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Abstract. Reproducibility and reusability in computer science experi-
ments become a requirement for research works. Reproducibility ensures
that results can be confirmed by using the same dataset and software
of previous papers. Reusability helps other researchers to build new ap-
proaches with distributed software artifacts. For researchers in the field
of security of mobile platforms, ensuring reproducibility and reusability
is difficult to implement. In particular for reusability, datasets of Android
applications may contain recent applications that past analysis software
cannot process. As a consequence, past software produced by researchers
may be difficult to reuse, which endangers the reproducibility of research.
This paper intends to explore the reusability of past software dedicated to
static analysis of Android applications. We pursue the community effort
that identified publications between 2011 and 2017 that perform static
analysis of mobile applications and we propose a method for evaluating
the reusability of the associated tools. We extensively evaluate the suc-
cess or failure of these tools on a dataset containing Android applications
that can have up to six years of distance from the original publication.
We also measure the influence of some important characteristics of the
application such as being a goodware or a malware or the application
size. Our results show that 54.5% of the evaluated tools are no longer
usable and that the size of the bytecode and the min SDK version have
the greatest influence on the reusability of tested tools.

1 Introduction

Android is the most used mobile operating system since 2014, and since 2017, it
even surpasses Windows all platforms combined1.The public adoption of Android
is confirmed by application developers, with 1.3 millions apps available in the
Google Play Store in 2014, and 3.5 millions apps available in 20172. Its popularity
makes Android a prime target for malware developers. Consequently, Android
has also been an important subject for security research. In the past fifteen
years, the research community released many tools to detect or analyze malicious
behaviors in applications. Two main approaches can be distinguished: static and

1 https://gs.statcounter.com/os-market-share#monthly-200901-202304
2 https://www.statista.com/statistics/266210

https://gs.statcounter.com/os-market-share#monthly-200901-202304
https://www.statista.com/statistics/266210
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dynamic analysis [18]. Dynamic analysis requires to run the application in a
controlled environment to observe runtime values and/or interactions with the
operating system. For example, an Android emulator with a patched kernel can
capture these interactions but the modifications to apply are not a trivial task.
As a consequence, a lot of efforts have been put in static approaches, which is
the focus of this paper.

The usual goal of a static analysis is to compute data flows to detect potential
information leaks [33, 31, 5, 15, 12, 23, 16] by analyzing the bytecode of an
Android application. The associated developed tools should support the Dalvik
bytecode format, the multiplicity of entry points, the event driven architecture
of Android applications, the interleaving of native code and bytecode, possibly
loaded dynamically, the use of reflection, to name a few. All these obstacles
threaten the research efforts. When using a more recent version of Android or a
recent set of applications, the results previously obtained may become outdated
and the developed tools may not work correctly anymore.

In this paper, we study the reusability of open source static analysis tools
that appeared between 2011 and 2017, on a recent Android dataset. The scope
of our study is not to quantify if the output results are accurate for ensuring
reproducibility, because all the studied static analysis tools have different goals in
the end. On the contrary, we take as hypothesis that the provided tools compute
the intended result but may crash or fail to compute a result due to the evolution
of the internals of an Android application, raising unexpected bugs during an
analysis. This paper intends to show that sharing the software artifacts of a paper
may not be sufficient to ensure that the provided software would be reusable.

Thus, our contributions are the following. We carefully retrieved static analy-
sis tools for Android applications that were selected by Li et al. [18] between 2011
and 2017. We contacted the authors, whenever possible, for selecting the best
candidate versions and to confirm the good usage of the tools. We rebuild the
tools in their original environment and we plan to share our Docker images with
this paper. We evaluated the reusability of the tools by measuring the number of
successful analysis of applications taken in a custom dataset that contains more
recent applications (62 525 in total). The observation of the success or failure of
these analysis enables us to answer the following research questions:

RQ1: What Android static analysis tools that are more than 5 years old are
still available and can be reused without crashing with a reasonable effort?

RQ2: How the reusability of tools evolved over time, especially when analyzing
applications that are more than 5 years far from the publication of the tool?

RQ3: Does the reusability of tools change when analyzing goodware compared
to malware?

The paper is structured as follows. Section 2 presents a summary of previous
works dedicated to Android static analysis tools. Section 3 presents the method-
ology employed to build our evaluation process and Section 4 gives the associated
experimental results. Section 5 discusses the limitations of this work and gives
some takeaways for future contributions. Section 6 concludes the paper.
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2 Related Work

We review in this section the past existing datasets provided by the community
and the papers related to static analysis tools reusability.

