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ABSTRACT2

In recent years, hydroponic greenhouse cultivation has gained increasing popularity: the3
combination of hydroponics’ highly efficient use of resources with a controlled environment and4
an extended growing season provided by greenhouses allows for optimized, year-round plant5
growth. In this direction, precise and effective irrigation management is critical for achieving6
optimal crop yield while ensuring an economical use of water resources. This study explores7
techniques for explaining and predicting daily water consumption by utilizing only easily readily8
available meteorological data and the progressively growing records of the water consumption9
dataset. In situations where the dataset is limited in size, the conventional purely data-based10
approaches that rely on statistically benchmarking time series models tend to be too uncertain.11
Therefore, the objective of this study is to explore the potential contribution of crop models’12
main concepts in constructing more robust models, even when plant measurements are not13
available. Two strategies were developed for this purpose. The first strategy utilized the Greenlab14
model, employing reference parameter values from previously published papers and re-estimating,15
for identifiability reasons, only a limited number of parameters. The second strategy adopted16
key principles from crop growth models to propose a novel modeling approach, which involved17
deriving a Stochastic Segmentation of input Energy (SSiE) potentially absorbed by the elementary18
photosynthetically active parts of the plant. Several model versions were proposed and adjusted19
using the maximum likelihood method. We present a proof-of-concept of our methodology applied20
to the ekstasis Tomato, with one recorded time series of daily water uptake. This method provides21
an estimate of the plant’s dynamic pattern of light interception, which can then be applied for22
prediction of water consumption. The results indicate that the SSiE models could become valuable23
tools for extracting crop information efficiently from routine greenhouse measurements with further24
development and testing. This, in turn, could aid in achieving more precise irrigation management.25

Keywords: GreenLab model, Greenhouse, MLE, Stochastic Segmentation of input Energy, Water consumption, Beer-Lambert law, light26
interception27
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1 INTRODUCTION

Recent years have witnessed considerable research interest in the topic of water uptake by plants, particularly28
in the context of hydroponic greenhouse cultivation. For tomato plants in particular, numerous studies have29
stressed the importance of water uptake in comparing different cultivation methodologies. For instance,30
(Reina-Sánchez et al., 2005) explored the effects of salinity concentration on water uptake, and (Biswas31
et al., 2016) evaluated the impact of differing drip irrigation techniques. Moreover, investigations have32
been carried out to assess the influence of nitrogen supply on growth, yield, and Water Use Efficiency33
(WUE), incorporating biomass measurements either in field conditions (Cheng et al., 2021) or within34
a hydroponic greenhouse environment (Martı́nez-Ruiz et al., 2019). In Sigrimis et al. (2001), a distinct35
approach has been proposed, which suggests a methodology predicated upon measurements taken post-36
irrigation, accompanied by online re-estimation of the parameters of their model. While the study reported37
a high degree of accuracy for the proposed methodology, it is crucial to highlight its significant dependence38
on measurements taken after each individual irrigation event, requiring sophisticated instruments. This39
continuous monitoring may challenge the average producer, who may lack access to such advanced tools.40
Furthermore, the solution appears to be largely engineering-based, neglecting the biological representation41
of the plant’s development. Adhering to a common practice of daily measurements, the challenge in our42
setting consists in making the best use of limited information from data that concerns only water uptake and43
easily accessible meteorological data/parameters. This framework resembles the typical evaluation scheme44
that an average producer might employ to assess the productivity of their cultivation (Resh, 2022). However,45
despite the potential benefits for average producers, the proposed simplified experimental protocol may46
face serious limitations if data are not sufficiently informative due to measurement or even modeling errors47
caused by oversimplified assumptions. These limitations will be further discussed in the sequel.48

Plant water uptake is directly related to many greenhouse functions such as electric power usage (fertilizer49
mixer, climatic regulating facilities, etc.), fertilizer consumption, and yield production and quality (Resh,50
2022). Predicting water consumption in a given day could help the average producer regulate these costs,51
prevent excess-deficit irrigation, and increase production. Another aspect of the problem is water waste:52
In an extensive study spanning 165 countries, the Food and Agriculture Organization of the United53
Nations (FAO) estimated the total requirements and measurements of total withdrawals per country, thus54
documenting a 56% irrigation efficiency only (Food and of the United Nations , FAO).55

Water consumption prediction can primarily be accomplished through two distinct methods. The first56
approach is purely statistical, relying entirely on analyzing data series (Sigrimis et al., 2001). The second57
approach employs process-based models or Functional-Structural Plant Models (FSPMs) (Sievänen et al.,58
2014), which, despite requiring detailed and potentially costly longitudinal plant measurements, are59
invaluable for their ability to convey information about underlying physiological processes and potential60
interactions. The GreenLab model (Yan et al., 2004) is such an FSPM, combining both functional and61
structural description of metabolic processes with phytomer-level structures (De Reffye et al., 2021), and62
integrating the effects of water dynamics on plant growth Wang et al. (2012), thus allowing optimization of63
water supply Wu et al. (2005). However, in many cases of professional practices where access to detailed64
plant measurements is unavailable, neither of these approaches directly applies. Our objective, therefore,65
is to find the appropriate level of complexity for a model that remains as mechanistic as possible. The66
necessity of maintaining a mechanistic orientation stems from a few key reasons: the interpretability67
of certain parameters allows using a priori biological knowledge and, crucially, our data’s limited and68
uncertain nature. This uncertainty makes a purely statistical approach infeasible, underscoring the need69
for a method that captures the underlying physiological processes to a suitable extent. To this end, we70
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developed a new set of aggregated model versions, which inherit from the GreenLab principles but differ in71
the representation of the Light Interception Ratio (LIR) of the plant.72

In GreenLab, as in most process-based models, light interception is classically represented through73
the Beer–Lambert–Bouguer law, hereafter named as Beer-Lambert (BL), assuming a simple exponential74
relationship to describe light attenuation within a homogeneous canopy (Monsi & Saeki 1953, cited in75
English translation in Hirose (2005)). It relies on a simple one-dimensional turbid medium model, which76
raises several limitations regarding its consistency with experimental data (Ponce de León and Bailey,77
2019), its stability in relation to other environmental variables (Valladares et al., 2012), and the vertical78
variation of leaf photosynthetic parameters in the canopy (Sarlikioti et al., 2011), as well as its theoretical79
foundations (Kostinski, 2002). In particular, this equation assumes that foliage is randomly dispersed, a80
hypothesis that, depending on the species architecture, can lead to over-estimation of light interception if81
the foliage is clumped or, on the contrary, under-estimation if the plant plasticity allows optimizing foliage82
distribution for an enhanced light interception (e.g., for beech tree (Schröter et al., 2012)). In order to83
overcome these problems, other approaches have been proposed recently, notably that of (Shabanov and84
Gastellu-Etchegorry, 2018) and Casasanta and Garra (2018). In (Shabanov and Gastellu-Etchegorry, 2018),85
the authors derive a stochastic formulation of the BL law, which accounts for heterogeneous canopies.86
Their virtual experiments reveal that the traditional law is not universally applicable across different canopy87
structures. In Casasanta and Garra (2018), the authors introduce two stochastic approaches to the problem.88
The first one is based on a fractional Poisson process, resulting in a fractional BL law based on the89
Mittag-Leffler function, also discussed later in the present study (see Eq. 16). The second is based on90
weighted Poisson distributions, resulting in a Mittag-Leffler weighted BL law. In line with their work, we91
also propose some possible generalizations of the BL law. In particular, by modeling appropriately the92
probability of the event of interception, we derive a class of models for water consumption prediction.93

