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Equivalence of state dependent disturbances
to piecewise polytopic affine dynamics

Nikolaos Athanasopoulos, Eleftherios Vlahakis, Sorin Olaru, and Christopher Townsend

Abstract— We consider linear systems with exogenous signals
whose range is constrained within a polytopic set defined in
the states-disturbances space. We show they are equivalent to
piecewise polytopic affine dynamics defined only in the state
space, that is convex in the support of the disturbance set. Given
that many interesting setups in control have exogenous signals
whose range is coupled with the states, the observations of this
note can provide additional insight, and establish alternative,
algorithmic procedures for performance analysis, specifically
retrieval of the minimal robust invariant set.

I. INTRODUCTION

Reachability analysis can address quantitatively important
problems related to stability, safety and performance. For
linear systems whose exogenous signals, inputs and states
are independent from each other, and for polytopic sets,
computations involve operations concerning convex hulls,
erosions, and projections of polytopic sets on linear spaces,
[1]. On the other hand, reachability analysis for general
nonlinear systems whose disturbances are input and state
dependent is considerably more involved. In fact, even
for linear systems and convex state and input constraints,
the backward reachable sets can be nonconvex, even non-
connected as exposed in [2]. Other works dealing with state-
dependent disturbances can be found in [3]–[8]. Roughly,
the available works for which nondeterministic disturbances
depend on the state or other signals cannot proceed in
eliminating the quantifier corresponding to them, resulting to
(inherent) loss of convexity when projecting the associated
mappings in the state space.

The practical motivation for this study comes from the
emergence of the above setting in several cases, namely,
(i) approximations of nonlinear terms in linearisation of
nonlinear systems, (ii) state dependent parametric uncertain-
ties/disturbances and (iii) signals controlled by agents whose
actions depend on the states, e.g., in game-like settings found
in cybersecurity and analysis of stealthy attacks on industrial
control systems [9]. We focus on the computation of forward
reachability set sequences, with the aim to characterise and
compute the minimal robust positively invariant set, whose
importance is significant for the performance and safety
analysis of dynamical systems.
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Our first main contribution is the establishment of equiv-
alence of systems subject to state dependent disturbances
defined via polyhedral sets in the extended state-disturbance
space with state-dependent polytopic affine systems. The
latter dynamics is no longer defined in a higher dimensional
space, with the caveat that the description changes within
pieces of a polytopic partition of the state space. We also
show that this equivalent dynamics is convex in the support
of the original disturbance set in the disturbances-states
space. Thus, while for general piecewise polytopic affine
dynamics there are negative complexity results [10] that
extend to many classes of hybrid systems [11], in our setting
convexity in the support of the disturbance set is appealing.
Our second contribution is the establishment of a procedure
to generate the aforementioned equivalent dynamics. Starting
from results on parametric polyhedral sets [12] revealing
connections between parametric vertex and halfspace rep-
resentations, we exploit properties of the lattice induced by
polytopic projections and define a partition of the state space,
where in each piece the dynamics is polytopic affine. Our
third contribution is the characterisation of the fixed points of
sequences induced by the forward reachability maps, leading
to the minimal invariant sets, by adapting the results of [13]
to our setting. Our proposed set maps are defined only in the
state space. We also observe in our setting the convexification
arguments, e.g., [14] for approximating the minimal invariant
set with a convex equivalent do not hold, however we show
that the computation of a robust positively invariant set is
possible under mild assumptions.

Sections II and III provide preliminaries and describe the
transition from the halfspace representation to the vertex rep-
resentation of parametric parameterised polytopes. Section
IV formally establishes the equivalence between the original
and the induced dynamics, Section V discusses the forward
reachability set sequences of the equivalent dynamics, while
conclusions are drawn in Section VI.