2.1 Application Datasets

Computing if an application contains a possible information flow is an example
of a static analysis goal. Some datasets have been built especially for evalu-
ating tools that are computing information flows inside Android applications.
One of the first well known dataset is DroidBench, that was released with the
tool Flowdroid [2]. Later, the dataset ICC-Bench was introduced with the tool
Amandroid [33] to complement DroidBench by introducing applications using
Inter-Component data flows. These datasets contain carefully crafted applica-
tions containing flows that the tools should be able to detect. These hand-crafted
applications can also be used for testing purposes or to detect any regression
when the software code evolves. Contrary to real world applications, the behav-
ior of these hand-crafted applications is known in advance, thus providing the
ground truth that the tools try to compute. However, these datasets are not
representative of real-world applications [26] and the obtained results can be
misleading.

Contrary to DroidBench and ICC-Bench, some approaches use real-world
applications. Bosu et al. [5] use DIALDroid to perform a threat analysis of
Inter-Application communication and published DIALDroid-Bench, an associ-
ated dataset. Similarly, Luo et al. released TaintBench [22] a real-world dataset
and the associated recommendations to build such a dataset. These datasets
confirmed that some tools such as Amandroid [33] and Flowdroid [2] are less ef-
ficient on real-world applications. These datasets are useful for carefully spotting
missing taint flows, but contain only a few dozen of applications.

Pauck et al. [25] used those three datasets to compare Amandroid [33], DIAL-
Droid [5], DidFail [15], DroidSafe [12], FlowDroid [2] and IccTA [16] – all these
tools will be also compared in this paper. To perform their comparison, they
introduced the AQL (Android App Analysis Query Language) format. AQL can
be used as a common language to describe the computed taint flow as well
as the expected result for the datasets. It is interesting to notice that all the
tested tools timed out at least once on real-world applications, and that Aman-
droid [33], DidFail [15], DroidSafe [12], IccTA [16] and ApkCombiner [17] (a tool
used to combine applications) all failed to run on applications built for Android
API 26. These results suggest that a more thorough study of the link between
application characteristics (e.g. date, size) should be conducted. Luo et al. [22]
used the framework introduced by Pauck et al. to compare Amandroid [33] and
Flowdroid [2] on DroidBench and their own dataset TaintBench, composed of
real-world android malware. They found out that those tools have a low recall on
real-world malware, and are thus over adapted to micro-datasets. Unfortunately,
because AQL is only focused on taint flows, we cannot use it to evaluate tools
performing more generic analysis.
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2.2 Static Analysis Tools Reusability

Several papers have reviewed Android analysis tools produced by researchers.
Li et al. [18] published a systematic literature review for Android static anal-
ysis before May 2015. They analyzed 92 publications and classified them by
goal, method used to solve the problem and underlying technical solution for
handling the bytecode when performing the static analysis. In particular, they
listed 27 approaches with an open-source implementation available. Neverthe-
less, experiments to evaluate the reusability of the pointed out software were
not performed. We believe that the effort of reviewing the literature for making
a comprehensive overview of available approaches should be pushed further: an
existing published approach with a software that cannot be used for technical
reasons endanger both the reproducibility and reusability of research.

A first work about quantifying the reusability of static analysis tools was
proposed by Reaves et al. [28]. Seven Android analysis tools (Amandroid [33],
AppAudit [35], DroidSafe [12], Epicc [24], FlowDroid [2], MalloDroid [9] and
TaintDroid [8]) were selected to check if they were still readily usable. For each
tool, both the usability and results of the tool were evaluated by asking auditors
to install and use it on DroidBench and 16 real world applications. The auditors
reported that most of the tools require a significant amount of time to setup,
often due to dependencies issues and operating system incompatibilities. Reaves
et al. propose to solve these issues by distributing a Virtual Machine with a
functional build of the tool in addition to the source code. Regrettably, these
Virtual Machines were not made available, preventing future researchers to take
advantage of the work done by the auditors. Reaves et al. also report that real
world applications are more challenging to analyze, with tools having lower re-
sults, taking more time and memory to run, sometimes to the point of not being
able to run the analysis. We will confirm and expand this result in this paper
with a larger dataset than only 16 real-world applications.

