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From relaxed constraint satisfaction to p−invariance of sets

Sorin Olaru, Martin Soyer, Zhixin Zhao, Carlos E. T. Dórea, Ernesto Kofman and Antoine Girard

Abstract— The present paper proposes a general framework
for the analysis of constraints satisfaction with respect to the
trajectories of a dynamical system. The results are presented
in a discrete-time framework and pertain to the class of set-
theoretic methods. The main objective is to go beyond the
state-of-the-art by characterizing the intermittent constraint
satisfaction along the evolution of the trajectories of a dynam-
ical system. Two relaxed notions are introduced in this sense,
one characterizing the validation of constraints within a given
finite window and the other imposing the validation after a
fixed number of time-steps following a violation. The constraint
satisfaction with respect to a controlled trajectory will then be
extended to a set of constraints and then to tubes of trajectories.
It is shown that all these notions can be accordingly anchored to
the well-known controlled positive set invariance, thus offering a
generalized framework for the analysis of dynamical systems in
a set-theoretic framework. The technical note is completed with
illustrations of the constructions on both linear and nonlinear
case.

I. INTRODUCTION

Constraints handling along the evolution of the trajectories
of a dynamical system represented a continuous interest in
the control literature [1]- [2] and extended recently to safety
desiderata [3] with respect to the closed-loop functioning.
Essentially, for constrained dynamical systems analysis, the
goal is similar to the one of qualitative theory of differential
equations: obtaining certificates of the constraints satisfaction
along the trajectories without effectively building these tra-
jectories. In this context, when accounting for any feasible
initial conditions of the dynamics, the all-time constraints
satisfaction lead naturally to the notion of positive invariance
of the respective set of constraints [4].

Whenever it can be effectively characterized, the positive
invariance is the tool of choice for the constraints satisfaction
proofs. However, the rigid invariance conditions lead to
complex geometrical shapes and active research is dedicated
to the construction of positive invariant sets all by managing
their complexity. This complexity remains the major issue
in the case of high dimensional or nonlinear dynamics. To
circumvent the problem, several authors point to relaxations,
extensions or alternative notions. Some of these attempts are
briefly described next:
• Periodic/Extended invariance [5] [6] impose the val-

idation of the set-membership only periodically and
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versité Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des sig-
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thus provides a relaxation with respect to invariance
conditions. However, the constrained satisfaction being
imposed for any initial conditions within the constrained
set and irrespective of the trajectory followed, it does
not involve the history of constraint violation.

• Periodic invariant sequence [7], [8] similar to extended
invariance, provides additionally a collection of (or-
dered) transition sets along the constraints’ violation
window.

• Cyclic invariance has been proposed in the context of
time-delay systems [9] as a relaxation of the positive
invariance through the use of a cyclic set-inclusions
within a family of ordered sets.

• Invariant family of sets [10] is used in the context of
decentralized systems to replace the classical invariance
notion through the decomposition within a finite family
of sets thus generalizing the periodic sequences of sets.

• Finite-time contractive sets pursue the development
of periodic invariance notion by parameterizing the
index of constraints’ violation and associates it with
a “contraction” factor [11], leading to the notion of
(k, λ)−invariance .

• Confinement sets have been introduced [12] as a tool
for the characterization of convex Lyapunov functions.
Essentially, they are used to prove that convex sets
are too restrictive to characterize the invariance for
nonlinear (e.g. switched) systems.

• Probabilistic Invariance [13], [14] extends the concept
of positive invariant sets in presence of unbounded
disturbances such as white Gaussian Noise. If the initial
state is inside a probabilistic invariant set, then every
future state will belong to that set with a probability
larger than certain parameter.

• Non-monotonic Lyapunov functions On a larger scope,
if the invariant sets are interpreted as level sets of
Lyapunov functions, the relaxation of invariance can be
related to a relaxation of the monotonicity of the Lya-
punov function [15] - [16] or even to cyclomonotonicity
[17].

The common feature of these approaches is the relaxation
of any-time set-membership satisfaction. However, a funda-
mental information is not taken into account in those existing
notions: the starting points of the window of constraints
violation. As such, the conditions imposed in the previous
results are exclusively related to the initial conditions and do
not account for the history of constraint satisfaction of the
trajectory reaching the respective point in the state space
(alternatively, they do not consider the trajectory of the



system as a whole). The objective of the present work is to
offer a theoretical ground for the treatment of the intermittent
constraints satisfaction along the trajectories of dynamical
systems by using all these information. The ultimate goal
remains the relaxation of the positive invariance conditions
and the potential decrease of the complexity of the respective
sets.