II. PRELIMINARIES

Vector inequalities hold component wise. The convex hull
of vectors v1, .., vq is conv(v1, .., vq). A face F ⊆ S of a
polytope S is a set generated by the intersection of S with
any halfspace such that no interior point of S lies in F . S
and the empty set are also faces of the polytope. We call
(n − 1)-dimensional faces of S facets, and 0-dimensional
faces vertices. The ith k-dimensional face of S (or ith k-
face of S) is Fk

i (S). For a set F , its dimension dim(F) is
the dimension of the smallest subspace containing F . The
boundary, interior and closure of a set S are ∂S , int(S) and



cl(S), respectively. A partially ordered set (poset) S is a
lattice if it is bounded, and every two elements x, y ∈ S
have a unique minimal upper bound (join x ∨ y) and a
unique maximal lower bound (meet x ∧ y). A lattice is
coatomic if any element apart from the unique maximal
element can be described as a meet of a finite number of
elements, namely, coatoms. The projection of a set S ⊂
Rn+m on the subspace defined by the first n dimensions
Rn is πRn(S) =

{
x ∈ X :

(
∃w ∈ Rm : [x⊤ w⊤]⊤ ∈ S

)}
.

The product of a matrix M ∈ Rn×m with a set S ⊂ Rn

is MS = {Mx;x ∈ S} ⊆ Rn and can be considered as a
weighted projection when n < m. We denote the simplex in
q dimensions as Tq = {λ ∈ Rq : λ ≥ 0, λ⊤1 = 1}.

We consider disturbance sets W ⊂ Rn+m defined in the
x− w space, defined together with selections in the w- and
x- space, useful for the development of the results

W =
{[

x⊤ w⊤]⊤ : Gxx+Gww ≤ d
}
, (1)

W(x) =
{
w ∈ Rm :

[
x⊤ w⊤]⊤ ∈ W

}
, (2)

supp(W) =
{
x ∈ Rn :

(
∃w ∈ Rm :

[
x⊤ w⊤]⊤ ∈ W

)}
.

(3)

We note supp(W) = πRn(W). We define the extension of
W

W = W ∪
{
[x⊤ 0]⊤ : x /∈ supp(W)

}
.

The set W(x) is a parameterised polyhedron in Rm. We
consider discrete time linear inclusions, with exogenous
signals whose range is bounded by a polytopic set

x+ ∈ fx(x,w), w ∈ W(x), (Σx)

with
fx(x,w) = Ax+Bw,

where x ∈ Rn, w ∈ Rm, A,B have appropriate dimensions,
and W(x) is defined similarly as in (2). We denote a solution
of (Σx) at time t, for an initial condition y ∈ Rn and a
feasible sequence {w(i)} as ϕ(t; y, {w(i)}).

III. EXPLICIT VERTEX REPRESENTATION

Work [12] establishes duality between the halfspace and
vertex parametric representations. The set W (1) is de-
scribed by the convex hull of parameterised vertices W =
conv(v1(x), v2(x), ..., vq(x)), with each vertex being an
affine function of the state x

vi(x) = Cix+ hi, i = 1, .., q. (4)

We underline that each vertex vi(x) is generally valid only
in a subset of supp(W). This is contrary to the non-
parameterised case where the vertex representation is uni-
form. In the following, we summarize the procedure [12] for
how to identify the vertices of the parameterised polyhedron
W(x) (2) and develop an algorithm to construct the polytopic
partition Cj , j = 1, . . . ,M , in which the parametric vertex
representation is explicitly defined.

Let J (x) := {w ∈ Rn+m :
[
In 0m

]
w = x}, be an

affine space of Rn+m. The intersection of W with J (x) fixes
the first n variables of W to a constant state vector x, and if
projected onto the w space, produces the slice W(x). We can
thus alternatively write (2) as W(x) = πRm (W ∩J (x)). We
recall the result defining a parameterised vertex of W(x).

Theorem 1 ( [12]): Consider (1) and let x ∈ supp(W).
For each parameterised vertex (4) vi(x) of W(x) ⊂ Rm,
there exists an n-face Fn

i (W) such that

vi(x) = πRm (Fn
i (W) ∩ J (x)) .

By Theorem 1, a vertex vi(x) appears if Fn
i (W)∩J (x) ̸= ∅.

As the state x varies in supp(W), vertices may split, shift,
and merge. The following Corollary gives the range of state
space for which a particular vertex exists.

Corollary 1 ( [12]): The range of the state x over which
vi(x) exists is πRn (Fn

i (W)).
We note that not all the n-faces correspond to a parame-
terised vertex. This is stated next.

