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Abstract: The HVAC system represents the main auxiliary load in electric vehicles, but passengers’
thermal comfort expectations are always increasing. Hence, a compromise is needed between
energy consumption and thermal comfort. The present paper proposes a real-time thermal comfort
management strategy that adapts the thermal comfort according to the energy available for operating
the HVAC system. The thermal comfort is evaluated thanks to the “Predicted Mean Vote”,
representative of passenger’s thermal sensations. Based on traffic and weather predictions for
a given trip, the algorithm first estimates the energy required for the traction and the energy available
for thermal comfort. Then, it determines the best thermal comfort that can be provided in these
energetic conditions and controls the HVAC system accordingly. The algorithm is tested for a wide
variety of meteorological and traffic scenarios. Results show that the energy estimators have a good
accuracy. The absolute relative error is about 1.7% for the first one (traction), and almost 4.1% for
the second one (thermal comfort). The effectiveness of the proposed thermal comfort management
strategy is assessed by comparing it to an off-line optimal control approach based on dynamic
programming. Simulation results show that the proposed approach is near-optimal, with a slight
increase of discomfort by only 3%.

Keywords: battery electric vehicle; thermal comfort; HVAC; energy management; real-time control;
dynamic programming

1. Introduction

Despite the rapid evolution of battery performance and recharging infrastructures, the penetration
of electric vehicles (EVs) in road transportation remains hindered by their limited driving range and
the consequent user’s fear of running out of battery. A lot of research effort is put into the battery
itself, but another axis for improvement is to better anticipate the energy needs all over the trip and
manage them according to the energy available in the battery. For instance, the heating, ventilating
and air conditioning (HVAC) system is expected to maintain an acceptable thermal comfort inside
the cabin regardless of the surrounding climatic conditions. Yet, in hot or cold weather conditions, its
electric consumption may be quite significant and affect the vehicle driving range. Therefore, online
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energy management strategies are required in order to provide suitable tradeoff between the HVAC
consumption and the passengers’ comfort. Such strategies can take great advantage of communication
and context information, such as traffic and weather prediction, or charging stations map.

Thermal comfort is a complex concept, subject to a lot of work, but only recently car manufacturers
have considered integrating this tricky notion in control and energy management. The issue is to
minimize the HVAC energy consumption, while ensuring the passengers’ comfort. Approaches
proposed in literature can be classified into two main categories: classical control approaches and
optimal short-term management approaches. In the first category, fuzzy logic is the most used algorithm
for thermal comfort management [1,2]. Some authors successfully customized passenger comfort by
integrating a learning module [3,4]. In order to assess the effectiveness of these approaches, some
authors have compared them to off-line optimal control methods like dynamic programming [5–7] and
the minimum principle of Pontryagin [8]. In the second category of on-line approaches, the model
predictive control model (MPC) is practically the only optimal algorithm that has been studied for
HVAC control. For instance, in [1,9,10], the authors chose to minimize both discomfort and energy
consumption, while in other works, the cost function also includes a third term related to further
parameters, such as the temperature of the battery [11], the battery’s lifespan [12] and the air quality [13].
These approaches are interesting and effectively reach a trade-off between the different objectives set,
yet, the following limitations can be noted: Firstly, they do not take into account the EV energy needs
over the whole planned trip, which can lead to power shortages before reaching the destination. This is
due to the chosen prediction horizon, which in general is a short horizon of the order of 1 to 30s [14,15].
In rare cases, the horizon can reach 10 min [16], 20 min [17] or even 30 min [18], but the entire trip
horizon is not considered in order to adjust the passenger’s thermal comfort if needed. Secondly,
the passengers’ thermal comfort is often modeled by a target temperature of 25 ◦C. Yet, this criterion
can lead to thermal discomfort, with either hot or cold sensations, depending on the humidity and
radiation temperature in the cabin [16]. Other on-line algorithms based on optimization have been
used, like Stochastic Dynamic Programming (SDP) [19].

As mentioned earlier in this paper, the HVAC consumption may affect the driving range of the
EV, especially in harsh weather conditions. In order to address this issue, we propose an on-line
energy management strategy that provides, within the limits of available energy, an optimal thermal
comfort to the passengers over a whole planned trip. If ideal thermal comfort cannot be provided at an
acceptable energy cost (i.e., without causing power outages before reaching the destination), then it is
reduced in order to allow the driver to arrive safely to the next charging point. The present study has
been conducted for hot or moderate climates, but the proposed principles could also be extended to
cold conditions.

In a former paper [20], we proposed to optimize the global passenger’s thermal comfort over a
trip, while taking into account the actual quantity of energy available for operating the HVAC system.
The idea was that, if there is not enough embedded energy for both traction and thermal comfort
for the planned trip, the thermal comfort should be diminished in order to save energy and allow
the vehicle to reach its final destination. In some situations, it may be wiser to consider slowing
down the vehicle in order to allow better thermal comfort. After modeling the powertrain and the
HVAC system, the problem was formalized as an optimal control problem and solved off-line, using
dynamic programing. While the results were promising and validated the principle of thermal comfort
and energy management, the computation cost of dynamic programing is still too high (curse of
dimensionality [21]) for an implementation in an on-board computer, for real-time energy management.

In the present paper, we propose a real-time approach, based on on-line estimation of the energy
required for traction and thermal comfort throughout the planned trip, given traffic and weather
predictions. These estimators are built off-line and used on-line, first to determine the quantity of
energy available for thermal comfort, and then to adjust the thermal comfort accordingly, in real
time. An important point of this work is that we model the thermal comfort by the predicted mean
vote criterion (PMV), proposed by Fanger in [22], and that reliably reflects the human perception of
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temperature and humidity [23]. The proposed approach was tested for 4000 test-cases and compared to
an optimal dynamic programming-based approach [20]. The results show that the proposed real-time
control is able to adjust the thermal comfort in case of low battery state-of-charge, and provides a near
optimal tradeoff between energy consumption and thermal discomfort.

The contributions of the work presented in this paper may be summarized as follows: (i) estimation
of the traction energy for a given planned trip modeled by macroscopic traffic indicators, (ii) estimation
of the HVAC energy for given weather conditions over the planned trip, (iii) integration of the PMV as
an estimator for passenger thermal comfort, (iv) real-time control approach for long horizon thermal
comfort management, and (v) extensive simulations of the proposed real-time control for different
climate and traffic scenarios, and comparison with an optimal dynamic programming approach.

The remainder of this paper is organized as follows: Section 2 describes the HVAC, powertrain
and the battery sub-systems. Section 3 presents the proposed real-time thermal comfort management
approach. Firstly, an overview of the algorithm is presented together with the thermal comfort criterion.
Then, the powertrain and the HVAC system power estimators are presented. Finally, the algorithm of
the thermal comfort management strategy is given. Section 4 presents results for a large number of
weather and traffic scenarios. The accuracy of the HVAC system consumption estimator is analyzed.
The near-optimality of the proposed approach is assessed by comparing it against an optimal dynamic
programming approach. Section 5 summarizes the conclusions of the present work and gives some
perspectives for further works.

