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Abstract—Generating realistic datasets with fine-grained con-
trol over their properties can help overcome challenges linked
to the scarcity of data in many domains, such as medical
applications. To that end, we extend Variational Autoencoders
by using a hierarchical and topological prior consisting of a
sequence of Self-Organizing Maps (SOM), which are stacked
in the latent space and learned without supervision, jointly
with the parameters of the variational autoencoder. We induce
a hierarchy between the codes of the SOM sequence, each
SOM corresponding to a different hierarchical level and learning
increasingly finer-grained representations of the data. Our model
combines the power of deep learning with the interpretability of
hierarchical and topological clustering and produces competitive
results when evaluated on three well-known computer vision
benchmarks and a custom medical dataset.

Index Terms—Deep-Learning, Generative Modeling, Hierar-
chical models, Variational Autoencoders

I. INTRODUCTION

Realistic data generation has attracted a lot of attention in re-
cent years, especially with the advent of generative adversarial
networks [1], normalizing flows, as well as variational autoen-
coders [2], [3]. More than solely generating data, the effective-
ness of these models lies in their ability to learn representations
of their inputs and enable the generation of specific classes
or properties. Work has been undertaken to improve these
representations through disentanglement [4]–[6], structure and
manifold learning, and more generally interpretable generation
[7]. In the context of medical applications, generative models
have been applied with some success [8] and hold the promise
to complete, or even replace in some cases, model-based
approaches like differential equations. However, the generation
of realistic virtual patient data comes with higher requirements
about the nature of generated data and their ability to cover
a variety of patients. This is the case, for instance, when a
medical ventilator is developed. Such a medical device must
be able to handle a variety of different situations without the
benefit of large annotated training datasets whose collection
is a tremendous undertaking. Therefore, learning interpretable
representations that allow fine control over the generated data
is an essential prerequisite for this particular application.
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In this context, the Variational autoencoder (VAE) frame-
work [2] stands out as it benefits from both the autoencoder
framework and generative modeling. In particular, a prior
probability can be defined and exploited during learning. One
such type of prior are graph- and tree-based priors, which are
well fit to represent data presenting correspondingly graphical
or hierarchical properties. Hierarchical clustering in the latent
space of generative networks has been the subject of some
research, mostly by taking advantage of the hierarchical nature
of neural networks, which learn increasingly abstract features
as the layer depth increases [9]–[12]. But so far, few works
have focused on imposing explicitly hierarchical, structured
priors on the embedding space of autoencoders. Among them,
VaDE [13] learns a Gaussian Mixture Model (GMM) in the
latent space of its VAE. The LTVAE [14] learns a two-level
tree in the latent space of its VAE where each node and
its children form a GMM, the parameters of the prior being
updated in an alternating fashion with its network parameters
using message-passing. The nCRP-VAE [15] and HCRL [16]
learn a Dirichlet Process in their latent space to recursively
build a tree of arbitrary depth and determine its parameter
using a custom variational inference method. However, all
these models share a relative complexity both in terms of the
prior expression and the separate learning algorithms required
to learn their probabilistic parameters. Additionally, some
of those models are limited to elementary structures of at
most two levels, preventing them from learning representative
hierarchies from the data.

In this paper, pursuing these lines of works, we pro-
pose a new VAE architecture, Hierarchical Topological VAE
(HTVAE), which jointly learns deep non-linear embeddings
along with a structured hierarchical prior. We take advantage
of recent advances in discrete VAEs [17], [18] to learn a
sequence of self-organizing maps in the latent space with
parenthood constraints between the nodes in two successive
self-organizing maps. The model assigns to each observation
a sequence of nodes from these maps, forming a branch of
the hierarchical prior. In doing so, our model is able to learn
deep representations of high-dimensional data while capturing
its inherent hierarchical properties. The interpretability of
this representation allows generating realistic data, with fine



control over the classes or properties of the samples, by
sampling from nodes at any desired level in the hierarchy.