If the system is subject to multiple constraints, the classical
set-invariance is inherently treating all of them concomi-
tantly. When their satisfaction is relaxed, the analysis of
the dynamics has to be dealt with at the individual level
of each constraint to establish invariance conditions. This is
an additional novelty in the analysis proposed by the present
work.

The first contribution of the present paper is the description
of the tools for the treatment of the intermittent satisfaction
of constraints on a time-window of length p. This leads to
the strong and weak notions of p−satisfaction of constraints
according to their validation at exactly (strong) or at least
(weak) p instants after the initialization of a sequence of
violations. Subsequently, the p−satisfaction of constraints
along the trajectories is extended for the tubes of trajectories.

The second contribution of the paper is the characteriza-
tion of p−invariance by exploiting the p-satisfaction of a
set of constraints for a tube of trajectory initiated within
the set itself. The matching of initial conditions for the tube
of trajectories p−satisfying some given constraints, to the
set defined by the constraints per se, is essential in this
construction.

It is worth mentioning that the framework proposed here
for the p−invariance retrieves the classical notions whenever
p = 1. The paper includes a section dedicated to effective
construction of the p−invariant sets.

Basic Notations: In the following, the set of positive
integers will be denoted N. We will denote tj as the jth

element of the ordered set S = {tj}j∈N. We will denote
by dae the closest integer of the real a. The subset of
integers between a and b is denoted N[a,b] = N ∩ [a, b].
The Minkowski sum of two set A and B is denoted by
A⊕B = {a+ b | a ∈ A, b ∈ B}.

II. INTERMITTENT CONSTRAINTS SATISFACTION FOR
NONLINEAR SYSTEM’S TRAJECTORIES

Consider the generic discrete-time dynamical system:

x(t+ 1) = f(x(t), u(t)) (1)

where f : Rn × Rm is single valued in both arguments. We
will consider a given set of state constraints X ⊂ Rn and
input constraints U ⊂ Rm. The following problems are to
be addressed:

1) Characterize the violation of the frontiers of X for
a finite time-window of at most p instants by the
solution of (1) with a given initial condition x0 and
an associated feasible control sequence.

2) Provide conditions to ensure that any trajectory of (1)
initiated in X violates the set-membership constrained
x(t) ∈ X for at most p instants.

3) Characterize the satisfaction of the set-constraints
x(t) ∈ X at exactly p instants after any violation.

4) Provide conditions to ensure that any trajectory of (1)
initiated in X , verifies the set-membership constrained
x(t) ∈ X at exactly p instants after any violation.

Since this work deals with a generalization of positive
invariance, we recall here its formal definition:

Definition 1. A set Ω is controlled positively invariant with
respect to (1) if the set-membership validation at current
state x(t) ∈ Ω implies the existence of a control actions
u(t+i) ∈ U such that the state trajectory satisfies x(t+i) ∈
Ω, i ∈ N.

Even if the invariance is often use for constraint satis-
faction guarantees, is obvious that such strong all-time con-
straint satisfaction condition does not provide the appropriate
theoretical framework for addressing the problems above.

Notation: The t-th iteration (t ∈ N) of the system (1) in
closed-loop with a state feedback function u : Rn → Rm is
denoted by f t(x0, u) = f(f t−1(x0, u), u(f t−1(x0, u))) and
f0(x0, u(x0)) = x0. We denote the set mapping representing
the one-step predecessor set of Ω with input restrictions
U as: Pre1

f (Ω) = {x ∈ Rn|∃u ∈ U, f(x, u) ∈ Ω}. We
generalize this definition to t steps iteration: Pretf (Ω) =

Pret−1
f (Pref (Ω)) and Pre0

f (Ω) = Ω.

A. Validation Index Set

Consider the model (1) and a continuous function h : Rn×
Rm → R. We define the sublevel set of h as follows1:

L(h) = {x ∈ Rn, u ∈ Rm | h(x, u) ≤ 0} (2)

Assumption II.1. h is such that L(h) is a closed set of Rn.

The main goal being to study the membership of a
trajectory to the sublevel set L(h), the next definition is
introduced.

Definition 2. Given an initial state x0 ∈ Rn and an
admissible state-feedback control function u : Rn → U , the
Validation Index Set (VIS) V(x0, f, h, u) ⊂ N is an ordered
collection of indices for which the states of (1) belong to the
sublevel set L(h).

