of some 
warehouses, with speckle. Image taken by Sentinel-1, preprocessed using  SNAP31, processed using Python. The 
axes for the image are in pixels. One pixel is 10 m by 10 m. North is up. The satellite trajectory was indicated in 
red, some SAR lines of sight were drawn in yellow. Note the brightness of the eastern sides and the shadows, 
particularly visible between the two smaller warehouses in the top right corner.
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Figure 9.  Illustration of the technique: (a) the different colored zones, corresponding to the western (red) and 
eastern (blue) sides of the building, and to both its center and the neighboring ground (green) (b) Example of 
the processing of the SAR images of the warehouses. Image taken by Sentinel-1, preprocessed using  SNAP31, 
processed using Python. The axes for the image are in pixels. One pixel is 10 m by 10 m. North is up. Note the 
speckle that creates red and blue areas over the ground (that should be uniformly green).
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For the sake of simplicity, the SAR geometry was simplified in this section. Accounting for layover, foreshort-
ening and the true shape of SAR shadows makes comprehension harder without bringing significant improve-
ments to the faithfulness of the model (at least when working with Sentinel-1). However, for the sake of rigour 
and for future high-resolution works, we have included in the Supplementary Material more detailed figures 
meant to replace figures 7 through 9.

In this section, we assumed that the only difference between the two images comes from the shift in illumina-
tion direction, as we are considering tropical forests with a significant moisture all over the year. However, SAR 
images are plagued by speckle noise. The proposed technique will preserve this noise, which could make the 
�σ ◦ image challenging to interpret. This should be corrected.

Temporal speckle filtering
One possible way to reduce speckle is multilooking32, i.e., dividing the entire image into several smaller overlap-
ping looks to obtain multiple points of view and (statistical) observations of a target. By then averaging the looks, 
you get an image with reduced speckle at the cost of spatial resolution.

Instead of using subsets of the same image, we advocate using different full-resolution images taken at differ-
ent times (see Equation 3). This way, we can get the same speckle reduction without decreasing spatial resolution. 
We can easily achieve this with Sentinel-1 data, as shown in Fig. 10. Note that the GRD images we use are already 
multi-looked, and have therefore a slightly reduced speckle to begin with.

with ND the number of images from the D direction used, σ ◦

D(x, y, ti) the backscattering coefficient for the (x, y) 
pixel on the ith image from the D direction, and σ ◦

D(x, y) the averaged value.
However, temporal information is lost. Targets only present during a few dates cannot be detected, as their 

backscattering gets averaged out. In the context of our application, this is not a problem: the heritage sites won’t 
move across the time series. In fact, this is actually beneficial, as it will improve the contrast between pixels 
exhibiting consistently high backscattering across the stack and those showing significant variability.

Canonical case: pyramids
We have decided to use our technique to find archaeological sites hidden in the Central American jungles. We 
were expecting to see some pyramids there and have therefore looked for known pyramids in open terrain to 
identify the specifics of their signatures. It is a good first step, although the impact of the canopy will naturally 
not be taken into account here.

The pyramid of the Sun (Fig. 11) is situated in Teotihuacan, Mexico. It is 200m wide by 70m tall and is slightly 
turned compared to the cardinal directions.

The western and eastern sides are perfectly delimited. The southern side is colored red, though not perfectly, 
and the northern side is somewhat more blue than green. The misalignment of the pyramid actually makes our 
technique more effective as there are no fully symmetrical sides, i.e., they are all at least hinted at on the RGB 
picture.

(3)σ ◦

D(x, y) =
1
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ND
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σ ◦
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Figure 10.  Illustration of the impact of speckle filtering: (a) the ascending SAR image from Figure 7b (b) 
temporal mean of the ascending SAR time series of the warehouses (c) Ascending over Descending ratio of the 
temporal averages. Note the uniformly green area for the flat terrain. Images taken by Sentinel-1, preprocessed 
using  SNAP31, processed using Python. The axes for the images are in pixels. One pixel is 10 m by 10 m. North is 
up.



9

Vol.:(0123456789)

Scientific Reports |         (2024) 14:3293  | https://doi.org/10.1038/s41598-024-53068-2

www.nature.com/scientificreports/

Detection through the forest canopy
Sentinel-1 works in C-band, a frequency band generally considered unsuitable for Forest Penetration (FoPen) 
applications, as lower frequencies are preferred due to their higher penetration  capability26,33. Detection of hidden 
structures should then be difficult unless the forest canopy is locally sparser or there exist holes in the  canopy34.