3 Methodology

3.1 Collecting Tools

We collected the static analysis tools from [18], plus one additional paper en-
countered during our review of the state-of-the-art (DidFail [15]). They are listed
in Table 1, with the original release date and associated paper. We intention-
ally limited the collected tools to the ones selected by Li et al. [18] for several
reasons. First, not using recent tools enables to have a gap of at least 5 years be-
tween the publication and the more recent APK files, which enables to measure
the reusability of previous contributions with a reasonable gap of time. Second,
collecting new tools would require to describe these tools in depth, similarly to
what have been performed by Li et al. [18], which is not the primary goal of this
paper. Additionally, selection criteria such as the publication venue or number
of citations would be necessary to select a subset of tools, which would require
an additional methodology. These possible contributions are left for future work.
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Table 1. Considered tools [18]: availability and usage reliability

Availability Repo Decision Comments
Tool Bin Src Doc type

A3E [3] (2013) − • • github × Hybrid tool (static/dynamic)
A5 [32] (2014) − • × github × Hybrid tool (static/dynamic)

Adagio [10] (2013) − • • github •
Amandroid [33] (2014) • • • github •
Anadroid [19] (2013) × • • github •
Androguard [7] (2011) − • •• github •

Android-app-analysis [11] (2015) × • •• google × Hybrid tool (static/dynamic)
Apparecium [31] (2015) • • × github •
BlueSeal [30] (2014) × • ◦ github •
Choi et al. [6] (2014) × • ◦ github × Works on source files only
DIALDroid [5] (2017) • • • github •
DidFail [15] (2014) • • ◦ bitbucket •

DroidSafe [12] (2015) × • • github •
Flowdroid [2] (2014) • • •• github •

Gator [29, 36] (2014), (2015) × • •• edu •
IC3 [23] (2015) • • ◦ github •

IccTA [16] (2015) • • • github •
Lotrack [20] (2014) × • × github ◦ Authors ack. a partial doc.

MalloDroid [9] (2012) − • • github •
PerfChecker [21] (2014) × × ◦ request • Binary obtained from authors

Poeplau et al. [27] (2014) × ◦ × github × Related to Android hardening
Redexer [14] (2012) × • • github •
SAAF [13] (2013) • • • github •

StaDynA [37] (2015) × • • request × Hybrid tool (static/dynamic)
Thresher [4] (2013) × • • github ◦ Not built with author’s help

Wognsen et al. [34] (2014) − • × bitbucket •

binaries, sources: −: not relevant, •: available, ◦: partially available, ×: not provided
documentation: ••: excellent, MWE, •: few inconsistencies, ◦: bad quality, ×: not available
decision: •: considered; ◦: considered but not built; ×: out of scope of the study

Some tools use hybrid analysis (both static and dynamic): A3E [3], A5 [32],
Android-app-analysis [11], StaDynA [37]. They have been excluded from this
paper. We manually searched the tool repository when the website mentioned
in the paper is no longer available (e.g. when the repository have been migrated
from Google code to GitHub for example) and for each tool we searched for:

– an optional binary version of the tool that would be usable as a fall back (if
the sources cannot be compiled for any reason);

– the source code of the tool;
– the documentation for building and using the tool with a MWE (Minimum

Working Example).

In Table 1 we rated the quality of these artifacts with ”•” when available
but may have inconsistencies, a ”◦” when too much inconsistencies (inaccurate
remarks about the sources, dead links or missing parts) have been found, a
”×” when no documentation have been found, and a double ”••” for the docu-
mentation when it covers all our expectations (building process, usage, MWE).
Results show that documentation is often missing or very poor (e.g. Lotrack),
which makes the rebuild process very complex and the first analysis of a MWE.

We finally excluded Choi et al. [6] as their tool works on the sources of
Android applications, and Poeplau et al. [27] that focus on Android hardening.

