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A spectral criterion involving the model parameters is given for the existence and uniqueness of a periodically correlated
and seasonal non-negative integer-valued autoregressive process. The structure of the mean and covariance functions of the
periodically stationary distribution of the model is derived using its implicit state-space representation. Two infinite series repre-
sentations for the process, the moving average, and the immigrant generation, are established. Based on the latter representation,
a novel and parallelizable simulation method is proposed to generate the process.
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1. INTRODUCTION

A discrete-time stochastic process {Yt} ∶= {Yt|t = 0,±1,±2, …} is called periodically correlated (PC), or
periodically stationary in the wide sense, if its mean function 𝜇(t) ∶= E(Yt) and its autocovariance function
R(s, t) ∶= Cov(Ys,Yt) exist for all s, t ∈ {0,±1,±2, …} and are periodic functions with integer period S ≥ 1. If
S = 1, the process is weakly stationary. PC processes occur in many fields, such as medicine, hydrology, clima-
tology, and air pollution, among others. They were introduced by Gladyshev (1961), for recent reviews see, e.g.
Gardner et al. (2006) and Hurd and Miamee (2007). A natural way to build models for PC processes is to allow
the parameters of stationary models to vary periodically with time. For example, the autoregressive moving aver-
age (ARMA) model was extended to the periodic ARMA (PARMA) model for PC processes. The existence of
PARMA processes was studied by Pagano (1978), Vecchia (1985) and Ula and Smadi (1997). Statistical inference
for PARMA models was addressed in the seminal papers of Lund and Basawa (2000) and Basawa and Lund (2001).

A weakly stationary process is called seasonally correlated (SC) if its autocovariance function 𝛾 has a seasonal
pattern which is defined as 𝛾(h) ∶= R(t + h, t) for all h, t ∈ Z. A widely used parametric model for weakly sta-
tionary seasonal time series, as a part of the Box–Jenkins methodology, is the class of seasonal ARMA (SARMA)
processes, pure or multiplicative ones see, e.g. section 3.9 in Shumway and Stoffer (2017) and examples therein.
Inference in SARMA models was addressed by Chatfield and Prothero (1973), among others.

In practice, some time series exhibit both seasonal and periodic behavior by showing seasonal patterns
in their periodic autocovariance structure. Seasonal ARMA processes with periodically varying parameters
(SPARMA) were introduced in Basawa et al. (2004). Such time series occur in econometrics, see section 4.2
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in Koopman et al. (2006) and section 3.3 in Hindrayanto et al. (2010), where SPARIMA models were applied
for the monthly US unemployment series. Further discussion on the modeling of seasonality and periodicity in
real-valued time series can be found in Lund (2012) and Baek et al. (2017).

Nowadays, there is a growing interest in count time series {Yt}, where Yt denotes the number of occurrences
of individuals, objects or events at time t, see, e.g. Davis et al. (2021) and Weiss (2018). The count time series
analog of the standard AR model is the integer-valued AR (INAR) model. This thinning-based model appears as
a competitive alternative to other approaches, e.g. parameter-driven models like latent Gaussian transformations,
hidden Markov and GLARMA models; observation-driven models such as linear and log-linear Poisson autore-
gression, and copula-based models. The first-order INAR (INAR(1)) model was introduced by McKenzie (1985)
and Al-Osh and Alzaid (1987), independently. The pth-order extension (INAR(p)) of this process proposed by
Du and Li (1991) has the same correlation structure as an AR model with order p (AR(p)). Until now, relatively
few articles have dealt with periodic and seasonal count time series. Monteiro et al. (2010) introduced the peri-
odic INAR(1) (PINAR(1)) model and addressed some statistical properties of the parameter estimation together
with some finite sample size investigations. Sadoun and Bentarzi (2020) provided efficient estimation methods
for the PINAR(1) model. Moriña et al. (2011) presented an INAR(2) model with periodic behavior in immigra-
tion to analyze the number of hospital emergency service arrivals caused by diseases. A seasonal INAR model
of order 1 (SINAR(1)) was introduced in Bourguignon et al. (2016) and Li et al. (1994) independently. Buteikis
and Leipus (2020) generalized the SINAR(1) model in the sense that the seasonal autoregressive parameter may
vary by season, and the immigration process may also be intra-seasonally dependent. Liu et al. (2020) proposed a
generalization of the r-states random environment INAR(1) model to predict a time series of counts with small val-
ues and notable fluctuations. Recently, Bentarzi and Aries (2020a, 2020b) introduced the periodic integer-valued
ARMA(p, q) model, denoted by PINARMAS(p, q), and established its existence and statistical inference in some
particular cases. A general periodic mixed Poisson autoregression was investigated by Aknouche et al. (2018).

In Filho et al. (2021), a non-negative integer-valued time series model called PINAR(1, 1S) model was intro-
duced, see equation (2). To our knowledge, this was the first simple count time series model that simultaneously
presents periodic and seasonal serial correlations. The paper also discussed an application for modeling the daily
number of people who received antibiotics for respiratory disease treatment from the public health care system
in an emergency service. The PINAR(1, 1S) model is a generalization of models in Bourguignon et al. (2016),
Monteiro et al. (2010), and Buteikis and Leipus (2020), and it is a special case of the general PINARMAS(p, q)
model. Although the PINAR(1, 1S) model is only flexible to deal with non-negative temporal covariance, unlike
the latent Gaussian transformation or copula-based models, see, e.g. Kong and Lund (2023), it is suitable for a
parsimonious description of the complex phenomena of joint periodicity and seasonality. In this article, we prove
the existence and uniqueness of the PINAR(1, 1S) process under a spectral criterion involving the model param-
eters, and we present some of its properties, see Theorem 2. Two infinite series representations are also derived:
the infinite immigrant generation based expansion (34) which consists of mutually independent components; and
the infinite moving average expansion (33) which involves uncorrelated but dependent components. The results
of the article show that, up to the second-order moments, the PINAR(1, 1S) process cannot be distinguished from
a corresponding PAR(1, 1S) process, see equation (31) but the dependency structure of the innovation process is
much more complex in the integer-valued case. An efficient and parallelizable simulation algorithm is proposed
to generate PINAR(1, 1S) processes.

The new main tool for examining the PINAR(1, 1S) process is its S-dimensional implicit state-space representa-
tion with the help of the matricial binomial thinning operator. The standard or explicit state-space representation
as a multi-variate INAR (MINAR) model is widely used in modeling integer-valued vector time series. Franke
and Subba Rao (1993) introduced a first-order MINAR (MINAR(1)) model for describing INAR(p) processes,
which was later generalized by Latour (1997). Some special cases, e.g. when the state vector is two-dimensional
or the coefficient matrices are diagonal have been studied in detail by Pedeli and Karlis (2011, 2013), and Darolles
et al. (2019); see also Santos et al. (2021) for an overview. Fokianos (2021) presents a recent survey of multi-variate
integer-valued time series models. In the implicit state-space representation proposed in this article, the coefficient
matrices are sparse matrices with a special structure, see (6).

wileyonlinelibrary.com/journal/jtsa © 2024 The Authors. J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12746
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EXISTENCE OF A PERIODIC AND SEASONAL INAR PROCESS 3

In the following, the symbols N, N0, Z, R, R+ and C denote respectively the sets of positive integers,
non-negative integers, integers, reals, non-negative reals, and complex numbers. Let n,m ∈ N. The standard basis
in Rn is denoted by {ei|i = 1, … , n}. In ∶=

∑n
i=1eie

⊤

i denotes the identity matrix of dimension n. The symbol
On×m denotes the zero matrix of dimension n×m. All subscripts are omitted when it is clear from the context. For
any vector v = (v1, … , vn)⊤ ∈ Rn, the operator diag(v)maps v onto the diagonal matrix D with diagonal elements
di,i = vi, i = 1, … , n, i.e. D =

∑n
i=1vieie

⊤

i , |v|vec ∶= (|v1|, … , |vn|)⊤ ∈ Rn
+, where |v| denotes the modulus of

v ∈ C, and ||v|| ∶= (
∑n

j=1v2
j )