Theorem 2 ( [12]): For each n-face Fn
i (W), and for the

set of all points
[
x⊤ w⊤]⊤ ∈ Fn

i (W), one of the following
is true:
(i) w is an affine function of x, i.e., w = vi(x), where

vi(x) is a parameterised vertex of W(x).
(ii) w is not constrained, i.e., for a given value of x, more

than one value of w is feasible.
Roughly, condition (ii) of Theorem 2 relates to the case
where the projection of the n-face Fn

i (W) in the x- space
πRn(Fn

i (W)) lies in a strict subspace of Rn. To show how
to identify the sets Cj , j = 1, . . . ,M , where in each set
the vertex representation of W(x) is unique, we construct a
poset. To this purpose, consider sets Pi ⊂ Rn, dim(Pi) = n,
i = 1, ..., N . Consider the poset L(P ), ordered by the
set inclusion ⊆, with maximal element P = ∪N

i=1Pi and
minimal element ∅. Apart from the maximal and minimal
element of L(P ), each element L ∈ L(P ) is constructed as
the intersection of a finite number of Q sets Pi, i = 1, ..., N ,
Q ≤ N , so that L = ∩Q

i=1Pi and dim(L) = n. We
define the rank of each element L as the number of pieces
Pi whose intersection defines the element, i.e., rank(L) ={
M ∈ N : L =

⋂M
i=1 Pi

}
. Last, we call an element L̂ of

L(P ) to be a leaf of L(P ) if it is not an upper bound of
any other element Lj ∈ L(P ), excluding the empty set.

Proposition 1: Consider W (1), and all n-faces Fn
i (W),

i = 1, ..., N , N > 0, satisfying the condition of Theorem
2(i). Consider the above construction of the poset L(P ),
setting

Pi = πRn(Fn
i (W)), i = 1, ..., N. (5)

Moreover, let L̂ = {L̂q1 , . . . , L̂qM̂
} be the set of leaves of

L(P ). The following hold:
(i) L(P) is a coatomic lattice.

(ii) For any two leaves L1, L2, it holds dim(L̂1 ∩ L̂2) < n.
(iii) It holds that P =

⋃M̂
j=1 L̂qj .

Proof (i) For each element L ∈ L(P ) there exists the trivial
lower bound ∅ ⊂ L and upper bound L ⊂ P . Suppose for
two sets Li, Lj , there is a lower bound Lk ̸= ∅, so that



Lk ⊆ Li∩Lj . Suppose ki = rank(Li), kj = rank(Lj), with
ki ≤ kj . By assumption, Li ∩ Lj ̸= ∅, dim(Li ∩ Lj) = n.
Also, by construction of the poset L(P ), there is Q ≥ 1 so
that Li∩Lj = Li∩(∩Q

l=1Pil), with 1 ≤ il ≤ N , l = 1, .., Q.
However, then necessarily Lk = Li ∩ Lj is an element of
P (L), which makes it a unique maximal lower bound for
Li, Lj . To show there is a unique minimal upper bound,
suppose for two sets Li, Lj there are two upper bounds
Lk1

, Lk2
, so that Lk1

⊇ Li ∪ Lj , Lk2
⊇ Li ∪ Lj , and

that Lk1 ⊉ Lk2 , Lk2 ⊉ Lk1 . However, necessarily the set
Lk = Lk1 ∩ Lk2 ∈ L(P ) as it is the intersection of a finite
number of pieces Pi, and moreover Lk ⊃ Lk1

, Lk ⊃ Lk2
,

thus, a unique minimal upper bound exists. Thus, L(P ) is
a lattice. To show L(P ) is coatomic, we observe that the
elements Pi, i = 1, ..., N are coatoms.
(ii) Suppose there are two leaves L̂1, L̂2, with k1 =
rank(L̂1), k2 = rank(L̂2), k1 ≤ k2, such that
dim(L̂1 ∩ L̂2) = n. As in the proof of statement (i),
necessarily there is a subset of coatoms Q ≤ k2 − k1 so
that L̂1 ∩ L̂2 = L̂1 ∩ (∩Q

l=1Pil). Then, it holds that the set
L∗ = L̂1 ∩Pi1 ∈ L(P ), and since L∗ ⊂ L̂1, L̂1 is not a leaf
and a contradiction has been reached.
(iii) Suppose that ∪M̂

i=1L̂qj ⊂ P , and there is an element
L∗ ∈ L(P ) so that L∗ ∪ (∪M̂

i=1L̂qj ) = P . Since L(P )

is coatomic, there are Q coatoms so that L∗ = ∩Q
i=1Pqi .