2. System Description and Modeling

The studied system consists of three sub-systems: the HVAC system, the powertrain and the
battery, which provides energy to the powertrain for traction and to the HVAC system for thermal
comfort. The present work deals with thermal comfort in moderate and hot climates, and we will
consider only the cooling function of the HVAC system.

2.1. HVAC System Description and Modeling

Figure 1 shows a schematic drawing of the HVAC system. It consists of three main components:
one is the ventilation circuit (grey loop) that blows conditioned air in the cabin, and the two others are
the cooling and heating systems (resp. blue and orange boxes) that exchange thermal power with the
blown air in order to adjust its temperature and humidity.
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Figure 1. Schematic diagram of the HVAC system.

As depicted, the outside air flow is mixed with a certain amount of recirculated cabin air and
blown by a fan into the ventilation system. The air is firstly cooled and dried up by yielding thermal
energy to the cold loop of the cooling system, through the evaporator, as detailed in Figure 1. At this
stage, it is too cold to be directly blown into the cabin and it needs to be warmed up in the heating
system. This can be done at a zero energetic cost by exchanging with the cooling system of the
traction motor.
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Using the notations defined in Figure 1, the ventilation sub-system can be modeled as follows.
After mixing, the temperature Tin and the specific humidity φin of the air (mass of water vapor present
in a unit mass of moist air) are given by (1) and (2), where β is the recycling ratio:

Tin = β·Tcab + (1− β)·Text (1)

φin = β·φcab + (1− β)·φext (2)

The air flows through the cooling and heating sub-system, after which the temperature and
specific humidity are denoted by Tout and φout, respectively. The HVAC system enables controling
these quantities, as it will be described later on in this section.

The conditioned air is blown into the cabin, and the cabin temperature evolution is governed by
(3), where Ccab is the cabin thermal capacitance (including walls and seats).

.
Qext is the convective heat

follow rate exchanged with the outside through vehicle body leakages.
.

Q f low corresponds to the heat

exchange due to the air circulation.
.

Qw represents the heat flow rate, which is exchanged with the
cabin walls, windows and windshield:

Ccab
dTcab

dt
(t) =

.
Qext(t) +

.
Q f low(t) +

.
Qw(t) (3)

The cabin specific humidity φcab evolves according to the water mass balance (4), where Vcab, ρair
and

.
mair respectively denote the cabin volume, the air density and the air flow rate:

Vcab·ρair·
dφcab

dt
=

.
mair·[φout −φcab] (4)

The cabin wall temperature, Twall, evolves according to Equation (5), where Cwall is the heat
capacity of the cabin wall, and

.
Qsun the sun load:

Cwall
dTwall

dt
(t) =

.
Qsun(t) −

.
Qw(t) (5)

Let us now focus on the cooling system, sketched in Figure 2. The cold loop is composed of four
main entities: compressor (a), condenser (b), expansion valve (c), and evaporator (d). A refrigerant
fluid circulates throughout these entities and undergoes a thermodynamic cycle during which it
receives thermal energy from the ventilated air and yields it outside.

Energies 2020, 13, x FOR PEER REVIEW 4 of 22 

 

ܶ = .ߚ ܶ + (1 − .(ߚ ܶ௫௧ (1) 

߶ = .ߚ ߶ + (1 − .(ߚ ߶௫௧ (2) 

The air flows through the cooling and heating sub-system, after which the temperature and 
specific humidity are denoted by ܶ௨௧ and ߶௨௧, respectively. The HVAC system enables controling 
these quantities, as it will be described later on in this section. 

The conditioned air is blown into the cabin, and the cabin temperature evolution is governed by 
(3), where ܥ is the cabin thermal capacitance (including walls and seats). ሶܳ ௫௧ is the convective 
heat follow rate exchanged with the outside through vehicle body leakages. ሶܳ ௪ corresponds to 
the heat exchange due to the air circulation. ሶܳ ௪ represents the heat flow rate, which is exchanged 
with the cabin walls, windows and windshield: ܥ ݀ ܶ݀ݐ (ݐ) = ሶܳ௫௧(ݐ) + ሶܳ௪(ݐ) + ሶܳ௪(ݐ) (3) 

The cabin specific humidity ߶ evolves according to the water mass balance (4), where ܸ, ߩ and ሶ݉  respectively denote the cabin volume, the air density and the air flow rate: 

ܸ. .ߩ ݀߶݀ݐ = ሶ݉ . [߶௨௧ − ߶] (4) 

The cabin wall temperature, ௪ܶ, evolves according to Equation (5), where ܥ௪ is the heat 
capacity of the cabin wall, and ሶܳ ௦௨ the sun load: ܥ௪ ݀ ௪ܶ݀ݐ (ݐ) = ሶܳ௦௨(ݐ) − ሶܳ௪(ݐ) (5) 

Let us now focus on the cooling system, sketched in Figure 2. The cold loop is composed of four 
main entities: compressor (a), condenser (b), expansion valve (c), and evaporator (d). A refrigerant 
fluid circulates throughout these entities and undergoes a thermodynamic cycle during which it 
receives thermal energy from the ventilated air and yields it outside. 

 
Figure 2. Schematic diagram of the air cooling and heating system: (a) compressor—(b) condenser—
(c) expansion valve—(d) evaporator—(e) moto-ventilator group (MVG)—(f) ventilation fan. The 
points 1, 2, 5 & 6 correspond to different thermodynamic states of the refrigerant explained in Figure 
3. 

The thermodynamic cycle is depicted in Figure 3Error! Reference source not found.. The first 
stage is the compression, in which the compressor brings the refrigerant from a low pressure, gaseous 
state to a higher pressure and temperature state (transformation 1 → 2 ). Then, during the 
condensation stage, the fluid releases the heat to the outside air, while turning into a high pressure 
saturated liquid state (transformation 2 → 5). The moto-ventilator group forces the circulation of 

Figure 2. Schematic diagram of the air cooling and heating system: (a) compressor—(b) condenser—(c)
expansion valve—(d) evaporator—(e) moto-ventilator group (MVG)—(f) ventilation fan. The points 1,
2, 5 & 6 correspond to different thermodynamic states of the refrigerant explained in Figure 3.
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The thermodynamic cycle is depicted in Figure 3. The first stage is the compression, in which
the compressor brings the refrigerant from a low pressure, gaseous state to a higher pressure and
temperature state (transformation 1→ 2). Then, during the condensation stage, the fluid releases
the heat to the outside air, while turning into a high pressure saturated liquid state (transformation
2→ 5). The moto-ventilator group forces the circulation of outside air in order to help evacuating
the heat from the refrigerant. Next, the saturated liquid undergoes an isenthalpic expansion through
the expansion valve: its pressure and temperature decrease and it turns into a cold two-phase fluid
(transformation 5→ 6). Finally, during the evaporation phase, this two-phase fluid absorbs the
heat from the ventilation circuit air. It evaporates and exits the evaporator at low-pressure gas state
(transformation 6→ 1). A crucial point to note is that the whole cold loop is controlled by the
compressor rotational speed, denoted by Ncomp.