1∕2 denotes the Euclidean norm of v. If u, v ∈ Rn, u ≤ v means that v−u ∈ Rn
+. For any

matrix M ∈ Rn×m, M⊤ ∈ Rm×n denotes its transpose, ||M|| denotes the matrix norm induced by the vector norm,
the operator vec(M) maps M onto an nm-dimensional vector obtained by stacking the columns of M below each
other successively, and the symbol⊗ denotes the usual Kronecker product, M⊗2 ∶= M⊗M. For details on the vec
operator and the Kronecker product see Appendices A.11 and A.12 in Lütkepohl (2005). For a random vector X =
(X1, … ,Xn)⊤, E(X) (E(X| )) and Var(X) (Var(X| )) denote its (conditional) mean vector and variance matrix (with
respect to (w.r.t.) a 𝜎-algebra ) respectively. If Y is another random vector, Cov(X,Y) ∶= E((X−E(X))(Y − E(Y))⊤)
(Cov(X,Y| ) ∶= E((X − E(X| ))(Y − E(Y| ))⊤| )) denotes the (conditional) covariance matrix between X and

Y. The symbol


= denotes the equality in distribution. Finally, 𝛿 stands for the Kronecker symbol.
The organization of the article is as follows. Section 2 introduces the PINAR(1, 1S) model and presents its

state-space representations. Section 3 is devoted to some lemmas on non-negative matrices and matricial binomial
thinning operators. In Section 4, by introducing the concept of shifted matricial binomial thinning operator, the
successive approximation of the unique solution is investigated in detail. Section 5 presents the main results of
the article, among others, a Gladyshev-type result in Theorem 1, and the existence of a unique PC solution for the
PINAR(1, 1S) model in Corollary 1. Section 6 discusses the basic stochastic structure of the model, and derives
Yule–Walker (YW) equations. In Section 7, a simulation method based on the infinite immigrant generation
representation is proposed to produce PINAR(1, 1S) processes, and the theoretical results are corroborated by
simulation. A real data application is presented in Section 8. Finally, in Section 9, the proofs of the main results
are collected, while the proofs of auxiliary equations, lemmas, and propositions are left to the Appendix S1.

2. A PERIODIC AND SEASONAL INAR MODEL

In Filho et al. (2021), a first-order periodic and seasonal integer-valued autoregressive process {Yt}, called
PINAR(1, 1S) process, with seasonal period S, for some S ∈ {2, 3, …}, is introduced which is defined by the
periodic stochastic difference equation

YkS+s =
YkS+s−1∑

j=1

𝜉k,s,j +
YkS+s−S∑

j=1

𝜂k,s,j + 𝜀kS+s, (1)

k ∈ Z, s = 1, … , S. In (1), the notation YkS+s denotes the series during the sth season of period k. For example, in
the case of monthly data and yearly seasonality, S = 12, s is the month of the year, and k is the index of the year. For
convenience, the non-periodic notation {Yt} and periodic notation {YkS+s} will be used interchangeably. For the
sake of simplicity, we suppose that the random variables (r.v.’s) {𝜉k,s,j} and {𝜂k,s,j} are independent and Bernoulli
distributed with mean E(𝜉k,s,j) = 𝛼s and E(𝜂k,s,j) = 𝛽s, respectively, for all s = 1, … , S and k ∈ Z, j ∈ N. However,
the results of the article also hold for more general thinning operators considered in Joe (1996) and Latour (1997),
which involve other infinitely divisible counting distributions. The parameters 𝛼s, 𝛽s ∈ [0, 1], s = 1, … , S, are
called the autoregressive coefficients of the model, where 𝛼s’s are responsible for the first-order temporal depen-
dency and 𝛽s’s for the seasonal dependency. The immigration process {𝜀t} is a sequence of N0-valued r.v.’s, where
the random vectors 𝜺k ∶= (𝜀kS+1, … , 𝜀kS+S)⊤, k ∈ Z, are i.i.d. with finite mean vector 𝝀. The immigration r.v.’s
may be correlated in a period. (Note that this feature makes the model (1) more general than the original model in
Filho et al. (2021), see also Buteikis and Leipus (2020)). Moreover, the sets {𝜉k,s,j}, {𝜂k,s,j} and {𝜺k} are mutually
independent. The empty sum is set to 0 in (1). Finally, all r.v.’s are defined on a common probability space (Ω,, P).

J. Time Ser. Anal. (2024) © 2024 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12746 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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4 M. ISPÁNY, ET AL.

Model (1) can be reformulated, similarly to the standard INAR process, see definition 2.1.1.1 in Weiss (2018),
by using the notation of the binomial thinning operator in the following way

YkS+s = 𝛼k,s◦YkS+s−1 + 𝛽k,s ◦YkS+s−S + 𝜀kS+s. (2)

In (2), we recall that if Y is a N0-valued r.v., 𝛼 ∈ [0, 1] and {𝜉j}j∈N is a sequence of i.i.d.r.v.’s which are Bernoulli

distributed with parameter 𝛼, then 𝛼◦Y ∶=
∑Y

j=1𝜉j denotes the binomial thinning operator, see Steutel and Van
Harn (1979). We assume that the sequence {𝜉j} is mutually independent of Y . The sequence {𝜉j} is called a
counting sequence. Observe that the probability of success in the thinning is P(𝜉j = 1) = 𝛼. Conditionally on

Y , 𝛼◦Y


= Bin(Y , 𝛼) where Bin(n, 𝛼) denotes a binomial distribution with parameters n ∈ N and 𝛼 ∈ [0, 1].
Thus, E(𝛼◦Y|Y) = 𝛼Y and Var(𝛼◦Y|Y) = v(𝛼)Y , where v(⋅) denotes the variance function of the Bernoulli
distribution defined as v(𝛼) ∶= 𝛼(1 − 𝛼), 𝛼 ∈ [0, 1]. Recall that 0◦Y = 0 and 1◦Y = Y , see lemma 1 in
Silva and Oliveira (2004). The binomial thinnings 𝛼k,s◦ and 𝛽k,s◦ are based on the counting sequences {𝜉k,s,j}j∈N

and {𝜂k,s,j}j∈N of (1) with mean 𝛼s and 𝛽s respectively, for all k ∈ Z and s = 1, … , S. For more details on
thinning-based count time series models see, e.g. Scotto et al. (2015) and Silva and Oliveira (2004) in the univariate
and Latour (1997) in the multi-variate case respectively.

Model (1) has three random components since the set of the elements of the process in the sth season consist of
three disjoint subsets of new elements given as follows: the survival elements from the previous generation with
survival probability 𝛼s, the seasonally new-born elements by the elements of the process from one period before
with probability of birth 𝛽s, and the new entering elements into the system with intensity 𝜆s, which corresponds
to the immigration term. Moreover, the autoregressive coefficients 𝛼s, 𝛽s and immigration means 𝜆s, s = 1, … , S,
change periodically according to the period S. In this context, the PINAR(1, 1S) model (2) accommodates both
seasonality and periodicity in the autoregressive coefficients, that is, it can be considered a kind of seasonally
correlated cyclostationary model similar to the periodic SARIMA model for standard linear time series.

Following the same lines as Vecchia (1985) for a PAR model, the PINAR(1, 1S) model can be algebraically
rewritten with the help of the matricial binomial thinning operator, see definition 2.1 in Latour (1997). The matricial
binomial thinning operator, called also matricial Steuel and van Harn operator, is denoted by M◦, where the matrix
M◦ = (mi,j◦) of dimension S × S consists of mutually independent binomial thinning operators, and M◦Z is a
N

S
0-valued r.v. for any N

S
0-valued r.v. Z = (Z1, … ,ZS)⊤ defined by

(M◦Z)i ∶=
S∑

j=1

mi,j◦Zj, i = 1, … , S. (3)

The matrix M = (mi,j), mi,j ∈ [0, 1] for all 1 ≤ i, j ≤ S, is called the mean matrix of M◦. It is also supposed
that the involved counting sequences are independent of Z. Let the matrix V = (vi,j) denote the variance matrix
of M◦ defined by vi,j ∶= v(mi,j) for all i, j = 1, … , S. Let  ⊂  be a 𝜎-algebra. If M◦ is independent of  and
Z is  -measurable, then the conditional mean vector and the conditional variance matrix of M◦Z w.r.t.  can be
derived as

E(M◦Z| ) = MZ, Var(M◦Z| ) = diag(VZ). (4)