Definition 3. The maximal Validation Index Set (mVIS) is
the maximal ordered collection of indices VIS (w.r.t set
inclusion). It can be formally described as:

Vm(x0, f, h, u) =

{
t ∈ N

∣∣∣∣∣ x(t) ∈ L(h); x(0) = x0

x(t+ 1) = f(x(t), u(x(t)))

}
(3)

With the above definitions, a series of basic properties can
be inferred:

Properties II.1. For a system (1), the following holds:
• If ū ∈ U such that

x̄ = f(x̄, ū)

1In this work we will refer indifferently to the satisfaction of the constraint
h(x, u) ≤ 0 and the inclusion (x, u) ∈ L(h) as the satisfaction of L(h).
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Fig. 1: The state trajectory validates intermittently the con-
straints.

then either V(x̄, f, h, ū) = N or V(x̄, f, h, ū) = ∅.
• Let a state-feedback function u : Rn → U . For all t ∈

N, t⊕Vm(f t(x0, u), f, h, u) is a VIS and the following
inclusion holds:

t⊕ Vm(f t(x0, u), f, h, , u) ⊂ Vm(x0, f, h, , u).

Example II.1. Consider the dynamical nonlinear system:x1(t+ 1)

x2(t+ 1)

 =

x1(t) + 0.25x2(t) + 0.2x2
2(t) + 0.0125u(t)

−0.25x1(t) + 0.75x2(t) + 0.25x2
1(t)x2(t)


Consider the sublevel set corresponding to the function

h : R2 → R such that:

h(x) = (x1 + 0.7)2 + (x2 + 0.66)2 − 1.44

Then L(h) depicts the circle of radius 1.2 and trajectory is
initiated at x0 , x(0) = [−1.64,−1.18]T . They differ with
respect to the control input functions:

u1(x) =

{
1 if x2 ≤ 0
−1 if x2 > 0

, u2(x) =

{
1 if x2 ≥ 0
−1 if x2 < 0

Fig.1 depicts the configuration and we can construct
the mVIS for the 2 cases: Vm(x0, f, h, u1) =
{0, 1, 2, 7, 8, 9, 10, 11, 12, 13, 14, 15, 25, . . . } and the
counterpart Vm(x0, f, h, u2) = {0, 1, 8, . . . }.

Assuming a dynamic system (1) and a constraint modeled
by a sublevel set L(h) as defined by (2), we now focus on
the case a trajectory violates the constraint for a finite time
interval before satisfying it again.

B. Weak p-satisfaction of a constraint

Definition 4 (Weak p-satisfaction of constraint). Given finite
p ∈ N>0, the trajectory of the system (1) initiated in x0 ∈ Rn

and subject to the state-feedback control u : Rn → U is
weakly p-satisfying the constraint L(h) if it exists a function
r : N→ N[1,p] such that x(t+ r(t)) ∈ L(h) for any t ∈ N.

In other words, a trajectory weakly p-satisfies a constraint
if it reaches L(h) at least once during any time interval of

length p. We provide a necessary and sufficient condition
of weak p-satisfaction of a constraint with respect to a
trajectory.

Theorem II.1. Given a finite p ∈ N>0, the trajectory of the
system (1) initiated in x0, and subject to the state-feedback
control u : Rn → U weakly p-satisfies the constraint L(h)
if and only if :
• the mVIS Vm(x0, f, h, u) is unbounded
• The difference between two consecutive elements is

bounded by:

σ = max
j∈N

tj+1 − tj
s.t. (tj , tj+1) ∈ Vm(x0, f, h, u)

(4)

• This bound satisfies the condition σ ≤ p.

Proof. If the trajectory weakly p-satisfies L(h) then there
exists a function r : N→ N[1,p] such that

x(t+ r(t)) ∈ L(h) ∀t ∈ N

and the mVIS verifies:

S = {r(0), r(0) + r(r(0)),
r(0) + r2(0) + r(r(0) + r2(0)), . . . } ⊂ Vm(x0, f, h, u)

S being an nonempty and unbounded subset of
Vm(x0, f, h, u), the optimization problem is feasible
(any element tj ∈ Vm(x0, f, h, u) has a successor
tj+1 ∈ Vm(x0, f, h, u) in this ordered set). Conversly, one
of the following relationships holds: Vm(x0, f, h, u) = S or
Vm(x0, f, h, u) = {0,S}. In short,

Vm(x0, f, h, u) ⊆ {0,S} . (5)

Consider any pair of successive points (tj , tj+1) ∈
Vm(x0, f, h, u)×Vm(x0, f, h, u) with tj ≥ r(0). Using (5),
it exists a pair of successive points (si, si+1) ∈ S × S such
that si ≤ tj ≤ tj+1 ≤ si+1.