The paper is organized as follows. After detailing some
components upon which our approach is built in Section
II, we describe our novel architecture and its learning algo-
rithm in Section III. In Section IV, we briefly review other
existing methods incorporating hierarchical architectures and
compare them with our HTVAE model. Section V presents
numerical experiments on three well-known computer vision
benchmarks, MNIST, FashionMNIST and CIFAR-100, as well
as on a custom dataset of breath recordings from medical
ventilators. Eventually, a conclusion is drawn in Section VI.

II. BACKGROUND

A. VAE

The variational autoencoder introduced by [2] is a gen-
erative neural network that learns to encode and model an
i.i.d. sample X = {x1, ..., xN} from a fixed but unknown
distribution. The VAE relies on the following modeling as-
sumption: the observed data X is supposed to be generated
by a continuous random process using a random latent variable
z distributed according the prior density pθ(z) such that

pθ(x) = pθ(x|z)pθ(z). (1)

As the posterior density pθ(z|x) is intractable, the authors use
a variational approximation qφ(z|x) instead. The VAE assumes
pθ(z) is a multivariate Gaussian and learns the function
qφ(z|x) = N (µ, σ2I) using a probabilistic encoder in the form
of a neural network which outputs µ and σ. The posterior
is then sampled from and fed to a probabilistic decoder,
another neural network, which learns the function pθ(x|z). The
encoder and decoder are jointly trained using a loss function
composed of a reconstruction error and a regularization term
based on the Kullback-Leibler divergence, which ensures that
the prior is close to the approximate posterior. For a given
observation x, we have:

L(x) = −KL (qφ(z|x) || pθ(z))+Eqφ(z|x)[ log pθ(x|z)]. (2)

B. SOM-VAE

Self-Organizing Map-VAE (SOM-VAE) [17] belongs to the
family of discrete VAEs, along with recent works such as
the Vector-Quantized VAE [18]. These models assign the
continuous encodings sampled from the approximate poste-
rior to their closest counterpart in a set of discrete codes
in the latent space of the VAE. The assignment is done
using a deterministic categorical distribution so that for the
continuous encoding z ∈ RL and a codebook of K codes
S = {e1, ..., eK} ∈ RK×L, we can sample discrete encodings
zq ∼ p(zq|z) defined by the following equation:

p(zq = ei|z) = 11[i = argminj ||z − ej ||2] (3)

In the case of a SOM-VAE, the codebook is a self-
organizing map (SOM) [19], a lattice graph in RL in which
the different codes organize themselves in the latent space with

respect to their topological neighbours according to constraints
defined in the loss.

For a given datapoint x, the loss L(x) is defined as the
sum of three terms: Lrec(x), Lcom(x), and Lneigh(x). The
reconstruction loss Lrec(x) ensures that reconstructions sam-
pled from the generative model are close to the observations
and is defined as Lrec(x, x′, x′q) = ||x − x′q||2 + ||x − x′||2
where x′ ∼ p(x|z) and x′q ∼ p(x|zq) are respectively the
reconstructions of the continuous and discrete latent variables.
Both reconstructions are used in this part of the loss as
the inference model q(z|x) is a neural network trained with
back-propagation. As the discretization bottleneck breaks the
backward gradient flow at zq , the continuous reconstruction
is used to provide gradients to the inference model. The
commitment loss Lcom(x) = ||ze(x) − zq(x)||2 ensures the
continuous encodings and their discrete counterparts are close
to each others. Eventually the neighbourhood loss Lneigh(x)
enforces the self-organizing constraints on the SOM so that
codes are close to the continuous encodings that are as-
signed to their topological neighbours so that Lneigh(x) =∑
ei∈neigh(zq)

‖ei − sg[ze(x)]‖2 with sg the stop-gradient
operator and neigh the neighbourhood function.