Formula (4) implies that E(M◦Z) = ME(Z), provided Z has finite first moment, and Var(M◦Z) = MVar(Z)M⊤ +
diag(VE(Z)), provided Z has a finite second moment, see lemma 2.1 in Latour (1997). The composition M◦N ◦ of
two (or more) independent matricial binomial thinning operators M◦ and N◦ is defined as M◦N ◦Z ∶= M◦ (N ◦Z).
Note that, in general, M◦ (N ◦Z) ≠ (MN)◦Z even in distribution. The kth power of a matricial binomial thinning
operator M◦ is defined recursively by (M◦)0 ∶= I◦ and (M◦)k ∶= M◦ (M◦)k−1, k ∈ N, where the k copies
of matricial binomial thinning operator M◦ in the kth power are mutually independent. The definition of the
kth power of the composition of independent matricial binomial thinning operator is similar, e.g. (M◦N ◦)2 ∶=
M◦N ◦M◦N ◦, where the different copies of M◦ and N◦ are mutually independent.

wileyonlinelibrary.com/journal/jtsa © 2024 The Authors. J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12746
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EXISTENCE OF A PERIODIC AND SEASONAL INAR PROCESS 5

Let us define the state vectors of the process {Yt} as Yk ∶= (YkS+1, … ,YkS+S)⊤, k ∈ Z, and consider the
N

S
0-valued stochastic processes {Yk} and {𝜺k}. Then, by (2), one can see that, for all k ∈ Z, the following stochastic

equation holds

Yk = Ak ◦Yk + Bk ◦Yk−1 + 𝜺k, (5)

where Ak ◦ = (a
(k)
i,j ◦) and Bk ◦ = (b

(k)
i,j ◦) are defined as a(k)s+1,s◦ ∶= 𝛼k,s+1◦ for all s = 1, … , S − 1, 0◦ otherwise, and

b(k)s,s◦ ∶= 𝛽k,s◦ for all s = 1, … , S, b(k)1,S◦ ∶= 𝛼k,1◦ and 0◦ otherwise. Equation (5) is called the implicit state-space
representation of a PINAR(1, 1S) process (2), where {Ak ◦,Bk ◦, 𝜺k} form a mutually independent set. The S × S
dimensional mean matrices A and B of the matricial binomial thinning operators Ak◦ and Bk◦, k ∈ Z respectively,
can be expressed as

A =
S∑

s=2

𝛼sese
⊤

s−1, B = 𝛼1e1e⊤S +
S∑

s=1

𝛽sese
⊤

s , (6)

where A and B are non-negative matrices, i.e. their entries are non-negative numbers. Let VA and VB denote the
variance matrices of Ak◦ and Bk◦ respectively, which can be expressed as

VA ∶=
S∑

s=2

v(𝛼s)ese
⊤

s−1, VB ∶= v(𝛼1)e1e⊤S +
S∑

s=1

v(𝛽s)ese
⊤

s . (7)

In (6) and (7), 𝛼s and 𝛽s, s = 1, … , S, are the autoregressive coefficients of the PINAR(1, 1S) model.
To get an explicit expression for the state vector Yk, introduce the notation

(I − Ak)◦−1 ∶= A(S)k ◦A(S−1)
k ◦ · · ·A(2)k ◦ (8)

where A(s)k ◦ ∶= I◦ + (𝛼k,s◦)ese
⊤

s−1 is a matricial binomial thinning operator for all s ∈ {2, … , S} and k ∈ Z.

A(s)k ◦, k ∈ Z, are identically distributed with mean matrix A(s) ∶= I + 𝛼sese
⊤

s−1 for all s ∈ {2, … , S}. The variance

matrix of A(s)k ◦ is given by Vs ∶= v(𝛼s)ese
⊤

s−1. Note that A(2)k ◦, … ,A(S)k ◦ and Bk◦, k ∈ Z, are mutually independent
matricial binomial thinning operators. By (i) of Lemma 3, if Yk−1 is independent of Ak◦,Bk◦ and 𝜺k, then (5) can
be rearranged to the stochastic recursion

Yk = (I − Ak)◦−1(Bk ◦Yk−1 + 𝜺k), (9)

see the explanation in Remark 1. Equation (9) is called the explicit state-space representation of a PINAR(1, 1S)
process (2).

The state vector Yk in state-space representations (5) and (9) is in the forward form which is usual in the theory
of real-valued periodic processes, see, e.g. Franses and Paap (2004). Equations (5) and (9) can be considered as
extensions of the multi-variate INAR model defined in Latour (1997). However, we should emphasize that the state
process {Yk} cannot be described by a multi-type branching process model unlike in the case of INAR processes.
Finally, it is noted that this state-space representation is well known for some particular models, see, e.g. eq. (2)
in Monteiro et al. (2010) in the case of PINAR(1)S model and eq. (7) in Buteikis and Leipus (2020) in the case of
SINAR(1)S model.

3. AUXILIARY LEMMAS

We need the following technical lemmas to derive and prove the basic properties of the PINAR(1, 1S) process. Since
A is a strictly lower triangular matrix we obtain that I − A is non-singular and (I − A)−1 =

∑∞
k=0 Ak =

∑S−1
k=0 Ak.

J. Time Ser. Anal. (2024) © 2024 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12746 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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6 M. ISPÁNY, ET AL.

Thus, (I − A)−1 is a non-negative matrix. Moreover, this inverse can be expressed as

(I − A)−1 = A(S)A(S−1) … A(2). (10)

Recall that the spectral radius 𝜌(M) of a square matrix M is the maximum of its eigenvalues in modulus.

Lemma 1. Let the matrices A and B be defined in (6). Then, the following statements are equivalent:

(i) 𝜌((I − A)−1B) < 1;
(ii) the roots z ∈ C of the polynomial Q(z) ∶=

∏S
j=1(z − 𝛽j) − zS−1∏S

j=1𝛼j satisfy |z| < 1;

(iii) the roots z ∈ C of the polynomial P(z) ∶=
∏S

j=1(z − 𝛽j) −
∏S

j=1𝛼j satisfy |z| < 1;
(iv) 𝜌(A + B) < 1.

The polynomial P is called the characteristic polynomial of the PINAR(1, 1S) model. Note that both (I − A)−1B
and A + B are non-negative matrices similarly to A and B. Thus, by theorem 8.3.1 in Horn and Johnson (2012),
their spectral radius is an eigenvalue of these matrices respectively. We introduce the following assumption, see
assumption 1 in Filho et al. (2021).

Assumption 1. The matrices A and B satisfy 𝜌(A + B) < 1.

Lemma 1 gives some equivalent characterizations of Assumption 1. However, there are several further equivalent
characterizations, a few of them are: (v) the roots z ∈ C of the determinant equation det(zI−(I − A)−1B) = 0 satisfy
|z| < 1; (vi) the roots z ∈ C of the matricial autoregressive polynomial P(z) ∶= I−A− zB satisfy |z| > 1; (vii) the
roots z ∈ C of the polynomial

∏S
j=1(1−𝛽jz)−z

∏S
j=1𝛼j satisfy |z| > 1. The determinant equation in (v) is well-known

in the field of real-valued PC processes, see, e.g., (4) in Vecchia (1985), (12) in Ula and Smadi (1997) and (3.26)
in Franses and Paap (2004). The matricial polynomial P can be interpreted as the characteristic polynomial to the
implicit state-space representation (5). Moreover, P is the matricial autoregressive polynomial of the VAR process
{Xk} which satisfies (32), see (3.12) in Franses and Paap (2004).

We remark that a similar spectral assumption is known for many time series models, where the stability of a
matrix that depends on the model parameters is required for the existence and uniqueness of a stationary solu-
tion. Examples of these models, among others, include the VAR(1) model (see example 11.3.1 in Brockwell and
Davis, 2013), the general threshold ARMA model (see (11.21) in De Gooijer, 2017), the vector bilinear model (see
(11.8) in De Gooijer, 2017), the vector GARCH model (see (iii) in theorem 10.5 of Francq and Zakoian, 2019),
the stochastic recurrence model (see (3.7) in De Gooijer, 2017), and some multi-variate Markovian autoregressive
processes, see Debaly and Truquet (2021).

The next lemma provides a simple sufficient condition that implies Assumption 1.