https://github.com/tanzirul/a3e
https://github.com/tvidas/a5
https://github.com/hgascon/adagio
https://github.com/arguslab/Argus-SAF
https://github.com/maggieddie/pushdownoo
https://github.com/androguard/androguard
https://code.google.com/archive/p/android-app-analysis-tool/source/default/source
https://github.com/askk/apparecium
https://github.com/ub-rms/blueseal
https://github.com/kwanghoon/javaAnalysis
https://github.com/dialdroid-android/DIALDroid
https://bitbucket.org/wklieber/didfail/src/master/
https://github.com/MIT-PAC/droidsafe-src
https://github.com/secure-software-engineering/FlowDroid
http://web.cse.ohio-state.edu/presto/software/gator/
https://github.com/siis/ic3
https://github.com/lilicoding/soot-infoflow-android-iccta
https://github.com/MaxLillack/Lotrack
https://github.com/sfahl/mallodroid
http://castle.cse.ust.hk/perfchecker/tool_obtain.php
https://github.com/sebastianpoeplau/android-whitelists
https://github.com/plum-umd/redexer
https://github.com/SAAF-Developers/saaf
https://github.com/zyrikby/StaDynA
https://github.com/cuplv/thresher
https://bitbucket.org/erw/dalvik-bytecode-analysis-tool/src/master/
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Table 2. Selected tools, forks, selected commits and running environment

Origin Alive Forks Last commit Authors Environment
Tool Stars Alive Nb Usable Date Reached Language - OS

Adagio [10] 74 • 0 × 2022-11-17 • Python - U20.04
Amandroid [33] 161 × 2 × 2021-11-10 • Scala - U22.04
Anadroid [19] 10 × 0 × 2014-06-18 × Scala/Java/Py. - U22.04
Androguard [7] 4430 • 3 × 2023-02-01 × Python - Python 3.11 slim
Apparecium [31] 0 × 1 × 2014-11-07 × Python - U22.04
BlueSeal [30] 0 × 0 × 2018-07-04 • Java - U14.04
DIALDroid [5] 16 × 1 × 2018-04-17 × Java - U18.04
DidFail [15] 4 × 2015-06-17 • Java/Python - U12.04

DroidSafe [12] 92 × 3 × 2017-04-17 • Java/Python - U14.04
Flowdroid [2] 868 • 1 × 2023-05-07 • Java - U22.04
Gator [29, 36] 2019-09-09 • Java/Python - U22.04

IC3 [23] 32 × 3 • 2022-12-06 × Java - U12.04 / 22.04
IccTA [16] 83 × 0 × 2016-02-21 • Java - U22.04
Lotrack [20] 5 × 2 × 2017-05-11 • Java - ?

MalloDroid [9] 64 × 10 × 2013-12-30 × Python - U16.04
PerfChecker [21] × – • Java - U14.04
Redexer [14] 153 × 0 × 2021-05-20 • Ocaml/Ruby - U22.04
SAAF [13] 35 × 5 × 2015-09-01 • Java - U14.04
Thresher [4] 31 × 1 × 2014-10-25 • Java - U14.04

Wognsen et al. [34] × 2022-06-27 × Python/Prolog - U22.04

•: yes, ×: no, UX.04: Ubuntu X.04

As a summary, in the end we have 20 tools to compare. Some specificities should
be noted. The IC3 tool will be duplicated in our experiments because two versions
are available: the original version of the authors and a fork used by other tools
like IccTa. For Androguard, the default task consists of unpacking the bytecode,
the resources, and the Manifest. Cross-references are also built between methods
and classes. Because such a task is relatively simple to perform, we decided to
duplicate this tool and ask to Androguard to decompile an APK and create
a control flow graph of the code using its decompiler: DAD. We refer to this
variant of usage as androguard dad. For Thresher and Lotrack, because these
tools cannot be built, we excluded them from experiments.

Finally, starting with 26 tools of Table 1, with the two variations of IC3 and
Androguard, we have in total 22 static analysis tools to evaluate in which two
tools cannot be built and will be considered as always failing.

3.2 Source Code Selection and Building Process

In a second step, we explored the best sources to be selected among the possible
forks of a tool. We reported some indicators about the explored forks and our
decision about the selected one in Table 2. For each source code repository called
”Origin”, we reported in Table 2 the number of GitHub stars attributed by users
and we mentioned if the project is still alive (• in column Alive when a com-
mit exist in the last two years). Then, we analyzed the fork tree of the project.
We searched recursively if any forked repository contains a more recent commit
than the last one of the branch mentioned in the documentation of the original
repository. If such a commit is found (number of such commits are reported in
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column Alive Forks Nb), we manually looked at the reasons behind this commit
and considered if we should prefer this more up-to-date repository instead of the
original one (column ”Alive Forks Usable”). As reported in Table 2, we excluded
all forks, except IC3 for which we selected the fork JordanSamhi/ic3, because
they always contain experimental code with no guarantee of stability. For exam-
ple, a fork of Aparecium contains a port for Windows 7 which does not suggest
an improvement of the stability of the tool. For IC3, the fork seems promising:
it has been updated to be usable on a recent operating system (Ubuntu 22.04
instead of Ubuntu 12.04 for the original version) and is used as a dependency
by IccTa. We decided to keep these two versions of the tool (IC3 and IC3 fork)
to compare their results.

