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Electro-optic (EO) effects relate the change of optical constants by low-frequency 
electric fields. Thanks to the advent of Density Functional Perturbation Theory (DFPT), 
the EO properties of bulk three-dimensional (3D) materials can now be calculated in 
an ab-initio way. However, the use of periodic boundary conditions in most Density 
Functional Theory codes imposes to simulate two-dimensional (2D) materials using 
slabs surrounded by a large layer of vacuum. The EO coefficients predicted from such 
calculations, if not rescaled properly, can severely deviate from the real EO properties 
of 2D materials. The present work discusses the issue and introduces the rescaling 
relationships allowing to recover the true EO properties. 
 
I. INTRODUCTION 

 
Electro-optic materials are key components of modern optical technologies. Electro-

optic modulators allow to modulate optical signal with a voltage input and are involved 
in present and future optical technologies such as optical resonators1,2, optoelectronic 
oscillators3, Mach-Zender modulators4 or one-photon sources for quantum 
cryptography5,6. Linear EO effects, sometimes referred to as Pockels effects, relate 
the change of optical index to the first-order change in low-frequency electric field (up 
to 100 MHz). It is typically characterized by a linear EO coefficient 𝑟!"# such that7 

 Δ𝛽!" =%𝑟!"#Δ𝐸#

$

#%&

 (1) 

where 𝛽 = 𝜀'& is the dielectric stiffness tensor (inverse of the dielectric permittivity 
tensor 𝜀), and Δ𝐸# is the change in low-frequency applied electric field in the cartesian 
direction 𝑘.  

A little more than a decade ago, the development of Density Functional Perturbation 
Theory (DFPT), an extension of Density Functional Theory (DFT) to linear and non-
linear response properties, deepened the field of EO materials8–10. Thanks to the 
better understanding of transverse optical phonon contributions to the EO response, 
new strategies using strain engineered ferroelectric thin films11 or superlattices12 were 
recently devised to improve EO responses. Such avenue has also been pursued 
experimentally in ferroelectrics13. Since dimensionality reduction is a heavy trend in 
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the electronics and photonics industry, it seems only logical that the next step in the 
search for efficient EO materials is to investigate 2D materials. Already, 2D materials 
such as graphene have proved promising to achieve EO modulators with large 
bandwidth14.  

2D functional materials have also attracted a lot of attention from the DFT modelling 
community. Beyond graphene, a large variety of 2D materials have been shown to 
exhibit functional properties such as thermoelectricity15, ferroelectricity and 
piezoelectricity16–19, photostriction20, in part thanks to the contribution of ab-initio 
methods. Most popular DFT software devoted to condensed matter systems, such as 
Abinit21, VASP22–24 or Quantum Espresso25,26, employ 3D periodic boundary 
conditions. These are not well tailored to the study of 2D materials. In fact, many DFT 
studies simulate a 2D material as a slab in a supercell (denoted as SC) containing a 
large amount of vacuum (see Fig. 1). 

The latter allows one to get good structural and electronic properties in standard 
DFT calculations, if enough vacuum is added to limit the interaction between the 
periodic images of the 2D layer introduced by periodic boundary conditions. It is, 
however, not so straightforward to then determine the response functions of the 2D 
materials. It is thus legitimate and timely to wonder if EO coefficients obtained from 
DFT calculations on slabs need to be corrected in order to correspond to those of true 
2D layers.  

The aim of this article is to prove that such correction is indeed required. We first 
indicate the renormalization to be done for several EO coefficients and for several 
point groups. We then numerically confirm such renormalization by conducting DFT 
calculations. We finally summarize and discuss the impacts of the present work. 
 
II. METHODS 
 

We employ here the ABINIT package27 with the generalized gradient approximation 
in the form of Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional28 with 
norm-conserving pseudopotentials29 to get an accurate ground state structure but 
used the local density approximation (LDA) to compute the electro-optic coefficients 
because such computation is only implemented within LDA in ABINIT9,21,27,30. We 
chose a 10×10×1 grid of special k-points and a plane-wave cutoff energy of 50 
hartrees. The geometries were fully optimized until the force acting on each atom is 
smaller than 1×10-6 hartree/bohr. 
 