Lemma 2. Let the matrices A and B be defined in (6). If 𝛼s + 𝛽s < 1 for all s = 1, … , S, then 𝜌(A + B) < 1.

Example 1. Consider the case when 𝛽j = 0 for all j = 1, … , S. Then the PINAR(1, 1S) model is reduced to the
PINAR(1)S model introduced in Monteiro et al. (2010). The characteristic polynomial of this model is P(z) =
zS−

∏S
j=1𝛼j and a necessary and sufficient condition for Assumption 1 is

∏S
j=1𝛼j < 1, which is equivalent to 𝛼s < 1

for some s ∈ {1, … , S} since 𝛼j ≤ 1 for all j = 1, … , S. Note that
∏S

j=1𝛼j is the spectral radius of the matrix A
defined on p. 1531 in Monteiro et al. (2010), see also (5.1.4) in Bentarzi and Aries (2020b).

Example 2. Consider the case S = 2, i.e. the PINAR(1, 12) model. Then

A =

[
0 0

𝛼2 0

]

, B =

[
𝛽1 𝛼1

0 𝛽2

]

, A + B =

[
𝛽1 𝛼1

𝛼2 𝛽2

]

.

The characteristic polynomial is given by P(z) = (z − 𝛽1)(z − 𝛽2) − 𝛼1𝛼2. By solving the characteristic equation
we have that 𝛽1 + 𝛽2 − 𝛽1𝛽2 + 𝛼1𝛼2 < 1 is a necessary and sufficient condition for Assumption 1. Note that this

wileyonlinelibrary.com/journal/jtsa © 2024 The Authors. J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12746
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EXISTENCE OF A PERIODIC AND SEASONAL INAR PROCESS 7

condition is equivalent to the condition 𝛼1𝛼2 < (1− 𝛽1)(1− 𝛽2), see also proposition 3 in Darolles et al. (2019) for
an other bivariate INAR model. The example 𝛼1 = 0.4, 𝛼2 = 0.3, 𝛽1 = 0.7 and 𝛽2 = 0.5 shows that the assumption
in Lemma 2 is not necessary for Assumption 1.

Example 3. Consider a PINAR(1, 1S) model with a sparse first-order autoregressive part, i.e. suppose that there
exists at least one j ∈ {1, … , S} such that 𝛼j = 0. Then the characteristic polynomial is given as P(z) =

∏S
j=1(z−𝛽j)

whose roots are 𝛽j, j = 1, … , S. Thus, a necessary and sufficient condition for Assumption 1 is that 𝛽j < 1 for all
j = 1, … , S.

The next lemma is fundamental in the stochastic analysis of the implicit state-space representation in
this article.

Lemma 3. Let A be defined in (6), Z be a N
S
0-valued r.v., and  ⊂  be a 𝜎-algebra. Assume that Z and  are

mutually independent of the counting sequences involved into the matricial binomial thinning operator A◦. Then,
the following statements hold for the implicit stochastic equation

Y = A◦Y + Z. (11)

(i) The stochastic equation (11) has a unique solution Y whose coordinates satisfy the recursion Y1 = Z1,
Ys = 𝛼s◦Ys−1 + Zs, s = 2, … , S. Moreover, the unique solution can be expressed explicitly as

Y = A(S)◦A(S−1)◦ … ◦A(2)◦Z, (12)

i.e. Y = (I − A)◦−1Z, where A(s)◦ is defined as A(s)k ◦, s = 2, … , S, in (8).
(ii) If Z has finite first moment, then Y has finite mean, and

E(Y| ) = (I − A)−1E(Z| ). (13)

Particularly, E(Y|Z) = (I − A)−1Z and E(Y) = (I − A)−1E(Z).
(iii) If Z has finite second moment, then Y has finite variance matrix and

Var(Y| ) = (I − A)−1
(
diag

(
VAE(Y| )

)
+ Var(Z| )

) (
(I − A)−1

)
⊤

. (14)

Particularly, Var(Y|Z) = (I − A)−1(diag(VAE(Y|Z)))
(
(I − A)−1

)
⊤

and Var(Y) = (I − A)−1(diag(VAE(Y)) +
Var(Z))

(
(I − A)−1

)
⊤

. (Note that VA is defined in (7).)

Remark 1. Formula (12) can be interpreted as the analog of the formula y = (I − A)−1z = A(S)A(S−1) … A(2)z
which is the unique solution to the linear vector equation (I − A)y = z, see (10). Namely, rewrite (11) for-
mally as (I − A)◦Y = Z. Then Lemma 3 states that a unique solution to this formal linear stochastic equation
is given by Y = (I − A)◦−1Z. Moreover, (13) and (14) describe the conditional mean vector and variance
matrix of the N

S
0-valued r.v. (I − A)◦−1Z respectively. We also remark that the analog of (10) for matricial bino-

mial thinning operators is not true, i.e. (I − A)−1◦ ≠ A(S)◦A(S−1)◦ … A(2)◦ = (I − A)◦−1 even in distribution.
Finally, the conditional expectation E(Y|Z) is the unique solution to the linear stochastic equation in Y given by
(I − A)Y = Z.

Remark 2. One can see by (13) that the conditional mean E(Y| ) satisfies the linear equation

(I − A)E(Y| ) = E(Z| ).

J. Time Ser. Anal. (2024) © 2024 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12746 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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8 M. ISPÁNY, ET AL.

Since E(Var(Y|Z)| ) = (I − A)−1diag(VAE(Y| ))((I − A)−1)⊤ we have by (14) that Var(Y| ) − E(Var(Y|Z)| ) is a
symmetric positive semi-definite matrix and satisfies the equation

(I − A) (Var(Y| ) − E(Var(Y|Z)| )) (I − A)⊤ = Var(Z| )

Finally, Cov(Y,Z| ) = (I − A)−1Var(Z| ).

To prove the uniqueness of the state process {Yk} we need the following lemma.

Lemma 4. Let Z and Z′ be N
S
0-valued r.v.’s with finite means and let the matricial binomial thinning operator M◦

of dimension S × S be independent of Z and Z′. Then E|M◦Z −M◦Z′|vec ≤ ME|Z − Z′|vec.

4. SUCCESSIVE APPROXIMATION OF PINAR(1, 1S) PROCESSES

Here, we provide the technical details of the construction of an approximating sequence to a unique stationary
solution {Yk} of state-space equations (5) and (9). We apply the method of successive approximation which is
based on recursion (9) following the argument in Latour (1997).

First, we need the concept of a shifted binomial thinning operator. If 𝛼◦ is a binomial thinning operator with
counting sequence {𝜉j} and Y is a N0-valued r.v. which is mutually independent of the counting sequence, then

let the shifted binomial thinning operator 𝛼◦|Y be defined as 𝛼◦|YZ ∶=
∑Y+Z

j=Y+1𝜉j for all N0-valued r.v. Z which
is mutually independent of 𝛼◦. Note that Y and Z can be dependent. Clearly, 𝛼◦ (Y + Z) = 𝛼◦Y + 𝛼◦|YZ almost

surely and the r.v.’s 𝛼◦Y and 𝛼◦|YZ are conditionally independent w.r.t. Y . Moreover, 𝛼◦|YZ


= 𝛼◦Z and thus

𝛼◦ (Y + Z)


= 𝛼◦Y + 𝛼◦Z, see the third property of the binomial thinning operator in the introduction of Scotto
et al. (2015). This concept can easily be extended to matricial binomial thinning operator by (3). Namely, if M◦ is
a matricial binomial thinning operator of dimension S× S and Y is a N

S
0-valued r.v. which is mutually independent

of M◦, then the shifted matricial binomial thinning operator M◦|Y is defined as (M◦|YZ)i =
∑S

j=1mi,j◦|Yj
Zj for all

N
S
0-valued r.v. Z which is mutually independent of M◦. Clearly, M◦ (Y+Z) = M◦Y+M◦|YZ almost surely and the

random vectors M◦Y and M◦|YZ are conditionally independent w.r.t. Y which implies Cov(M◦Y,M◦|YZ|Y) = 0.
More generally, if  ⊂  is a 𝜎-algebra which is mutually independent of M◦ and Y1,Y2 are  -measurable
N

S
0-valued r.v.’s such that Y1 ≤ Y2 almost surely, then M◦Y1 and M◦|Y2

Z are conditionally independent w.r.t.  for
all Z which is mutually independent of M◦ since the counting r.v.’s involved into M◦Y1 and M◦|Y2

