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Abstract

We derive a numerical method based on coupled Density Functional Theory and effective Hamil-

tonian schemes to calculate the linear and quadratic electro-optic response of ferroelectrics at finite

temperature and in different frequency ranges. By applying the developed method to BaTiO3, we

successfully resolve apparent discrepancies in the experimental literature which reported a linear

or quadratic electro-optic response when visible or THz radiation was employed to measure the

optical index, respectively. We further demonstrate that (and explain why), in the case of the

(Ba,Sr)TiO3 disordered solid solutions, structural phase transitions not only lead to larger linear

electro-optic constants, as previously demonstrated in the literature, but also significantly enhance

the quadratic electro-optic constants.
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Ferroelectric materials, such as BaTiO3 (BTO) or LiNbO3, attract particular attention

for optical applications. Their strong electro-optic (EO) response, that is the significant

change of the refractive indices under an applied low-frequency electric field, is key to EO

modulators, sensors, scramblers, compensation modules, or holographic storage technolo-

gies [1].

Original and subsequent works on the EO response of BTO bulk and films revealed a

linear change of the refractive index at visible or near-infrared wavelength (400 nm - 1550 nm)

with an applied low-frequency electric field, that is a linear EO (also called Pockels) [2–7].

In contrast, recent measurements indicate that the EO response of BTO is rather quadratic

(also called Kerr effect) when measuring the refractive index at 1 THz [8]. To the best of

our knowledge, no theoretical work has revealed the origin of this crossover from linear to

quadratic in the EO response of barium titanate. Atomistic simulation tools are thus needed

to understand the difference between these observations.

Density Functional Theory (DFT) based tools were developed to quantify the linear

EO response [9, 10] via the linear EO tensor rij (using Voigt notation on the first index).

Subsequently, the quadratic EO response [11, 12] and its associated tensor Rijk were also

determined ab-initio. DFT revealed microscopic insights and engineering strategies such as

applying bi-axial strain [13], controlling the electrical polarization [14] or nanoscale layer-

ing [15] to improve the EO response. However, these methods are limited to 0 K and fail

in describing the EO response of BTO in its room temperature, tetragonal phase [16, 17]

because of the soft phonon modes with imaginary frequency calculated in this phase [9].

Very recently, Kim et al. worked around that problem by treating the tetragonal phase of

BTO as the average of four monoclinic structures [19]. Yet, that approach remains limited

to the linear EO response, and cannot explain the emergence of the quadratic EO response

at 1 THz. Alternatively, Veithen et al. [28] mapped the dependency of the electronic di-

electric constant with respect to the amplitude of the soft ferroelectric mode and strain from

DFT calculations at 0 K. Subsequently, they used an effective Hamiltonian and Monte Carlo

simulations, a process that has successfully described the finite temperature properties of

ferroelectrics over the years [20–27], to derive the linear EO constants in the thermal stabil-

ity window of the tetragonal phase of BTO. However, the pioneering approach developed by

Veithen et al. did not derive the quadratic EO constant, which is necessary to explain the

transition from linear to quadratic EO regime in BTO. Moreover, this approach is neither
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applicable to THz frequencies nor allows the computations of EO responses in more complex

and promising systems, such as (Ba,Sr)TiO3 (BST) disordered solid solutions.

Here, we derive the methodology to compute the non-linear or Kerr EO response of

ferroelectrics at finite temperature. We also highlight a missing term in the linear EO

response derived in Ref. [28], which is important to the EO response for THz electromagnetic

waves. We then implement these derivations within the effective Hamiltonian scheme and

reveal why the EO response in BTO is mostly linear when visible light is employed, versus

mostly quadratic when using THz radiation. We finally describe how BST solid solutions

may enhance the EO response.

Let us first start with the expression of the unclamped linear EO coefficients [31]:

rσijγ(ω, ν) =
(

∂
∂Eγ(ν)

)
σ

(
1

εσ(ω)

)
ij

(1)

with ω the angular frequency of the light, ν the frequency of the applied electric field E.

i, j and γ are cartesian indices; Eγ is the γ component of the applied electric field.
(

1
εσ(ω)

)
ij

is the tensor of the inverse dielectric permittivity at frequency ω. The label σ indicates that

we consider the unclamped EO coefficients, i.e., in constant stress conditions.