Modeling the cold loop requires solving a set of nonlinear equations involving thermodynamic
quantities at the different points of the cycle. This has been done carefully in the present work, but
will not be explained here because of lack of space. In brief, thanks to a dynamic model numerically
solved, we are able to calculate TAC,out and φAC,out for given values of the following quantities: Ncomp,
Tin, φin,

.
mair. The external temperature and the vehicle speed are also taken into account, as they

influence the heat rejection from the refrigerant to the outside air at the level of the condenser and the
moto-ventilator group.

When exiting the cooling system, the air is very dry and cold, only a few degrees Celsius. Hence, it
needs to be warmed up before being blown into the cabin. The heating system consists of two heating
resistors and an exchanger with the water cooling system of the electric machine. For the weather
conditions considered here, the heating resistors are not needed and free heating is provided by the
water cooling system of the electric machine. Again, an important point to note is that the heating is
controlled by the ratio of air flow derived into the heat exchanger, denoted by α.

Assembling the models of the three sub-systems, one builds the control model of the whole
HVAC system. The output vector is x = [Thab,φhab, Twall]

′, which corresponds to the thermodynamic
quantities needed to estimate and control the passenger’s thermal comfort. The four control variables
are also gathered in a vector, denoted by u =

[
Ncomp,

.
mair,α, β

]′
. Lastly, the four environment variables

constitute the disturbance vector w = [Text,φext, Psun, v]′.
Using these notations, the HVAC system model can be formalized by Equation (6), where f is a

non linear equation requiring numerical solving:

.
x(t) = f (x(t), u(t), w(t)) (6)

The next point deals with the energy consumption of the HVAC system. Three components need
power feeding: the compressor (a), the fan (e), and the moto-ventilator group MVG (f). The compressor
consumption Pelec,comp is given by (7), where h1 and h2 denote respectively the refrigerant enthalpy at
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the points 1 and 2 of the thermodynamic cycle represented in Figure 3,
.

mre f is the refrigerant massic
flow rate (linked to the compressor rotational speed), ηmeca and ηelec are the mechanical and electrical
efficiencies of the compressor:

Pelec,comp =
(h2 − h1)·

.
mre f

ηmecaηelec
(7)

The consumptions of the fan and the MVG depend on the external temperature according to
tabulated data provided by Groupe PSA. The total electric consumption of the HVAC system PHVAC is
the sum of the electric power consumed by the compressor, the fan and the MVG (8):

PHVAC = Pelec,comp + P f an + PMVG (8)

2.2. Powertrain Model

The second sub-system is the powertrain, modeled using a forward model in a very classical way.
The electrical machine provides a torque TEM, which is transmitted to the wheels and converted there
into a tractive force Ftraction. The resulting temporal evolution of the vehicle speed, v, is calculated
according to (9), where m is the vehicle equivalent mass, accounting for all moving parts, and Froad(t)
denotes the sum of the external forces, the vehicle is subjected to: aerodynamic drag, gravitational
force, and rolling resistance [24]. Ftraction is negative during regenerative braking:

m·
dv
dt

(t) = Ftraction(t) + Froad(t) (9)

The transmission chain between the electrical machine and the wheels is modelled by a fixed
speed ratio, and a power loss map losses, which is function of torque and speed. The electrical machine
and its control electronics are modelled by a measured losses map. Hence, the electrical machine
power consumption, PEM, is given by Equation (10), where ωEM denotes the machine rotation speed,
which is proportional to the vehicle speed:

PEM = TEMωEM − losses(TEM,ωEM) (10)

In the present study, we consider that the driver is modeled as a PI regulator that controls the
electrical machine torque in order to follow the speed profile of a given driving cycle. The actual
speed profile v(t) and the resulting electrical consumption PEM(t) are calculated according to the
abovementioned equations.

2.3. Battery Model

The battery provides the power Pbat to the electrical machine (EM), the HVAC system and various
auxiliaries, according to Equation (11):

Pbat = PEM + PHVAC + Paux (11)

The battery is modeled by its open circuit voltage Vbat and internal resistance Rbat [25]. Formulas
(12) and (13) give the current ibat as a function of the power and the resulting battery state of charge
SOC variation. Q0 is the nominal battery capacity:

ibat(t) =
Vbat −

√
Vbat

2 − 4RbatPbat(t)
2Rbat

(12)

dSOC
dt

(t) =
ibat(t)

Q0
× 100 (13)
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3. Real Time Energy Management

The objective of the HVAC management system is to control the temperature and the relative
humidity of the cabin, so that the passengers feel comfortable at the lowest energy cost. Yet, in some
cases, the battery state-of-charge may be too low to insure ideal comfort during the whole trip, and it
may be necessary to limit the power provided to air conditioning, in order to avoid a power outage
before reaching the destination. In a previous study, we have described this energy management
problem as an optimal control problem and solved it thanks to dynamic programing. The results have
shown that it is, indeed, possible to adjust the thermal comfort according to the amount of energy
available for the planned trip, but the computation cost for solving a dynamic programing problem
is too high to consider implementing this method in an on-board controller. In the present work,
we propose a thermal comfort management algorithm based on simplified estimations of the energy
required for the traction and thermal comfort, which is more suitable for real-time implementation.
This section first presents the general principles of the algorithm. Then, the PMV criterion used to
quantify thermal comfort is discussed and the models used to estimate the traction and HVAC energy
consumptions are presented.

3.1. Principle of the Proposed Approach

Figure 4 gives an overview of the proposed thermal comfort management strategy, which will be
referred to as TCMS in the rest of the paper. The idea is to cool down the cabin until a thermal comfort
that can be maintained during the whole trip has been reached. This choice is based on previous
results based on dynamic programing, which have shown that optimizing the thermal comfort over a
given trip always starts with such a fast cooling phase. If there is enough energy in the battery, ideal
comfort will be provided. Otherwise, thermal comfort will be less, but it will last until the end of the
trip. This approach assumes that the vehicle is equipped with a navigation aid system, which provides
traffic and weather prediction along the planned route.
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Figure 4. Schematic view of the proposed thermal comfort management strategy.

The TCMS algorithm has three phases, as depicted in Figure 4. Phase 1 consists in estimating
the energy required for the traction throughout the whole trip, based on information about the speed
(average and standard deviation) and the slope profile. Since the initial state-of-charge of the battery is
known, one can calculate the energy available for operating the HVAC system. Then, phase 2 starts:
the HVAC system is operated at its maximum cooling capacity until an “energetically acceptable”
thermal comfort is reached. All along this phase, the TCMS monitors the current thermal comfort and
the HVAC consumption, and estimates the amount of energy required to maintain the current thermal
comfort until the end of the trip. As long as the required energy is less than the available energy, and
that ideal comfort has not been reached, the cooling phase goes on. As soon as ideal comfort has been
reached or that an energy limit has been detected, phase 3 starts. It simply consists in maintaining the
current comfort level at the lowest energy cost until the end of the trip.
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3.2. Thermal Comfort Criterion

Before going into the details of the TCMS, the notion of thermal comfort needs to be discussed.
Thermal comfort is a complex concept, defined by the American Society of Heating Refrigeration
and Air Conditioning Engineers (ASHRAE) as the state of mind that expresses satisfaction with the
surrounding environment (ASHRAE Standard 55) [23]. One of the most known and used thermal
comfort indexes is the Predicted Mean Vote (PMV), proposed by Fanger [22]. As stated in Fanger‘s
work, the mean thermal feeling of a group of persons in a given indoor environment is quantified by
an integer index ranging between −3 and +3, from the coldest sensation to the hottest one. The value
zero reflects the best comfort (i.e., neither cold nor hot). The PMV scale is detailed in Table 1.