Since L∗ is not a leaf, there is at least a piece PqQ+1
so that

dim(L∗ ∩ PiQ+1
) = n. Let L̄ = L∗ \ PiQ+1

, dim(L̄) = n.
Take x ∈ ∂L∗ ∩ ∂PiQ+1

, and choose wx ∈ Rm so that
[x⊤ w⊤

x ]
⊤ ∈ ∩Q

i=1∂Fn
qi(W) ∩ Fn

iQ+1
(W) and is also a

vertex of W . Also, take y ∈ ∂L∗ \ PiQ+1
, and wy so that

[y⊤ w⊤
y ]

⊤ ∈ ∩Q∗

i=1Fn
qi(W), for some Q∗ ≤ Q, and it is

a vertex of W . Consider F1
• (W) denote the 1−face of W

that is formed by the vertices [x⊤ w⊤
x ]

⊤, [y⊤ w⊤
y ]

⊤ and let
Fn

• (W) be an n-face, n ≥ 1 that contains F1
• (W). Take

z = x+y
2 , so that z ∈ π(Fn

• (W)) = P•. However, since
z ∈ int(L̄), a contradiction has been reached as it implies
P• ∩ L̄ ̸= ∅.

Theorem 3: Consider W ⊂ Rn+m (1), the lattice L as
defined in Proposition 1, and its set of leaves L̂. It holds

supp(W) =

M̂⋃
i=1

L̂qi . (6)

Proof From Proposition 1(iii), we have that
⋃M̂

j=1 L̂qj =⋃N
i=1 Pi, with Pi = πRn(Fn

i (W)), i = 1, ..., N defined
in (5). What remains to show is that the support of W is
covered completely by the union of the projections of n-
faces of W , i.e., supp(W) = ∪N

i=1Pi. Let m = 1, and
let any fixed n ≥ 1. Consequently, Fn

i (W) are the facets
of W with the property that ∪N

i=1Fn
i (W) = ∂W . For

any x ∈ supp(W), choose a vector w∗ ∈ R such that[
x⊤ (w∗)⊤

]⊤ ∈ ∂W . Necessarily, there is an 1 ≤ i∗ ≤ N
such that [x⊤ (w∗)⊤]⊤ ∈ Fn

i∗(W), thus, x ∈ πRn(Fn
i ).

Suppose the statement of the theorem holds for m = k,
and any fixed n ≥ 1. Let m = k + 1, and any fixed
n ≥ 1. Set m̄ = k, n̄ = n + 1 so that Rn̄ corresponds to

x̄ = [x⊤ w1]
⊤, and Rm̄ corresponds to w̄ = [w2 .... wk+1]

⊤.
Take any x̄ in the set {x̄ ∈ Rn̄ : [x̄⊤ w̄⊤]⊤ ∈ W}. Then,
by assumption, there is an n̄-face F n̄

i∗(W) of W so that
x̄ ∈ S , where S = πRn̄(F n̄

i∗(W)). The set S is a polytope
since it is the projection of a face of a polytopic set, see,
e.g., [15]. Moreover, by compactness of W we can choose
F n̄

i∗(S) such that dimS = n + 1. Choose w∗
1 such that

x̄∗ = [x⊤ w∗
1 ]

⊤ ∈ ∂S. Necessarily, such w∗
1 exists by

compactness of S. Thus, there exists an n-face, i.e., a facet,
of S, namely, Fn

i∗∗(S) so that x̄∗ ∈ Fn
i∗∗(S). Since both

S, Fn
i∗∗(S) are faces of S and Fn

i∗∗(S) ⊂ S , it holds that
there is a face of F n̄

i∗(W), say, Fn∗

i∗∗(W) ⊂ F n̄
i∗(W), with

n∗ ≤ n̄−1, or, n∗ ≤ n, such that Fn
i∗∗(S) = πRn(Fn∗

i∗∗(W))
[15, Lemma 7.10]. Consequently, and summarising, there is
an n-face Fn

ī
(W) for which x ∈ πRn(Fn

ī
(W)). Thus, since

x is chosen arbitrarily, supp(W) = ∪N
i=1Pi = ∪M̂

j=1Lqj , thus
statement (6) holds.