Therefore, the main objective of our study was to explore to which extent some mechanistic principles94
borrowed from physiologically based models could be incorporated into more statistical approaches for95
predicting the water consumption of plants. To this end, our approach was (i) to analyze the identifiability96
of some compartmental simplifications of the GreenLab model for tomato plants in the case where the97
data set consists only of environmental variables, (ii) to derive from the GreenLab principles a new family98
of models focusing on water consumption as the main state variable and differing by their assumptions99
regarding the dynamics of the LIR, and (iii) to perform a very preliminary comparison of these models100
using an experimental dataset of water consumption by tomato plants. Although mostly theoretical at this101
stage, this work has some conceptual interest in presenting an original stochastic approach to derive a102
new class of simple models and providing a procedural guideline to further confrontations to experimental103
results.104

2 MATERIAL AND METHODS

2.1 Data collection105

Between May 10 and July 2, 2021, an extensive study was conducted in a hydroponic greenhouse near106
Therma village, within the Nigrita-Serres region (40.91, 23.55), Greece, to examine the tomato plant’s (cv.107
ecstasis) water consumption patterns. A drip irrigation system was used to ensure precise irrigation for each108
individual plant. Rockwool was used as a substrate growing medium, a product of basalt mainly composed109
of Oxide of Calcium (CaO) with small percentages of Iron (Fe) and Aluminum (Al), in keeping with110
common practices in the region. Plants’ density is reported as 5 stems per m2 (one stem per plant). Indoor111
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measurements were performed using an Efento Logger (Efento, 2020). Additionally, meteorological data112
were collected using a Davis Vantage Pro 2 (Plus) weather station close to the greenhouse. A comprehensive113
overview of the measured quantities, including Solar Radiation, Temperature, Humidity, and Air pressure,114
averaged on a daily level, is presented in Table 1. Notably, the anemometer of the weather station was115
positioned at a height of 6.5 meters above ground level to guarantee accurate wind speed measurements.116

Initially, the plants were grown in a location separate from the greenhouse before being relocated to the117
designated study area. The period spanning from seed planting to the onset of observations was noted to be118
38 days. Upon arrival, the plants were observed to be in the initial stage of their first inflorescence , i.e., for119
the majority of plants, the first truss has just been formed. The measurements were thus performed from120
day 39 to day 92 of the plant growth, from 10/5/2021 to 2/7/2021, for a total of 54 days. Tomato plants are121
usually grouped into stations, each combining a substrate (slab) with n plants and a pot for water collection.122
The per average plant volume of water consumed by a station is referred to as Water Consumption (Wc),123
given by124

Wc(t) =
VIrr(t)−Roff (t)

n
, (1)

where VIrr(t) is the volume (L) of applied water at time t, and Roff (t) the volume (L) of the corresponding125
collected excess water which accumulates from the application time until the next morning during 12 hours.126
In our study, n = 3, and the Water Consumption (Wc) corresponds to the dependent variable we try to127
estimate and predict.128

2.2 Brief presentation of the GreenLab model for tomato129

The GreenLab model has been extensively explored in the literature, see, e.g., Dong et al. (2008) and130
Zhang et al. (2009) for its application on tomato. Hereafter, we briefly recall its main principles, and the131
interested reader is referred to Appendix 1.1 for a more comprehensive description of the model and to132
Table 6 for the specific parameter values that we used in this work.133

Plant development is assumed to be deterministically driven by the rules of a parameterized automaton134
which determines the sequential appearance of phytomers (plant species-specific combinations of organs)135
and their respective positions. The thermal time elapsing between the appearance of two successive136
phytomers, assumed to be constant, serves as the discrete (simulation) time step and is referred to as a137
Cycle of Development (CD). The organogenesis depends solely on thermal time, triggered above a base138
temperature of 12oC (Shamshiri et al., 2018).139

The structure of a tomato plant can be delineated by four types of primary organs (excluding roots): blade140
(b), petiole (p), internode (e), and fruit (f). Following the simplifications proposed by (Dong et al., 2008)141
and (Zhang et al., 2009), we considered flowers and fruits as the same organ (i.e. the dynamics of biomass142
allocation do not distinguish the transition from flower to fruit). Typically, in the cultivation of single-stem,143
pruned, tomato varieties within greenhouses, seven to eleven phytomers devoid of flowers develop prior144
to the emergence of the first inflorescence. In the present study, it is assumed that, following the first145
eight phytomers without flowers, a truss appears at every third phytomer, producing three flowers that bud.146
This specific assumption is consistent with empirical evidence from the present study and translates to an147
average of three fruits per truss.148

The integration of photosynthetic production is calculated using the Beer-Lambert (BL) law (Hirose,149
2005; Monteith, 1977), which is analogous to the approach employed in most process-based models:150
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Q(t) = E(t) · RUE · Sp ·
(
1− exp {−k SL(t)/Sp}

)
, (2)

where during CD(t), Q(t) corresponds to the newly synthesized (dried) biomass, E(t) to the Solar Radiation,151
and RUE is the Radiation Use Efficiency (the vegetation efficiency of converting radiative energy into152
biochemical energy through photosynthesis). Moreover, Sp represents the projected surface potentially153
occupied by a single plant, while SL(t) stands for the plant’s photosynthetically active leaf area, calculated154
as the sum of the total photosynthetically active biomass of the blades multiplied by the specific leaf area155
(SLA: coefficient converting a unit of produced biomass to leaf surface). The variable k corresponds to the156
extinction coefficient in the Beer-Lambert law, and it is set to 0.8 for the tomato crop, as in Zhang et al.157
(2009). For t = 0, the initial biomass of the seed is denoted by Q0.158

At each CD, the available biomass is shared between all growing organs of the plants, regardless of their159
spatial position and proportionally to their current sink strength,according to the so-called common pool160
assumption that was investigated for tomato by (Heuvelink, 1995). The growth ∆qo(u, t) of an organ of161
type o and chronological age u (days or CDs), while the plant is in cycle t ≥ u, can then be expressed as:162

∆qo(u, t) = po · fo
(

u

To

)
· Q(t− 1)

D(t)
, (3)

where po is the relative sink strength of the organ of type o, fo (·) its sink variation function related to the163
organ’s biomass demand profile during its expansion and D(t) the total demand in cycle t (see Eq. 23). As164
in (Yan et al., 2004), fo (·) corresponds to a discretized beta law function with shape parameters ao and165
bo (see Eq. 26). For identifiability reasons, discussed in (Dong et al., 2008), the constraint ao + bo = 5 is166
imposed for tomato plants.167

2.3 Link with Water Consumption168

Howell and Musick (1985) demonstrated that transpiration and biomass production are proportional in169
their set of environmental conditions that encompasses our experimental conditions (Table 1) (Howell et al.,170
1984). In our greenhouse setting, evaporation is assumed to be negligible, so transpiration could, in turn, be171
considered proportional to water consumption (Food and Agriculture Organization of the United Nations,172
1998), thus rendering the latter linearly related to dry matter production. Disregarding evaporation is not173
a particularly far-fetched premise within the framework of hydroponic greenhouses. These greenhouses174
are designed to reduce evaporation to a minimum, utilizing substrates wrapped in white sacks that offer a175
minimal surface area for water to evaporate from (Resh, 2022).176