The method relies on an intensity difference between the ascending and descending paths. If no such differ-
ence exists, then detection isn’t possible. A flat, impenetrable forest canopy would appear predominantly green. 
And yet, in some cases, we see an intensity difference. We propose two hypotheses:

• No penetration happens. However, trees grow on the structures as seen in Fig. 12a. If the trees are of homoge-
neous height, then the canopy reproduces the shape of the buildings. Surface scattering by the canopy emu-
lates the one from the ruins it covers. Evidence of this happening for large buildings is shown in Figure 12b. 
It is doubtful that this phenomenon also occurs in small ruins.

Figure 11.  Illustration on a pyramid in open terrain: (a) Optical image of the pyramid of the  Sun28 (b) 
Ascending over Descending ratio over the same area. Image taken by Sentinel-1, preprocessed using  SNAP31, 
processed using Python. North is up.
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Figure 12.  (a) Picture of a pyramid from the archaeological site of Nakbe,  Guatemala35. Trees can be seen 
growing on the structure. (b) AscDes signature of a pyramid in Nakbe covered by trees. Image taken by 
Sentinel-1, preprocessed using  SNAP31, processed using Python. The axes for the image are in pixels. One pixel 
is 10 m by 10 m. North is up.
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• Some penetration does happen. The received signal contains the fields backscattered by the building (direct 
surface scattering and ground-building interactions), along with a contribution from the canopy.

We believe both hypotheses can be true simultaneously: trees growing on structures would always benefit the 
technique, as long as we do not have complete canopy penetration (in which case it would have no effect), and 
partial penetration would explain the uncovering of small structures.

Results
We have applied our technique to a known Maya archaeological site hidden in the jungles of northern Belize: 
Lamanai.

This site was interesting for two reasons: because it includes structures that are either visible from space (High 
Temple, also known as Structure N10-43, Figure 13) or entirely obscured by the forest canopy (Structures P8-1 
and P9-25, Figure 14), and because descriptions of the site are available: a map from the  1970s36, and buildings 

Figure 13.  High Temple (aka Structure N10-43): (a) optical  image28 with overlaid map of the structures (red) 
(b) AscDes ratio with overlaid map of the structures (white). Image taken by Sentinel-1, preprocessed using 
 SNAP31, processed using Python. North is up.

Figure 14.  Structures P8-1 (top) and P9-25 (bottom): (a) optical  image28 with overlaid map of the structures 
(red) (b) AscDes ratio with overlaid map of the structures (white). Image taken by Sentinel-1, preprocessed 
using  SNAP31, processed using Python. North is up.
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 dimensions37. The three ruins are several tens of meters wide (up to 100m wide for P9-25) and more than 10 
meters tall. Numerous smaller structures also cover the site. However, none are as clearly highlighted by our 
technique as these three. Still, their presence has an impact on the �σ ◦ image.

High Temple (center of Figure 13) is a pyramid cleared of trees. Therefore, we could expect the same sort 
of signature as for the pyramid of the Sun. However, the latter is massive. High Temple is only 60m wide and 
30m tall. With a 10m pixel size, while a triangular signature is still possible, it is also reasonable to expect a less 
definite shape. As the building is both symmetrical and roughly aligned with the cardinal directions, the red and 
blue parts of the signature are also symmetrical, with the green line separating them going from north to south.

Structure P8-1 (top of Figure 14) is also a pyramid (according to the  map36) 75m wide. The signature closely 
resembles the one from High Temple despite the added canopy. In fact, the ratios on the Western and Eastern 
sides are more intense here (peak ratios of +5.5/-7.0 dB for High Temple compared to +8.3/-8.8 dB for P8-1). 
One explanation is that the signature from the edge of the forest around High Temple lessens the temple’s own 
signature: the west side of the building generates a positive ratio while the trees next to it create a negative ratio 
(though ground-trunk double-bounces, for example). The resolution and the multi-looking from the GRD 
preprocessing then tend to merge the two.

Finally, Structure P9-25 (bottom of Figure 14) is described as an immense platform37, around 100m wide 
and 18m high. Its signature will, therefore, differ from the pyramids. Its flat top, in particular, appears as a large 
green area, as expected.

Discussion
Buildings which are at least a couple of pixels wide (i.e. 20m or larger) and tall enough to backscatter differently 
than the forest floor are easily visible using our technique. But what about smaller buildings (of the order of a 
pixel)? We studied the images’ statistics to find a criterion capable of separating “empty” forests from hidden 
archaeological sites. The first step involved studying the intensity’s histogram. Because the small number of 
spatial pixels is detrimental to the reliability of statistics, in this section we replaced the temporal averaging with 
a SAR time series speckle filter developed by the  authors38 to obtain more data. As the identification technique 
proposed in this article is not dependent on any particular speckle filter, we expected the produced �σ ◦ images 
to be qualitatively similar.