III. RESULTS AND DISCUSSION 
 
A. Derivation of EO coefficients of 2D layers  
 
Let us first concentrate on the dielectric constant and span the plane inside which the 
2D material lies by the Cartesian axes 1 and 2. The vacuum and 2D materials are thus 
in series along the third Cartesian direction (see Fig. 1). Let us now apply an electric 
field along the out-of-plane direction, 𝐸(),$. Because the 2D material is electrically in 
series with the vacuum in the out-of-plane direction, it effectively feels an electric field  

 𝑡𝐸+,,$ = 𝑐𝐸(),$ − (𝑐 − 𝑡)𝐸-./001,$ (2) 
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where 𝐸-./001,$  is the electric field in the vacuum layer along the out-of-plane 
direction, 𝑐  and 𝑡  are the supercell lattice constant in the third direction and the 
effective thickness of the 2D layer respectively. If the 2D material is insulating, one 
can safely assume that charges are not free. The out-of-plane electrical displacement 
is then continuous, and the change in electrical displacement induced by the change 
in electric field is the same for the whole supercell, the vacuum layer, and the 2D 
material:  

 𝐷+,,$ = 𝐷-./001,$ = 𝐷(),$. (3) 
The resulting dielectric constant of the 2D material in the out-of-plane direction 𝜀+,,$ =
2,!",$
3%24!",$

 thus differs from that of the supercell 𝜀(),$ =
2,&',$
3%24&',$

. It is important to realize 
that the latter, rather than 𝜀+,,$, is the quantity returned by standard DFPT applied to 
the supercell depicted in Fig. 1. 
Similarly, along the in-plane directions, the 2D and vacuum layers are electrically in 
parallel. If follows that along the first and second directions, 

 𝐸+,,! = 𝐸(),! = 𝐸-./001,! (4) 
 𝑡𝐷+,,! = 𝑐𝐷(),! − (𝑐 − 𝑡)𝐷-./001,! (5) 

 
where i= 1 or 2. 

Since DFPT only returns the dielectric constant of the supercell (i.e. 2D layer plus 
vacuum), one needs to rescale it so as to return the real dielectric constant of the 2D 
layer. It turns out that the rescaling of the dielectric constant, which relates 𝜀+,,$ to 𝜀(),$ 
has already been worked out by Laturia et al.31. We recall the results below: 

 𝜀!",$ = 1 +
𝑐
𝑡
'𝜀%&,$ − 1) (6) 

 𝜀!",' = *1 +
𝑐
𝑡
'𝜀%&,'() − 1)+

()
 (7) 

where 𝑖 = 1 or 2. 
There is some degree of arbitrariness as to what the effective thickness of the 2D 

material is. An efficient solution is to consider the thickness based on the van der 
Waals bond length indicated in Ref.31. Specifically, we consider the van der Waals 
interaction and relax the n+1-layer structure, with the distance between the center of 
the top and bottom layer being used as the thickness of the n-layer.  

Since the dielectric constant, which is a second derivative of the energy, requires 
renormalization in the case of 2D materials simulated with periodic boundary 
conditions, it is only natural to expect that third derivatives of the energy such as the 
electro-optic constants will be renormalized as well. In the following, we derive the 
renormalization relations linking the electro-optic constant calculated using DFPT in a 
slab geometry (denoted with an “SC” superscript, for SuperCell) and the real electro-
optic constants of the 2D material.  

The EO tensor of the system comprising the vacuum and the 2D layer system is 
non vanishing only when the point group symmetry of the supercell pertains to the 
following list32: 1  (triclinic), 2 , 𝑚  (monoclinic), 𝑚𝑚2 , 222  (orthorhombic), 4 , 45 , 422 , 
4𝑚𝑚, 452𝑚 (tetragonal),	23, 453𝑚 (cubic), 3, 32, 3𝑚 (trigonal), 6, 6𝑚𝑚, 622, 65 , 65𝑚2 
(hexagonal). Below, we show the method and derive the rescaling laws for the 
orthorhombic, tetragonal, hexagonal, trigonal and cubic point groups, with 
representative materials examples. Similar methods can be used to derive the more 
complicated cases of triclinic and monoclinic point groups. 
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B. Orthorhombic point groups 
 

Point group 𝑚𝑚2 
We choose a setting in which the 2-fold polar axis is located along the first Cartesian 

direction. This is representative of many calculations of 2D materials with in-plane 
electrical polarization, such as SnS33. In this setting, the electro-optic tensor can be 
written using Voigt notation as33: 