By Proposition 1 and Theorem 3, we may construct non-
overlapping partitions, Cj , j = 1, . . . , M̂ , of supp(W), by
considering the n-faces of W , Fn

i (W), i = 1, . . . , N , that
satisfy the condition Theorem 2(i). To partition the entire x
space, we need to partition the area W ′ = Rn \ supp(W ) as
well. Let Cj , j = M̂ + 1, . . . ,M , with

⋃M
j=M̂+1 Cj ≡ W ′,

represent M −M̂ non-overlapping, convex partitions of W ′.
Then, Cj , j = 1, . . . ,M , are M non-overlapping, convex
partitions of the x space Rn. We summarize the partitioning
procedure in Algorithm 1.

Algorithm 1 Partitioning of x space Rn.
1: Compute W from W(x), and identify all Fn

i (W).
2: Let Fn

i (W), i = 1, . . . , N , satisfy Theorem 2(i).
3: Construct poset L with maximal element P =

⋃N
i=1 Pi,

where Pi = πRn (Fn
i (W)), as in Proposition 1.

4: Identify the set of leaves L̂ = {C1, . . . , CM̂}.
5: Define W ′ = Rn \ supp(W).
6: Construct M −M̂ non-overlapping, convex partitions of

W ′, namely, Cj , j = M̂ + 1, . . . ,M .
7: Return C1, . . . , CM̂ , CM̂+1, . . . , CM .

Fig. 1. Set W (1) for Example 1, with F1
i (W) in blue and red satisfying

Theorem 2(i) and Theorem 2(ii), respectively.

Example 1: Let W(x) = {w ∈ R2 :
[
x w⊤]⊤ ∈ W} be

a parameterised polyhedron, with its non-parameterised de-



Fig. 2. Partitions of R for Example 1, with blue and red referring to
partition of supp(W) and with magenta referring to W ′.

1 2 3 4

supp(W)

5 6 7

12 13 15 23 25 35 46 47 67

123 125 135 235 467

∅

1235

Fig. 3. Poset L for Example 1, where the leaves are in red, with the indices
467, 1235, denoting the leaves L = P4∩P6∩P7, L = P1∩P2∩P3∩P5,
respectively.

scription, W ⊂ R3, shown in Fig. 1. Slices of W , W(x), for
two values of x ∈ R are shown in Fig. 4. We partition the x
space, R, based on Algorithm 1. The polytope W has eleven
1-faces from which seven, denoted as F1

i (W), i = 1, . . . , 7,
satisfy the condition Theorem 2(i). Let P =

⋃7
i=1 Pi, where

Pi = πR (Fn
i (W)), i = 1, . . . , 7. We construct poset L (see

Fig. 3) as in Proposition 1, and identify its set of leaves
L̂ = {P4 ∩P6 ∩P7, P1 ∩P2 ∩P3 ∩P5}, which leads to two
partitions in R, that is, C1 = [−2, 0] and C2 = [0, 1]. Since
W ′ = R \ supp(W), with supp(W) = [−2, 1], we partition
W ′ by C3 = (−∞,−2] and C4 = [1,∞), and the entire x
space R ≡ ∪4

j=1Cj . The partition is shown in Fig. 2.

IV. EQUIVALENCE OF SYSTEMS

Consider the set W , the induced partition {Ci} of Rn

consisting of M pieces, as created in Algorithm 1. For each
piece Ci, let the set of active vertices (4) be renamed to
{vji (x)}, with vji (x) = Cj

i x+ hj
i , j = 1, .., qi. We consider

the system defined by the difference inclusion

z+ ∈ fz(z, λ), z ∈ Ci, λ ∈ Tqi , (Σz)

where
fz(z, λ) = Ai(λ)z + bi(λ),

Ai(λ) =

qi∑
j=1

Aj
iλj , bi(λ) =

qi∑
j=1

bjiλj , (7)

Aj
i = A+BCj

i , bji = Bhj
i , i = 1, ..,M, j = 1, .., qi. (8)

We note for the pieces Ci not in the support of W , i.e.,
when int(Ci)∩ int(supp(W)) = ∅, we have qi = 1, C1

i = 0,
h1
i = 0. We state the main result of the note.