tj+1 − tj ≤ si+1 − si
≤ r(si) ≤ p

For any pair of successive points (tj , tj+1) ∈
Vm(x0, f, h, u) × Vm(x0, f, h, u) with tj < r(0) we
have tj+1 ≤ r(0) because Vm(x0, f, h, u) is the maximal
VIS. It follows that:

tj+1 − tj ≤ r(0)− tj ≤ r(0) ≤ p
For the sufficiency, one can note that Vm(x0, f, h, u) =

(ti)i∈N being (ordered) unbounded set then one can define
the function :

r : N −→ N[1,p]

r(t) =

{
t0 − t if t < t0
tj+1 − t if tj ≤ t < tj+1

thus t+r(t) ∈ Vm(x0, f, h, u) and the trajectory (x(t))t∈N
is weakly p-satisfying the constraint according to Def. 4.

In other words, a trajectory weakly p-satisfies a constraint
if and only if two successive elements of the mVIS are



separated by a interval bounded by p. The notion can be
extended naturally to the controlled setting through the next
definition.

Definition 5 (Weak controlled p-satisfaction of constraint).
Given finite p ∈ N>0, the trajectory of the system (1) initiated
in x0 ∈ Rn is weakly controlled p-satisfying the constraint
L(h) if it exist a state feedback control function u : Rn → U
and r : N → N[1,p] such that x(t + r(t)) ∈ L(h) for any
t ∈ N.

C. Weak p-satisfaction of a vector-constraint

Notions of VIS and weak p-satisfaction can be extended to
vector constraints hl : Rn → Rl, where hl = [hl1, . . . , h

l
l]
ᵀ.

For a compact presentation, the controlled notions will be
discussed in the remainder.

Definition 6 (Weak vector-constraint satisfaction). A con-
trolled trajectory of the system (1) initiated in x0 ∈ Rn

weakly p-satisfies the vector constraint L(hl) if it exists
u : Rn → U and an associated r : N→ Nm

[1,p] such that

x(t+ ri(t)) ∈ L(hli),∀i ∈ {1, . . . , l}

for any t ∈ N where ri(.) is the i-th component of r.

Theorem II.2. The trajectory of the system (1) with an initial
condition x0 ∈ Rn weakly satisfies the m−dimensional
vector-constraint L(hl) if and only if it exists u : Rn → U
such that
• All the mVIS Vm(x0, f, h

l
i, u) with i ∈ N[1,l] are

unbounded;
• The next optimization problem has a bounded solution:

max
i∈N[1,l]

max
j∈N
{tj+1 − tj}

s.t. (tj , tj+1) ∈ Vm(x0, f, h
l
i, u).

(6)

Proof. According to Theorem II.1 applied here for each
i ∈ N[1,l], the constraint L(hli) is weakly satisfied by the
controlled trajectory if and only if the optimization problem
(4) has bounded solution.

As a consequence, the optimization (6) is feasible and has
a bounded solution given by the most conservative index of
weak satisfaction.

Remark 1. The weak satisfaction of the multiple constraints
does not guarantee the simultaneous satisfaction of con-
straints on a finite time interval despite the global weak-
satisfaction of the vector-constraint.

The next step is to extend these notions for tubes of
trajectories as shown next.

Definition 7. (Controlled weak p-satisfaction of constraint
for a tube of trajectories) Given p ∈ N>0, the controlled
trajectories of the system (1) initiated in X ⊂ Rn weakly
p-satisfy the vector constraint L(hl) if it exists u : Rn → U
and an associated function r : N→ Nm

[1,p] such that

x(t+ ri(t)) ∈ L(hli),∀i ∈ {1, . . . , l}

for all x0 ∈ X and for any t ∈ N where ri(.) is the i-th
component of r.

Theorem II.3. The tube of trajectories of the system (1)
initiated in X ⊂ Rn weakly p-satisfies the l−dimensional
vector-constraint L(hl) if and only if it exists a state feedback
control u : Rn → U ensuring
• All the mVIS Vm(X, f, hli, u) with i ∈ N[1,l] are

unbounded;
• The next optimization problem has a bounded solution:

max
x∈X,i∈N[1,l]

max
j∈N
{tj+1 − tj}

s.t. (tj , tj+1) ∈ Vm(x, f, hli, u)
(7)

Proof. Theorem II.3 is verified if and only if every trajectory
initialised in X weakly p−satisfy the vector-constraint L(hl)
and consequently if and only if every trajectory verifies
Theorem II.2.

Up to this point, the set of initial conditions X ⊂ Rn

was considered to be independent of the constraints whose
satisfaction is under study i.e. hl(x) ≤ 0. In the case the
set is defined as X = L(hl) one can talk about the self p-
satisfaction of constraints and further about p−invariance, as
described in Section III.