 𝑟!"# = :
𝑟&& 𝑟&+ 𝑟&$
0 0 0
0 0 0

					
0 0 0
0 0 𝑟+5
0 𝑟$6 0

<. (8) 

Similarly, the dielectric stiffness tensor and dielectric permittivity tensor are diagonal: 

 𝜀 = :
𝜀&& 0 0
0 𝜀++ 0
0 0 𝜀$$

< (9) 

 𝛽 = :
𝛽&& 0 0
0 𝛽++ 0
0 0 𝛽$$

< (10) 

Let us now derive the rescaling law for the EO coefficients, i.e., derive the 
transformation to obtain the true EO constants of the 2D layer, 𝑟!"#+,, as a function of 
these calculated by DFPT in a supercell, 𝑟!"#(). We start by focusing on coefficient 𝑟&&&+, =
𝑟&&+, in Voigt’s notation7. The linear (Pockels) electro-optic coefficients are related to 
the variation of the dielectric stiffness tensor under an applied electric field: 

 𝑟!"# =
Δ𝛽"#
Δ𝐸!

 (11) 

In the case of 𝑟&& =
27((
24(

, we can take full advantage of the relation 𝛽. 𝜀 = 1, where 1 is 
the 3 × 3 identity matrix. After differentiation, it becomes  

 Δ𝛽!" = −𝛽!#Δ𝜀#8𝛽8" (12) 
Note that Eqs. (11) and (12) are, in fact, general equations which do not depend on 
the point group considered. In the special case of the 𝑚𝑚2 point group, we find that 

 Δ𝛽&& = −
Δ𝜀&&
𝜀&&+

 

 
(13) 

As a result, we can now write: 

 𝑟&&+9 =
Δ𝛽&&+,

Δ𝐸&+,
= −

1

𝜀&&+,
+
Δ𝜀&&+,

Δ𝐸&+,
 (14) 

Using Laturia’s derivations31, which we recalled in Eq. (6), and the fact that Δ𝐸&+, =
Δ𝐸&() (see Eq. (4)), we find that  

 r&&+9 =
Δ𝛽&&+,

Δ𝐸&+,
= −

1

𝜀&&+,
+
𝑐
𝑡 	
Δ𝜀&&()

Δ𝐸&()
 (15) 

Finally, noting that r&&:; = − 27((&'

24(&'
= − &

<((
&'!

2<((&'

24(&'
, we obtain the final rescaling law: 

 𝑟&&+, =
𝑐
𝑡 ?
𝜀&&()

𝜀&&+,
@
+

𝑟&&() (16) 

We have expressed the renormalization procedure in terms of the SC and 2D layer 
dielectric constants because of its elegance. One must bear in mind that the two 
quantities are linked through Eq. (6), and that such latter equation then allows to obtain 
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the 2D dielectric constant from the SC one – with this latter being the one returned by 
standard DFPT applied to the supercell. 
Using a similar procedure, we find that  

 𝑟&++, =
𝑐
𝑡 ?
𝜀++()

𝜀+++,
@
+

𝑟&+() (17) 

The case of the 𝑟$&+, coefficient is perhaps the simplest. Equation (7) can be casted in 
terms of the dielectric impermeability tensor, 

 𝛽$$+, = 1 +
𝑐
𝑡
(𝛽$$() − 1) (18) 

From the latter, and Eq. (4), we easily derive that 
 𝑟&$+, =

𝑐
𝑡 𝑟&$

() (19) 
Let us now derive the 𝑟$6 renormalization relation. From Eqs. (10) and (12), we have 

that 

 Δ𝛽$& = −
Δ𝜀$&
𝜀&&𝜀$$

 (20) 

In particular, Δ𝜀$&+, =
2,$!"

24(!"
= 2,$&'

24(&'
= Δ𝜀$&(), which results in Δ𝛽$&+, =

<((&'<$$&'

<((!"<$$!"
Δ𝛽$&(). Hence, 

one can write that 

 𝑟$6+9 =
𝜀&&()𝜀$$()

𝜀&&+,𝜀$$+,
Δ𝛽$&()

Δ𝐸$+,
=
𝜀&&()𝜀$$()

𝜀&&+,𝜀$$+,
Δ𝐸$()

Δ𝐸$+,
𝑟$6() (21) 

Now, 24$&'

24$!"
= 24$&'

2,$!"
2,$!"