III. PROPOSED MODEL

A. Intuition

To get a fine control over data generation, the generative
model induced by the VAE should rely on a hierarchy of
classes. We first notice that in the same way that similar obser-
vations are encoded close to each others in the latent space of
a Gaussian VAE, similar observations are encoded in the same
code neighbourhood of a SOM-VAE’s latent space. Put another
way, the self-organizing map builds an unsupervised partition
of the latent space where each discrete code represents a
different intrinsic class. We propose to stack self-organizing
maps in the latent space so that the whole model learns a
hierarchical representation of the data. Moreover, we introduce
a probabilistic perspective to the maps by making each code
the center of a Gaussian distribution so that data may be
generated from any code after training. Maps that have fewer
codes will cover larger regions of space per code and therefore
learn broader representations while maps with a larger amount
of codes will learn more granular representations. By adding
penalties between the different maps in the loss function, we
can ensure that a hierarchy emerges between the codes at
different levels and that these codes cover the same region
of the latent space, thereby enabling generation at all levels of
the hierarchy.

The hierarchy or tree can be built in an agnostic way or
benefit from prior knowledge about some classes.

B. HTVAE’s principle

The dataset is denoted X = {x1, ..., xN |xi ∈ RD} and is
supposed to be an i.i.d. sample from a fixed but unknown
probability distribution. Similarly to a VAE, an HTVAE is
composed of an encoder network fθ which maps variable x
to the latent space variable z ∈ RL and of a generative decoder



network gφ that is able to generate x from a given z. Using X,
the encoder learns the parameters of the approximate posterior
distribution q(z|x), while the generative network learns the
distribution p(x|z). However unlike a VAE, which uses an
isotropic Gaussian prior, we use a topological hierarchical
prior. We define a sequence of M maps (Si)

M
i=1 at initialization

time. Each map Si is itself a set of Ki codes denoted {eik}
Ki
k=1

in the latent space so that Si ∈ RL×Ki . The number of maps as
well as the number of codes in each map are hyper-parameters
of our model. The maps are ordered with decreasing depth so
that S1 is the deepest and SM is the highest in the hierarchy.
As explained in the previous section, we initialize the maps
with Ki > Ki+1 so that deeper maps have a larger number
of codes to learn a more granular discrete representation than
their ancestors. Each map’s codes are initialized using a single
multivariate Gaussian in RL with zero mean and a standard
deviation σinit which is an hyper-parameter of our model
shared by all maps. In practice the initialization method does
not have a big impact on learning as the maps self-organize
in the latent space.

1) Inference: For a given observation our encoder outputs
the mean and standard deviation vectors of an isotropic
Gaussian in RL so that (µ0, σ0) = fθ(x) which defines the
approximate posterior q(z|x) = N (µ0, σ

2
0I) of our model.

From this distribution we sample the latent variable z0 ∈ RL.
These encodings are then discretized sequentially by each
map Si = {eik}

Ki
k=1 in the hierarchy by mapping them to

the code which is closest to them in the latent space. This
produces a sequence of M discrete encodings µi ∈ RL ∼∏i
j=1 p(µj |µj−1) which defines the branch of the hierarchy to

which the observation is assigned and is calculated according
to the following categorical distribution, with µ0 = z0 for
i = 1:

p(µi = eij |µi−1) = 11[j = arg min
k
‖µi−1 − eik‖2] (4)

In essence this distribution induces a child-parent relationship
between maps so that a code in a map at a specific level
of the hierarchy is assigned as a child of the code that
is closest to it in the map at the next level. Additionally
each discrete encoding µi is interpreted as the mean of a
multivariate Gaussian whose standard deviation σi ∈ RL is
proportional to the distance to its closest topological neigh-
bours neigh(ei,j) = {ei−1,j , ei+1,j , ei,j−1, ei,j+1} along each
dimension of RL, weighed by a scalar hyper-parameter ρ, so
that