Adding normally distributed homoskedastic errors, we obtain the following initial model:177

Wc(t) = µ0 ·Q(t) + εt, where εt ∼ N
(
0, σ2

)
, (4)

where µ0 is a positive proportionality constant and σ2 is a variance parameter representing the experimental178
variability of the measurement process.179

As Wc measurements were conducted daily, but the GreenLab model runs on Cycles of development180
(CD), we need to map CDs on days. Elapsed days between two successive leaf developments (phyllochron)181
can vary from 1.5 (summer) to 3 (autumn) days according to the genotype, and the climatic conditions182
(Pivetta et al. (2007), Schmidt et al. (2017)). We assume that the phyllochron is stable and equal to 2 days,183
as we measured a mean value of 10 oCd with a base temperature of 12oC. To aggregate the two separate184
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measurements into one CD, a weighted average is utilized with a weight proportional to the fraction of the185
Solar Radiation of each day.186

2.4 Identifiability issues and compartmental simplification of the GreenLab model187

In our realistic setting, where no plant data are available, estimating the parameters of the complete188
Greenlab model is unfeasible since identifiability problems typically arise: it means that different sets of189
parameter values generate the same simulated dynamics, for a specified set of output variables. Thus, in190
our case, plants with different characteristics could have the same dynamics of water consumption.191

Adopting a general dimensionality reduction strategy for non-identifiability issues—outlined in (Hastie192
et al., 2009)—we analyzed a simplified version of the model. We trade precision in representing the193
biological model for enhanced identifiability within the parameter space. In this version, we combined all194
the biomass of petioles (p), internodes (e), and fruits (f ) into a single representative referred to as body.195

Parameters requiring estimation thus comprise:196

θ = (ab, bb, pbody, abody, bbody, Sp, RUE, SLA, µ0, σ, Q0) (5)

We will refer to this specific parametrization as comp1.197

To explore the identifiability of parameters we performed simulation experiments under realistic scenarios.198
It consists of generating virtual observations from a realistic set of parameter values and investigating199
which parameters can be accurately estimated: non-identifiability is revealed when the estimated values are200
different from the ones used for simulating the observations. In that case, the corresponding parameters201
should be set as a constant and removed from the list of parameters to estimate, in order to reduce the202
dimension of the parameter vector until reaching an identifiable subset.203

For the sake of simplicity, we present in Section 3.1 the results from two characteristic cases only, which204
correspond to the comp1 model. In the first one, we fix SLA, the specific leaf area, and Q0, the initial205
biomass of the seed, quantities that can typically be measured. Parameters Sp and RUE are also fixed, since206
we incorporated the µ0 parameter in the model 4, a simplification justified by the compensation effect207
between those parameters. In the second case, additionally to the previously mentioned parameters, we fix208
Pbody, the sink strength of the “body” compartment. By initializing 5000 randomly selected starting points,209
we recorded the solutions that maximize the likelihood function of the model, with a tolerance of < 10−3210
to account for numerical approximations. The maximization of the function was performed via a BFGS211
(Broyden–Fletcher–Goldfarb–Shanno) quasi-Newton algorithm for Bound Constrained Optimization (Byrd212
et al., 1995).213

2.5 Two model versions for water consumption time series based on the recurrence214
equation of GreenLab215

As shown in Letort et al. (2009), the GreenLab model can be synthesized into a single recurrence equation216
that, for the sake of simplicity, we chose here to formulate as:217

Q(t) = E(t) · RUE · Sp

(
1− exp

{
−k · SLA

Sp

t−1∑
n=0

r(n)Q(n)

})
,
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where r(n) represents the proportion of green to the totally produced biomass Q(n), a quantity that can be218
calculated as a function of the model parameters. Assuming proportionality (with constant µ0) between219
biomass production and water consumption and no leaf senescence, we obtain a general model form for220
water consumption:221

Wc(t) = θ1 · E(t) ·

(
1− exp

{
−θ2

t−1∑
n=0

r(n)Wc(n)

})
, (6)

where θ1 = RUE ·Sp ·µ0 and θ2 =
k·SLA
Sp·µ0

are estimated, while the other parameters which appear implicitly222

in the coefficients r(n) are fixed at the values found in Dong et al. (2008) (see Table 6). This model will be223
referred to as GreenLab exp.224

To account for the obviously existing differences between the tomato plants in Dong et al. (2008) and
those available in this study, we propose a modified parametric version of the coefficients as follows:

r(t) =
ta

I(a)
, where I(a) =

∫ tmax

0
ta dt =

ta+1
max

a+ 1

corresponds to a normalization constant with respect to a, a parameter to estimate, and to the maximum225
time of observation tmax. This model will be referred to as exp + rate.226

2.6 Stochastic models of light interception to predict water consumption227

Building upon the prior discussion, we now focus on a novel aspect that broadens the model formulation.228
Here, we aim to represent biomass production at time t, as the cumulative byproduct of a composite229
stochastic experiment, which consists of many independent individual experiments, each one deciding230
whether elementary radiative inputs will be absorbed by the plant or not. We thus derive a family of models,231
which will be referred to as “Stochastic Segmentation of input Energy” models (SSiE).232

2.6.1 Formulation of the water consumption series from a stochastic model of light interception233

In this section, we discuss the intuition behind a probabilistic interpretation of biomass production, and234
we formalize this intuition with tools from theoretical probability. At each time t, a total radiative input235
E(t) is channeled into the system per m2. We assume that this input is equally quantized into very small236
elementary quantities {Ei(t)}ni=1 in such a way that either they are completely absorbed by the plant and237
converted into biomass by the enlightened parts of the plant or they exit the system without affecting it.238
In this case, Ei(t) = E(t)/n where n represents the number of “elementary” units. If no other specific239
details are known, one could assume that the individual events of absorption, say Ai(t), are independent240
with identical probability of occurrence p(t). With this interpretation and if 1Ai(t) stands for the indicator241
function of the corresponding event, each elementary radiative input Ei(t) is associated with a random242
variable243

Qi(t) = RUE · Sp · Ei(t) · 1Ai(t), (7)

which records its produced biomass, either 0 if the event Ai(t) is not realized or RUE · Sp · Ei(t) if the244
event is realized, and thus it is totally transformed. The total biomass produced by the plant at time t can245
thus be expressed as follows:246

Q(n)(t) =
n∑

i=1

Qi(t) = RUE · Sp · E(t) ·
∑n

i=1 1Ai(t)

n
. (8)
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Clearly, the last factor of the above expression corresponds to the sample mean of independent and247
identically distributed random variables and in particular Bernoulli random variables with common248
probability p(t). Intuitively, one should expect by the strong law of large numbers that the sample mean249
value should be very near to their common probability of absorption, that is, p(t). These arguments give an250
intuitive interpretation of the fact that the following approximations should be plausible:251

Q(t) ≈ Q(n)(t) ≈ RUE · Sp · E(t) · p(t). (9)

However, despite the seemingly sound arguments underlying these approximations, a theoretical252
justification of their validity is more complex. An obvious theoretical caveat regarding the validity253
of these approximations is that we cannot conceptualize a countably infinite sequence of events of254
common probability that play the role of the elementary events of biomass absorption, or equivalently the255
total radiative input cannot be partitioned into a countably infinite number of positive parts potentially256
transformed into biomass. One possibility for justifying the above approximations would be to resort to257
an uncountable number of stochastic experiments. This approach involves more mathematical intricacies.258
For this reason, and since a rigorous justification of this part is not necessary for the rest of the paper, the259
interested reader is referred to Appendix 1.2 for more details.260