Table 1. PMV scale.

Thermal Sensation Scale PMV

Hot +3
Warm +2

Slightly warm +1
Neutral 0

Slightly cool −1
Cool −2

Slightly cool −3

Fanger’s PMV model establishes a relationship between the thermal load on the body and the
average thermal sensation of individuals. The thermal load on the body is expressed as a function of
environmental factors (e.g., temperature, humidity, air velocity, and wall temperature) and individual
factors (e.g., activity and clothing insulation). Based on the PMV, Fanger proposed a complementary
index, called the predicted percentage of dissatisfied (PPD). The PPD represents the expected percentage
of people who are thermally uncomfortable in an environment with a given PMV. The relationship
between the PPD and the PMV is shown in Figure 5.
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The present work is based on the PMV, in order to evaluate the passenger’s thermal comfort
in a representative way. The HVAC system model allows calculating the cabin environment factors,
whereas the individuals factors are given data (passengers at rest, type of clothing). When it helps
interpreting the results, the PPD is also used. Results presented in Section 4 show that, in addition to
the temperature and the humidity, the temperature of the cabin walls has a significant influence on
thermal comfort, and hence on the HVAC control and consumption as well.

3.3. Phase 1: Traction Energy Estimation

The dynamic model of the powertrain, presented in Section 2, requires the knowledge of the exact
speed profile in order to calculate the power required for a given trip. In real life at the beginning of
the trip, this information is not available, but the navigation aid system can provide statistics about
the speed along the planned route. Based on numerous simulations using the dynamic model, we
have developed an estimator that predicts the average traction power as a function of the expected
average vehicle speed v, its standard deviation σv and the road slope p. The estimated traction power
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P̃traction is postulated as the sum of a bicubic function of v and σv, and a term to account for the slope p,
as given by (14), where ai, j and b are coefficients to be identified, mveh is the mass vehicle and g is the
gravitational acceleration:

P̃traction(v, σv, p) =
3∑

i=0

3∑
j=0

ai, j·v
i
·σv

j + b·mveh·g· sin
(
tan−1(p)

)
(14)

The coefficients of the model have been identified using 1200 speed cycles corresponding to
various driving conditions [26]. Each speed cycle has been characterized by its mean value and
standard deviation v and σv, and simulated by the powertrain model for different fixed slopes p,
ranging from −10% to +10%. This gives a total number of 168000 scenarios. Then, the average
traction power over each cycle has been calculated, and linear regression has been used to compute the
coefficients ai, j and b.

The accuracy of this estimation is assessed by analyzing the absolute and relative difference
between P̃traction, the average traction power estimated by (14), and Ptraction, the average traction power
calculated by the dynamic powertrain model. These quantities, denoted respectively by ∆Pabs and
∆Prel, are defined by equations (15) and (16):

∆Pabs [Wh] =
∣∣∣P̃traction − Ptraction

∣∣∣ (15)

∆Prel [%] =

∣∣∣∣∣∣ P̃traction − Ptraction

Ptraction

∣∣∣∣∣∣ (16)

Figure 6 summarizes the estimator accuracy through different mean values of ∆Pabs and ∆Prel.
The plots (a) and (b) show the histograms of

〈
∆Pabs,cycle

〉
and

〈
∆Prel,cycle

〉
, i.e., the mean value of ∆Pabs

and ∆Prel, averaged over the slope for a given cycle. The errors mainly lie in the ranges [0 W, 300 W]

and [0%, 5%] respectively, with a mean value of 204 W and 2.5%. Next, the curves (c) and (d) show the
influence of the slope on

〈
∆Pabs,slope

〉
and

〈
∆Prel,slope

〉
, i.e., the mean value of ∆Pabs and ∆Prel, averaged over

all the cycles, for a given slope. Although the absolute error increases with the slope, the relative error
decreases because the traction power also increases with the slope (it reaches 100 kW for a 10% slope).
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Figure 6. Assessment of the traction power estimator: (a,b) represent the histogram of
〈
∆Pabs,c

〉
and〈

∆Prel,c
〉
, while (c,d) represent

〈
∆Pabs,p

〉
and

〈
∆Prel,p

〉
.



Energies 2020, 13, 4006 10 of 23

A second series of tests was performed using Institut National de Recherche sur les Transports et
leur Sécurité (INRETS) and Laboratoire Central des Ponts et Chaussées (LCPC) (who merged in 2011 to
create Institut Français des Sciences et Technologies des Transports, de l’Aménagement et des Réseaux
– IFSTTAR) driving cycles, which were not used for the identification process. INRETS cycles are a set
of ten driving cycles that have been built with data logged around Lyon (France), in various driving
environments. The main characteristics of these cycles are reported in Table 2. Figure 7 shows four of
these cycles (UL1, UF1, R2 and A2), representative of urban slow, urban fluid, road and highway traffic.

Table 2. Characteristics of the UL1, UF1, R2 and A2 INRETS driving cycles.

INRETS Cycles Duration [s] Distance [km] v [km/h] σv [km/h]

UL1 806 0.85 3.81 4
UL2 812 1.67 7.42 6.22
UF1 681 1.88 9.92 9.74
UF2 1055 5.61 19.14 12.97
UF3 1068 7.23 24.36 16.43
R1 889 7.79 31.55 21.94
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Figure 8 reports the results of the traction power estimator for the INRETS driving cycles. The plot
(a) compares the estimated power P̃traction (dotted line) to Ptraction (square), for different uniform slopes.
The negative values, obtained for p = −10%, reflect regenerative braking. The plots (b) and (c) show
the average relative error for a given cycle

〈
∆Prel,cycle

〉
as a function of the speed average value v and

the standard deviation σv, whereas the plot (d) shows the average relative error for a given slope〈
∆Prel,slope

〉
as a function of the slope. The overall fit is good.