These linear coefficients can be rewritten in the following way (cf. Ref. [28]):
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ijγ (ω, ν) + rσ,el−ion,strain
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where all derivatives are partial, at either constant strain η or constant polarization P. εel,σij

is the electronic dielectric permittivity, and χ
(2)el,σ
γij is the nonlinear electronic dielectric sus-

ceptibility [28]. χsm,σ
αγ = dPα

ε0dEγ
is the dielectric susceptibility associated with the soft mode

(the soft mode is proportional to the polarization). χ
(2)sm,σ
γij (ω, ν) is the nonlinear suscepti-

bility related to that soft mode (i.e., which corresponds to the first derivatives with respect
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to the electric field of the soft-mode related susceptibility). dσγµβ =
dηµβ
dEγ

are piezoelectric

coefficients. The third term in Eq. (2) describes how, under an applied electric field, the

soft-mode amplitude is modified and alters the refractive indices. Similarly, the last term on

the right hand side of Eq. (2) translates how piezoelectric effects change the unit cell shape

and result in a modification of the dielectric response at frequency ω/2π.

Equation (2) is similar to Equation (2) in Ref. [28], except for the presence, here, of

the second term, rσ,ionijγ (ω, ν). This is one of the (important) novelties of the present work,

which were not considered in past works [28–30]. It is related to the nonlinear dielectric

susceptibility associated with the soft mode and is important for some frequencies such as

THz. One has also to realize that the second and third terms of Eq.(2) generally should

involve a sum over all infra-red (IR) and Raman-active optical phonons [28]. Yet, we show

below that only incorporating the soft-mode already captures most of the EO effect in BTO

and BST. Indeed, the other IR and Raman-active phonons contribute little in the specific

case of BTO, owing to their relative small polarizability and Raman susceptibility compared

to the soft mode [9].

Technically, Eq. (2) assumes that ν ≪ ω, in order that the applied electric field frequency

ν does not appreciably change the frequency ω/2π of the electromagnetic radiation [4]. In

our subsequent calculations, we employ ν = 0 – that is we focus on static applied electric

fields.

Let us also derive an analytical expression for the (unclamped) quadratic EO coefficients,

in order to be able to compute them in the same conditions as the linear ones. For that,

we assume that the main dependence on the electric field in Eq. (2) arises from the soft-

mode related dielectric susceptibilities. Such assumption is valid close to structural phase

transitions or when ω ranges in the THz regime (which are typical vibration frequencies

of electrical polarization). Within this assumption, the nonlinear quadratic EO coefficients

can therefore be obtained by taking the full derivative of the soft-mode susceptibilities with

respect to the electric field in Equation (2). For example, χ
(2)sm,σ
βij (ω) in Eq. (2) becomes

χ
(3)sm,σ
αβij =

dχsm,σ
ij

dEαdEβ
and so on. One thus arrives at:
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Rijαβ(ω, ν, ν) ≈ Rion
ijαβ(ω, ν, ν) +Rel−ion,pol

ijαβ (ω, ν, ν)

with :
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√
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Theoretically, the first and second terms in Eq. (3) should also involve a sum over all

IR-active and Raman-active phonon modes. However, considering only the soft mode seems

enough to capture the quadratic EO coefficients of BTO films in the THz range as shown

below.

We now implement these equations to obtain the finite temperature EO properties in

a Ba1-xSrxTiO3 (BST) solid solution system, of which BTO bulk is a special case (x =

0). We first perform calculations of the electronic dielectric constant in the tetragonal

phase of BST for different values of the soft mode amplitude and strain, using the Abinit

code [32] with optimized norm-conserving Vanderbilt pseudopotentials ONCVPSP-3.2.3 [33]

and the virtual crystal alloy approximation [34], for which Ba and Sr ions are replaced

by a composition - dependent virtual ion [35]. We compute here the electronic dielectric

constant at h̄ω = 1.55 eV (corresponding to a wavelength of 800 nm) and at h̄ω = 4 meV

(corresponding to 1 THz radiation) at different displacements of the soft mode and different

strains (see Supplementary Materials). We use these values to calculate the derivatives of

εel,σij (ω) with respect to the soft mode and strains using finite differences. χ
(2)el,σ
γij , in the first

term of Equation (2), is calculated directly ab initio from the Abinit code at h̄ω = 1.55 eV

and 4 meV as well. Then, we use an effective Hamiltonian describing the energetic couplings

between the soft mode and strains for the BST system [23, 25, 36], and perform Monte Carlo

Metropolis and Molecular Dynamics simulations at room temperature to obtain the soft-mode

related linear and non-linear susceptibilities involved in Eqs. (2-3), as well as the piezoelectric

constants. More technical details are presented in the Supplementary Information. All these

quantities now allow us to calculate the finite temperature linear and quadratic EO response

of BST.