σi =
1

ρ
mine∈neigh(zi)‖zi − e‖

2 (5)

We can sample from this Gaussian to create zi ∼ N (µi, σ
2
i I)

at level i of the hierarchy, this sampling is done using the
reparametrization trick described by [2] to allow the back-
propagation to the code at µi. In enforcing the discretization
of codes at deeper level by codes at higher level we ensure
all maps cover the same region of the latent space. Moreover
since the standard deviation of a Gaussian code depends on

the distance to its closest neighbour, this ensures each map
covers this region fully and similarly that the decoder will
learn to build reconstructions from any point in this region, as
described in the following section.

2) Generation: At training time the decoder is used to
build {x′i}Mi=0 ∈ RD the reconstructions of the continuous
encodings z0 as well as all sampled map encodings z1 to zM
by sampling from the generative model p(x|z) parametrized by
our deterministic decoder gφ. This ensures the space covered
by the Gaussians at every level of the hierarchy maps to real
observations in data space and new samples can be generated
at any level of the hierarchy.

Once trained, the model is able to generate samples of a
given class at a chosen level of granularity: for a specific code
ek from map Si, we sample x′ ∼ p(z)p(x|z) with p(z) ∼
N (µk, σ

2
kI).

C. Learning

Hierarchical prior (Si)
M
i=1 and neural network parameters

(θ, φ) are learnt jointly during training by minimizing a loss L
that promotes the reconstruction of realistic samples from the
hierarchical prior, the topological organization of each level
of the hierarchy, and the learning of a good representation in
the latent space. For sake of simplicity, we note the complete
loss function as L(x, {µi}Mi=1, {zi}Mi=0, {x′i}Mi=0). Then, for
a given x, we have:

L = Ltop({µi}Mi=1)+Lhierarchy({zi}Mi=0)+Lrec(x, {x′i}Mi=0)
(6)

We define Lhierarchy to enforce the closeness between parent
and children encodings and the codes of our SOM sequence.

Lhierarchy({zi}Mi=0) =

M∑
i=1

‖zi − zi−1‖2 (7)

This term also allows the gradient to back-propagate through
the first part of the autoencoder as zi−1 corresponds to the
continuous encodings z0 produced by the encoder for i = 1.
In order to enforce faithful reconstruction of the observations
at any level of the hierarchy, given x the observation and x′i ∼
p(x|zi) ∈ RD its reconstruction from the encodings at level i,
we define the reconstruction loss as follows:

Lrec(x, {x′i}Mi=0) =

M∑
i=0

‖x′i − x‖2 (8)

Finally we add a topological constraint Ltop on each level
so that the codes of each map are close to each others.
This is achieved by forcing the sampled means µi>=1 ∼∏i
j=1 p(µj |µj−1)q(z|x), as described in 4, to be close to

their neighbours. We use a function neigh : RL → RL×4

which takes a code as input and returns the codes which are
connected to it by an edge to find the topological neighbours
of the code located at µi in the Si lattice.

Ltop({µi}Mi=1) =

M∑
i=1

∑
e∈neigh(µi)

‖µi − e‖2 (9)



This topological loss enforces a neighborhood relationship for
the discrete encodings µi of a given observation x, and not
for every code ei of the SOM Si, which means the effect of
this term on a code will be proportional to the number of
observations discretized by this code.

We further describe the training procedure in algorithm
III-C.