In real life conditions, the navigation aid system splits the planned route into a certain number
of road sections of various length l and provides the slope as well as traffic information for each of
them. The total traction energy, Ẽtraction, should then be computed by summing up the traction energy
corresponding to each road sections according to Equation (17), where the subscript k refers to the kth
section and n denotes the number of sections:

Ẽtraction =
n∑

k=1

Ẽtraction,k =
n∑

k=1

P̃traction
(
vk, σv,k, pk

)
×

lk
vk

(17)

We have tested this technique by splitting the INRETS cycles into 500 m sections. Figure 9 shows
the results. The plot (a) represents the energy calculated using the dynamic model (red squares) and
estimated by splitting the road into k road sections, according to equation (17), for p = 0%. The plots
(b) and (c) show the average relative error for a given cycle

〈
∆Erel,cycle

〉
as a function of the average

speed value v and the standard deviation σv, whereas the plot (d) shows the average relative error for
a given slope,

〈
∆Erel,slope

〉
, as a function of the slope. Again, the overall fit is good. The mean relative

error
〈
∆Erel,slope

〉
is around 4.8% for positive slopes but can reach 10% for p = −10%. We also notice

that the mean relative error
〈
∆Erel,cycle

〉
decreases according to INRETS average speed and INRETS

speed standard deviation.
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Figure 8. Power estimator assessment for the 10 INRETS driving cycles: (a) Ptraction (squares) and
P̃traction (dotted lines) versus cycle for three slopes, (b)

〈
∆Prel,cycle

〉
versus v, (c)

〈
∆Prel,cycle

〉
versus σv,

(d)
〈
∆Prel,slope

〉
versus slope.
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Figure 9. Energy estimator assessment for the 10 INRETS driving cycles: (a) Etraction (squares) and
Ẽtraction (dotted lines) versus cycle, (b)
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3.4. Phase 2: Fast Cooling and HVAC Power Estimation

The fast cooling phase starts once the energy available for operating the air conditioning system,
during the whole trip, is known. Its goal is to reach rapidly a thermal comfort that can be sustained
until the end of the planned trip. The HVAC system is operated at its maximum cooling capacity,
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i.e., at maximum compressor rotational speed Ncomp,max and air flow rate
.

mair,max. The heating system
is disabled (αmin = 0) and the recycled air ratio is set at its maximum value βmax = 90% (air quality
issues require at least 10% air renewal).

The initial cabin temperature and humidity are assumed to be the same as outside (a vehicle
parked in a shaded space). For the considered warm weather situations, they correspond to a large
positive value of PMV. As soon as the control vector ucooling =

[
Ncomp,max,

.
mair,max,αmin, βmax

]′
is applied,

the cabin temperature decreases while the thermal comfort starts to improve. All along the cooling
phase, the TCMS monitors, in real time, the PMV. As it will be explained in the next paragraphs, it also
estimates the amount of energy that the HVAC system would consume, if the thermal comfort was
kept constant at its current value until the end of the trip. As long as this energy is less than the energy
available for the HVAC system and that ideal comfort has been reached, the cooling phase goes on.
The cooling phase stops when the system has reached a PMV that is either optimal (PMV = 0) or that
cannot be improved, given the energy available for the HVAC system.

The prediction of the energy, required to maintain the PMV at a given value during the trip,
is based on the use of a look-up table G, which gives an estimate of the optimal power consumed
by the HVAC system for maintaining a desired PMV, denoted here by PMVsteady, in given conditions

w = [Text,φext, Psun, v]. This power is denoted by PHVAC
∗
(
PMVsteady, w

)
as formalized by Equation (18):

PHVAC
∗
(
PMVsteady, w

)
= G

(
PMVsteady, Text,φext, Psun, v

)
(18)

This look-up table is built off-line, based on simulation results under static conditions, as explained
in Appendix A. It is used on-line, in real time dynamic conditions according to the following principle.
The predicted environment conditions along the trip are denoted by w̃(t). At time tk of the cooling
phase, the current PMV index is PMV(tk). The estimation of the energy required by the HVAC system
in order to maintain this thermal comfort until the end of the trip, denoted by ẼHVAC,maintain(tk),
is obtained by integrating the estimated HVAC power, as stated by Equation (19):

ẼHVAC,maintain(tk) =

tend∫
tk

P∗HVAC(PMV(tk), w̃(t))·dt (19)

During the cooling phase, the TCMS also monitors the energy consumed by the HVAC system
since the beginning of the trip, denoted by EHVAC,cool(tk), and the energy available for the rest of the
trip, denoted by EHVAC,available(tk):

EHVAC,available(tk) = EHVAC,available(t0) − EHVAC,cool(tk) (20)

As long as ideal thermal comfort has not been reached (i.e., PMV > 0) and there is enough
energy available to improve the current thermal comfort (i.e., EHVAC,available(tk) > EHVAC,maintain(tk)),
the cooling phase goes on. As soon as either ideal thermal comfort is reached or energy limitation is
detected, the cooling stops and the phase 3 starts.

3.5. Phase 3: Thermal Comfort Maintaining

Let us denote by PMVset the value of PMV reached at the end of the phase 2. The phase 3 consists
in maintaining the current PMV at this setting value, at the lowest energy cost. At each time tk, given
the current external conditions w(tk), the TCMS algorithm (see Algorithm 1) determines the set of
commands that lead to PMV(tk+1) = PMVset, and selects the one with the lowest energy cost.
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Algorithm 1. The main points of the TCMS algorithm are summarized hereunder

Input: battery initial state-of-charge; traffic prediction (v and σv for each section of the planned road); weather
prediction w(t) along the planned road
Phase 1: Initialization
Estimate the required energy for traction along the whole planned trip
Calculate the energy available for thermal comfort during the whole planned
trip
Output: energy available for thermal comfort during the whole planned trip
Phase 2: Fast cooling
While (current PMV > 0)
Estimate EHVAC,maintain, the energy to maintain the current thermal comfort until the end of the trip
Calculate EHVAC,available, the energy left for the thermal comfort until the end of the trip
If (EHVAC,available > EHVAC,maintain):
Apply maximum cooling command umax

Else:
PMVset = current PMV

Exit while loop
Output: Thermal comfort setting point for phase 3 PMVset

Phase 3: Thermal comfort maintaining
For the rest of the trip:
Apply command u such that PMV = PMVset at the lowest energy cost
Output: Predicted and actual HVAC power profile, PMV profile

4. Results and Discussion

The proposed real-time comfort management algorithm has been implemented and applied
to the system model, in the MATLAB® environment. Extensive simulations were run for a large
number of scenarios with different weather conditions, traffics, and initial battery’s state-of-charge.
This section presents the results and a statistical analysis is conducted in order to assess the capacity of
the proposed method in adjusting the thermal comfort according to the amount of energy available for
the HVAC system.

Firstly, we verify that the HVAC system consumption estimated during the cooling phase using
the look-up table G corresponds to its actual consumption, calculated afterwards using the system
dynamic model. A good match justifies the relevance of using a precalculated static model in slowly
varying conditions.