24$!"
= 24$&'

2,$&'
2,$!"

24$!"
= <$$!"

<$$&'
 since 𝐷$+, = 𝐷$()  according to Eq. (3). 

Eventually, we obtain the rescaling relation1 

 𝑟$6+9 =
𝜀&&()

𝜀&&+,
𝑟$6() (22) 

Following a similar procedure, we find that the last rescaling relation is  

 𝑟+5+9 =
𝑐
𝑡
𝜀&&()𝜀++()

𝜀&&+,𝜀+++,
𝑟+5() (23) 

 
 Point group 222 

The EO tensor in the 222 point group is of the form32 

 𝑟!"# = :
0 0 0
0 0 0
0 0 0

					
𝑟&= 0 0
0 𝑟+6 0
0 0 𝑟$5

<. (24) 

with the dielectric permittivity and impermeability tensors being  

 𝜀 = :
𝜀&& 0 0
0 𝜀++ 0
0 0 𝜀$$

< (25) 

 𝛽 = :
𝛽&& 0 0
0 𝛽++ 0
0 0 𝛽$$

< (26) 

From the previous derivations, we easily obtain that 

 
1 The present relation is at variance with the one derived in the Supplementary Material of Ref.33, by a factor )!!

"#

)!!$%
 

because the derivative *+!
"#

*+!$%
 was incorrect. The coefficient 𝑟,-./ is nonetheless very small in both cases for some 

systems (see Ref.33 and DFT results in the present article). The present formula should be used. 
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 𝑟&=+9 =
𝜀++()𝜀$$()

𝜀+++,𝜀$$+,
𝑟&=() (27) 

 𝑟+6+9 =
𝜀&&()𝜀$$()

𝜀&&+,𝜀$$+,
𝑟+6() (28) 

 𝑟$5+9 =
𝑐
𝑡
𝜀$$+,

𝜀$$()
𝜀&&()𝜀++()

𝜀&&+,𝜀+++,
𝑟$5() (29) 

C. Tetragonal point groups 
 
 Point group 4𝑚𝑚 

We consider that the high-symmetry 4-fold axis lies along the third, out-of-plane, 
Cartesian direction. In that case, the EO tensor writes 

 𝑟!"# = :
0 0 0
0 0 0
𝑟$& 𝑟$& 𝑟$$

					
0 𝑟+= 0
𝑟+= 0 0
0 0 0

<, (30) 

while the dielectric tensors 𝛽 and 𝜀 are 

 𝜀 = :
𝜀&& 0 0
0 𝜀&& 0
0 0 𝜀$$

< (31) 

 𝛽 = :
𝛽&& 0 0
0 𝛽&& 0
0 0 𝛽$$

< (32) 

We obtain the following rescaling laws: 

 𝑟$&+, =
𝑐
𝑡
𝜀$$+,

𝜀$$()
?
𝜀&&()

𝜀&&+,
@
+

𝑟$&() (33) 

From Eq. (18), we obtain 

 𝑟$$+, =
𝑐
𝑡
𝜀$$+,

𝜀$$()
𝑟$$() (34) 

 
At last, 

 𝑟+=+, =
𝜀++()𝜀$$()

𝜀+++,𝜀$$+,
𝑟+=() (35) 

 Point group 452𝑚 
We assume that the improper rotation 45 is along the third Cartesian direction. The 

EO tensor has the symmetry32  

 𝑟!"# = :
0 0 0
0 0 0
0 0 0

					
𝑟&= 0 0
0 𝑟&= 0
0 0 𝑟$5

<, (36) 

with dielectric tensors like those in Eqs. (31) and (32). The rescaling relations are now 

 𝑟&=+9 =
𝜀&&()𝜀$$()

𝜀&&+,𝜀$$+,
𝑟&=() (37) 

 𝑟$5+9 =
𝑐
𝑡
𝜀$$+,

𝜀$$()
𝜀&&()𝜀++()

𝜀&&+,𝜀+++,
𝑟$5() (38) 

   
 Point group 422 

The 4-fold axis is chosen to be directed along the third Cartesian axis of the 
supercell. The EO tensor has the symmetry32  
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 𝑟!"# = :
0 0 0
0 0 0
0 0 0