Fig. 4. Slices W(x) in the w space of W for x = −1 and x = 0.5 for
Example 1.

Theorem 4: Consider the systems described by the inclu-
sions (Σx), (Σz). Let y ∈ Rn and set

x(0) = z(0) = y.

Let x(t) = ϕ(t; y, {w(i)}), t ≥ 0, denote a solution of (Σx)
for a choice of a valid sequence w(i) ∈ W(x(i)), i = 1, .., t.
Then, there exists a sequence {λ(i)}, λ(i) ∈ Tqj(i) , z(i) ∈
Cj(i), such that z(t) = ϕz(t; y, {λ(i)}), with z(i) ∈ Cj(i),
and

x(t) = z(t), for all t ≥ 0.

Proof Both inclusions (Σx), (Σz) are time invariant, thus
it is sufficient to show that there exists at least one vector
λ such that fz(y, λ) = fx(y, w) for any choice of w ∈
W . Indeed, for any y ∈ Rn, and since the partition is
complete by Theorem 3, i.e., ∪iCi = Rn, there is i∗ so
that y ∈ Ci∗ . We consider two cases: If Ci∗ /∈ supp(W),
then trivially w = 0, and λ = 1. If Ci∗ ∈ supp(W), then
w ∈ W(y) implies there is at least one vector λ ∈ Tqi∗
such that w =

∑i∗

j=0 λjvj(y), with vj(y) = Cj
i∗y+hj

i∗ , j =
1, ..., qi∗ . Consequently, fx(y, w) = Ay+B

∑i∗

i=0 λivi(y) =∑i∗

j=0 A
j
iλjy +

∑i∗

j=0 b
j
iλj(y) ∈ fz(y, λ).

It is straightforward to show that the converse statement of
Theorem 4 holds with exact equivalence, namely, for any
choice of y ∈ Ci, λ ∈ Tqi , there is exactly one vector w ∈
W(y) so that fz(y, λ) = fx(y, w).

V. FORWARD REACHABILITY MAPS AND MINIMAL
INVARIANT SET COMPUTATION

Additional to providing insight, Theorem 4 can have a
computational significance. In this section we investigate
how to compute forward reachabiliy set sequences, using
the system dynamics (Σz). For a set S ⊂ Rn, we consider
the maps

F(S) =
{
fx(x,w);x ∈ S, w ∈ W(x)

}
, (9)

Fx(S) =
[
A B

] (
(S × Rm) ∩W

)
, (10)

Fz(S) = {fz(x, λ);x ∈ S, λ ∈ T } . (11)

Lemma 1: For any set S ⊂ Rn, it holds

F(S) = Fx(S) = Fz(S). (12)

Proof F(S) = Fz(S) follows directly from Theorem 4.
Proof is immediate from Theorem 4 and [13, which theorem].

F(S) cannot be computed analytically. On the other hand,
the affine map Fx(S) [13] is a projection to the x-space,



which can be costly even when S is a polytope, and, e.g.,
Fourier-Motzkin elimination or variations are used [16]. On
the other hand, Fz(S) requires maps in the state space only,
and in combination with the following result suggest that
Fz(S) can offer an appealing alternative.

Lemma 2: Consider a convex set S ⊆ supp(W). It holds

Fz(S) = conv(Fz(S)). (13)

Proof Since S ⊆ supp(W), it holds that (S ×Rm)∩W =
(S × Rm) ∩W , and since the projection of a polytopic set
remains a polytope, the map Fx(S) (10) is a polytopic set in
Rn. Consequently, by Lemma 1, it holds Fz(S) = Fx(S) =
conv(Fx(S)) = conv(Fz(S)).

The following Corollary suggests that it is possible to
simplify the reachable set computation by clustering it to
two groups.