Z are mutually

independent. Particularly, in this case, Cov(M◦Y1,M◦|Y2
Z| ) = 0. We have that M|Y◦Z



= M◦Z and M◦ (Y+Z)


=
M◦Y + M◦Z. The shifting concept can be extended to the composition M◦N◦ of matricial binomial thinning
operators M◦ and N◦ as (M◦N◦)|Y ∶= M◦|N◦YN◦|Y for all N

S
0-valued r.v. Y which is mutually independent of M◦

and N◦. For all N
S
0-valued r.v. Y which is mutually independent of A◦, the shifted composite matricial binomial

thinning operator (I − A)◦−1
|Y is defined iteratively in the following way. For all N

S
0-valued r.v. Z which is mutually

independent of A◦ define the N
S
0-valued r.v.’s Ys,Zs, s = 1, … , S, as Y1 ∶= Y, Z1 ∶= Z and Ys ∶= A(s)◦Ys−1,

Zs ∶= A(s)◦|Ys−1
Zs−1, s = 2, … , S. Then, (I − A)◦−1

|Y Z = (A(S)◦ … A(2)◦)|YZ ∶= ZS.

Define the sequences of N
S
0-valued stochastic processes {Y(n)k }k, n ∈ N0, and {Z(n)k }k, n ∈ N, recursively as

Y(0)k ∶= 0, Z(1)k ∶= (I − Ak)◦−1
𝜺k for all k ∈ Z, and, for all n ∈ N and k ∈ Z,

Y(n)k ∶= Y(n−1)
k + Z(n)k , (15)

Z(n+1)
k ∶= (I − Ak)◦−1

|Bk ◦Y(n−1)
k−1 +𝜺k

(

Bk ◦ |Y(n−1)
k−1

Z(n)k−1

)

. (16)

Clearly, Y(n)k =
∑n

j=1Z(j)k for all n ∈ N, and thus the sequence {Y(n)k }n is monotone non-decreasing for all k ∈ Z.

Through the branching process representation (1) of the PINAR(1, 1S) process and (16), one can see that (Z(n)k )s is

wileyonlinelibrary.com/journal/jtsa © 2024 The Authors. J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12746
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EXISTENCE OF A PERIODIC AND SEASONAL INAR PROCESS 9

the number of nth generation offspring of 𝜺k+1−n, i.e. the immigrants in the time interval [(k+1−n)S+1, (k+1−n)S+
S], at time kS+s. Thus, (Y(n)k )s is the number of offspring of the immigrants in the time interval [(k+1−n)S+1, kS+S]
at time kS + s. Moreover, {Y(n)k } satisfies (9) in the following sense

Y(n)k = (I − Ak)◦−1
(

Bk ◦Y(n−1)
k−1 + 𝜺k

)

, (17)

for all k ∈ Z and n ∈ N. This explicit recursion can be written in the implicit form, see (5), as

Y(n)k = Ak◦Y(n)k + Bk ◦Y(n−1)
k−1 + 𝜺k, (18)

for all k ∈ Z and n ∈ N. Finally, by representation (1) of the PINAR(1, 1S) process, the auxiliary r.v.’s {Y (n)t }
defined as the coordinates of Y(n)k = (Y (n)kS+1, … ,Y (n)kS+S)

⊤ satisfies the recursion

Y (n)kS+s =
Y
(n−𝛿1s )
kS+s−1∑

j=1

𝜉k,s,j +
Y (n−1)

kS+s−S∑

j=1

𝜂k,s,j + 𝜀kS+s (19)

for all k ∈ Z, s = 1, … , S, and n ∈ N. We will show in Theorem (2) that, for all k ∈ Z, the sequence {Y(n)k }n has
an almost sure limit Yk which is a solution to stochastic equations (5) and (9).

The N
S
0-valued r.v.’s {Y(n)k } and {Z(n)k } defined by (15) and (16) respectively, satisfy the following properties.

First, we note that there exists a probability space (Ω,, P) with mutually independent r.v.’s {𝜉k,s,j}, {𝜂k,s,j}, and

{𝜺k} such that Y(n)k and Z(n+1)
k are k-measurable for all k ∈ Z and n ∈ N0, where k ⊂  denotes the 𝜎-algebra

generated by the r.v.’s {𝜉l,s,j, 𝜂l,s,j, 𝜀lS+s|j ∈ N, s = 1, … , S, l ≤ k} for all k ∈ Z. For all n ∈ N0, the process {Y(n)k }k

is strictly stationary, non-anticipative, and ergodic. For all k ∈ Z, {Z(n)k }n is a sequence of independent N
S
0-valued

r.v.’s.
The first moments of Y(n)k and Z(n+1)

k exist for all k ∈ Z and n ∈ N0, and the mean vectors of Y(n)k and Z(n+1)
k

do not depend on k. The sequence {𝝁(n)}, where 𝝁(n) ∶= E(Y(n)k ) for all k ∈ Z, is monotone non-decreasing and
satisfies the recursion

𝝁
(n) = (I − A)−1

(
B𝝁(n−1) + 𝝀

)
, (20)

n ∈ N, with starting value 𝝁(0) ∶= 0. Under Assumption 1, the sequence {𝝁(n)} is bounded and 𝝁(n) → 𝝁 as n → ∞
where 𝝁 is defined in (24). Furthermore, the sequence {𝝂(n)}, where 𝝂(n) ∶= E(Z(n)k ) for all k ∈ Z, satisfies the
recursion 𝝂(n+1) = (I − A)−1B𝝂(n), n ∈ N, with initial condition 𝝂(1) = (I − A)−1

𝝀.
The second moments of Y(n)k and Z(n+1)

k exist for all k ∈ Z and n ∈ N0, and the variance matrices of Y(n)k and Z(n+1)
k

do not depend on k. The sequence {Σ(n)} of symmetric positive semi-definite matrices, where Σ(n) ∶= Var(Y(n)k ) for
all k ∈ Z, is monotone non-decreasing, i.e. Σ(n) −Σ(n−1) is a symmetric positive semi-definite matrix for all n ∈ N,
and satisfies the recursion

Σ(n) = (I − A)−1
(
BΣ(n−1)B⊤ + diag

(
VA𝝁

(n) + VB𝝁
(n−1)) + Σ

𝜺

) (
(I − A)−1

)
⊤

, (21)

n ∈ N, with starting value Σ(0) ∶= OS×S. Under Assumption 1, the sequence {Σ(n)} is bounded and Σ(n) → Σ as
n → ∞where Σ is defined in (25). Furthermore, the sequence {Φ(n)} of symmetric positive semi-definite matrices,
where Φ(n) ∶= Var(Z(n)k ) for all k ∈ Z, satisfies the recursion Φ(n+1) = (I − A)−1(BΦ(n)B⊤ + diag(VA𝝂

(n+1) +
VB𝝂

(n)))((I − A)−1)⊤, n ∈ N, with initial condition Φ(1) = (I − A)−1(diag(VA𝝂
(1)) + Σ

𝜺
)((I − A)−1)⊤.

The autocovariance matrix function Γ(n) of {Y(n)k }k is given by Γ(n)(h) = ((I − A)−1B)hΣ(n−h), Γ(n)(−h) =
Σ(n−h)(((I − A)−1B)⊤)h if 0 ≤ h ≤ n, and Γ(n)(h) = OS×S if |h| > n for all n ∈ N0.

J. Time Ser. Anal. (2024) © 2024 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12746 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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10 M. ISPÁNY, ET AL.

Remark 3. One can see that the recursion (20) can be written as 𝝁(n) = (I − A)−1B𝝁(n−1) + 𝝁
(1), n ∈ N.