The next step is to appropriately model the probability of absorption p(t), which can classically be done261

through a parametric family of continuous distribution functions. For each time t, let {Zu(t)}E(t)
u=0 represent262

the Bernoulli experiments of absorption of the radiative input for all possible u ranging from 0 to E(t). If263
we denote by LIS(t) the Light Interception Surface at time t, then, assuming that the maximum available264

soil surface is Sp, one could construct a new family of random variables {Uu(t)}E(t)
u=0 uniformly distributed265

on [0, Sp] which concretize the above experiments. In particular, the interval [0, Sp] is partitioned into two266
subintervals [0, LIS(t)] and (LIS(t), Sp]. Then, the absorption events can be written as267

Au(t) := {Zu(t) = 1} = {Uu(t) ≤ LIS(t)}, 0 ≤ u ≤ E(t). (10)

In probability theory, such a family exists; loosely speaking, this reinterpretation of the absorption events
corresponds to a collection of idealized experiments where an elementary radiative input enters into the
system if it intersects with the green part of the plant. Now, notice that p(t) corresponds exactly to the
probability of the event given by (10) which is related to the Light Interception Surface LIS(t) at time
t. However, LIS(t) is not directly observable, but only indirectly via the cumulated water consumption
prior to time t, denoted by SWc(t

−) (itself proportional to the cumulated produced biomass). A novelty of
this study consists in making a link between LIS(t) and SWc(t

−) through an increasing (non-decreasing)
function g : R+ −→ R+, that is, LIS(t) = g(SWc(t

−)). By the above argument, Eq. (10) and the fact that
Uu(t) ∼ Unif(0, Sp) we get that all the following equalities hold:

p(t) = P
(
Uu(t) ≤ LIS(t)

)
= P(Uu(t) ≤ g(SWc(t

−))) =
g(SWc(t

−))

Sp
=

LIS(t)

Sp
=: LIR(t),

where the last term stands for the Light Interception Ratio. Now, also notice that if U ∼ Unif(0, Sp) is a268

copy from the family {Uu(t)}E(t)
u=0 and g is invertible, then the third term above can be rewritten as269

LIR(t) = P
(
g−1(U) ≤ SWc(t

−)
)
= P

(
X ≤ SWc(t

−)
)
= FX(SWc(t

−)), (11)
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where we set X = g−1(U). In fact, since g is assumed to be an increasing function, its inverse exists at270
least in a generalised form (generalised inverse) and the above equations still hold. The problem is then to271
define the relationship between LIR(t) (or LIS(t)) and SWc(t

−) without having any information on the272
plant itself and in the next section we discuss several such possibilities.273

2.6.2 Different options for the distribution of X274

The determination of a mechanistic functional relationship between LIR(t) and SWc(t
−) is unrealistic.

Biologically speaking, the underlying processes are complex and involve, among others, the patterns of
biomass allocation to blades and their arrangement in space. An approach to this objective is, however,
feasible and a selected number of possible distribution families could be used to compete for their fitting
quality and their predictive ability. By introducing additive errors as in Section 2.3, we can derive a model
directly applicable to Water Consumption variable

Wc(t) ∼ N
(
θ1 · E(t) · FX

(
SWc(t

−)), σ2
)
, (12)

thereby eliminating the requirement for biomass as intermediary variable. Each model is determined by275
specifying FX in one of the following parametric family of distributions.276

Exponential distribution. The exponential distribution is one of the most fundamental suppositions
that one can make when faced with an undetermined distribution, since it corresponds to the maximum
entropy solution for a given expected value on the positive line (Jaynes, 1957). Besides, in our setting,
it leads to a Beer-Lambert-like model. By (11) and the assumption of an exponential model we get:

LIR(t; k) = 1− exp
(
− k · SWc(t

−)
)
, t ≥ 0. (13)

Gamma distribution277
The gamma distribution is a generalization of the exponential distribution. This provides a logical

progression from our initial assumption of an exponential distribution. By (11) and the assumption of a
gamma model, we get:

LIR(t; k, aγ) =

∫ SWc(t
−)

0

kaγ

Γ(aγ)
saγ−1 e−k·s ds, t ≥ 0. (14)

Mittag-Leffler distribution278
Mittag-Leffler introduced the function bearing his name in 1903 (Bateman, 1953). Different properties

of the distribution generated by the Mittag-Leffler function were explored in Pillai (1990). The concept
of generalizing the Beer-Lambert law with the use of the Mittag-Leffler function was proposed by
Casasanta and Garra (2018). Following their work, we incorporate this generalization into our analysis,
leading to the following LIR term:

LIR(t; k, aML) = 1− EaML

(
− (k · SWc(t

−))aML
)
, t ≥ 0, (15)

where EaML is the Mittag-Leffler function:

EaML(x) =
∞∑
j=0

xj

Γ(j · aML + 1)
, x ∈ R, (16)
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with aML ∈ (0, 1] the tail parameter and k > 0 the rate parameter. For aML = 1 the above formulation279
reduces to the exponential distribution with rate parameter k.280

Log-normal distribution281
The log-normal distribution is commonly employed to model growth rates Our reasoning for282

incorporating this distribution in our analysis stems from the presumption that the elementary events283
(Ai)

n
i=1 are influenced by the incremental growth of smaller plant elements. This growth is contingent284

on their size. For the density function, we proceed by adopting the ensuing parametrization:285

LIR(t;µlog, σlog) =

∫ SWc(t
−)

0

1

s · σlog ·
√
2π

exp

(
−
(
log(s)− µlog

)2
2σ2log

)
ds, t > 0. (17)

Pareto distribution286
The last distribution we explore is Pareto. Following (Van der Zande et al., 2010) (mainly the results287

depicted in Figures 2 and 3), we observe that the percentage of the biomass responsible for most of288
the energy interception follows a similar law to the Pareto 80/20 rule (Juran and De Feo, 2010). The289
formulation of the distribution function that we adopt is as follows:290

LIR(t; θ, η) = 1−
(

η

SWc(t−)

)θ

, SWc(t
−) > η. (18)

2.7 Model comparison and prediction performance criteria291

To have a challenging baseline model to compete with, we first estimated a linear first-order autoregressive292
model with one exogenous variable, namely the average solar radiation received at day t, E(t):293

Wc(t) = b0 + b1Wc(t− 1) + b2E(t) + εt, (19)

where the bi coefficients are estimated via the ordinary least squares method.294

In terms of forecasting, a sequential methodology is employed. From the original dataset, we initially295
extract the first 55% days (days 39 to 68) for training and predict the next day’s water consumption (day296
69). Subsequently, we increase the size of the training set by one additional day at each step, continuing297
to predict the following day until we reach the end of the time series. The parameters are re-estimated at298
each step of the procedure, using a total of 1000 distinct starting points in our calculations, subsequently299
selecting the point with the highest likelihood value as the model’s parameter for prediction. However, in300
the case of the mlf model, the number of initial points was reduced to 20, to reduce the computational301
burden. After the parameter estimation process, a model selection procedure was performed with the two302
most classical model selection criteria, namely the corrected Akaike Information Criterion (AICc) (Hurvich303
and Tsai, 1989) and the Bayesian Information Criterion (BIC).304