III. WEAK SET INVARIANCE

In the previous section we defined notions of p-satisfaction
of constraints for trajectories and tubes of trajectories and we
will extend those properties to the definition of p-invariance
for a set. A set can be defined as an intersection of constraints
and the weak p-satisfaction of each such constraint can be
analysed in the previous framework. If this analysis is carried
out with respect to initial states in the set itself we talk about
weak notion of p-invariance of a set.

Definition 8 (Controlled weak invariance). Let p ∈ N. The
set Ω ⊂ Rn is controlled weakly p-invariant with respect to
the system (1) if it exists a state feedback control function
u : Rn → U such that for any x0 ∈ Ω, one can associate
an index function r : N→ N[1,p] satisfying x(t+ r(t)) ∈ Ω
for any t ∈ N.

Proposition III.1. A set Ω ⊂ Rn is controlled weakly p-
invariant with respect to the system (1) if and only if the
constraint hΩ(x) ≤ 0 defined by the function:

hΩ : Rn −→ R

hΩ(x) =

{
1 if x /∈ Ω
−1 if x ∈ Ω

(8)

is controlled weakly p-satisfied by the tube of trajectories
initiated in Ω.

The latter proposition has only a theoretical interest and
it can be complemented with the following properties to be
used in practical cases.

Theorem III.1. A set Ω ⊂ Rn is controlled weakly p-
invariant with respect to the system (1) if and only if it exists
a state feedback control function u : Rn → U such that



• Vm(x0, f, hΩ, u) is unbounded for all x0 ∈ Ω
• The optimization problem:

σ = max
x0∈Ω

max
j∈N
{tj+1 − tj}

s.t. (tj , tj+1) ∈ Vm(x0, f, hΩ, u)
(9)

has a bounded solution.
• σ ≤ p

Proof. If the set Ω is controlled weakly p-invariant, it exists
a u(.) such that the unboundedness of Vm(x0, f, h, u) is
verified for every x0 ∈ Ω following the same arguments
as Theorem II.1. Consequently, the optimization problem is
feasible and its solution is bounded by p thanks to the upper
bound on the validation index function in Definition 7.

Conversely, the satisfaction of the first conditions proves
the feasibility of the optimization problem. By choosing p as
feasible solution in the optimization, the conditions of weak
invariance are fulfilled.

The following two corollaries are direct applications of the
definition and the theorem above.

Corollary III.2. If a set Ω ⊂ Rn is controlled weakly
p0-invariant with respect to the system (1) then it will be
controlled weakly p-invariant for all p > p0.

Corollary III.3. The controlled weakly 1-invariance is
equivalent to the positive invariance (Definiton 1).

The set Ω has been used up to this point based on the
associated indicator function hΩ in (III.1) but its description
can be done explicitly based on joint satisfaction of a set of
constraints:

Ω =

l⋂
i=1

L(hi). (10)

A link between these two notions can be established.

Proposition III.2. If the set Ω defined as an intersection
of constraints (10) is controlled weakly p-invariant, then
the tube of controlled trajectories initiated in Ω weakly p-
satisfies the constraints L(hi) ∀i (or equivalently the vector-
constraint h = [h1, . . . , hl]

ᵀ).

The proof is a direct consequence of the fact that hi(x) ≤
0 for all x satisfying hΩ(x) ≤ 0. Is important is to note that
the converse is not true as exemplified graphically by the
Fig. 2.

Corollary III.4. Let the set Ω defined as an intersection of
constraints (10). If it exists p ∈ N such that Ω is controlled
weakly p-invariant, then the constraints L(hi) are controlled
weakly pi-satisfied with

p ≥ max
i=1...l

pi (11)

Theorem III.5. Ω is controlled weakly p-invariant with
respect to (1) if and only if:

Ω ⊆
p⋃

i=1

Preif (Ω). (12)

h1(x) ≤ 0

h2(x) ≤ 0

h3(x) ≤ 0

Ω

f(Ω)

f 2(Ω)

f 3(Ω)

h1(x) ≤ 0

h2(x) ≤ 0

h3(x) ≤ 0

Ω

f(Ω)

f 2(Ω)

f 3(Ω)

f 4(Ω) O
+

Ω

f(Ω)

f 2(Ω)

f 3(Ω)

Fig. 2: Left: p = max
i
pi. Middle: p > max

i
pi. Right: no

weak p-invariance while every constraints are weakly p-
satisfied

Proof. (IF) Condition (12) implies that, ∀t ∈ N, if x(t) ∈
Ω, then there exists u : Rn → U such that x(t) ∈⋃p

i=1 Pre
i
f (Ω) and thus there exists 1 ≤ r(t) ≤ p to ensure

x(t + r(t)) ∈ Ω. Since it is also true for t = 0, then, for
any x0 = x(0) ∈ Ω, there exists r : N → N[1,p] such that
x(t+ r(t)) ∈ Ω which proves the sufficiency.