Moreover, 𝝂(1) = 𝝁
(1), 𝝁(n) =

∑n
j=1𝝂

(j), and 𝝁 =
∑∞

j=1𝝂
(j). Similarly, the recursion (21) can be written as

Σ(n) = (I − A)−1BΣ(n−1)B⊤((I − A)−1)⊤ + Λ(n), where Λ(n) ∶= (I − A)−1(diag(VA𝝁
(n) + VB𝝁

(n−1)) + Σ
𝜺
)((I − A)−1)⊤,

n ∈ N. Moreover,Φ(n) = (I − A)−1BΦ(n−1)B⊤((I − A)−1)⊤+Ψ(n), whereΨ(n) ∶= (I − A)−1(diag(VA𝝂
(n) +VB𝝂

(n−1))+
𝛿1nΣ𝜺)((I − A)−1)⊤, n ∈ N, with initial conditions Φ(0) ∶= OS×S and 𝝂(0) ∶= 0. One can easily check that
Λ(n) =

∑n
j=1Ψ

(j) which implies that Σ(n) =
∑n

j=1Φ
(j) and Σ =

∑∞
j=1Φ

(j).

5. MAIN RESULTS

A stochastic process {Yk} is said to be non-anticipative with respect to the state-space representations (5) or (9) if
the sets of r.v.’s {Yl|l < k} and {𝜉l,s,j, 𝜂l,s,j, 𝜀lS+s|j ∈ N, s = 1, … , S, l ≥ k} are mutually independent for all k ∈ Z.
In the sequel, it is assumed that the state process {Yk} is non-anticipative. Suppose that the immigration vector
has a finite second moment and let Σ

𝜺
denote its variance matrix. We will see that the immigration vector 𝝀, the

coefficient matrices A,B,VA,VB, and the variance matrix Σ
𝜺

determine the first- and second-order structures of the
state process {Yk} and thus those of the PC process {Yt}. These intermediate parameters depend on the original
parameters 𝛼s, 𝛽s, 𝜆s, s = 1, … , S, and Σ

𝜺
of the PINAR(1, 1S) model.

In Proposition 1, linear equations are derived for the mean vector and the variance matrix of a stationary solution
to the state-space representation (5) (or (9)). Recall that M⊗2 ∶= M ⊗M for any matrix M.

Proposition 1. Assume that a N
S
0-valued non-anticipative stochastic process {Yk} is a solution to (5) with

stationary mean vector 𝝁 and variance matrix Σ respectively. Then, 𝝁 and Σ satisfy the following equations:

𝝁 = (I − A)−1(B𝝁 + 𝝀), (22)

Σ = (I − A)−1
(
BΣB⊤ + ΣM

) (
(I − A)−1

)
⊤

, (23)

where ΣM ∶= diag((VA + VB)𝝁) + Σ𝜺. Under Assumption 1, these equations have unique solutions given by

𝝁 =
(
I − (I − A)−1B

)−1(I − A)−1
𝝀 = (I − A − B)−1

𝝀, (24)

vec(Σ) =
(

IS2 −
(
(IS − A)−1B

)
⊗2
)−1(

(IS − A)⊗2
)−1

vecΣM

=
(
(IS − A)⊗2 − B⊗2

)−1
vecΣM. (25)

Equations (22) and (23) can also be derived by using Lemma 3 from the following stationary equation

Y


= (I − A)◦−1(B◦Y + 𝜺),

where the N
S
0-valued r.v. Y is mutually independent of A◦, B◦ and 𝜺.

By lemma 5.6.10 and corollary 5.6.16 in Horn and Johnson (2012), 𝜌(A + B) < 1 implies that I − A − B is a
non-singular matrix and (I − A − B)−1 =

∑∞
j=0(A + B)j. Thus, under Assumption 1 the stationary mean vector 𝝁

in Proposition 1 can be expressed by an infinite series as

𝝁 =
∞∑

j=0

(A + B)j𝝀 =
∞∑

j=0

(
(I − A)−1B

)j(I − A)−1
𝝀. (26)

wileyonlinelibrary.com/journal/jtsa © 2024 The Authors. J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12746
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EXISTENCE OF A PERIODIC AND SEASONAL INAR PROCESS 11

A similar formula holds for the stationary variance matrix Σ since (25) can be written as

vec Σ =
∞∑

j=0

((
(I − A)−1B

)
⊗2
)j(
(I − A)−1

)
⊗2

vecΣM, (27)

and (27) is equivalent to

Σ =
∞∑

j=0

(
(I − A)−1B

)j(I − A)−1ΣM

(
(I − A)−1

)
⊤

((
(I − A)−1B

)j
)
⊤

. (28)

Formulae (24) and (25) (or (26) and (28)) provide explicit expressions for the mean vector and variance matrix of
a stationary solution to the explicit (or implicit) state-space representation of a PINAR(1, 1S) process respectively,
as functions of the parameters 𝛼s, 𝛽s, 𝜆s, s = 1, … , S, and Σ

𝜺
of model (1) through the matrices A,B,VA,VB and

Σ
𝜺
. However, for numerical calculation, solving linear equations (22) and (23) is more efficient. On the numerical

solution of Lyapunov-type equation (23) see, e.g. Kitagawa (1977).
We draw attention to the structural similarity of recursions (9) for {Yk}, (32) for {Xk}, (37) for {𝝁k} and (20)

for {𝝁(n)}, and Lyapunov-type recursions (40) for {Σk} and (21) for {Σ(n)} respectively.

Example 4. Let 𝛼s = 0 for all s = 2, … , S. Then A = OS×S which implies that the implicit and explicit state-space
representations coincide and are given by

Yk = B◦Yk−1 + 𝜺k,

k ∈ Z, which is a multi-variate INAR process, see Latour (1997). By Example 3, a necessary and sufficient
condition for the existence of a stationary solution is that 𝛽j < 1 for all j = 1, … , S. Moreover, in this case,
VA = OS×S and thus ΣM = diag(VB𝝁) + Σ𝜺, see proposition 4.1 in Latour (1997).

By (28), since (I − A)−1 and B are non-negative matrices, if Σ
𝜺
≥ 0 then Σ ≥ 0, i.e. the components of the

state-vector Yk are non-negatively correlated. One can easily see, by (26), that 𝝀 > 0 implies 𝝁 > 0. Similarly,
by (28), if additionally 𝛼s, 𝛽s ∈ (0, 1) for all s = 1, … , S then Σ

𝜺
> 0 implies Σ > 0, i.e. the components

of the state-vector Yk are positively correlated. This property limits the applicability of the PINAR(1, 1S) model
somewhat compared to other models, e.g. latent Gaussian transformation or copula-based models, see Kong and
Lund (2023), but in practice many time series show non-negative temporal correlation, see the datasets in this
article and Filho et al. (2021).

If Assumption 1 holds and E(𝜀k
t ) is finite for all t ∈ Z where 2 < k ∈ N, then the kth-order moments of the

PINAR(1, 1S) process is also finite. This statement can be proved similarly to the cases k = 1, 2.
In Theorem 1, necessary and sufficient conditions are given for a PINAR(1, 1S) process to be PC.

Theorem 1. Let {Yt} be a PINAR(1, 1S) process with S-dimensional state process {Yk}. Then, the following
statements are equivalent:

(i) {Yt} is a PC process with period S;
(ii) The N

S
0-valued r.v. (Y1, … ,YS) has mean vector 𝝁 and variance matrix Σ which satisfy (22) and (23)

respectively;
(iii) {Yk} is a weakly stationary process with mean vector 𝝁, variance matrix Σ which satisfy (22), (23)

respectively, and covariance matrix function Γ defined by (42).