Let us first focus on BTO bulk. Comparison with experimental values [4] or previous
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calculations show the same qualitative trends: an extremely large value of the rσ51 coefficient

(≈ 502 pm/V versus 1, 300 pm/V [4]), followed by a significant rσ33 (≈ 73.9 pm/V here versus

108 pm/V [4]) and a smaller rσ13 (≈ 27 pm/V here versus 8 pm/V [4]). Quantitative differ-

ences can be attributed to (1) differences in numerical parametrization or sample quality,

leading to different critical temperatures and (2) in our case and in Ref. [28], the neglect of

higher frequency IR or Raman-active modes. Yet, incorporating only the soft mode already

gives a realistic representation of the EO response of BTO. Among all contributions involved

in Eq. (2), rσ,el−ion,pol
ijγ (ω, 0) accounts for most of the reported value (95% of rσ33, 125% of

rσ13 and 103% of rσ51). It is then clear that the comparatively large value of rσ51 compared

to rσ33 and rσ13 originates from the larger dielectric susceptibility χsm,σ
11 as we approach the

tetragonal-to-orthorombic phase transition in BTO, governed by the softening of the E-

modes. In contrast, χsm,σ
33 is smaller, as it is mainly contributed to by the A-mode which

does not soften during the tetragonal-to-orthorombic phase transition occurring slightly be-

low room temperature.

We now calculate the linear EO constant, but for a THz electromagnetic radiation (h̄ω =

4 meV), in bulk BTO. Note that we expect bulk BTO to behave similarly to the BTO thick

films deposited on SrTiO3 (STO) measured in Ref. [8]. Indeed, the large thickness of the film,

as well as the agreement between their measured lattice constants and our DFT calculated

ones (see Supplementary Information) indicate that the strain in BTO thick film is relaxed

and that it can be reasonably modeled using bulk BTO. Figure (1a) shows the longitudinal

Pockels constant rσ33 for both h̄ω = 4 meV and 1.55 eV, as well as their decomposition on

the various terms detailed in Equation (2). The THz linear EO response (≈ 153.2 pm/V) is

more than twice as strong as the visible EO constant. Quite interestingly, while the visible

EO constant primarily originates from the third term in Equation (2), rσ,el−ion,pol
33 , the linear

EO response in the THz regime mainly comes from the intrinsic second-order soft-mode

related susceptibility rσ,ion33 (second term in Equation (2)). In other words, this overlooked

term in past studies [28–30] is very significant for incident THz electromagnetic radiation

indeed.

We now calculate the non-linear EO coefficient R333 following Equation (3) in BTO

at 300 K, for both visible (h̄ω = 1.55 eV) and THz (h̄ω = 4 meV) radiations. Table I

shows that the quadratic EO coefficient is enhanced by a factor of 20 in the THz region

of the electromagnetic spectrum with respect to visible light. Strikingly, our predicted
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(a) (b)

FIG. 1. (a) contributions to the linear EO constant rσ33 in BTO at h̄ω = 4 meV and 1.55 eV. (b)

The change of the refractive index ∆n for BTO at h̄ω = 4 meV (in blue) and h̄ω = 1.55 eV (in

orange)

quadratic EO coefficient at 1 THz, R333 = −2.1 × 10−17 m2/V 2, has the same order of

magnitude than experimentally reported (−1.4 × 10−17 m2/V 2 in Ref. [8]), which confirms

the accuracy and assumptions of the present method. The main contributor to R333 in the

BTO system comes from the first term in Eq. (3), Rion
333(ω, ν = 0, ν = 0), containing the

third harmonic of the soft-mode susceptibility. We can thus also explain the discrepancy

between the previously DFT calculated value of 6.4×10−20 m2/V2 [11] and the 200 times

larger experimental value reported by Chen et al. [8]. Indeed, the DFT scheme developed

in Ref. [11] does not account for this third harmonic soft-mode related susceptibility. To

explore the linear versus quadratic nature of the EO induced change in refractive index in

BTO, we calculate the change of optical index ∆n(h̄ω) using the formula [39]:

∆n = −1
2

(
εtot,σ33

)3/2R33 (4)

with

εtot,σ33 = εel,σ33 (h̄ω) + χsm,σ
33 (h̄ω)

R33 = [r33(h̄ω, ν = 0) +R333(h̄ω, ν = 0, ν = 0)E3(ν = 0)]E3(ν = 0)

We plot the estimated change of the optical indices for reasonable values of the electric

field applied along the polar axis of BTO in Figure (1b). Interestingly, the orange curve,
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h̄ω rσ33 (pm/V) R333 (m2/V2) εel,σ33 (ω) χsm,σ
33 (ω)

1.55 eV 73.9 −1.1× 10−18 6.8 0

4 meV 153 −2.1× 10−17 6.3 91

TABLE I. Summary of the linear and quadratic EO constants, electronic dielectric constant and

soft-mode related dielectric susceptibility in BTO bulk for visible light (h̄ω = 1.55 eV) or THz

(h̄ω = 4 meV) incoming radiation, at 300 K.

corresponding to visible light (h̄ω = 1.55 eV), shows a linear EO response with small mag-

nitude. In contrast, the THz EO response (in blue in Figure (1b)) is clearly quadratic and

is strongly enhanced compared to the visible EO response. The much larger change in THz

optical index seen in Figure (1b) can be attributed to (i) the larger quadratic EO constant

R333 stemming from the third harmonic of the soft-mode susceptibility and (ii) the large

increase in the THz dielectric constant εtot,σ33 = εel,σ33 + χsm,σ
33 (see Table I and Equation 4).