(ONLY IF) By contradiction, consider x(0) = x0 ∈ Ω, but
x0 /∈ ⋃p

i=1 Pre
i
f (Ω). Then, for the controlled trajectory on

the finite window is such that x(i) /∈ Ω ∀i = 1, · · · , p, and
thus Ω does not satisfy the conditions of weak p-invariance.

IV. STRONG NOTIONS OF p-SATISFACTION OF
CONSTRAINTS AND p-INVARIANCE

The weak constraint satisfaction and weak invariance offer
two different perspectives on the validation of static con-
straints along the trajectories of a dynamical system. A strong
version will enhance the framework by imposing additional
restrictions on the allowed interval between violation of
constraints. More specifically, the validation of constraints
has to be guaranteed at exactly p instants after any violation.

Definition 9 (Controlled strong p-satisfaction of vector-con-
straints). The tube of trajectories of the system (1) initialized
in X ⊂ Rn is strongly p-satisfying the vector constraints
L(h) with h : Rn → Rl if it exists a state feedback control
function u : Rn → U such that in closed-loop:

x(t+ p) ∈ L(hi) ∀i ∈ N[1,l],

for any x0 ∈ X and for any time instant t ∈ N for which
x(t) ∈ L(hi) and x(t+ 1) /∈ L(hi).

Theorem IV.1. The l−dimensional vector-constraint h(x) ≤
0 is strongly p−satisfied by the tube of trajectories of the
system (1) with initial conditions in X ⊂ Rn if and only
if it exists a state feedback control u : Rn → U ensuring
∀x0 ∈ X
• The sets V(x0, f, hi, u) with i ∈ N[1,l] are unbounded;
• For each i ∈ N[1,l] and for any successive elements tj ∈
V(x0, f, hi, u) we have either tj + 1 ∈ V(x0, f, hi, u)
or tj + p ∈ V(x0, f, hi, u).

Proof. This is a direct application of the definition through
the alternatives with respect to the consecutive validation
indices which are distanced by 1 or p.

Before establishing further results, we can notice that
strong constrained satisfaction imposes stronger limitations



Fig. 3: The trajectory strongly 3-satisfies the blue constraints
as well as the red ones but it does not strongly 3-satisfies
their intersection (in green)

on the set of validation indices and thus is expected to lead
to larger values of p with respect to the weak counterpart.
The next result stresses that strong notion covers the weak
counterpart.

Proposition IV.1. If the l−dimensional vector-constraint
h(x) ≤ 0 is strongly p−satisfied by the trajectory of the
system (1) with initial condition x0 ∈ X ⊂ Rn, then the
same vector-constraint is weakly p−satisfied by the same
trajectory.

Proof. By choosing r(t) = p, ∀t one retrieves Definition
8.

Remark 2. Given Ω1 and Ω2, the strong p-satisfaction of
constraints hΩ1 ≤ 0 and hΩ2 ≤ 0 does not imply the strong
p-satisfaction of hΩ1∩Ω2 as it is illustrated in Fig. 3.

Definition 10 (Controlled strong invariance). Let p ∈ N. The
set Ω ⊂ Rn is controlled strongly p-invariant with respect
to the system (1) if it exists a state feedback control function
u : Rn → U such that, in closed-loop, x(t + p) ∈ Ω for
each x0 ∈ Ω, and for any t ∈ N for which x(t) ∈ Ω and
x(t+ 1) /∈ Ω.

Proposition IV.2. If Ω is a controlled strongly p-invariant
set, then it is also a controlled kp invariant set for all k ∈
N>0.

Proof. It follows from Definition 10 where the controlled
strongly p-invariant set ensures the trajectory intiated in the
set are within the set at any multiple of p time indices.

Theorem IV.2. A set Ω ⊂ Rn is controlled strongly p-
invariant with respect to the system (1) if and only if

Ω ⊆ Prepf (Ω) ∪ Pre1
f (Ω). (13)

Proof. (IF) follows from the Proposition IV.2.
(ONLY IF) The relationship (13) places the controlled strong
p-invariance property in the set-theoretic framework. For any
initial condition x0 ∈ Ω two possibilities appear:
• x ∈ Pre1

f (Ω)

Fig. 4: Left: Ω = L(h1)∩L(h1). Center: Graphical proof for
the satisfaction of the condition (13) of 3−strong invariance
of Ω for the closed loop trajectory of (1) representing a linear
dynamics with rotation θ = π/4 and contraction factor ρ =
0.95. Right: trajectory initiated in L(h1) which violates the
strong 3−satisfaction of constraints.