The next point is to evaluate the performance of the thermal comfort management algorithm.
For this purpose, we formulate an optimization problem that consists into minimizing the global
thermal comfort defined by (21) for a given amount of energy. Solving this problem using the dynamic
programming approach presented in [20] provides reference solutions against which the real-time
algorithm efficiency can be assessed:

J(u) =

t f in∫
0

PMV2(x(u(t), w(t)))dt (21)

4.1. Test Scenarios

Each scenario corresponds to a one-hour trip completed in given weather and traffic conditions,
with a certain initial battery’s state-of-charge. Regarding weather conditions, we have defined a scenario
in which the solar radiation is constant, while the external temperature and humidity evolve, according
to parametrized time profiles. The temperature profile Text(t) is shown in Figure 10. The temperature
rises from Text,0 at the beginning of the trip to Text,0 + 2 ◦C at halfway, and then decreases back to Text,0.
As for the humidity, weather conditions are described in terms of relative humidity RH, whereas the
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thermodynamic equation is written using the specific humidity φ. The relationship between these two
quantities is given by (22), where Patm is the atmospheric pressure and Psat denotes the saturated vapor
pressure of water at the considered temperature:

RHext(t) =
Patm ×φext(t)

Psat(Text(t)) × (φext(t) + 0.622)
(22)

Energies 2020, 13, x FOR PEER REVIEW 14 of 22 

 

 
Figure 10. Weather scenario for the given parameters ܶ௫௧, = ܥ°	37 ௫௧,ܴܪ , = 35% and ݍሶ௦௨, =500	ܹ. (a) Temperature, (b) Relative humidity and (c) Solar radiation. 

Different values of the parameters ܶ௫௧,, ܴܪ௫௧,, and ݍሶ௦௨, correspond to different weather 
conditions. In order to explore a wide range of weather conditions, without focusing on the weather 
profile itself, we have combined together the following values: ܶ௫௧,[°ܥ] ∈ ሼ25	; 26	; … ; 38ሽ, ܴܪ௫௧, ∈ሼ0.35	; 0.45	; 0.55	; 0.65	; 0.75ሽ, ݍሶ௦௨,[ܹ/݉ଶ] ∈ ሼ0	; 500	; 1000ሽ. This results in a total number of 210 
weather scenarios. As the HVAC system efficiency depends on the vehicle speed, four traffic 
conditions, representative of congested urban, fluid urban, road and highway environments are 
modeled, using the UL1, UF1, R2 and A2 INRETS driving cycles (Figure 7). Each type of cycle is 
repeated several times in order to construct a 1 h speed profiles, corresponding to the following 
distances: 4.25, 11.28, 46.3 and 105.92 km, respectively. In addition, a variable slope is considered. 

The initial temperature and relative humidity in the cabin are assumed the same as outside 
(vehicle parked in a shaded space). For all the tested scenarios, we consider that passengers are seated 
and lightly dressed, (i.e., a shirt, underpants, trousers, socks and shoes), which corresponds to a 
clothing insulation of 1.1 clo (0.155	mଶK/W) (see Nilsson’s thesis [27]). The uncertainty on this value 
is estimated to be ±	0.1	݈ܿ according to [28]. In [29], the driving activity is estimated to correspond 
to 1.4 met, while in ASHRAE standard [23], a broader range is suggested, from 1 met to 2 met. Since 
the physical activity in an electric vehicle is lower than the activity in a conventional one (no 
clutching, shifting gears, … etc.), the metabolism rate may be lower than 1.4. We assume therefore 
that driving corresponds to a metabolism rate of 1	݉݁ݐ	(58.2	W/mଶ) , with an uncertainty of +	0.2	݉݁ݐ. Finally, the air speed in the cabin is assumed to be equal to 1 m/s. 

Five initial SOC of the battery are tested, each one corresponds to a given amount of energy 
available for thermal comfort. 

In summary, the benchmark built from the abovementioned scenarios corresponds to four given 
trips, which are carried out in 210 weather conditions, with five different levels of available energy. 
The total number of test cases reaches 4200. A summary of simulation data is reported in Table 3. 
This large number of situations allows assessing the capacity of the proposed real-time algorithm in 
adjusting the thermal comfort according to the available energy. 

The real-time thermal comfort management algorithm has been applied to the system model for 
each of the 4200 scenarios. The results are presented hereafter. 

Table 3. Summary of test case data. 

Data Values 
External temperature ܶ௫௧,[°ܥ] ∈ ሼ25	; 26	; … ; 38ሽ 

External relative humidity ܴܪ௫௧, ∈ ሼ0.35		; 0.45	; 	0.55		; 0.65	; 	0.75ሽ 
Solar radiation ݍሶ௦௨,[W/mଶ] ∈ ሼ0	; 500	; 1000ሽ 
Average speed 

Extracted from INRETS driving cycles: A2, R2, UF1 & UL1 
Speed standard deviation 

Slope Variable slope profile 
Clothing insulation 1.1 clo 

Metabolism 1 met 
Air speed 1 m/s 
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.
qsun,0 = 500 W.

(a) Temperature, (b) Relative humidity and (c) Solar radiation.

The chosen scenario assumes a linear increase of the specific humidity over the whole trip, from
φext,0 to φext,0 + 0.05, where φext,0 is calculated according to the values of the initial relative humidity
RHext,0 and temperature Text,0. Figure 10 shows an example of the time evolution of the temperature,
relative humidity and solar power for a weather scenario given the following parameters: Text,0 =

37 ◦C, RHext,0 = 35% and
.
qsun,0 = 500 W.

Different values of the parameters Text,0, RHext,0, and
.
qsun,0 correspond to different weather

conditions. In order to explore a wide range of weather conditions, without focusing on the weather
profile itself, we have combined together the following values: Text,0

[
◦

C
]
∈ {25; 26; . . . ; 38}, RHext,0 ∈

{0.35; 0.45; 0.55; 0.65; 0.75},
.
qsun,0

[
W/m2

]
∈ {0; 500; 1000}. This results in a total number of 210 weather

scenarios. As the HVAC system efficiency depends on the vehicle speed, four traffic conditions,
representative of congested urban, fluid urban, road and highway environments are modeled, using
the UL1, UF1, R2 and A2 INRETS driving cycles (Figure 7). Each type of cycle is repeated several times
in order to construct a 1 h speed profiles, corresponding to the following distances: 4.25, 11.28, 46.3
and 105.92 km, respectively. In addition, a variable slope is considered.

The initial temperature and relative humidity in the cabin are assumed the same as outside
(vehicle parked in a shaded space). For all the tested scenarios, we consider that passengers are seated
and lightly dressed, (i.e., a shirt, underpants, trousers, socks and shoes), which corresponds to a
clothing insulation of 1.1 clo

(
0.155 m2K/W

)
(see Nilsson’s thesis [27]). The uncertainty on this value

is estimated to be ±0.1 clo according to [28]. In [29], the driving activity is estimated to correspond to
1.4 met, while in ASHRAE standard [23], a broader range is suggested, from 1 met to 2 met. Since the
physical activity in an electric vehicle is lower than the activity in a conventional one (no clutching,
shifting gears, . . . etc.), the metabolism rate may be lower than 1.4. We assume therefore that driving
corresponds to a metabolism rate of 1 met (58.2 W/m2), with an uncertainty of +0.2 met. Finally, the air
speed in the cabin is assumed to be equal to 1 m/s.

Five initial SOC of the battery are tested, each one corresponds to a given amount of energy
available for thermal comfort.

In summary, the benchmark built from the abovementioned scenarios corresponds to four given
trips, which are carried out in 210 weather conditions, with five different levels of available energy.
The total number of test cases reaches 4200. A summary of simulation data is reported in Table 3.
This large number of situations allows assessing the capacity of the proposed real-time algorithm in
adjusting the thermal comfort according to the available energy.
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Table 3. Summary of test case data.