Algorithm 1 Training the HTVAE
Inputs:
XXX the observations
MMM the number of self-organizing maps
{K}Mi=1{K}Mi=1{K}Mi=1 the number of codes per map
σinitσinitσinit the global variance hyper-parameter to initialize the SOM
stack.
ρρρ the factor hyper-parameter that controls the variance of each
code Gaussian relative to the distance to its closest topological
neighbour
EEE the number of training epochs
Function Train(XXX, σ0σ0σ0, ρρρ, MMM , {K}Mi=1{K}Mi=1{K}Mi=1, EEE):

for i = 1 to M do
Si ← Ki codes drawn from N (0, σ2

initI)
end
for epoch = 0 to E do

for each x ∈ X do
z0 ← drawn from q(z|x)
x′0 ← drawn from p(x|z0)
for i = 1 to M do

µi ← drawn from p(µi|µi−1) using 4, with
µ0 = z0

zi ← drawn from N (µi, σ
2
i I)

x′i ← drawn from pθ(x|zi)
end
g = ∇(Si)Mi=1,θ,φ

L({µi}Mi=1, {zi}Mi=0, {x′i}Mi=0, x)
using 6
(Si)

M
i=1, θ, φ ← Update parameters using g and

Adam [20]
end

end
return

D. Semi-Supervised Constraints

In some applications, there is not enough datapoints from
a given class to ensure that the HTVAE will be able to learn
to generate such data. In this case, prior knowledge under the
form of Must-Link constraints can be imposed during learning.
A Must-Link constraint forces pairs of given observations to
belong to the same cluster. There are many ways to implement
these constraints [21], they can be enforced directly when
partitioning the observations, bypassing the normal assignment
procedure [22], or by minimizing a dedicated metric [23], [24].

Implementing such a constraint in our framework can be
challenging due to the discretization bottleneck which breaks
the gradient backpropagation. To encode such a prior knowl-
edge while preserving the gradient, we implement a soft must-

link penalty term in the loss function which decreases as the
linked pairs of of operation get closer topologically.

For two observations x1, x2 ∈ RD whose continuous
encodings are z1, z2 ∼ q(z|x), and codes that discretize
these encodings are ei1, e

i
2 ∈ RL in SOM Si, we define a

loss function Limust−link : RL×2 → R which maps a pair
of observations to its continuous distance in the latent space
weighed by its topological distance di : RL×2 → N at a chosen
level i of the hierarchy so that

Limust−link(z1, z2) = di(z1, z2).‖z1 − z2‖2 (10)

IV. RELATED WORKS

The following approaches can be related to our works.
HKM & RGMM: The Hierarchical KMeans model [25] is
a recursive application of the K-Means algorithm. A tree is
defined with specific depth and branching factors at each level.
The data space is then partitioned a first time into Vorono
regions by learning centroids using KMeans. The procedure
is repeated for each region to learn new centroids until the full
depth of the tree is reached. In a similar manner, a Gaussian
Mixture Model (GMM) can be applied recursively with a
predefined depth and branching factors to build a tree from the
data space. Moreover, one may use the encoder of a variational
autoencoder to extract low-dimensional features from the data
and learn a model on those features, improving the quality of
the clustering.
nCRP-VAE: The nCRP-VAE [15] is a variational autoencoder
which uses a nested Chinese Restaurant Process (nCRP) [26]
as prior. The nCRP is akin to a recursive Dirichlet process
and describes a tree whose root is a zero-centered Gaussian
distribution in the latent space of the VAE. The root children
are also Gaussians and their means are sampled from the root
distribution. Recursively applying this sampling process, a full
tree can be constructed. All the nodes share the same variance
which is an hyper-parameter of the model. The parameters
of the tree prior are updated using variational inference [27].
Note that, unlike in our model, the tree prior of the nCRP-
VAE structure and its neural networks parameters are not
learned jointly but alternatively. Moreover, the nCRP prior is
highly complex, requiring multiple distributions and numerous
probabilistic parameters as well as a customized variational
inference method.
LTVAE: The Latent-Tree VAE [14] is a variational autoen-
coder that learns a tree-structured Bayesian network as its
prior. The tree is composed of two levels: A set of super
variables and their children. Each super-variable and its chil-
dren form a single Gaussian mixture model. The structure is
not learned jointly with the variational autoencoder but rather
alternatively. The VAE is first fully trained for multiple epochs,
then the structure itself is modified, and the whole process is
sequentially repeated until a satisfactory Bayesian information
criterion (BIC) score is achieved.