• x /∈ Pre1
f (Ω) and from (13) it follows that

x ∈ Prepf (Ω). Thus there exists a control sequence
u(k), k ∈ N[0,p−1] such that x(p) ∈ Ω with x(k+ 1) =
f(x(k), u(k)), k ∈ N[0,p−1] and x(0) = x0.

Corollary IV.3. If the set Ω ⊂ Rn is controlled strongly p-
invariant with respect to the system (1) then it is controlled
weakly p−invariant.

Proof. Analogous to Proposition IV.1.

It follows also from the same result that strong invariance
index is greater than or equal to the weak invariance index.
Next result bridges the gap between the strong p−satisfaction
of (self)-constraints and the strong positive p−invariance.

Proposition IV.3. Let a set Ω defined as in (10). If the set is
controlled strongly p−invariant with respect to the dynamics
(1) then the trajectories initiated in Ω are controlled weakly
p−satisfying the vector-constraints defining this set.

Proof. If Ω is controlled strongly p-invariant, then we have:

fp(x, u(x)) ∈ Ω for all x s.t x ∈ Ω and f(x, u(x)) /∈ Ω

As Ω =
l⋂

i=1

L(hi), we have for all i ∈ {1, . . . , l}:

fp(x, u(x)) ∈ L(hi) for all x s.t x ∈ Ω and f(x, u(x)) /∈ Ω

By chosing:

ri(x) =


p if x ∈ Ω, f(x, u(x)) /∈ Ω
1 if x ∈ Ω, f(x, u(x)) ∈ Ω
1 if x /∈ Ω, x ∈ L(hi), f(x, u(x)) ∈ L(hi)
p− t if x /∈ Ω, x ∈ L(hi), f(x, u(x)) /∈ L(hi)

where t < p is such that it exists z ∈ Ω such that x =
f t(z, u(z)). Thus, for any initial state x ∈ Ω it exists r : N→
N[1,p] such that fri(x)(x, u(x)) ∈ L(hi) which completes the
proof.

Remark 3. Strong p-invariance of Ω is not necessarily
implying the strong p-satisfaction of constraints for the
trajectories with initial conditions in Ω. Numerical examples
in this sense can be constructed readly, as for example in
Figure 4.



Fig. 5: Counter-example for the converse implication with
respect to the statement of the Proposition IV.3

An interesting fact concerns the converse implications,
we show by a numerical example that neither the weak p-
satisfaction of constraints nor their strong p-satisfaction will
imply the strong p-invariance.

Counter-example: Consider the system

x(t+ 1) = ρ

[
cos θ − sin θ
sin θ cos θ

]
x(t), with ρ = 0.95, θ = −π

6

and two polyehdral constraints sets represented in blue
and red regions in Fig.5 such that Ω is defined by their
intersection. The constraints are weakly satisfied with a index
p = 4 for the initial conditions in Ω. However, the set Ω is
not strongly p−invariant with the same index.

Before concluding this section dedicated to the comparison
between strong/weak p−invariance notions, let us recall the
periodic invariance properties (see for example [5], [6]) in
order to allow a comparison of the concepts introduced here.

Definition 11. A set Ω is said to be controlled p-periodic
invariant with respect to (1) if :

Ω ⊆ Prepf (Ω) (14)

In the light of this definition, it becomes clear
that a set which enjoys the periodic invariance prop-
erty is strongly/weakly invariant and conversely that a
strongly/weakly p−invariant set is not necessarily periodic
invariant with the same index p.

Proposition IV.4. If a set Ω is controlled p-periodic invari-
ant w.r.t (1) then it is controlled strongly (and weakly) p-
invariant.

Proof. By exploiting the conditions (13), (12) and (14):

Ω ⊆ Prepf (Ω)⊆ Prepf (Ω) ∪ Pre1
f (Ω)︸ ︷︷ ︸

strong p−invariant

⊆
p⋃

i=1

Preif (Ω)︸ ︷︷ ︸
weak p−invariant

which concludes the proof.