Corollary 2: Consider the convex set S = S1∪S2, where
S1 = S ∩ supp(W), S2 = cl(S \ S1). It holds

Fz(S) = Fz(S2) ∪ conv(Fz(S1)). (14)
The companion paper [13] examines the general case

of a set W , and highlights, contrary to the case of state-
independent disturbances, that the existence of a minimal
robust positively invariant set (mRPI) is not guaranteed.
In the following result, we show how under a relevant
assumption existence of mRPI set is guaranteed.

Proposition 2: Consider the set W (1), and let {0} ∈
W(x), for all x ∈ supp(W). Then, the mRPI Sm exists,
and is the limit of the sequence

Ri+1 = Fz(Ri), R0 = {0}. (15)

Proof From [13, Theorem 22], existence of the mRPI is
guaranteed. To show it is the limit of the sequence (15), one
can consider [13, Lemma 14], observing that for any Ri,
i ≥ 1 it holds Ri = ∪i

k=0Rk.
We can efficiently compute the elements of the set se-

quence (15) utilising the set map (11). For the initialisation
of R0 = {0}, it is straightforward to see that the elements
Ri, i ≥ 0, can be expressed as unions of polytopes.

Proposition 3: Consider W , the corresponding partition
induced by Algorithm 1, and the system (Σz). Consider the
set S = ∪p

k=1Sk, where each Sk, k = 1, .., p is a convex
set, and let Sw

k = Sk ∩ supp(W), Sw
k = cl(Sk \ supp(W)),

k = 1, ..., p. Then, it holds

Fz(S) =

 p⋃
k=1

conv


M̂⋃
i=1

qi⋃
j=1

(
Aj

i (S
w
k ∩ Ci)⊕ bji

)


∪

 p⋃
k=1

M⋃
i=M̂+1

A(Sw
k ∩ Ci)

 (16)

Proof We have Fz(S) = (∪p
k=1Fz(Sw

k )) ∪
(∪p

k=1(Fz(Sw
k ))). The second term corresponds to the

second line of equation (16), since in each piece Ci,
i = M̂ + 1, ...,M it holds fz(x, λ) = Ax. The first line of
equation (16) is derived by taking into account that each
set Sw

k is convex, and, by Lemma 2, for any k = 1, ..., p, it

holds

conv(Fz(Sw
k )) = conv


M̂⋃
i=1

Fz(Sw
k ∩ Ci)


= conv


M̂⋃
i=1

conv

 qi⋃
j=1

(
Aj

i (S
w
k ∩ Ci)⊕ bji

)
= conv


M̂⋃
i=1

qi⋃
j=1

(
Aj

i (S
w
k ∩ Ci)⊕ bji

) ,

and corresponds to the first line of (16). The fact that for
each piece Ci ∈ supp(W) it holds that Fz(Sw

k ∩ Si) =
conv(∪qi

j=1(A
j
i (Sw

k ∩ Ci)⊕ bji )) follows from the definition
of the dynamics (Σz), consistent with the forward reachabil-
ity computation for linear polytopic systems, see, e.g., [1].

We observe that the results of Proposition 3 and specifically
map (16) allow the elimination of the ‘for all’ quantifier
for the variable λ, which in turn has eliminated the ‘for
all’ quantifier for w ∈ W(x) by Lemma 1. Contrary to
convexification procedures for linear systems with polytopic
uncertainties [14], [1], it should be clear that it is not possible
to obtain similar results for the systems under study, as
the state dependent switching of the dynamics (Σz), or
equivalently, the state dependent disturbances of the original
dynamics (Σx) are not in general convex maps. Nevertheless,
for the setting of this paper, we can define a convexified set
sequence of (15) converging to a robust positively invariant
set, but not necessarily the minimal one.

Proposition 4: Consider the set W (1), and let {0} ∈
W(x), for all x ∈ supp(W). Consider the set sequence
{Rc

i}, with

Rc
i+1 = conv(Fz(Rc

i )), Rc
0 = {0}. (17)

Then, the set sequence converges to a robust positively
invariant (RPI) set.