Dispersions of the EO coefficients and dielectric response in BTO (see Supplementary Ma-

terial) indicate that the crossover from linear to quadratic EO response occurs through a

transition region dominated by optical phonon dielectric resonances. This transition region

extends from the lowest IR- and Raman-active optical phonon frequency (in our case, about

38 meV) to the frequency at which the electronic dielectric response supersedes the ionic one.

Similar crossover for in-plane applied electric fields are expected due to the close frequency

(41 meV) of the soft ferroelectric E mode.

Now that the apparent discrepancy between various measurements in BTO films is re-

solved, we shift our focus to BST with varying compositions x and visible wavelength

(800 nm, or h̄ω = 1.55 eV). We evidence there that, as x increases, we gradually change

from a mostly linear EO response to a non-linear, quadratic EO change of optical index. It

is well-known that, as x increases, the tetragonal-to-cubic transition temperature decreases

in BST, reaching 300 K around x = 26 %. [23] One would then expect that the soft-mode

susceptibility χsm,σ
33 diverges, resulting in large rσ33 and rσ13 around this particular concen-

tration. This is indeed what is observed in Figure (2a), causing rσ33 to exceed rσ51. We

also calculated the quadratic EO coefficient R333 following Eq. (3). Interestingly, R333 also

increases strongly for compositions near the tetragonal-to-cubic transition at 300 K (see Fig-

ure 2b) due to softening of the E-modes towards this border, which leads to divergence of
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the third-order susceptibility χ
(3)sm,σ
αβij (ω, 0, 0) in the first term of Equation 3, Rion

ijαβ(ω, 0, 0).

One could therefore reasonably expect a strong enhancement of the optical index change

∆n(h̄ω) near x = 26 % when applying an electric field E3 along the [001] direction. We, in

fact, calculated the expected change in optical index at h̄ω = 1.55 eV using Equation (4)

and report it in Figure (2c).

We find, at low x, that the change in optical index is mostly linear; however, for x

approaching 26 %, ∆n now adopts a strong non-linear (quadratic) dependency on the applied

static electric field at(h̄ω = 1.55 eV. Figure (2c) also stresses the importance of carefully

choosing the direction and sign of the applied electric field to maximize the EO change

of optical index. Indeed, the large quadratic response occurring at the phase transition

competes with the linear EO response for positive biases applied in the direction of the

polarization, severely limiting the change of optical index. This outlines the need to not only

consider the linear EO response at phase transitions, as done in previous works [13], but

consider higher orders such as the quadratic EO response as well. The methods developed

in this work present one of the very few attempts to comprehensively include higher order

effects in the EO characterization of ferroelectrics. One may define a crossover electric field

in Figure (2d) as − rσ33
R333

. It corresponds to the electric field above which the quadratic EO

response supersedes the linear one. Figure (2d) shows that this crossover field continuously

decreases as x increases, and vanishes at the tetragonal-to-cubic transition.

In summary, the coupled DFT-effective Hamiltonian scheme presented here is able to

calculate linear and quadratic EO responses at finite temperature, for various frequencies

and in simple BTO but also BST solid solutions. It is also revealed that a previously over-

looked term involving the non-linear dielectric susceptibility related to the soft ferroelectric

mode is instrumental to correctly understand the EO response of classical ferroelectrics in

the THz regime. Thanks to these tools, we have explained the crossover from the linear to

quadratic EO response in barium titanate when using visible or THz electromagnetic radia-

tion. Furthermore, our general effective Hamiltonian scheme also reveals that (and explain

why) the quadratic EO response may be significantly enhanced as well in the vicinity of

structural phase transitions such as the composition-driven tetragonal-to-cubic phase tran-

sition in BST. The universality of this coupled DFT-effective Hamiltonian scheme should

allow to explore the finite temperature response of more complex polar systems, for instance

exhibiting second order [21, 40] or order-disorder ferroelectric phase transitions [41–43].
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(a) (b)

(c) (d)

FIG. 2. (a) Calculated linear EO constants versus composition x in bulk BST; open symbols

denote experimental values [4]. (b) Computed quadratic EO constant R333 versus composition x.

(c) Expected change of refractive index for electric fields along the polar direction. (d) Crossover

field at which the linear and quadratic contributions to the change of refractive index are equal.

All data were calculated at 300 K and for h̄ω = 1.55 eV.
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