Growth and pruning: Other models that learn unsuper-
vised hierarchical clusters have to incorporate growth and
pruning procedures to control the shape of the learned hierar-
chy [14]–[16], [28]. The rationale is that regions of the latent



space that include a larger portion of the input distribution
should be represented by more nodes in the learned hierarchy.
Conversely, sparser regions need fewer nodes for an equivalent
representation level. Various metrics and hyper-parameters are
used to empirically control this growth, such as the BIC [14] or
the mean quantization error [28]. As the approximate posterior
distribution changes over time during training of the neural
network, it can be difficult to control this growth. Indeed, a
branch can become superfluously large if the corresponding re-
gion of the latent space becomes sparser than it was at previous
training steps. Our model elegantly solves this problem, since
each level of the hierarchy is self-organizing. Thus it can easily
match the density of the approximate posterior. Moreover since
the parenthood of nodes is defined by their distance between
each other at different levels, a node may mechanistically
switch from a branch to another without any need of explicitly
implementing rules to control it. These properties of our model
enable it to self-adjust and to learn even complex imbalanced
hierarchies in order to match the true data distribution, while
retaining a relative simplicity compared to other hierarchical
models.

V. EXPERIMENTS

Evaluation of HTVAE is perfomed on multiple datasets, in-
cluding the MNIST [29] and FashionMNIST [30] benchmarks,
the CIFAR100 [31] dataset which presents complex hierarchies
of concepts, and a custom real-world physiological dataset
of respiratory data recorded on ventilated patients presenting
various breathing activity patterns. We show that the HTVAE is
able to learn complex hierarchies in an unsupervised manner,
and showcase how to incorporate prior knowledge using semi-
supervised constraints on the respiratory dataset. Training was
performed on a Tesla M60 GPU with 8GB of RAM. All
cited models including competitors were implemented using
Pytorch [32].

A. Metrics and Baselines

We evaluate the learned clustering using two metrics,
namely purity and normalized mutual information (NMI).
Given a set of clusters Ω, and C a set of classes, purity is
defined as:

purity(Ω, C) =
1

N

∑
k

maxj |wk ∩ cj | (11)

Normalized Mutual Information measures to what extent
the clustering learned in the latent space of the model is
close to the true labels, and is penalized by the number of
cluster whereas purity tends toward 1 as the number of clusters
increases.
It relies on I , the mutual information, and H , the entropy, as
defined below:

I(Ω; C) =
∑
ωk∈Ω

∑
cj∈C

P (ωk ∩ cj)log
P (ωk ∩ cj)
P (ωk)P (cj)

(12)

H(Ω) = −
∑
ωk∈Ω

P (ωk)logP (ωk) (13)

and is itself defined as:

NMI(Ω, C) =
2 ∗ I(Ω; C)

[H(Ω) +H(C]
(14)

We also introduce a graph-based metric to measure how
much a learned hierarchy differs from a given (true) one (for
instance, the hierarchy of classes). For that purpose we rely
on the notion of topological distance between two nodes in
an oriented graph (length of the shortest path between two
nodes ancestor). Let (VS , ES) be the directed acyclic graph
obtained after learning HTVAE using sample X. VS is the set
of nodes defined in all the self-organizing maps while ES is
the set of edges between nodes. Note that each node refers
to a code. Denote DX

S the N × N matrix of the topological
distance between the nodes (codes) in S1 that are associated
to the datapoints x ∈ X. Similarly, denote DX

H, the N × N
topological distance matrix between the nodes of the desired
hierarchy associated to datapoints of X.