The setting described above reflects real-world conditions as it emulates the practical scenario where we305
have a bunch of observations, and our objective is to forecast Water Consumption for the upcoming day.306
Two different settings were considered for the inputted Solar Radiation (E): (i) assumed to be perfectly307
known (fixed covariate setting), or (ii) with an additive white noise factor associated with predicting solar308
radiation, where the standard deviation was set empirically at 20, a value which corresponds to a bound on309
values typically obtained with current prediction models (Tao et al., 2019).310
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The predictive performance of the models was compared with the Root Mean Square Prediction Error
(RMSPE):

RMSPE(ŷ) =

√√√√ 1

m

m∑
i=1

(yi − ŷi)2, (20)

where y = (yi) is the vector of observed values and ŷ = (ŷi) the predicted ones. For the testing set,311
according to the previously described protocol we used m = 24 observations. The computer programs312
were developed in R (version 4.3.1.) and the packages MittagLeffleR (Gill and Straka, 2018) and tidyverse313
(Wickham et al., 2019) were used for computations with the Mittag-Leffler distribution and other data314
manipulations and visualization respectively.315

3 RESULTS

3.1 Identifiability analysis of the GreenLab model with compartmental simplification316

When considering only water consumption data, a certain number of the GreenLab parameters are not317
identifiable. This is true even when the simplified and parsimonious comp1 model is used which has fewer318
parameters than the complete one (Section 2.4). The boxplots in Figure 1 allow comparing the case where319
Pbody is estimated (in addition to Bb, Bbody, µ0, and σ) with the case where it is set at its reference value.320
Each point represents an estimated parameter value, and specific combinations of these points correspond321
to the estimated solutions of the maximization problem. Note that, for scaling purposes, Pbody has been322
normalized by its maximum value. The plots reveal that many distinct solutions yield similar likelihood323
values. As can be seen by comparing the ranges of the estimated parameters (see Fig. 1, left and right),324
this identifiability issue diminishes as we set more parameters, but never disappear. Even with only four325
estimated parameters, we remark compensation effects between Bb and Bbody, since the resulting estimates326
still vary significantly. However, the parameters µ0 and σ are identifiable, at least locally, around the chosen327
reference values, a noteworthy result which enables the elaboration of the stochastic framework discussed328
in Section 2.6.329

3.2 Estimation of the linear and SSiE models’ parameters330

The regression results for the linear autoregressive model 19 with Average Solar Radiation as an331
exogenous variable show that all parameters appear to be statistically significant at a 0.01 significance level332
(Table 2). The coefficient of determination R2 and the adjusted one have similar values, of approximately333
0.88.334

The estimated parameter values of each SSiE model (Table 3) and their relative performances (Table 4)
according to the comparison criteria defined in 2.7 highlight a slight superiority of the lognormal and pareto
models in terms of both the Bayesian Information Criterion (BIC) and the corrected Akaike Information
Criterion (AICc). A straightforward application of Eq. 6 by estimating the green biomass by an already
fitted model (Dong et al., 2008) does not appear to be highly promising, as it still results in higher values in
these criteria. Similar behavior is present in the Beer-Lambert-like approach of the exponential distribution.
A notable result is the estimation of aML ≃ 0.5 (see Table 3). For aML = 0.5 the Mittag-Leffler function
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(16) reduces to (Haubold et al., 2011):

E1/2(x) = ex
2
(
1− 2√

π

∫ x

0
e−s2 ds

)
,

where 2√
π

∫ x
0 e−s2 ds, also known as the Gauss error function, is a quantity which expresses the probability

of a typical Gaussian distribution to be found in the interval [−x, x] for x ≥ 0. In our case this translates to:

LIR(t) ≃ 1− exp
(
−k · SWc(t

−)
)
· P
(
|Z| >

√
k · SWc(t−)

)
, t ≥ 0,

where Z ∼ N(0, 1). Another noteworthy finding is related to the pareto model and specifically the parameter335
η which corresponds to the initial cumulative water consumption SWc(t) up to the first observation time.336
This parameter was estimated at 0.403 (see Table 3) and corresponds approximately to 400ml over a span337
of 38 days.338

Observing the temporal change of the estimated LIR with the different methods described in Section339
2.6.2 reveals that the pairs (lognormal, GreenLab-exp) and (gamma, lognormal + rate) exhibit similar340
trends (Figure 2). This similarity is even more visible when the LIR is normalized by its maximal value and341
displayed with respect to SWc, as shown in the Supplementary Material (Appendix 4). As the optimization342
procedure revealed, there is a compensation effect between θ1 and the LIR scaling, thus justifying the343
normalized representation in Appendix 1.3. However, the pareto and mlf methodologies demonstrate344
distinct trends that can be clearly differentiated from the others. The unique trend of the pareto methodology345
is also evident in Figure 3, where it manages to track the initial and final trends concurrently during the346
observation period, as opposed to the other methods, which are only capable of capturing either the347
beginning or the end trend, but not both simultaneously. Another notable result concerns the grouping of348
the best-performing models according to the BIC criterion (Fig. 4). The estimated LIR resulting from the349
best representative of these models is also shown in Figure 2.350

3.3 Prediction results351

The results of the predictive analysis revealed that the pareto and the LR models exhibited the best352
predictive performance both under known and unknown but predicted Solar Radiation, indicating their353
relative superiority within the context of our investigation (Table 5). However, the lognormal and the mlf354
models were slightly inferior and almost equivalent between them in both settings of Solar Radiation,355
followed by the gamma model. Surprisingly, it is crucial to acknowledge the underperformance of the356
lognormal, GreenLab exp and lognormal + rate models, which implement a methodology similar to357
the Beer-Lambert law. Compared to other models, these models’ inferior performance underlines the358
importance of generalising the BL-law for optimising performance.359

4 DISCUSSION

4.1 Different possible uses of crop models for predicting water consumption without360
plant information361

Our primary objective was to investigate methodologies for modeling and predicting Water Consumption362
in tomato plants by utilising concepts derived from the crop models but without any information on the363
crop. While ambitious, this objective is grounded in uncovering hidden patterns within the crop’s behavior364
through the model’s learning process, particularly patterns of light interception. This approach is inherently365
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interdisciplinary, combining methodologies from data science, statistics, and biology to address a complex366
biological problem.367

Initially, we focused on the well-researched GreenLab model (Yan et al. (2004),De Reffye et al. (2021)),368
but the methodology could be considered generic and applied to other FSPMs (Sievänen et al., 2014) or369
crop models of tomato (e.g. Marcelis et al. (2008)). Various strategies for using a mechanistic model in370
such a setting can be considered, each with a unique potential role. The first strategy revolved around371
employing GreenLab as a completely pre-fitted model, as done in Chew et al. (2014) for the case of372
Arabidopsis. However, the issues here concerned uncertainties and discrepancies among various genotypes.373
The second strategy would be to estimate all the parameters of GreenLab, but due to the incomplete dataset374
and the current experimental protocol, this strategy proved infeasible as the model exhibited identifiability375
problems, as also reported in Letort et al. (2012) for Coffea trees when only compartment data are available.376
Such an estimation procedure would necessitate destructive plant data, at different growth stages, for377
estimating the sink strengths and their variations Guo et al. (2006). The third strategy involved using378
GreenLab as a partially pre-fitted model, estimating only a fraction of its parameters. This was done for the379
GreenLab exp model, where only two parameters of the production equation were estimated. This strategy380
also encompassed the use of GreenLab as a submodel, assuming a similar pattern for the globally allocated381
biomass fraction to the leaves, as done for the GreenLab rate, or by combining some of its basic principles382
in the proposed SSiE models (e.g. proportionality between biomass production and water consumption is383
retained as an underlying hypothesis).384