					
𝑟&= 0 0
0 −𝑟&= 0
0 0 0

<, (39) 

The rescaling law for the EO coefficient is 

 𝑟&=+9 =
𝜀&&()𝜀$$()

𝜀&&+,𝜀$$+,
𝑟&=() (40) 

 Point group 45 
The 4-fold axis is also taken to be directed along the third Cartesian axis of the 

supercell. The EO tensor has the symmetry32  

 𝑟!"# = :
0 0 0
0 0 0
𝑟$& −𝑟$& 0

					
𝑟&= −𝑟+= 0
𝑟+= 𝑟&= 0
0 0 𝑟$5

<, (41) 

The renormalization of the 2D EO coefficients from the SC calculated EO constants 
is 

 
𝑟$&+, =

𝑐
𝑡
𝜀$$+,

𝜀$$()
?
𝜀&&()

𝜀&&+,
@
+

𝑟$&() 
(42) 

 
𝑟&=+9 =

𝜀&&()𝜀$$()

𝜀&&+,𝜀$$+,
𝑟&=() 

(43) 

 𝑟+=+9 =
𝜀++()𝜀$$()

𝜀+++,𝜀$$+,
𝑟+=() (44) 

 𝑟$5+9 =
𝑐
𝑡
𝜀$$+,

𝜀$$()
𝜀&&()𝜀++()

𝜀&&+,𝜀+++,
𝑟$5() (45) 

   
Point group 4 

The 4-fold axis continues to be directed along the third Cartesian axis of the 
supercell. The EO tensor has the symmetry32  

 𝑟!"# = :
0 0 0
0 0 0
𝑟$& 𝑟$& 𝑟$$

					
𝑟&= 𝑟+= 0
𝑟+= −𝑟&= 0
0 0 0

<, (46) 

The renormalization of the EO constants is operated by the following equations: 
 

𝑟$&+, =
𝑐
𝑡
𝜀$$+,

𝜀$$()
?
𝜀&&()

𝜀&&+,
@
+

𝑟$&() 
(47) 

 
𝑟&=+9 =

𝜀&&()𝜀$$()

𝜀&&+,𝜀$$+,
𝑟&=() 

(48) 

 𝑟+=+9 =
𝜀++()𝜀$$()

𝜀+++,𝜀$$+,
𝑟+=() (49) 

 𝑟$$+9 =
𝑐
𝑡
𝜀$$+,

𝜀$$()
𝑟$$() (50) 

D. Hexagonal point groups 
 
 Point group 65𝑚2 

In that case, in the standard orientation7 (for which the sixfold axis is along the third 
Cartesian direction), the electro-optic tensor symmetry is  

 𝑟!"# = :
0 0 0

−𝑟++ 𝑟++ 0
0 0 0

					
0 0 −𝑟++
0 0 0
0 0 0

<, (51) 
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One can obtain the “real” electro-optic coefficient of the 2D layer from those calculated 
from standard DFPT, as implemented in a 3D periodic software such as Abinit, by 
applying the following rescaling: 

 𝑟+++, =
Δ𝛽+++,

Δ𝐸++,
=
𝑐
𝑡 ?
𝜀++()

𝜀+++,
@
+

𝑟++() (52) 

 
Point group 65 

We again consider the case in which the high-symmetry axis points along the third 
Cartesian direction of our supercell. In the case of the 65 point group, there are two 
independent linear electro-optic constants as the tensor has the following expression: 

 𝑟!"# = :
𝑟&& −𝑟&& 0
−𝑟++ 𝑟++ 0
0 0 0

					
0 0 −𝑟++
0 0 −𝑟&&
0 0 0

<, (53) 

Using the previous method, we find the following rescaling equations for the electro-
optic constants of the 2D layer: 

 𝑟&&+, =
𝑐
𝑡 ?
𝜀&&()

𝜀&&+,
@
+

𝑟&&() (54) 

 
𝑟+++, =

𝑐
𝑡 ?
𝜀++()

𝜀+++,
@
+

𝑟++() 
(55) 

 Point group 622 
The 622 point group has only one independent electro-optic constant, as  

 𝑟!"# = :
0 0 0
0 0 0
0 0 0

					
𝑟&= 0 0
0 −𝑟&= 0
0 0 0

<. (56) 

The rescaling of the electro-optic constants to obtain the “real” EO constant of the 2D 
layer is 