DX
tree(S,H) =

1

N2
‖DX

S −DX
H‖2F , (15)

where ‖ · ‖F is the Frobenius norm.
We compare our model to several baselines, all of which are
described in section IV. Our first baseline is the SOM-VAE
[17] which learns a single non-probabilistic self-organizing
map over the latent space. We also use two hierarchical VAE
baselines, the VAE-HKM and the VAE-RGMM which were
used as baselines in prior work on hierarchical VAEs [16]. We
did not compare with selected hierarchical models including
the LTVAE [14] whose comparatively shallow hierarchical
structure we felt would not be as amenable to compare with
our deep hierarchies. We were unable to get the published code
working for some of the hierarchical approaches previously
mentioned and were therefore unable to use them as baselines.
All experiments were done using our own implementations of
the models above.

B. MNIST and FashionMNIST

Dataset: We trained our model and the baselines on the
MNIST digit dataset [29], randomly split into 59400 train-
ing samples and 600 validation samples. The models were
evaluated on the predefined 10000 samples testing set. The
same procedure was followed for the FashionMNIST dataset
[30]. For the latter we defined a coarser set of super-classes
over the standard fine labels provided by the authors. These
classes partition the original 10 classes into 6 classes including
light tops, heavy tops, bottoms, bags, dresses, and boots which
are themselves partitioned into two coarser super-categories:
clothes and accessories. These super-classes form a 4-level
deep tree (including the root) which we define as the true tree
in all metrics that require one.
Experimental Setting: All experiments used a convolutional
autoencoder with four convolutional layers in total and ReLU
activations for all layers except the last for which sigmoid is
used. The encoder uses maxpooling layers to reduce the input
size and the decoder uses bilinear upsampling to upsize the
latent encodings. The models were trained for 20 epochs with



MNIST
Purity NMI Dtree

SOM-VAE 0.86± 0.01 0.47± 0.004 N.A
VAE-HKMeans 0.90± 0.002 0.47± 0.001 4.68± 0.005
VAE-RGMM 0.92± 0.003 0.49± 0.004 4.66± 0.013

HTVAE 0.95± 0.003 0.54± 0.006 4.61± 0.033

FashionMNIST
Purity NMI Dtree

SOM-VAE 0.73± 0.008 0.44± 0.007 N.A
VAE-HKMeans 0.79± 0.005 0.43± 0.001 3.58± 0.010
VAE-RGMM 0.79± 0.009 0.44± 0.003 3.59± 0.051

HTVAE 0.81± 0.004 0.48± 0.003 3.49± 0.055
TABLE I

EVALUATION METRICS FOR THE MNIST AND FASHIONMNIST
DATASETS: PURITY SCORE, NORMALIZED MUTUAL INFORMATION (NMI)
AND TOPOLOGICAL DISTANCE BETWEEN THE HTVAE HIERARCHY AND

THE TRUE ONE.

the Adam optimizer [20] with a learning rate of 5×10−4 and
a batch size of 32.

Fig. 1. The HTVAE learns a 4-level tree in the latent space including a virtual
root and three levels (a, b, c). A single class at level (a) is highlighted and its
children are similarly highlighted in the deeper level. The HTVAE was able
to learn a hierarchy of items without supervision.

Comments: The learned self-organizing maps visible in
Fig. 1 as well as the proportion of classes in each level of the
tree display the model’s ability to learn the implicit structure
present in the data in a completely unsupervised manner. Table
I shows the unsupervised accuracy and Dtreeof the models on
the MNIST and FashionMNIST datasets averaged over 5 runs.
Our model HTVAE achieves the best accuracy with up to a
3% improvement over the second best method. It also learns
a tree in the latent space that is closest to that of the true
hierarchy of the data. In addition it can be seen from Fig.

Fig. 2. We train our model on an artificially imbalanced subset of Fash-
ionMNIST. The learned tree is able to match the density of the data closely
without explicit growth or pruning procedures. We also show the results for
the HKM-VAE; however since the HKM component is not used as prior nor
learned jointly with the VAE, it is only shown as reference.