Data Values

External temperature Text,0
[
◦

C
]
∈ {25; 26; . . . ; 38}

External relative humidity RHext,0 ∈ {0.35; 0.45; 0.55; 0.65; 0.75}
Solar radiation

.
qsun,0

[
W/m2

]
∈ {0; 500; 1000}

Average speed Extracted from INRETS driving cycles: A2, R2, UF1 & UL1
Speed standard deviation

Slope Variable slope profile
Clothing insulation 1.1 clo

Metabolism 1 met
Air speed 1 m/s

The real-time thermal comfort management algorithm has been applied to the system model for
each of the 4200 scenarios. The results are presented hereafter.

4.2. Ideal Comfort Results

This section reports some observations and analysis on three physical quantities, corresponding to
ideal comfort conditions: (i) the HVAC system consumption, E∗HVAC needed for ideal comfort, (ii) the
cooling energy E∗HVAC,cool consumed to reach the ideal comfort value PMV = 0 (cooling phase), (iii) the
ratio r∗HVAC between E∗HVAC and the total energy (sum of E∗HVAC and traction energy), (iv) the steady
state cabin temperature Tcab,steady. Figures 11 and 12 summarize obtained results related to E∗HVAC and
E∗HVAC,cool for a driver dressed lightly, in a suburban traffic (i.e., INRETS R2 driving cycle). The graphs
show the evolution of E∗HVAC and E∗HVAC,cool as a function of solar radiation for different values of Text,0

and RHext,0. We observe that both E∗HVAC and E∗HVAC,cool are increasing functions of the solar radiation,
outside temperature and relative humidity. For instance, for a typical hot summer day (i.e., Text,0 =

32 ◦C, RHext,0 = 55%,
.
qsun = 1000 W/m2), E∗HVAC and E∗HVAC,cool reach respectively 2 kWh and 0.3 kWh.
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Figure 13 summarizes the results of r∗HVAC for a moderate humid weather (i.e., RHext,0 = 55%).
The graphs show the values of r∗HVAC corresponding to four driving cycles: INRETS A2, R2, UF1 and
UL1, for different Text,0 and

.
qsun,0. The results illustrate the relative high value of r∗HVAC in congested

and fluid urban conditions. This is mainly due to the low traction energy at low speed. For instance,
for a typical hot summer day, in congested urban condition, this ratio reaches 84.5%. Results also show
that for the same driving cycle, this ratio increases with outside temperature and solar radiation.
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.
qsun,0 characterized by:

(a)
.
qsun,0 = 0 W, (b)

.
qsun,0 = 500 W, and (c)

.
qsun,0 = 1000 W.

It is worth underlining the capacity of the PMV model to account for the cabin wall temperature.
As an illustrative example, we have simulated an ideal thermal comfort (PMV = 0) for given external
temperature and humidity (Text = 37 ◦C, RHext = 35%) but with different solar radiation levels

.
qsun,0 (0,

500 and 1000 W/m2). Table 4 reports the corresponding cabin wall temperature Twall, cabin ambiant
temperature Tcab, and HVAC system energy consumption for the same trip. In the absence of solar
radiation (at night), Twall = 25.1 ◦C, and ideal thermal comfort is obtained for Tcab = 24.7 ◦C. In sunny
conditions, other parameters being equal, Twall = 37.3 ◦C, and ideal comfort requires a cooler ambiant
temperature, Tcab = 21.2 ◦C, and more energy.

Table 4. Cabin temperature, wall temperature and consumed energy for ideal comfort (PMV = 0) for
different solar radiations.

Psun [W/m2] Twall [◦C] Tcab [◦C] EHVAC [kWh]

0 25.1 24.7 1.94
500 31.3 23 2.26
1000 37.3 21.2 3.12

4.3. Qualitative Observations for a Specific Scenario

The present section summarizes some qualitative observations made for a particular scenario,
defined by Text,0 = 37 ◦C, RHext,0 = 35%,

.
qsun,0 = 500 W (Figure 10) and the R2 driving cycle. Similar

trends are observed for all other scenarios
Figure 14 shows the temporal evolution of the PMV, the temperature and the relative humidity in

the cabin, for three initial battery state–of-charge. The PMV profile has the desired shape: it drops at
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the beginning of the trip, and then keeps constant at a PMV level that depends on the available energy.
For an initial SOC of 29.2 %, the embedded energy is sufficient for almost reaching the ideal thermal
comfort after a 9-min cooling phase (PMV = 0.06).
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Figure 14. Cabin results for three initial SOCs: (a) PMV, (b) Temperature, (c) Relative humidity.

For an initial SOC of 28%, the cooling phase stops earlier, at a PMV of 1, which remains acceptable
for passengers. For an initial SOC of 26.6 %, the cooling phase is even shorter and the PMV is 1.8.
Figure 14b,c display the corresponding temperature and humidity in the cabin. It is worth noting that
both quantities evolve over time despite a constant value of PMV index, reflecting the fact that a given
PMV can be obtained with different combinations of temperature and humidity.

Figure 15 focuses on the particular scenario with an initial SOC of 28%. The red curves correspond
to the results obtained by TCMS, whereas the blue curves represent results obtained by dynamic
programing [21], which serve as a reference. Two of the four HVAC control variables are plotted versus
time, the compressor rotation speed (Figure 15a) and the air flow (Figure 15b). These commands
are set at their maximum value during the cooling phase, and then adjusted in order to maintain
the target PMV at the lowest energy cost. One notices that, despite the temporal variations of the
weather conditions, the control variables do not significantly change. Small oscillations reflect the
search process of the control vector, which consists in minimizing the air conditioning power at all
time. During the process, very close air conditioning powers are achieved with different combinations
of Ncomp,

.
mair, α and β. Since the algorithm selects the combination that minimizes the HVAC power,

the values of
.

mair can naturally differ from one step to the next. Figure 15c reports the HVAC system
power estimated during the cooling phase using the look-up table (black line), actually consumed
during the trip (red line). Both curves are very close to one another, indicating a good quality of the
power prediction using the look-up table G.
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4.4. Statistical Analysis over All the Scenarios

The present section reports the analysis of the results over a wide range of scenarios, necessary in
order to assess the proposed real-time approach. Two aspects ought to be evaluated through relevant
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performance metrics, the power estimation accuracy on one hand, and the efficiency of the thermal
comfort management on the other hand.

Firstly, the adequacy of using the static mapping G in a dynamic context is quantified by looking
at the absolute and relative differences between the HVAC energy estimated at the end of cooling
phase, denoted by Eestimated, and the energy actually consumed during the trip, denoted by Eactual.
The two metrics ∆Eabs and ∆Erel are defined by equations (23) and (24):

∆Eabs = Eactual − Eestimated (23)

∆Erel =
Eactual − Eestimated

Eactual
(24)

Figure 16a,b represent the histograms of ∆Eabs and ∆Erel calculated for each of the 1050 scenarios
run for the driving cycle INRETS R2. Table 5 reports the mean value (subscript mean) and the standard
deviation (subscript std) of ∆Eabs and ∆Erel for each of the four tested driving cycles. These metrics
show that the estimation, based on the look-up table G, is quite reasonable and can be trusted.Energies 2020, 13, x FOR PEER REVIEW 18 of 22 
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Table 5. Mean value and standard deviation of ∆Eabs and ∆Erel for the four tested driving cycles.