120 dates (4 years) were used over Lamanai, and 60 dates (2 years) were used over the sites identified by 
 LaRocque15.

The Ascending over Descending ratio (in dB) for an area of forest (Figures 15a and 15b) supposedly devoid 
of structures follows a centered Gaussian distribution. While a theoretical and perfectly flat canopy would con-
sistently output zero, it is understandable that a practical sensor over a “rough” canopy changing through time 
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Figure 15.  Ratio images (left) and time series histograms (right) over several areas of interest: (a & b) a forest 
supposed without hidden structures (c & d) N10-43 (e & f) P8-1 (g & h) P9-25. Black rectangles on the ratio 
images represent the borders of the AoIs. 120 dates were used in the time series. Some statistics are summarized 
in Table 3 (left). Every AoI has roughly the same number of pixels. Images taken by Sentinel-1, preprocessed 
using  SNAP31, processed using Python. The axes for the images are in pixels. One pixel is 10 m by 10 m. North is 
up.
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would follow such a distribution instead. However, buildings follow a roughly centered non-Gaussian (indicated 
by a non-zero kurtosis, see Table 3) distribution, whether they’re obscured like P8-1 (Figures 15e and f) and 
P9-25 (Figures 15g and h) or visible like N10-43 (Figures 15c and 15d). The eastern and western edges produce 
extreme ratios, which tend to increase the standard deviation for the whole building. The histogram’s centered 
and symmetrical aspect depends on the structure’s geometry and orientation: a ruin will generate equivalent 
amounts of positive and negative ratios if correctly oriented and symmetrical, but not if it favors one direction 
over the other. In any case, the standard deviation and kurtosis seem to be relevant for detection purposes. Their 
values for each area of interest are summarized in Table 3.

The standard deviation highlights not only large individual buildings but also the disturbance caused by a 
concentration of smaller buildings, i.e., the archaeological site as a whole. By computing this statistic over the 
whole time series using a (spatial-only) sliding window, it is possible to produce a standard deviation image to 
better visualize this.

Figure 16a is an AscDes ratio image of most of Lamanai. Figure 16b was generated using a 10 by 5 pixels 
window, which corresponds roughly to the size of N10-43. Higher standard deviation is indeed visible over the 
area covered by the  map36. The more significant buildings (some delimited by rectangles) match areas of peak 
standard deviation. One issue is that the standard deviation is most effective when both the western and eastern 
sides of buildings are contained within the window. As structures have variable dimensions, computing the 
standard deviation using an adaptive window size would be beneficial for detection purposes.

Another issue is the difficulty of discriminating between terrain features and buildings. A cliff or steep slope 
is pretty straightforward, as it is asymmetrical and will, therefore, have a signature containing only either red 
or blue, depending on its orientation. The only detrimental effect it could cause is to completely obscure the 
signature from a building on top or near it. On the other hand, small hills, rough terrain or non-uniform canopy 
(due to non-uniform tree height) would produce positive and negative AscDes ratios, but possibly in a chaotic 
spatial disposition (because of the various orientations of the slopes, crest lines, etc.). This would make visual 
interpretation of the AscDes images less reliable. In fact, this kind of terrain would also affect the standard devia-
tion image described earlier.

Table 3.  Statistics of the ascending over descending ratios (in dB) for various areas of interest and over a time 
series of 120 dates (4 years) for Lamanai and 60 dates (2 years) for LaRocque’s sites. Left to right: the mean, the 
standard deviation, and the kurtosis. Every AoI has roughly the same number of pixels.

Lamanai Mean [dB] StD Kurtosis

Forest 0.023 1.48 – 0.284

N10-43 – 0.163 3.37 – 0.648

P8-1 0.043 4.53 – 0.795

P9-25 – 0.356 3.52 – 0.643

 LaRocque’s Mean [dB] StD Kurtosis

Site A 0.674 2.163 – 0.385

Site B 0.081 2.975 – 0.414

Site C – 0.087 3.313 – 1.048
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Figure 16.  Comparison between the AscDes ratio image (a) and the standard deviation of the AscDes ratio 
over the site of Lamanai (b). The window size is the smallest AoI size (i.e., N10-43’s). The lake has been masked 
out in white. Some known structures are delimited by rectangles. Image taken by Sentinel-1, preprocessed using 
 SNAP31, processed using Python. The axes for the images are in pixels. One pixel is 10 m by 10 m. North is up.
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The only possibility for discriminating terrain features and hidden man-made structures is to count on the 
higher intensity (and therefore AscDes ratios and standard deviation) caused by double bounces. However, at 
Sentinel-1 resolution, this scattering mechanism will only have a visible impact on large buildings, buildings 
that were already easily visually identified.