 𝑟&=+, =
𝜀&&()𝜀$$()

𝜀&&+,𝜀$$+,
𝑟&=() (57) 

 
 Point group 6𝑚𝑚 

Directing the 6-fold symmetry axis along the third Cartesian direction of our supercell 
too, the EO tensor has the form: 

 𝑟!"# = :
0 0 0
0 0 0
𝑟$& 𝑟$& 𝑟$$

					
0 𝑟+= 0
𝑟+= 0 0
0 0 0

<. (58) 

Using the methods described above in the case of the mm2 point group, the rescaling 
laws are the following: 
 

 𝑟$$+, =
𝑐
𝑡
𝜀$$+,

𝜀$$()
𝑟$$() (59) 

 𝑟$&+, =
𝑐
𝑡
𝜀$$+,

𝜀$$()
?
𝜀&&()

𝜀&&+,
@
+

𝑟$&() (60) 

 
𝑟+=+9 =

𝜀++()𝜀$$()

𝜀+++,𝜀$$+,
𝑟+=() 

(61) 

 Point group 6 
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The 6-fold axis is assumed to lie in the third Cartesian direction of our supercell, as 
well. The EO tensor has the following symmetry: 

 𝑟!"# = :
0 0 0
0 0 0
𝑟$& 𝑟$& 𝑟$$

					
𝑟&= 𝑟+= 0
𝑟+= −𝑟&= 0
0 0 0

<. (62) 

The renormalization to be carried out to obtain the 2D EO coefficient from those 
calculated by DFPT in a supercell is: 

 𝑟$&+, =
𝑐
𝑡
𝜀$$+,

𝜀$$()
?
𝜀&&()

𝜀&&+,
@
+

𝑟$&() (63) 

 
𝑟$$+, =

𝑐
𝑡
𝜀$$+,

𝜀$$()
𝑟$$() 

(64) 

 
𝑟&=+9 =

𝜀&&()𝜀$$()

𝜀&&+,𝜀$$+,
𝑟&=() 

(65) 

 
𝑟+=+9 =

𝜀++()𝜀$$()

𝜀+++,𝜀$$+,
𝑟+=() 

(66) 

E. Trigonal point groups 
 

For all trigonal point groups, we assume that the 3-fold rotation axis is directed along 
the third Cartesian direction. 
 
 Point group 3𝑚 
The EO tensor symmetry is 

 𝑟!"# = :
0 0 0

−𝑟++ 𝑟++ 0
𝑟$& 𝑟$& 𝑟$$

					
0 𝑟+= −𝑟++
𝑟+= 0 0
0 0 0

<. (67) 

The renormalization to apply to deduce the 2D EO coefficients from those calculated 
by DFPT in a supercell are 

 𝑟$&+, =
𝑐
𝑡
𝜀$$+,

𝜀$$()
?
𝜀&&()

𝜀&&+,
@
+

𝑟$&() (68) 

 
𝑟$$+, =

𝑐
𝑡
𝜀$$+,

𝜀$$()
𝑟$$() 

(69) 

 
𝑟+++9 =

𝑐
𝑡 ?
𝜀++()

𝜀+++,
@
+

𝑟++() 
(70) 

 
𝑟+=+9 =

𝜀++()𝜀$$()

𝜀+++,𝜀$$+,
𝑟+=() 

(71) 

Point group 32 
The EO tensor symmetry is 

 𝑟!"# = :
𝑟&& −𝑟&& 0
0 0 0
0 0 0

					
𝑟&= 0 0
0 −𝑟&= −𝑟&&
0 0 0

<. (72) 

The renormalization is performed through the following relations: 

 𝑟&&+, =
𝑐
𝑡 ?
𝜀&&()

𝜀&&+,
@
+

𝑟&&() (73) 

 
𝑟&=+9 =

𝜀&&()𝜀$$()

𝜀&&+,𝜀$$+,
𝑟&=() 

(74) 
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Point group 3 
The EO tensor symmetry is 

 𝑟!"# = :
𝑟&& −𝑟&& 0
−𝑟++ 𝑟++ 0
𝑟$& 𝑟$& 𝑟$$

					
𝑟&= 𝑟+= −𝑟++
𝑟+= −𝑟&= −𝑟&&
0 0 0

<. (75) 