The PINAR(1, 1S) process has a PAR representation similarly to the AR representation of the INAR models,
see section 4 in Latour (1998). Following the right-hand side of (2), let us define the linear predictor PkS+s based
on the observations YkS+s−1 and YkS+s−S as

PkS+s ∶= 𝛼sYkS+s−1 + 𝛽sYkS+s−S + 𝜆s,

J. Time Ser. Anal. (2024) © 2024 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12746 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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12 M. ISPÁNY, ET AL.

k ∈ Z and s = 1, … , S, and introduce the innovation sequence {Mt} as Mt ∶= Yt − Pt. Let t ⊂  denote the
𝜎-algebra generated by the r.v.’s {Ys|s ≤ t} for all t ∈ Z. Clearly, kS coincides with the 𝜎-algebra generated
by the N

S
0-valued r.v.’s {Y𝓁|𝓁 < k}. Remark that if the coordinates of the immigration vector 𝜺k are mutually

independent, then Pt = E(Yt|t−1), i.e., {Mt} is a martingale difference w.r.t. to the filtration {t}. However, in
general, if the coordinates of the immigration vector 𝜺k are dependent, then E(𝜀kS+s|kS+s−1) ≠ 𝜆s provided s > 1,
which implies that {t} is not a martingale difference anymore w.r.t. {t}. Clearly, by (2), we have

MkS+s = (𝛼k,s◦YkS+s−1 − 𝛼sYkS+s−1) + (𝛽k,s◦YkS+s−S − 𝛽sYkS+s−S) + (𝜀kS+s − 𝜆s). (29)

Thus, {Mt} is a centered process. Let 𝜎2
s ∶= Var(𝜀s), s = 1, … , S, denote the diagonal elements of Σ

𝜺
. Since the

counting r.v.’s involved into the model and the immigration are mutually independent at the same time, one can
see that {Mt} has the periodic variance

E(M2
kS+s) = v(𝛼s)𝜇(s − 1) + v(𝛽s)𝜇(s) + 𝜎2

s , (30)

for all s = 1, … , S and k ∈ Z, where 𝜇 denotes the mean function of {Yt}. Let us introduce the centered random
variables Xt ∶= Yt − 𝜇(t), t ∈ Z. By (2), (39) and (29), the process {Xt} satisfies a periodic autoregressive (PAR)
model, in fact, a subset PAR({1, S}) model, defined by

XkS+s = 𝛼sXkS+s−1 + 𝛽sXkS+s−S +MkS+s, (31)

k ∈ N and s = 1, … , S. In (31), 𝛼s, 𝛽s, s = 1, … , S, are the autoregressive coefficients, and {Mt} is a periodic
innovation process with zero mean and periodic variance (30).

The state-space representation of the PAR process {Xt} is derived in the following way. Define the RS-valued
r.v.’s Xk ∶= (XkS+1, … ,XkS+S)⊤ and Mk ∶= (MkS+1, … ,MkS+S)⊤, k ∈ Z, and consider the RS-valued stochastic
processes {Xk} and {Mk}. Then, by (31), we obtain the S-dimensional vector autoregressive (VAR) representation
of {Xt} as

Xk = (I − A)−1(BXk−1 +Mk), (32)

k ∈ N, where the matrices A and B are defined in (6). One can see that Xk = Yk−E(Yk) and Mk = (Ak◦Yk−AYk)+
(Bk◦Yk−1 − BYk−1) + (𝜺k − 𝝀) for all k ∈ N. Thus, the autoregressive representation of the implicit multi-variate
INAR model (5) coincides with the vector autoregressive model (32), see also proposition 4.1 in Latour (1997). If
{Yk} is a non-anticipative weakly stationary stochastic process, then {Mk} is an S-dimensional weak white noise
with zero mean vector and variance matrix ΣM which explains the notation ΣM introduced in Proposition 1.

Recursion (32) implies that the N
S
0-valued state process {Yk} has an infinite moving average representation.

Proposition 2. Under Assumption 1, the centered process {Xk} of {Yk} can be expressed as the almost surely
and in mean square convergent infinite series

Xk = Yk − 𝝁 =
∞∑

j=0

(
(I − A)−1B

)j
Wk−j, (33)

k ∈ Z, where the RS-valued r.v.’s {Wk} are defined as Wk ∶= (I − A)−1Mk for all k ∈ Z.

One can see, by (5) and (35), that Wk = Yk − E(Yk|kS), thus {Wk} is a martingale difference vector sequence
w.r.t. the filtration {kS}k. However, neither {Mk} nor {Wk} are a strong white noise, i.e. their elements are not
independent since they depend on the PC process {Yt}, see (29). Moreover, the RS-valued state process {Xk} in the
VAR representation (32) satisfies a similar equation to (9) where the usual matrix product replaces the matricial
binomial thinnings.

wileyonlinelibrary.com/journal/jtsa © 2024 The Authors. J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12746
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EXISTENCE OF A PERIODIC AND SEASONAL INAR PROCESS 13

The main theorem on the existence and uniqueness of the S-dimensional stationary state-space representation
{Yk} of a PINAR(1, 1S) process is the following.

Theorem 2. Under Assumption 1, there exists an almost surely unique non-anticipative and weakly station-
ary N

S
0-valued process {Yk} which satisfies (5) (or (9)). The process {Yk} can be expressed as the almost sure

convergent infinite series

Yk =
∞∑

j=1

Z(j)k , (34)

k ∈ Z, where Z(n)k denotes the number of nth generation offspring of immigrants at time k defined by (16). {Yk}
is strictly stationary and ergodic, its mean vector 𝝁, and variance matrix Σ satisfy (24) and (25) respectively, and
its autocovariance matrix function is given by Γ(h) = ((I − A)−1B)hΣ for all h ∈ N0. Moreover, Y(n)k → Yk almost

surely and in mean square as n → ∞ for all k ∈ Z, where Y(n)k denotes the number of offspring of immigrants up
to generation n at time k defined in (15).

The formula (34) can be interpreted as the infinite immigrant generation representation of the state process of
a PINAR(1, 1S) process. In this representation, {Z(j)k |j ∈ N} are independent random vectors for all k ∈ Z, see

Section 4, and Z(j)k depends only on the immigration vector process at time k + 1 − j. Note that the components in
the infinite moving average representation (33), see definition 3.1.3 in Brockwell and Davis (2013), are not inde-
pendent but uncorrelated. Representation (34) also implies that, under Assumption 1, the stationary distribution
of the state-space representations (5) and (9) can be expressed as the following formal infinite series

Y


=
∞∑

j=0

(
(I − A)◦−1B◦

)j(I − A)◦−1
𝜺−j

=
∞∑

j=0

(
A(S)◦A(S−1)◦ … A(2)◦B◦

)j
A(S)◦A(S−1)◦ … A(2)◦𝜺−j,

where the different copies of the matricial binomial thinning operators A(2)◦, … ,A(S)◦ and B◦ are mutually inde-
pendent. This infinite series expansion can be seen as the infinite immigrant generation representation of the
stationary distribution, see, e.g. (2.2) in Al-Osh and Alzaid (1987), proposition 1 in Bourguignon et al. (2016),
and the formula on the bottom of p. 215 in Pedeli and Karlis (2013).

Remark 4. The connection between the two infinite series representations (33) and (34) can be discussed as
follows. Define, for all k ∈ Z, the conditionally centered N

S
0-valued r.v.’s V(n+1)

k ∶= Z(n+1)
k − E(Z(n+1)

k |Z(n)k−1), n ∈ N,

and V(1)
k ∶= Z(1)k − E(Z(1)k ). In the notation of V(n)

k , the superscript (n) and subscript k refer to generation and time
respectively. V(n+1)

k is the conditional fluctuation of the number of offspring of 𝜺k−n w.r.t. the size of previous nth
generation. Clearly, by (16) and Lemma 3, we have E(Z(n+1)

k |Z(n)k−1) = (I − A)−1BZ(n)k−1. Then, one can easily check

that, by (34), Wk =
∑∞

j=1V(j)
k for all k ∈ Z, and Z(n)k − E(Z(n)k ) =

∑n−1
j=0 ((I − A)−1B)jV(n−j)

k−j for all k ∈ Z and n ∈ N.
Thus, the innovation vector Wk in the VAR representation of a PINAR(1, 1S) process is the sum of conditional
fluctuations of offspring over generations at a time k, while the centered number of offsprings Z(n)k − E(Z(n)k ) at
generation n and time k is a finite moving average of the same conditional fluctuation of previous n generations at
consecutive time points k, … , k − n + 1.

By the proof of Theorem 2, one can see that Yk is measurable w.r.t. k. However, the process {Yk} is not causal
(or physically realizable) in the sense that Yk is not measurable w.r.t. kS, i.e., the 𝜎-algebra generated only by the
immigration process up to time kS.

The following corollary follows directly from Theorem 2.

J. Time Ser. Anal. (2024) © 2024 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12746 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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14 M. ISPÁNY, ET AL.

Corollary 1. Under Assumption 1, there exists an almost surely unique non-anticipative and N0-valued PC pro-
cess {Yt} with a period S which satisfies the PINAR(1, 1S) model. The process {Yt} is a periodically strictly
stationary process also with a period S.