For example, let us focus on three potential sites identified by  LaRocque15. Using our technique, Site A 
(Figure 17, a through d) contains no signature that could positively be a building. The AoI studied for this site 
(Figure 17c) does follow the red-green-blue order characteristic of a building (although the red and blue areas are 
darker than expected), its dimensions are similar to some of Lamanai’s structures, and the lower-than-expected 
ratios (Figure 17d) could be explained by either a worse state of conservation (i.e. fewer double-bounces) or a 
thicker forest canopy (i.e. less penetration).

The prominent north-south feature in Site B (Figure 17, e through h) could be two platforms linked by a 
causeway. In fact, the ratios match those from the two platforms under La Danta, a pyramid in the site of El 
Mirador, Guatemala. However, the dimensions of the potential platforms (Figure 17f, the AoI is almost 500m 
wide) suggest a naturally occurring terrain feature.

Site C (Figure 17, i through l) also contains a potential detection whose size matches buildings from Lamanai. 
Its RGB signature (Figure 17k) is more symmetrical in terms of surface, indicating a structure aligned with the 
cardinal directions. The thin green line indicates a pyramid and not a platform, and the impact of the reduced 
amount of green pixels is clearly visible on the histogram (Figure 17l, the notch around 0 dB). Like Site A, the 
ratios are not as intense as in Lamanai, which leads to lower standard deviation (Table 3) than for the three build-
ings there, even though two of the three structures are smaller than this potential detection.

Limits
As mentioned in the section “Detection through the forest canopy”, the method proposed in this work relies on 
an intensity difference between the ascending and descending paths. The difference made the presence of the 
building stand out from the background (forest, for example). In locations where the signature of the forest is 
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Figure 17.  Application over three sites identified by  LaRocque15. From top to bottom: site A, site B and site 
C. From left to right: optical  image28, AscDes ratio image over the whole site, zoom on a potential AoI, and 
histogram for said AoI. Their borders are represented by black rectangles. A body of water near site C has been 
masked out in white. 60 dates were used for the time series. Some statistics are summarized in Table 3 (right). 
Images taken by Sentinel-1, preprocessed using  SNAP31, processed using Python. The axes for the images are in 
pixels. One pixel is 10 m by 10 m. North is up.
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“rough”, i.e. when many small variations of the �σ ◦ value result in a non-uniformly green display, identifying 
hidden structures with any certainty becomes difficult. If the building’s signature is not obviously different from 
the background (in terms of ratio value or by appearing as a regular shape), the problem becomes a detection 
issue where the signature of the forest acts as the noise level.

Another possible source of “false alarms” is small regular terrain features. A small hill covered by trees would 
have a signature close to the one from a hidden building of similar dimensions. The Bosnian pyramids are a 
fitting if somewhat extreme example.

One final point we would like to raise is the impact of rotation on the signature. The best source of intensity 
difference between Ascending and Descending is the double bounce scattering mechanism, as it is the most 
common source of high intensity backscatter. However, a true “specular” double bounce only happens when 
the vertical surface of interest is perfectly perpendicular to both the plane of incidence and the ground. This is 
generally not the case. A rotation of 5 ◦ leads to a drop of at least 20  dB39. In particular, Sentinel-1’s trajectory is 
not perfectly North-South, nor are the buildings studied in this article perfectly aligned with the cardinal direc-
tions. However, a less powerful “diffuse” double bounce exists. This mechanism might explain our results. Note 
however that while the requirements on the rotation angle is lessened, the roughness of the surfaces in play is 
now of greater importance. Therefore, a perfectly smooth surface hidden in the woods might be harder to detect 
than our ruins when not perfectly aligned with the SAR line-of-sight.

Conclusion
In conclusion, the technique enables the identification of potential large structures hidden by a forest canopy. 
The geolocation of the signatures is acceptable (especially considering the possible shifts between the optical 
image, SAR image, and the map), and the buildings’ footprints can be retrieved.

The signatures produced could then be segmented using existing algorithms based on edge detection in SAR 
 images40,41.  Superresolution42 might further improve detection performance for structures larger than the reso-
lution. We expect to solve the physical ambiguity on the scattering mechanisms (penetration/no penetration) 
using the upcoming Sentinel-1C’s Full-Pol data.

Data availability
All original Sentinel-1 data are freely available. The datasets generated and analyzed during the current study 
are available from the corresponding author upon reasonable request.
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