Then, we self-allocated a maximum of four days for each tool to successfully
read and follow the documentation, compile the tool and obtain the expected
result when executing an analysis of a MWE. We sent an email to the authors
of each tool to confirm that we used the more suitable version of the code, that
the command line we used to analyze an application is the most suitable one
and, in some cases, requested some help to solve issues in the building process.
We reported in Table 2 the authors that answered our request and confirmed
our decisions.

From this building phase, several observations can be made. Using a recent
operating system, it is almost impossible in a reasonable amount of time to re-
build a tool released years ago. Too many dependencies, even for Java based
programs, trigger compilation or execution problems. Thus, if the documenta-
tion mentions a specific operating system, we use a Docker image of this OS.
Most of the time, tools require additional external components to be fully func-
tional. It could be resources such as the android.jar file for each version of the
SDK, a database, additional libraries or tools. Depending of the quality of the
documentation, setting up those components can take hours to days. This is why
we automatized in a Dockerfile the setup of the environment in which the tool
is built and run3.

3.3 Runtime Conditions

As shown in Figure 1, before benchmarking the tools, we built and installed
them in a Docker containers for facilitating any reuse of other researchers. We
converted them into Singularity containers because we had access to such a
cluster and because this technology is often used by the HPC community for
ensuring the reproducibility of experiments. We performed manual tests using
these Singularity images to check:

3 To guarantee reproducibility we published the results, datasets, Dockerfiles and con-
tainers. Source code is located at: https://github.com/histausse/rasta, datasets and
experiments results are available at: https://zenodo.org/records/10144014, Singular-
ity containers are available at: https://zenodo.org/records/10980349, Docker images
(histausse/rasta-<toolname>:icsr2024) can be downloaded from Docker Hub.

https://github.com/histausse/rasta
https://zenodo.org/records/10144014
https://zenodo.org/records/10980349
https://hub.docker.com/u/histausse
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Fig. 1. Methodology overview

– the location where the tool is writing on the disk. For the best performances,
we expect the tools to write on a mount point backed by an SSD. Some tools
may write data at unexpected locations which required small patches from
us.

– the amount of memory allocated to the tool. We checked that the tool could
run a MWE with a 64 GB limit of RAM.

– the network connection opened by the tool, if any. We expect the tool not
to perform any network operation such as the download of Android SDKs.
Thus, we prepared the required files and cached them in the images dur-
ing the building phase. In a few cases, we patched the tool to disable the
download of resources.

A campaign of tests consists in executing the 20 selected tools on all APKs
of a dataset. The constraints applied on the clusters are:

– No network connection is authorized in order to limit any execution of ma-
licious software.

– The allocated RAM for a task is 64 GB.
– The allocated maximum time is 1 hour.
– The allocated object space / stack space is 64 GB / 16 GB if the tool is a

Java based program.

For the disk files, we use a mount point that is stored on a SSD disk, with
no particular limit of size. Note that, because the allocation of 64 GB could be
insufficient for some tool, we evaluated the results of the tools on 20% of our
dataset (described later in Section 3.4) with 128 GB of RAM and 64 GB of RAM
and checked that the results were similar. With this confirmation, we continued
our evaluations with 64 GB of RAM only.

3.4 Dataset

We built a dataset named Rasta to cover all dates between 2010 to 2023. This
dataset is a random extract of Androzoo [1], for which we balanced applications
between years and size. For each year and inter-decile range of size in Androzoo,
500 applications have been extracted with an arbitrary proportion of 7% of
malware. This ratio has been chosen because it is the ratio of goodware/malware
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Fig. 2. Exit status for the Rasta dataset

that we observed when performing a raw extract of Androzoo. For checking the
maliciousness of an Android application we rely on the VirusTotal detection
indicators. If more than 5 antiviruses have flagged the application as malicious,
we consider it as a malware. If no antivirus has reported the application as
malicious, we consider it as a goodware. Applications in between are dropped.

For computing the release date of an application, we contacted the authors of
Androzoo to compute the minimum date between the submission to Androzoo
and the first upload to VirusTotal. Such a computation is more reliable than
using the DEX date that is often obfuscated when packaging the application.