Proof By compactness of the set W , there is a number K
such that W (x) ⊆ B(K, 0), for all x ∈ supp(W), where
B(K, 0) ⊂ Rn denotes the n-th dimensional ball centered at
the origin with radius K. Consider the system

x+ = Ax+Bw, w ∈ B(K, 0). (18)

Since (18) is subject to state-independent disturbances, by
utilising results, e.g., [17], the set sequence Rb

i+1 = ARb
i ⊕

B(K, 0), with Rb
0 = {0} converges to the minimal compact

convex robust positively invariant set Sb
m. By construction,

Rb
i ⊇ Rc

i for any i ≥ 0, and taking into account that the
set sequence (17) is nested, i.e., Rc

i ⊆ Rc
i+1, for all i ≥ 0,

it follows that the sequence (17) converges to a fixed point
Sc
m. To show that it is invariant, it is sufficient to observe

that Sc
m = ∪∞

i=0Rc
i .

The following Corollary highlights interesting special
cases.

Corollary 3: Consider the set W (1), and let {0} ∈ W(x),
for all x ∈ supp(W), and the set sequences (15), (17). The



following hold: (i) Suppose that supp(W) ⊂ Sm. Then, Sm

is a union of a finite number of polytopes. (ii) Suppose that
Sm ⊆ supp(W). Then, Sc

m = conv(Sm).
Example 2: Consider the system (Σx), with A =[
0 0.83

−0.83 0

]
, B =

[
1
1

]
. The disturbance set W ⊂ R3

is a parameterized polyhedron, which is represented in the
combined state-disturbance space in Fig. 5 left. To compute
the mRPI set, we first utilise Algorithm 1 to recover the
partition of R2. In Fig. 5 (left), we highlight in red the
2-faces of W , namely, F2

i (W), i = 1, 2, 3, 4, that satisfy
Theorem 2i). We recall that the projections πR2(F2

i (W)),
i = 1, 2, 3, 4, onto R2, are the coatoms Pi of the lattice
L(P ) shown in Fig. 6. By the leaves of L, we identify the
partitions of supp(W), as C1 = πR2(F2

1 (W))∩πR2(F2
2 (W)),

C2 = πR2(F2
1 (W)) ∩ πR2(F2

4 (W)), C3 = πR2(F2
2 (W)) ∩

πR2(F2
3 (W)), and C4 = πR2(F2

3 (W))∩πR2(F2
4 (W)), which

are shown in Fig. 5 (right) in gray. The partitions of W ′ =
R2 \ supp(W ), denoted as Cj , j = 5, 6, 7, 8, are shown in
the same figure in light gray completing the partition of the
entire R2. Having identified Cj , j = 1, . . . , 8, we can define
the equivalent system (Σz) and construct the reachable set
sequence (15) initialized at {0} by applying the map (16).
By Proposition 2, the limit of this sequence exists, and the
mRPI set, shown in Fig. 7 is recovered in twenty five steps.
In the same figure, we show in red the fixed point of the set
sequence(17), which is reached in one hundred steps. We
highlight, as zoomed in in Fig. 7, left (upper right corner),
that the convex RPI set (red) is not a tight approximation of
the mRPI set (grey).

Fig. 5. Left: Polytope W in the x-w space, with F2
i (W) in red satisfying

Theorem 2i). Right: the corresponding partition in R2.

1 2 3 4

supp(W)

12 14 23 34

∅

Fig. 6. The lattice L(P ) induced by W shown in Fig. 5 (left).

VI. CONCLUSION

We considered linear systems under disturbances whose
range is confined in a polytopic set defined in the ex-
tended state-disturbance space. Exploiting the properties of

Fig. 7. Left: The (nonconvex) mRPI set (grey) and a convex RPI set in red
color, generated by the sequences (15)-(16) and (17), respectively. Right:
The elements of the set sequence (17).

the lattice induced by polytopic projections, we provide
a procedure for partitioning the state space into pieces
where the dynamics are polytopic affine. This leads to an
equivalent piecewise polytopic affine system representation
constituting the main contribution of this note. Although
piecewise affine dynamics typically give rise to complexity
issues in reachability analysis, convexity in the support of the
disturbance set, permits us to characterise the fixed points of
the forward reachable maps and show that the retrieval of
robust invariant sets is possible under mild assumptions.
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