4.2 Summary of our main findings385

The proposed models, employing pareto, LR, mlf or Lognorm, yielded comparable predictive outcomes386
(RMSPE 0.2-0.23). In the context of our problem formulation, which involves one measurement of Water387
Consumption per day and relies solely on climatic data, this RMSPE translates to an error of approximately388
215ml per day. This level of accuracy can contribute to the sustainability of agricultural practices by389
optimizing water usage. Importantly, the pareto and mlf models are feasible for application in a scheme of390
one measurement per day. However, both of them have disadvantages. The pareto model presents some391
identifiability issues among the µ0 and θ parameters, which warrants further investigation. On the other392
hand, the mlf is computationally heavy, a disadvantage that can be minimal in a scenario with only one393
measurement and only one day to predict. Despite these challenges, the models remain viable choices394
for real-world applications. Even though lognormal + rate and gamma models do not present equivalent395
results as the aforementioned, the LIR estimated by these methods, approximately 80%, are similar to the396
results reported in Wilson et al. (1992) and Ohashi et al. (2022). Measurements at 7 farms showed that397
in the summer season, the light interception was on average 90%, with values varying between 86% and398
96%” in Heuvelink et al. (2004), with reported densities of 2.3 and 3.4 stems per m2, in contrast to our399
case, where the reported density is 5 stems per m2.400

This work can be considered as a methodological proposition for determining the LIR profile with only401
a subset of the variables routinely measured by professional growers in a hydroponic setting, i.e., Water402
deficit volume, Solar Radiation. Interestingly, the profiles of LIR that we obtain in Figure 2 are consistent403
with those reported in the literature ((Duursma et al., 2012), Ohashi et al. (2022)). Selecting the models404
with the best predictive performances seems a reasonable strategy. Nonetheless, this approach warrants405
further empirical validation. Future research could focus on quantifying the diffusion of light in relation to406
distinct plant attributes and may include virtual experiments (as in (Duursma et al., 2012)).407
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4.3 Modeling light interception and its relation with plant growth408

The amount of energy a crop captures, crucial for modeling crop growth and yield, is largely determined409
by canopy light interception (Higashide and Heuvelink, 2009). There is, however, currently no consensus410
on how light interception should be modeled: Liu et al. (2021) reviewed the canopy light interception411
models of 26 crop models of wheat and reported that the uncertainty in simulated wheat growth and final412
grain yield due to the different light models could be as high as 45%. The light interception modules form413
a continuum of approaches that range from simple (empirically or theoretically grounded) relationships414
between some characteristics of the photosynthetically active parts of the plant (usually LAI, e.g., Sarlikioti415
et al. (2011)) and the way they intercept light, to complex scene illumination algorithm, incorporating a416
precise 3D geometric representation of the plant (e.g. in Schipper et al. (2023)). Our work contributes to417
that line of research, proposing a new cost-effective methodology to assess the time course of the LIR418
through its dependence on the water consumption profile. Our results further address the discussion of the419
need for generalizations or alternatives to Beer-Lambert law. Shabanov and Gastellu-Etchegorry (2018)420
and Casasanta and Garra (2018) have already proposed theoretical suggestions in this direction, and we421
believe our work presents a practical application of these theories.422

Various variables have been employed in the literature to characterize light interception (e.g. STAR (light423
interception per leaf area) in Oker-Blom and Smolander (1988), Duursma et al. (2012), FIPAR (Fraction424
of PAR intercepted by the photosynthetically active radiation elements of canopies) in Liu et al. (2021)).425
In this context, we utilize the Light Interception Ratio (LIR) that characterizes light interception per soil426
unit, a term we have intentionally left loosely defined. In our usage, this is primarily because LIR is a more427
empirically determined global variable rather than one rigorously derived from mechanistic principles.428
Nevertheless, we anticipate that it may still offer some interpretive value within the scope of our study. Our429
models cannot disentangle the different factors influencing light interception (leaf density, orientation, etc.)430
but provide a global representation of light interception at the plant scale, which is easy to obtain using431
routine measurements, and can assist in simple predictions of Water Consumption.432

4.4 Limitations of the work433

Our work presents important limitations that must be acknowledged. First, our modeling approach relies434
on strong physiological simplifications: e.g. neglecting soil evaporation and respiration of existing organs,435
constant radiation use efficiency, constant SLA, no influence of external environmental conditions except436
radiation and applied water volume, proportionality between light intercepted and photosynthesis (a more437
refined model here would have been to consider Farquhar’s photosynthesis model, for instance Farquhar438
et al. (1980)), proportionality between water consumption and biomass production. Regarding this last439
assumption, the ratio of biomass to transpiration (Water Use Efficiency (WUE)) is known to vary with440
weather, genotypes, and practices (Blankenagel et al. (2018), Bhaskara et al. (2022)). Therefore, using a441
constant value is likely to be valid only in a limited range of environmental conditions that would have to442
be determined using a more extensive experimental dataset (Lanoue et al., 2017)443

All these simplifications were required with respect to our objectives and our context of using only444
routinely recorded variables. They can, however, be considered applicable when describing the average445
growth of plants in standard conditions, and most of them are also laid in other models (Ma et al.446
(2022),Winn et al. (2023)).447

An additional underlying assumption that deserves to be highlighted is that the g function is time-448
independent. In reality, g aggregates the effects of blade spatial arrangement, which determines the449
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probability of a radiation ray being intercepted, the fraction of biomass allocated to the blades and the450
senescence of the leaves. This fraction decreases with time, especially due to the progressive appearance of451
fruits, whose demand competes with that of blades, a phenomenon that our SSiE models do not account for.452
However, in our case, because the time of observation is at a very later stage than the initial planting, this453
fraction is, in fact, nearly constant, taking values in the range (0.21-0.24), as simulated using GreenLab454
(Zhang et al., 2009). This explains why the models exp and GreenLab exp behave similarly.455

In conclusion, we must acknowledge the limitations of our data, which prevent us from drawing strong456
conclusions from our results. Measuring and estimating the mean value of water consumption among only457
three plants could potentially introduce some errors because of the variance within them. Solar Radiation is458
measured outside of the greenhouse, which introduces the need for simulating an unknown transmission459
coefficient through the greenhouse: such coefficient is accounted for in the constant θ1 in model 12.460
Lastly, since we do not have access to light distribution measurements in our study, we cannot definitively461
conclude on the validity of our models by comparing our simulation outputs to real measurements, nor462
can we assess the stability of the values of the parameters of our models for different environmental463
conditions. Nevertheless, we believe that our work can be considered as a proof-of-concept for our464
proposed methodology and that the SSiE model appears promising for modeling Water Consumption.465

4.5 Perspectives466

In light of this, our future research will aim to apply further and investigate the utility of the SSiE model467
in predicting such quantities. The choice of distribution might be crop-dependent, and we aim to explore468
this idea in the future by acquiring data that would enable testing our models’ assumptions regarding the469
relationship between water consumption, crop architecture, and the different profiles of light distribution470
within the canopy.471