V. CONSTRUCTION OF A CONTROLLED
WEAKLY/STRONGLY p-INVARIANT SET

Constructing controlled p−invariant sets in the case of
linear time-invariant systems

x(t+ 1) = flin(x(t), u(t)) = Ax(t) +Bu(t)

can be done in a straightforward manner as long as the
conditions (13) or (12) are based on the operator

Pre1
flin

(Ω) = {x|∃u ∈ U, s.t. Ax+Bu ∈ Ω}
finding versatile implementation e.g. for polyhedral sets
U,Ω.

The construction of a controlled weakly/strongly p-
invariant set for a nonlinear systems (1) is difficult in a direct
set-theoretic framework but can rely on well-established tools
from the realm of symbolic control approach.

Symbolic control involves discretizing both the state space
and the control input. It represents the set of states as a
finite collection of symbols that transition among each other,
influenced by the control input. This approach allows us to
over-approximate a continuous model by a transition system
S = (Q,P, F ), where Q denotes the set of symbolic states,
P signifies the set of symbolic inputs, and F : Q × P →
2Q represents the set-valued transition map. If Q and P are
finite, S is termed finite or symbolic [18].

Using this framework, a set of states Ω ⊆ Rn is rep-
resented by its symbolic counterpart QΩ ⊆ Q. Then one
can compute a symbolic representation of the set Pre1

f (Ω),
defined as:

Pre1
F (QΩ) = {q ∈ Q| ∃p ∈ P, ∅ 6= F (q, p) ⊆ QΩ}

Given a candidate set Ω for the controlled weak/strong
p−invariance, by progressively increasing the value of p until
the verification of the relation (12) and (13), the set Ω can
be certified as a controlled weakly/strongly p-invariant set
for the transition system S and these properties will hold for
the continuous (state vector-space) model.

The only issue in such construction is the finite deter-
minedness. In short (see [19]), any candidate set Ω within
the maximal control invariant set guarantees the existence
of a finite index p. It should be recalled that the maximal
control invariant set for the transition system can be also
computed using a fixed-point algorithm [20].

Let us consider an example of controlled Hénon map:x1(t+ 1)
x2(t+ 1)
x3(t+ 1)

 =

0.44− 0.1x3(t)− 4x2(t)2 + 0.25u
x1(t)− 4x1(t)x2(t)

x2(t)


with the state constraint set X = [−1, 1]3 and input
constraint set U = [−1, 1]. Figure 6 depicts a computed
controlled weak/strong p-invariant set. This computed set
exhibits control properties akin to the control invariant set
but has a more simplified representation, thereby allowing
for potential substitution of the control invariant set in certain
scenarios, for example in NMPC. Figure 7 shows the clear
complexity attractiveness of the p−invariant set description
(polytopic set with minimal half-space representation).

VI. DISCUSSION AND FURTHER WORK

Let us recall by means of a schematic representation,
Figure 8, the different concepts developed in this paper and
additionally summarize the links between them. The strong
p-invariance is the most conservative among the set-theoretic



Fig. 6: The maximal control invariant set (in red) along-
side a hyperrectangle (in blue), certified either as a con-
trolled weakly 7−invariant set or as a controlled strongly
10−invariant set.

Fig. 7: Projection of the p−invaraint set (blue) onto the first
two dimensions showing the reduced complexity with respect
to the one of the nonconvex controlled invariant set in red
(note the different red colour intensity according to the depth
on the third dimension).

properties and implies the weak p-invariance (Corollary IV.3,
the converse is not true) and the weak p-satisfaction of
constraints of a tube of trajectories (Proposition IV.3) which
both imply the weak p-satisfaction of constraints (Proposition
III.2 and Definition 7).

A new class of properties with respect to the constrained
evolution of dynamical systems has been introduced and
further works should be dedicated to the charaterization of
p−invariance with respect to operators such as intersection or
union and define new parameterizations in terms of the index
p. It would be also relevant to understand the inherent rela-
tionship between the p-invariance index and the complexity
of the set representation. A particularly interesting question
would be to find the less complex set corresponding to a
given index p.

For the control design application, the use of p−invaraince
shows to be an important tool as already documented in [21]
or [22]- [23].

Trajectories of Ω
Weak p-satisfaction

of constraints

Tube of trajectories initiated in Ω
Weak p-satisfaction

of constraints

Weak p-invariance of Ω

Tube of trajectories initiated in Ω
Strong p-satisfaction

of constraints

Periodic invariance of Ω

 

 

  

 

   

  

 

 

 

    

Definition 7

 

Strong p-invariance of Ω

   

 

 
 

 Proposition IV.4

Corollary IV.3
Proposition IV.3

Proposition III.1

 Proposition III.1

Fig. 8: Summary of the different notions of p-satisfaction
and p-invariance. Arrows denote implication relations.
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