4 Experiments

4.1 RQ1: Re-Usability Evaluation

Figure 2 represents the success/failure rate (green/orange) of the tools. We dis-
tinguished failure to compute a result from timeout (blue) and crashes of our
evaluation framework (in grey, probably due to out of memory kills of the con-
tainer itself). Because it may be caused by a bug in our own analysis stack, exit
status represented in grey (Other) are considered as unknown errors and not as
failure of the tool.

We observe a global increase of the failed status: 12 tools (54.5%) have a
finishing rate below 50%. Three tools (androguard dad, blueseal, saaf) reach
the bar of 50% of failure. 7 tools keep a high success rate: Adagio, Amandroid,
Androguard, Apparecium, Gator, Mallodroid, Redexer. Regarding IC3, the fork
with a simpler build process and support for modern OS has a lower success rate
than the original tool.

Two tools should be discussed in particular. Androguard has a high success
rate which is not surprising: it used by a lot of tools, including for analyzing
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application uploaded to the Androzoo repository. Nevertheless, when using An-
droguard decompiler (DAD) to decompile an APK, it fails more than 50% of the
time. This example shows that even a tool that is frequently used can still run
into critical failures. Concerning Flowdroid, our results show a very low timeout
rate (0.06%) which was unexpected: in our exchanges, Flowdroid’s author were
expecting a higher rate of timeout and fewer crashes.

As a summary, the final ratio of successful analysis for the tools that we could
run is 54.9%. When including the two defective tools, this ratio drops to 49.9%.

RQ1 answer: On a recent dataset we consider that 54.5% of the tools are
unusable. For the tools that we could run, 54.9% of analysis are finishing suc-
cessfully.

4.2 RQ2: Size, SDK and Date Influence

To measure the influence of the date, SDK version and size of applications, we
fixed one parameter while varying an other. For the sake of clarity, we separated
Java based / non Java based tools.

Fixed application year. (5000 APKs) We selected the year 2022 which has a
good amount of representatives for each decile of size in our application dataset.
Figure 3 (resp. 4) shows the finishing rate of the tools in function of the size of the
bytecode for Java based tools (resp. non Java based tools) analyzing applications
of 2022. We can observe that all Java based tools have a finishing rate decreasing
over years. 50% of non Java based tools have the same behavior.

Fixed application bytecode size. (6252 APKs) We selected the sixth decile (be-
tween 4.08 and 5.20 MB), which is well represented in a wide number of years.
Figure 5 and 6 represent the finishing rate depending of the year at a fixed byte-
code size. We observe that 9 tools over 12 have a finishing rate dropping below
20% for Java based tools, which is not the case for non Java based tools.

We performed similar experiments by variating the min SDK and target SDK
versions, still with a fixed bytecode size between 4.08 and 5.2 MB, as shown in
Figure 7 and 8. We found that contrary to the target SDK, the min SDK version
has an impact on the finishing rate of Java based tools: 8 tools over 12 are below
50% after SDK 16. It is not surprising, as the min SDK is highly correlated to
the year.

RQ2 answer: The success rate varies based on the size of bytecode and SDK
version. The date is correlated with the success rate for Java based tools only.

4.3 RQ3: Malware vs Goodware

We compared the finishing rate of malware and goodware applications for eval-
uated tools. Because, the size of applications impacts this finishing rate, it is
interesting to compare the success rate for each decile of bytecode size. Table 3
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Fig. 3. Finishing rate by bytecode size for APK detected in 2022 – Java based tools
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Fig. 4. Finishing rate by bytecode size for APK detected in 2022 – Non Java based
tools
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Fig. 5. Finishing rate by discovery year with a bytecode size ∈ [4.08, 5.2] MB – Java
based tools
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Fig. 6. Finishing rate by discovery year with a bytecode size ∈ [4.08, 5.2] MB – Non
Java based tools
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Fig. 7. Finishing rate by min SDK with a bytecode size ∈ [4.08, 5.2] MB – Java based
tools
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Fig. 8. Finishing rate by min SDK with a bytecode size ∈ [4.08, 5.2] MB – Non Java
based tools
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Table 3. DEX size and Finishing Rate (FR) per decile

Decile Avg DEX size MB Finishing Rate: FR Ratio Size Ratio FR
Good Mal Good Mal Good/Mal Good/Mal