From a methodological point of view, the current formulation is particularly adapted for Bayesian methods,472
which will allow for an easy way to quantify uncertainty and use the Bayesian predictive distribution for473
forecasting purposes. An online Bayesian method with sequential Monte-Carlo may be particularly relevant,474
and MCMC methods could also be applied for more efficient estimation, as in (Logothetis et al., 2022).475
The comparison of MCMC with sequential Monte-Carlo for MLE was done in Trevezas et al. (2014).476

5 CONCLUSION

In this study, we aimed to better understand plant water consumption, a subject of considerable importance477
for greenhouse management. The widely-used GreenLab model was not identifiable in our setting, even478
after compartmental simplifications, but it could be considered in other applications if at least partial479
information on the plant could be collected. Using similar physiological assumptions but in a probabilistic480
framework, we introduced the SSiE model as an alternative, directly applicable to water consumption, thus481
avoiding the need for biomass production as an intermediary variable. Despite the limitations of our data,482
the SSiE model provided some useful preliminary insights, particularly in the area of light interception over483
time. While these findings are still at a mostly theoretical stage, our proof-of-concept on our experimental484
dataset hints at the SSiE model’s potential utility for water consumption and light interception analyses.485

The practical implications of these initial findings could be noteworthy and extend toward other crops486
and settings, offering a pathway to more efficient water usage in greenhouses.487
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1 APPENDIX

1.1 Appendix of GreenLab model for tomato490

The integration of photosynthetic production is calculated using the Beer-Lambert (BL) law (Monteith,491
1977), which is analogous to the approach employed in most process-based models:492

Q(t) = E(t) · RUE · Sp ·
(
1− exp {−k SL(t)/Sp}

)
, (21)

where during CD(t), Q(t) corresponds to the newly synthesized (dried) biomass, E(t) to the system’s493
energetic contribution (in our case, solar radiation), and RUE is the Light Use Efficiency (LUE) (the494
vegetation efficiency of converting radiative energy into biochemical energy through photosynthesis).495
Moreover, Sp represents the projected surface potentially occupied by a single plant, while SL(t) stands for496
the plant’s photosynthetically active leaf area. This is calculated as the sum of the total photosynthetically497
active biomass of the blades multiplied by the specific leaf area (SLA). The variable k corresponds to the498
extinction coefficient in the Beer-Lambert law, and it is set to 0.8 for the tomato crop, as per Zhang et al.499
(2009). Q(0) = Q0 is the initial biomass of the seed. In our case, because of the difference in planting and500
first observation, the initial biomass will also be a parameter under estimation.501

1.1.1 Dry matter allocation502

The biomass ascribed to every organ, spread from the common pool, is set proportional to its sink strength503
(Yan et al. (2004),De Reffye et al. (2021)). In the context of mechanistic models for simulating dry matter504
partitioning, a common assimilate pool refers to a shared pool of assimilates from which various sink505
organs of a plant derive their growth resources. This implies that the plant does not segregate into distinct506
source-sink units, and thus, any resistance encountered during the transport of assimilates from source to507
sink would not influence the distribution of dry matter (Heuvelink, 1995). Sink strength adjusts during508
the period of organ expansion, following the same form of sink function for all organs of the same type509
o ∈ {b, p, e, f} in a cohort. A cohort is a set of organs of the same nature, created at the same CD by the510
parallel functioning of meristems.511

If To stands for the expansion duration of an organ of type (o) and t stands for its chronological age (days512
or CDs), then the sink strength is modeled by the function:513

Po(t) = po · fo
(

t

To

)
, 0 ≤ t ≤ To, (22)

where po is its relative sink strength (with respect to the blade’s one), fo (·) is the variation function of the514
sink related to its development, chosen as a Beta density function.515

The sum of the sink strength of all organs is the Demand D(t) at a given time t:516
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D(t) =
∑
o

t∑
u=1

No(t− u+ 1)Po(u), (23)

where No(t − u + 1) is the total number of organs of type o at time t that appeared at time u and are,517
therefore, of age t − u + 1. The biomass growth of an organ o varies on the value of its sink and the518
ratio supply produced to the previous cycle Q(t− 1) (2) by the current demand D(t) (23). The growth of519
an organ of type o that manifests during cycle u, while the plant is in a subsequent cycle t > u, can be520
articulated as:521

∆qo(u, t) = Po(t− u+ 1)
Q(t− 1)

D(t)
, (24)

and the weight of the organ that appeared in cycle u when the plant is at age t is then:522

qo(u, t) =
t∑

j=u

∆qo(u, j). (25)

1.1.2 Beta sink function523

In the initial GreenLab model (Yan et al., 2004), the sink function is defined according to a discretized524
beta law function:525

fo

(
t

To

)
=

1

M

(
t

To

)ao−1(
1− t

To

)bo−1

, 0 ≤ t ≤ To, (26)

where the parameters ao and bo, verifying the constraint ao, bo ≥ 1, drive the curve shape and M is a526
normalization constant usually modeled as the sum or the max over 1 ≤ t ≤ To.527

In this case, the parameters to estimate are:528

θ = (ab, bb, pp, ap, bp, pe, ae, be, pf , af , bf , Sp,RUE, SLA,Q0) (27)

The absence of pb arises from the standard practice of establishing pb = 1 as a reference point (Dong529
et al. (2008), Zhang et al. (2009)).530

A dimensionality reduction approach, discussed in (Dong et al., 2008), stabilizes the sum of the two531
parameters ao, bo. The value of 5 has been specifically chosen for tomato plants, as it has been observed to532
produce fine results. Under this assumption, the parameter’s space dimension is reduced by 4.533

1.2 Probabilistic Justification of the SSiE model534

Let us now try to justify the rationale behind the discussion in Section 2.6. The radiative input E(t) could535
be mapped to the interval [0, E(t)] representing an uncountable number of points potentially available for536
biomass production. At each point u of the interval, one could attach a Bernoulli random variable, say537
Xu(t), deciding whether the point u will enter the system or not. If it enters the system, then it brings538
an infinitesimal contribution to biomass production; otherwise, it is rejected and exits the system. One539
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could still keep the independence assumption and assume that there is a common probability p(t) of the540
radiative points entering the system, but there is a price to pay. If we assume that the radiative input is a541

realization of the stochastic process {Zu(t)}E(t)
u=0 , where the sample (observed) paths would be an interval542

of points consisting of 0′s and 1′s, then it can be proved with tools from probability theory that the resulting543
processes are not measurable.544

To give an interpretation of this nonmeasurability concept, it roughly corresponds to the idea that it545
would be impossible to associate the usual notion of length to the set of points that entered the system546
and the set of points that exited the system in this ideally conceptualized experiment. Luckily enough,547
there is still a solution, and it gives a formal justification for our intuitive approximations. It resides in the548
disintegration theorem (Chang and Pollard, 1997), a result of measure and probability theory. In fact, this549
theorem gives very powerful tools and a more intuitive approach to the definition of conditional probability550
and conditional expectation than the one that is usually presented in standard probability textbooks. A551
formal description of this theorem and related conditions for its validity would be out of the scope of this552
paper, and we refer to Chang and Pollard (1997). However, we describe the basic ingredients and the result553
we need in our context.554