The renormalization relationships can be written as: 

𝑟&&+9 =
𝑐
𝑡 ?
𝜀&&()

𝜀&&+,
@
+

𝑟&&() 
(76) 

𝑟$&+, =
𝑐
𝑡
𝜀$$+,

𝜀$$()
?
𝜀&&()

𝜀&&+,
@
+

𝑟$&() (77) 

𝑟$$+, =
𝑐
𝑡
𝜀$$+,

𝜀$$()
𝑟$$() 

(78) 

𝑟+++9 =
𝑐
𝑡 ?
𝜀++()

𝜀+++,
@
+

𝑟++() 
(79) 

𝑟&=+9 =
𝜀&&()𝜀$$()

𝜀&&+,𝜀$$+,
𝑟&=() 

(80) 

𝑟+=+9 =
𝜀++()𝜀$$()

𝜀+++,𝜀$$+,
𝑟+=() 

(81) 

F. Cubic point groups 
 

Note that cubic point groups for the supercell can only arise in very specific cases. 
As one may want to vary the vacuum thickness to check proper convergence of the 
EO coefficients, it is unlikely that the supercell will be cubic in most cases. 
 
 Point group 453𝑚 and 23 

The EO tensor symmetry is 

 𝑟!"# = :
0 0 0
0 0 0
0 0 0

					
𝑟&= 0 0
0 𝑟&= 0
0 0 𝑟&=

<. (82) 

The rescaling relation to obtain the 2D EO coefficients is 
 

𝑟&=+9 =
𝜀&&()𝜀$$()

𝜀&&+,𝜀$$+,
𝑟&=() 

(83) 

   
 
G. DFT calculations 

 
Let us now conduct first-principles calculations to confirm the validity of these 

formula. Here, we chose to investigate the 2D ferroelectric SnSe monolayer. Figure 2 
shows its crystal structure, which has the 𝑃𝑚𝑛2& space group, and thus the 𝑚𝑚2 point 
group. The spontaneous polarization in monolayer SnSe is along the in-plane x 
direction. Different vacuum regions, with the corresponding thickness of the whole 
supercell being denoted by 𝑐 as consistent with Fig. 1 (with 𝑐 being here at least 15 Å) 
along the out-of-plane z direction, are introduced in a slab structure to avoid the 
interaction between the neighboring periodic images. 𝑡  represents the effective 
thickness of the SnSe monolayer, and is practically taken to be equal to 5.7 Å here.  
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To verify the validity of Eqs. (16), (17), (19), (22) and (23) within the 𝑚𝑚2 point 
group, we first calculate the so-called clamped EO coefficients in monolayer SnSe in 
its 𝑃𝑚𝑛2& ground state for the aforementioned slab geometries using the technique of 
Ref9. Note that clamped EO coefficients correspond to strain-free mechanical 
boundary conditions, and include electronic and ionic contributions but neglect any 
modification of the unit cell shape. Figure 3(a) shows the results, 
(𝑟&&
>,() , 𝑟&+

>,() , 𝑟&$
>,() , 𝑟$6

>,() 	and	𝑟+5
>,()), directly arising from this DFPT technique for different 

𝑐  thickness along the out-of-plane z direction. Figure 3(b) then displays the 
corresponding clamped EO coefficients of the 2D material obtained from the use of 
Eqs. (16), (17), (19), (22) and (23), as well as, Eqs. (6) and (7) to extract the 2D 
dielectric tensor elements from the “SC” ones directly obtained by DFT for the slabs. 
One can clearly see that the EO coefficients of the supercell strongly depend on the c 
supercell lattice constant along the out-of-plane direction. In contrast, the renormalized 
EO coefficients in the 2D material of Fig. 3(b) no longer depend on 𝑐 when using the 
rescaling equations for the EO constants of the 2D layer, which therefore attests to the 
validity of the formula derived above for EO coefficient in 2D materials. One can also 
realize that the magnitude of these coefficients is really different between the ones 
associated with the slab and those corresponding to the 2D material. For instance, the 
clamped EO coefficients of the supercell 	𝑟&$

>,() and  𝑟+5
>,() are  −1.5 and 865.4 pm/V, 

respectively, when 𝑐 is equal to about 70 Å. On the other hand, the renormalized EO 
coefficients of the 2D material  𝑟&$

>,+, and 𝑟+5
>,+, are, in magnitude, larger by a factor of 

12 and smaller by a factor 6, respectively, since they are equal to about −18.0 and 
142.2 pm/V, respectively, for different 𝑐  thickness. Note that the EO coefficients 
originate from different electronic and ionic contributions (corresponding to various 
phonon modes), which results in different sign and magnitude of EO coefficients. 