2 that when introducing an artificial imbalance in the classes,
our method learns a hierarchical prior that matches the density

of the dataset well. This supports our analysis in section IV
that the topological nature of each hierarchical level is able to
match the true hierarchy of an input dataset without explicit
growth strategies.

C. CIFAR-100

Dataset: CIFAR-100 [31] is a dataset of 60000 32x32
colour images, evenly split between 100 classes. These classes
are themselves split between 20 super-classes, which grants the
dataset hierarchical properties amenable to being learned by
our model. We use the pre-defined training set (50000 samples)
split into sets of 49400 and 600 for training and validation. For
testing, we use the predefined testing set of 10000 samples.

Experimental Setting: We use a similar architecture as pre-
viously.

Purity NMI Dtree

SOM-VAE 0.09± 0.005 0.21± 0.023 N.A
VAE-HKMeans 0.15± 0.005 0.31± 0.004 4.80± 0.023
VAE-RGMM 0.16± 0.007 0.32± 0.006 4.96± 0.058

HTVAE 0.19± 0.004 0.37± 0.004 4.62± 0.047
TABLE II

EVALUATION METRICS FOR THE CIFAR-100 DATASET.

Comments: Table II shows that our model achieves good
clustering scores and learns a tree significantly closer to the
right labeling than the other methods. These satisfactory results
allow considering the application of our approach to a real-life
problem: breathing data sequences.

D. Flow and Pressure Ventilation Dataset

Fig. 3. Three random breaths from the dataset, displaying various amplitudes
and lengths of inspiration/expiration.

Dataset: We evaluate our model on breathing data from people
using a medical ventilator. The dataset includes one-hour long
recordings of the flow and pressure signals of three subjects
using the same model ventilator. The participants were asked
to perform various breathing patterns and movements at differ-
ent times of the recording session. These events were classified
into ten categories: normal breathing, speaking, coughing,
snoring, apnea, lying down, turning to the left, turning to the
right, lying down with their knees to their chest, and swallow-
ing. These classes were further aggregated into three super-
classes representing normal breathing, respiratory events, and
movement/positioning. These patterns were selected to reflect
the normal behaviour of a ventilated patient and affect both
the pressure and flow recordings, as well as their respiratory
parameters (lung compliance and resistance). In order to train
our model, we split the recordings into a set of 1000 cycles,
each cycle comprising a single breath (inspiration followed by



expiration) and padded to 200 points using their edge values.
The data of two of the participants was used as training data
and that of the third participant for testing.
Experimental Setting: We use the same architecture as in
previous experiments, modified to use temporal (1D, multi-
channel) convolutions.
Comments: The approach reaches 39.5% unsupervised ac-
curacy when trained on the model without any constraints
and 65% with the must-link loss term. With this semi-
supervised loss term, expert knowledge is introduced as a soft
prior enables to learn more useful groupings that eventually
provide a way to generate data more appropriate to the user’s
application. Moreover it enables the sampling of recordings at
any level of the tree which allows the user to create datasets
with a specific balance of classes. For example one might
want a dataset composed of 50% normal breathing, and 50%
apneas and snoring for application that require the detection of
problematic events, in which case the user can sample half the
samples from the first level of the tree in a coarse manner, and
the other half from the second with a finer grained control.

VI. CONCLUSION

The proposed method learns interpretable hierarchical struc-
tures in the latent space of a VAE, enabling fine-grained
generation of realistic data, and granular representations at
different levels of the hierarchy. HTVAE is able to learn
imbalanced hierarchies that match the input distribution in
an unsupervised manner. The prior is learned jointly with the
neural network parameters, and this does not require neither
an explicit growth/pruning methodology, nor a large number
of hyper-parameters. On 3 benchmarks, HTVAE achieves
competitive results in terms of clustering ability and quality of
the learned hierarchies. The application on a real-world appli-
cation (respiratory signal generation) shows the relevance of
multi-level generative architectures and constraints integration.
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