Instead of selecting points from the interval [0, E(t)], one could think that the same interval is actually555
a bundle of Bernoulli experiments, where each one of them is realised when the point u is “activated”.556
Formally, one needs a measure space which consists of the set Yt := [0, E(t)] × {0, 1}, an appropriate557
measure µ and a function π : Yt → [0, E(t)] (usually the projection function) which disintegrates the558
measure µ into a family of measures {µu}0≤u≤E(t), such that for a measurable A559

µu(A) = µu

(
A ∩

(
{(u, 0), (u, 1)}

))
(28)

and induces the measure ν = µ ◦ π−1 on [0, E(t)]. In our case, the choices are rather simple. Each µu is560
“living” (has its support) on the fiber {u} × {0, 1} and behaves as a Bernoulli measure, while the induced561
measure ν should be the Lebesgue measure restricted on [0, E(t)]. In this way, the disintegration theorem562
justifies the following way of computing the measure of a measurable set A:563

µ(A) =

∫ E(t)

0
µu(A) du, (29)

where µu(A) is given by (28), and the integral should be understood in the Lebesgue sense. We are now564
ready to make the correspondence with the computation of the totally produced biomass at time t. Since the565
set B = [0, E(t)]× {1} corresponds to the set of all active points, in order to assess the totally absorbed566
radiative input, we just have to compute567

µ(B) =

∫ E(t)

0
µu(B) du = E(t)p(t), (30)

since B ∩ {(u, 0), (u, 1)} = {(u, 1)} and µu({(u, 1)}) = P(Au(t)) = p(t). Multiplying by RUESp to568
transform into biomass, we get the expected approximation result given by (9). It is also interesting to569
notice that the constant probability p(t) is actually playing the role of a constant flow (with respect to the570
incoming radiation) of biomass production. The discussion is continued in paragraph 2.6.1.571
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Table 1. Summary of all measured variables (units in parenthesis) in column 1. The most basic descriptive
statistics (mean, sd, min, max) from a sample of N = 54 measurements are given in columns 2-5.

Variables Mean St. Dev. Min Max
Avg Solar Radiation (W/m2) 286.944 45.844 114.590 340.310
Max Solar Radiation (W/m2) 1,021.830 131.702 571 1,329
Avg Air pressure (hPa) 1,014.045 3.601 1,007.120 1,022.720
Avg Temperature (oC) 22.043 2.642 17.060 28.630
Max Temperature (oC) 29.306 3.086 23.100 37.800
Min Temperature (oC) 15.707 3.403 9.100 22.000
Avg Humidity (%) 0.837 0.109 0.618 0.976
Max Humidity (%) 0.984 0.031 0.840 1.000
Min Humidity (%) 0.591 0.161 0.230 0.860
Water Consumption (L) 1.102 0.519 0.090 2.250

Table 2. Summary of the base linear regression model of Water Consumption vs the predictors given in
the first column (units in parenthesis). The estimated coefficients (sd in parenthesis) are given in the second
column. Asterisks denote the statistical significance according to Student’s t-test.

Dependent variable:
Wc(t) (L)

Avg Solar Radiation (W/m2) 0.002 (0.001) ∗∗∗

Wc(t− 1) (L) 0.893 (0.051) ∗∗∗

Constant −0.480 (0.156) ∗∗∗

Observations 53
R2 0.884
Adjusted R2 0.879
Residual Std. Error 0.178 (df = 50)
F Statistic 189.652∗∗∗ (df = 2; 50)
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3. Estimated parameters for the models described in (6) and (12) (see Section 2.6.2). The pair (θ2, k)
is aligned in the same column.

Version θ1 σ k or θ2 a µlog σlog θ η

lognorm 0.011 0.165 - - 3.958 3.273 - -
pareto 370.112 0.165 - - - - 3.02 · 10−6 0.403

mlf 0.01 0.166 0.017 0.501 - - - -
gamma 0.007 0.169 0.01 0.386 - - - -

exp + rate 0.007 0.172 2.037 −0.834 - - - -
GreenLab exp 0.005 0.208 0.559 - - - - -

exp 0.005 0.211 0.133 - - - - -
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Table 4. Comparison of different distribution choices regarding the formulations in (6) and in (12). The
columns refer successively to the method’s name, the estimated log-likelihood value (log lik val), the
RMSE, the total number of estimated parameters, the BIC and the AICc criteria.

Version log lik val RMSE # param BIC AICc
1 lognorm 20.45 0.16 4 -25.02 -31.62
2 pareto 20.39 0.16 4 -24.9 -31.5
3 mlf 19.85 0.17 4 -23.82 -30.42
4 gamma 19.12 0.17 4 -22.36 -28.96
5 exp + rate 18.15 0.17 4 -20.42 -27.02
6 LR 17.7 0.17 3 -19.51 -26.57
7 GreenLab exp 8.14 0.21 3 -4.37 -9.45
8 exp 7.25 0.21 3 -2.59 -7.67

Table 5. Prediction summary among the different suggested methods discussed in (6) and in (12), under:
(left) Solar Radiation assumed to be known (right) an additive normal N(0, 202) noisy prediction setting.
Methods are compared using the RMSPE. The ordering is performed under the setting with noise.

Version RMSPE RMSPE with noise
1 pareto 0.194 0.202
2 LR 0.205 0.212
3 mlf 0.226 0.234
4 lognorm 0.217 0.237
5 gamma 0.234 0.254
6 GreenLab exp 0.282 0.29
7 exp 0.296 0.319
8 exp + rate 0.341 0.364

Table 6. Parameters of the GreenLab model for tomato and their values in our study.

Parameter Comments value
pb Blade relative sink strength 1
pp Petiole relative sink strength 1.09
pe Internode relative sink strength 0.93
pf Individual fruit relative sink strength 61.3
Bb Blade sink variation parameter 0.43
Bp Petiole sink variation parameter 0.45
Be Internode sink variation parameter 0.38
Bf Fruit sink variation parameter 0.36
Sp Projection surface (cm2) 5047
k Beer Lamber coefficient 0.8

RUE Radiation Use Efficiency 0.05
Tb maximum expansion time of blade (CDs) 10
Te maximum expansion time of internode (CDs) 8
Tp maximum expansion time of petiole (CDs) 10
Tf maximum expansion time of fruit (CDs) 15

phyllocron elapsed time between two leaves emergences (days) 2
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Figure 1. Boxplots of estimated values with similar likelihood for the two cases presented in Section 3.1..
Each dot represents an estimated value. The sink strength of the body compartment (Pbody) is normalized
by its maximum for scaling reasons. (Left) Stabilized parameters: SLA, Sp, RUE, Q0. (Right) Stabilized
parameters: SLA, Sp, RUE, Q0, Pbody.

Figure 2. Estimated LIR from the competing models (2.6.2) as a function of the accumulated water usage.
The right axis was included for the values of the Pareto distribution. The Lognorm and GreenLab exp
overlap, as well as the Gamma and the LR.
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Figure 3. Final fit of the models (solid lines) on the real data (dashed line). Time (days), represented on
the x-axis, runs over the days of observation, with t = 1 being the day the seed was planted. The left
y-axis represents the Water Consumption at time t, in liters. The right y-axis represents values of Avg Solar
Radiation (W/m2). The evolution of Solar Radiation is plotted at the top of the graph, with a dark orange
color.
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1.3 Supplementary figure: normalized LIR w.r.t. cumulated water uptake572

Figure 4. Estimated LIR from the competing models (2.6.2) as a function of the accumulated water usage.
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