Moreover, Figs. 3(c) and 3(d) show the clamped EO coefficients 𝑟&&
>,() and  𝑟&+

>,() for 
the supercell and 2D material, as a function of electric field for two different 𝑐 thickness, 
respectively. We found that the EO coefficients of the 2D material versus electric field 
are also independent on the 𝑐 thickness of the supercell, which once again attests to 
the validity of the formula derived for EO coefficient in 2D materials. 

Let us now present some EO results for monolayer BN. The monolayer BN has a 
𝑃65𝑚2  space group (65𝑚2  point group) and the EO tensor has one independent 
element, 𝑟++  [see Eq. (51)]. Figure 4(a) shows that the in-plane and out-of-plane 
elements of the electronic dielectric tensor strongly depends on the 𝑐 thickness of the 
supercell in monolayer BN. In contrast, Fig. 4(b) demonstrates that the renormalized 
dielectric constants are no longer dependent on the 𝑐 thickness when using Eqs. (6) 
and (7) and choosing an effective monolayer thickness 𝑡 = 3.4 Å [see the inset of Fig. 
4(b)]. Note that the thickness in monolayer BN is very close to the previous theoretical 
value of 3.17 Å31. We also checked the EO coefficients for the supercell and 2D 
material as a function of the 𝑐 thickness of the supercell in monolayer BN. Figure 4(c) 
shows that the clamped EO coefficient 𝑟++

>,() obviously depends on the 𝑐 thickness. In 
sharp contrast, the EO coefficient of the 2D material of Fig. 4(d) no longer relies on 
the 𝑐 thickness when using the formula of Eq. (52), implying once again the validity of 
the derived EO coefficient formula in 2D materials.  

Note that our method is also valid for unclamped EO coefficients. More precisely, 
the unclamped EO coefficients need to add contributions associated with elasto-optic 
and piezoelectric coefficients from the clamped ones. The piezoelectric strain 
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coefficients are independent on the 𝑐  thickness, while the elasto-optic coefficients 
need to be rescaled in the same way as the EO coefficients. 
 
IV. SUMMARY 
 

In summary, DFPT calculations employing periodic boundary conditions introduce 
spurious effects when dealing with 2D materials. Beyond the obvious periodic image 
interaction which should be limited as much as possible, the presence of vacuum in a 
supercell geometry artificially modifies the dielectric and electro-optic response 
calculated. The present paper shows a method to renormalize the electro-optic 
coefficients obtained by DFPT with periodic boundary conditions. The renormalization 
relationships to recover the “true” 2D electro-optic coefficients are derived for the 
appropriate cubic, tetragonal, orthorhombic, hexagonal and trigonal point groups. 
These renormalizations are further numerically confirmed by conducting DFT 
calculations. It is also important to realize that these renormalizations are general to 
any method that attempts at deriving the EO coefficients from a slab calculation. In 
other words, they are not only restricted to DFPT. 
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Fig. 1 Typical slab calculation of a 2D material in DFT codes using periodic boundary 
conditions. The supercell 𝑐  lattice constant is much larger than the effective thickness 
of the 2D material. 
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Fig. 2 The top and side views of crystal structures in monolayer SnSe. 
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Fig. 3 Clamped EO coefficients for (a) the supercell and (b) 2D material versus 
different supercell lattice constant 𝑐 along the out-of-plane z direction in monolayer 
SnSe. EO coefficients for (c) the supercell and (d) 2D material as a function of the 
electric field for two different 𝑐 thickness of the supercell in monolayer SnSe. 
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Fig. 4 Electronic dielectric tensor for (a) the supercell and (b) 2D material as a function 
of the 𝑐  thickness of the supercell in monolayer BN.  EO coefficients for (c) the 
supercell and (d) 2D material versus the 𝑐 thickness of the supercell in monolayer BN. 
The inset of (b) shows the distance between the center of the top and bottom planes 
in the bilayer BN, which corresponds to the thickness 𝑡 of the monolayer BN. 
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