1 0.13 0.11 0.85 0.82 1.17 1.04
2 0.54 0.55 0.74 0.72 0.97 1.03
3 1.37 1.25 0.63 0.66 1.09 0.97
4 2.41 2.34 0.57 0.62 1.03 0.92
5 3.56 3.55 0.53 0.59 1.00 0.90
6 4.61 4.56 0.50 0.61 1.01 0.82
7 5.87 5.91 0.47 0.57 0.99 0.83
8 7.64 7.63 0.43 0.56 1.00 0.76
9 11.39 11.26 0.39 0.58 1.01 0.67
10 24.24 21.36 0.33 0.46 1.13 0.73

reports the bytecode size and the finishing rate of goodware and malware in each
decile of size. We also computed the ratio of the bytecode size and finishing rate
for the two populations. We observe that the ratio for the finishing rate decreases
from 1.04 to 0.73, while the ratio of the bytecode size is around 1. We conclude
from this table that analyzing malware triggers less errors than for goodware.

RQ3 answer: Analyzing malware applications triggers less errors for static
analysis tools than analyzing goodware for comparable bytecode size.

5 Discussion

5.1 State-of-the-art comparison

Our finding are consistent with the numerical results of Pauck et al. that showed
that 58.9% of DIALDroid-Bench [5] real-world applications are analyzed success-
fully with the 6 evaluated tools [25]. Six years after the release of DIALDroid-
Bench, we obtain a lower ratio of 40.1% for the same set of 6 tools but using
the Rasta dataset of 62 525 applications. We extended this result to a set of 20
tools and obtained a global success rate of 54.9%. We confirmed that most tools
require a significant amount of work to get them running [28].

Investigating the reason behind tools’ errors is a difficult task and will be
investigated in a future work. For now, our manual investigations show that the
nature of errors varies from one analysis to another, without any easy solution
for the end user for fixing it.

5.2 Recommendations

Finally, we summarize some takeaways that developers should follow to improve
the success of reusing their developed software.

For improving the reliability of their software, developers should use classical
development best practices, for example continuous integration, testing, code
review. For improving the reusability developers should write a documentation
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about the tool usage and provide a minimal working example and describe the
expected results. Interactions with the running environment should be mini-
mized, for example by using a docker container, a virtual environment or even
a virtual machine. Additionally, a small dataset should be provided for a more
extensive test campaign and the publishing of the expected result on this dataset
would ensure to be able to evaluate the reproducibility of experiments.

Finally, an important remark concerns the libraries used by a tool. We have
seen two types of libraries: a) internal libraries manipulating internal data of the
tool; b) external libraries that are used to manipulate the input data (APKs,
bytecode, resources). We observed by our manual investigations that external
libraries are the ones leading to crashes because of variations in recent APKs
(file format, unknown bytecode instructions, multi-DEX files). We believe that
the developer should provide enough documentation to make possible a later
upgrade of these external libraries.

5.3 Threats to validity

Our application dataset is biased in favor of Androguard, because Androzoo have
already used Androguard internally when collecting applications and discarded
any application that cannot be processed with this tool.

Despite our best efforts, it is possible that we made mistakes when building
or using the tools. It is also possible that we wrongly classified a result as a
failure. To mitigate this possible problem we contacted the authors of the tools
to confirm that we used the right parameters and chose a valid failure criterion.

The timeout value, amount of memory are arbitrarily fixed. For mitigating
their effect, a small extract of our dataset has been analyzed with more mem-
ory/time for measuring any difference.

Finally, the use of VirusTotal for determining if an application is a malware
or not may be wrong. For limiting this impact, we used a threshold of at most 5
antiviruses (resp. no more than 0) reporting an application as being a malware
(resp. goodware) for taking a decision about maliciousness (resp. benignness).

6 Conclusion

This paper has assessed the suggested results of the literature [22, 25, 28] about
the reliability of static analysis tools for Android applications. With a dataset of
62 525 applications we established that 54.5% of 22 tools are not reusable, when
considering that a tool that has more than 50% of time a failure is unusable.
In total, the analysis success rate of the tools that we could run for the entire
dataset is 54.9%. The characteristics that have the most influence on the success
rate is the bytecode size and min SDK version. Finally, we showed that malware
APKs have a better finishing rate than goodware.

In future works, we plan to investigate deeper the reported errors of the
tools in order to analyze the most common types of errors, in particular for Java
based tools. We also plan to extend this work with a selection of more recent
tools performing static analysis.
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