INRETS Cycles
∆Eabs,mean

[Wh]

∆Eabs, std

[Wh]

∆Erel,mean

[%]

∆Erel,std

[%]

A2 −14.3 48.8 −1.7 3.4
R2 −40.7 55.9 −3.8 4.2

UF1 −32.5 55.3 −3.2 4
UL1 −4.9 67.8 −1.6 4.5

The comparison between the results of our real-time strategy and the optimal ones given by
dynamic programming needs to account for two criteria, the total energy consumed by the HVAC
system and the root mean square of the PMV, respectively denoted by EHVAC and PMVrms. The different
solutions obtained for a given weather and traffic scenario are reported in the (EHVAC, PMVrms) plane.
Figure 17 shows the results for the scenario defined by Text,0 = 37 ◦C, RHext,0 = 35%,

.
qsun,0 = 500 W and

the R2 driving cycle. The black line corresponds to dynamic programming results and constitutes the
Pareto frontier of the (EHVAC, PMVrms) bicriteria optimization problem. The colored points correspond
to the proposed real-time control algorithm. As expected, they lie above the Pareto frontier, but at a small
distance, indicating that the proposed algorithm gives near-optimal results for this particular scenario.

We have chosen to quantify the performance of the proposed TCMS by the average vertical
distance between the colored points and the Pareto frontier. This distance is denoted by ∆PMVDP.
The smaller it is, the better the real-time algorithm performs.
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Figure 17. PMVrms versus HVAC consumed energy for DP (black line) and the real-time algorithm
(colored points)—Results for Text,0 = 37 ◦C, HRext,0 = 35%,

.
qsun,0 = 500 W and the R2 driving cycle.

Figure 18 summarizes the results for the R2 driving cycles. The curves show the evolution of
∆PMVDP, as a function of the external temperature, for different conditions of humidity and insolation.
The average value is 0.15, and we notice that this difference increases in warm and sunny conditions.
Similar results are obtained for the other driving cycles, but we prefer not to present them here since
they show same behavior.Energies 2020, 13, x FOR PEER REVIEW 19 of 22 
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The performance of the TCMS can also be assessed using the PPD index for a given PMV [22].
This criterion has the advantage of being less abstract than the PMV. In a similar way than ∆PMVDP,
we define the metrics ∆PPDDP as the average difference between the root mean square value of the
PPD obtained with the real-time algorithm, and the root mean square value of the PPD obtained by
dynamic programming for the same HVAC energy. Figure 19 shows the ∆PMVDP evolution as a
function of temperature, for given humidity and isolation conditions. The average ∆PPDDP value is
equal to 3%.
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5. Conclusions and Perspectives

This paper presented a real time management approach of thermal comfort in EVs for given traffic
and weather predictions provided by the navigation aid system. For this purpose, a realistic model of
the HVAC system and a representative thermal comfort index were used.

Two estimators were built. The first one estimates the traction power in given traffic conditions,
which we propose to model by the average value and standard deviation of the speed. This estimator
is used to calculate the traction energy necessary to complete the trip. Validation tests were run to
assess its accuracy, for different driving cycles and slopes. Results showed that the average estimation
error is about 3%.

The second estimator was needed to estimate the HVAC system power consumption for a given
thermal comfort level, in given meteorological and speed conditions. It was built off-line and used
on-line by the TCMS, the proposed real-time algorithm, in order to adapt the thermal comfort level
according to the energy available for the coming trip. In order to prove its validity, simulations were
conducted for different traffic and weather conditions scenarios, and different initial battery SOCs.
Results showed a good fit between the estimated and actual consumption.

The same scenarios were used to assess the near optimality of the overall approach, by comparing
it to an optimal control approach. Results showed that for the same consumed energy, the real-time
algorithm increased the discomfort by only 3%.

In its current version, the TCMS does not update the predictions during the trip, but further
development is in progress to include this important aspect of real-time control. For example, traffic
changes will affect the energy available for the HVAC system, and consequently require to periodically
updating the thermal comfort level target, according to the latest predictions. Other tests will be
conducted for changing driving predictions and several weather scenarios.

Other perspectives could include thermal comfort management for more than one occupant. Also,
two or three zone HVAC operation can be considered for better thermal comfort evaluation accuracy.
Finally, a fast cooling phase with two stages: opening windows and then operating the HVAC system,
may be an interesting solution to reduce further the consumption.
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Appendix A

Construction of the Look-Up Table G

This appendix explains the process for constructing the look-up table G that allows estimating
PHVAC

∗
(
PMVsteady, w

)
, the optimal power needed by the HVAC system in order to maintain the PMV

to a certain value PMVsteady, in given static external conditions w = [Text,φext, Psun, v]′. For this

given set of conditions w and a given command vector u =
[
Ncomp,

.
mair,α, β

]′
, equation (6) is used

to numerically calculate the steady state vector xsteady =
[
Thab,steady,φhab,steady, Twall,steady

]′
. From there,
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the corresponding PMVsteady and the power consumed by the HVAC system in these conditions are
calculated. This can be formalized by the two functions Φ and Ψ defined by equations (A1) and (A2):

PMVsteady = Φ(u, w) (A1)

PHVAC,steady = Ψ(u, w) (A2)

Our goal is to establish a relationship that allows determining PHVAC,steady as a function of
PMVsteady, for a given vector w. This requires to invert the relationship (A1) with respect to u, but
this application is surjective, a given value of PMV can be achieved by different combinations of
temperature, humidity and radiation temperature, and hence by different control vector u. In practice,
this multiplicity of combinations gives a degree of freedom to choose the command that provides a
given PMVsteady at the lowest energy cost.

In order to formalize this mathematically, let us denote by UPMV,w the set of control vectors able
to provide a given value of PMV for given external conditions w, as defined by (A3):

UPMV,w :=
{
u ∈ R4

∣∣∣Φ(u, w) = PMV
}

(A3)

The optimal control u∗ and the corresponding power PHVAC
∗ are given respectively by (A4)

and (A5):
u∗(PMV, w) = argmin

u∈UPMV,w

{
Ψ(u, w)

}
(A4)

PHVAC
∗(PMV, w) = min

u∈UPMV,w

{
Ψ(u, w)

}
= Ψ(u∗(PMV, w)) (A5)

The function defined by (A5) cannot be directly obtained. Hence a mapping (look-up table) is
built, based on numerical simulations performed in the following ranges of target PMV and external
conditions: 0 ≤ PMV ≤ 3 (in accordance with the ISO7730 norm [30]), 25 ◦C ≤ Text ≤ 40 ◦C, 30% ≤
RHext ≤ 80%, 0 W ≤

.
qsun ≤ 1000 W.
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