6. SECOND-ORDER PROPERTIES

Here, the first- and second-order structures of the state process {Yk} are described. First, the conditional mean
vector and variance matrix of Yk are derived. We apply Lemma 3 by choosing Y = Yk, Z = Bk◦Yk−1 + 𝜺k and
 = kS. Then, Yk−1 is kS-measurable and Bk◦ and 𝜺k are independent of kS. Thus, by (4), we have E(Bk◦Yk−1 +
𝜺k|kS) = BYk−1 + 𝝀 and Var(Bk◦Yk−1 + 𝜺k|kS) = diag(VBYk−1) + Σ𝜺. Using (9) and Lemma 3, we have

E(Yk|kS) = (I − A)−1(BYk−1 + 𝝀), (35)

Var(Yk|kS) = (I − A)−1
(
diag

(
VA(I − A)−1(BYk−1 + 𝝀) + VBYk−1

)
+ Σ

𝜺

) (
(I − A)−1

)
⊤

, (36)

where VA and VB are defined in (7). Thus, the conditional mean vector and variance matrix of Yk depend on the
past only through Yk−1. Note that the right-hand sides of (35) and (36) are affine functions of Yk−1. In fact, by (9),
one can see that the state process {Yk} is a Markov chain on the state-space N

S
0 and thus the PINAR(1, 1S) process

{Yt} is an inhomogeneous S-step Markov chain on the state-space of non-negative integers.
Let us introduce the S-dimensional vectors 𝝁k ∶= (𝜇(kS + 1), … , 𝜇(kS + S))⊤, k ∈ Z. Then 𝝁k = E(Yk) and,

by (9) and Lemma 3 or taking the expectation of (35), we have the explicit linear recursion

𝝁k = (I − A)−1(B𝝁k−1 + 𝝀), (37)

for all k ∈ N. The recursion (37) can be rearranged in the implicit form

𝝁k = A𝝁k + B𝝁k−1 + 𝝀, (38)

for all k ∈ N which is the expectation of (5). One can see that both recursions (37) and (38) are non-negative
equations. Formula (38) implies that the mean function 𝜇 satisfies the periodic linear recursion

𝜇(kS + s) = 𝛼s𝜇(kS + s − 1) + 𝛽s𝜇(kS + s − S) + 𝜆s, (39)

for all k ∈ Z and s = 1, … , S. Remark that this recursion can also be derived from (2) by taking expectation.
Let us define the S × S-dimensional autocovariance matrix function Γ ∶ Z2 → RS×S as Γ(k,𝓁) ∶= Cov(Yk,Y𝓁)

for all k,𝓁 ∈ Z. Clearly, (Γ(k,𝓁))i,j = Cov(YkS+i,Y𝓁S+j) = R(kS + i,𝓁S + j) for all k,𝓁 ∈ Z and i, j = 1, … , S.
Since Γ(k,𝓁) = Γ(𝓁, k)⊤ for all k,𝓁 ∈ Z it is enough to consider the case k ≥ 𝓁. Let Σk ∶= Var(Yk) = Γ(k, k) for
all k ∈ Z. Since Yk−1, Bk◦ and 𝜺k are mutually independent, by (4), we obtain that E(Bk◦Yk−1 + 𝜺k) = B𝝁k−1 + 𝝀
and Var(Bk◦Yk−1 + 𝜺k) = BΣk−1B⊤ + diag(VB𝝁k−1) + Σ𝜺. Thus, by (9), (37) and (iii) of Lemma 3, we have the
recursion for the variance matrices Σk as

Σk = (I − A)−1
(
BΣk−1B⊤ + diag(VA𝝁k + VB𝝁k−1) + Σ𝜺

) (
(I − A)−1

)
⊤

, (40)

k ∈ Z. Equation (40) is a Lyapunov-type analog of (37). By rearranging (40) we have

(I − A)Σk(I − A)⊤ = BΣk−1B⊤ + diag(VA𝝁k + VB𝝁k−1) + Σ𝜺.

wileyonlinelibrary.com/journal/jtsa © 2024 The Authors. J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12746
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EXISTENCE OF A PERIODIC AND SEASONAL INAR PROCESS 15

By using the vec operator, the recursion (40) can be written as the following linear recursion for the vectorized
variance matrices vecΣk, k ∈ Z,

vecΣk =
(
(I − A)−1

)
⊗2 (

B⊗2 vecΣk−1 + vec
(
diag(VA𝝁k + VB𝝁k−1) + Σ𝜺

))
. (41)

The autocovariance matrix function Γ of a non-anticipative state process {Yk} is derived in the following way.
By the law of total covariance and (35), we have the recursion Γ(k,𝓁) = (I − A)−1BΓ(k − 1,𝓁) for all k > 𝓁. This
recursion implies that Γ can be expressed as

Γ(k + h, k) =
(
(I − A)−1B

)hΣk, (42)

for all h ∈ N0 and k ∈ Z. If Σk = Σ for all k ∈ Z, then Γ(k,𝓁) depends only on k − 𝓁. Hence, in this case, we

may introduce the function Γ ∶ Z → RS×S as Γ(h) ∶=
(
(I − A)−1B

)hΣ and Γ(−h) = Γ(h)⊤ for all h ∈ N0. The
relationship between the autocovariance function R of {Yt} and the autocovariance matrix function Γ of {Yk} can
be expressed as

(Γ(h))i,j = R(hS + i, j), (43)

for all h ∈ Z and i, j = 1, … , S.
Define the scalar-valued functions 𝛾j ∶ Z → R, j ∈ Z, as 𝛾j(h) ∶= R(j + h, j), h ∈ Z. One can see that

if R is a periodic function with period S, then 𝛾kS+s = 𝛾s for all k ∈ Z and s = 1, … , S. The functions 𝛾s,
s = 1, … , S, determine the autocovariance function R. Namely, if s = kS + i and t = 𝓁S + j where k,𝓁 ∈ Z

and i, j ∈ {1, … , S}, then R(s, t) = R(kS + i,𝓁S + j) = 𝛾j((k − 𝓁)S + i − j). Thus, if a PINAR(1, 1S) pro-
cess {Yt} is a PC process of period S, then the functions 𝛾s, s = 1, … , S, determine its covariance kernel R,
and the covariance matrix function Γ of its weakly stationary state process {Yk}. The functions 𝛾s, s = 1, … , S,
are called the periodic autocovariance functions (perACF) of the PC process {Yt}. The following symmetry
property

𝛾j(hS + s) = 𝛾j+s(−hS − s), (44)

holds for all h, j ∈ Z and s = 1, … , S. Particularly, in the case of h = 0, we have 𝛾j(i) = 𝛾i+j(−i) for all
i, j ∈ {1, … , S}. According to (43), the covariance matrix function Γ of the state process {Yk} and the perACF’s
𝛾j, j = 1, … , S, of the PINAR(1, 1S) process {Yt} are related by (Γ(h))i,j = 𝛾j(hS + i − j) for all h ∈ Z and
i, j ∈ {1, … , S}. By the symmetry property (44), the covariance matrix Σ can also be expressed as Σ = Γ(0) =
(𝛾i∧j(|i − j|))Si,j=1 where i ∧ j ∶= min{i, j}.

By (42), we have the YW equations for the weakly stationary process {Yk} as (I − A)Γ(h) = BΓ(h − 1) and
Γ(−h)(I − A)⊤ = Γ(−h+1)B⊤ for all h ∈ N. Since this equation can be written in the form Γ(h) = AΓ(h)+BΓ(h−1),
h ∈ N, where A and B are defined by (6), we obtain the following YW equations for the perACF of the PC process
{Yt}

𝛾j(hS + i − j) = 𝛼i𝛾j(hS + i − j − 1) + 𝛽i𝛾j(hS + i − j − S), (45)

which can be rewritten by using the periodic autocovariance function R as

R(hS + i, j) = 𝛼iR(hS + i − 1, j) + 𝛽iR(hS + i − S, j),

for all h ∈ N and i, j = 1, … , S. This autocovariance function is identical to that of a PAR process, namely the
process {Xt} in (31), see also theorem 2 in Pagano (1978). When Σ

𝜺
is diagonal, then the YW equations can be

J. Time Ser. Anal. (2024) © 2024 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12746 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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16 M. ISPÁNY, ET AL.

written in the form
[
𝛾s−1(0) 𝛾s(S − 1)
𝛾s(S − 1) 𝛾s(0)

]

=

[
𝛼s

𝛽s

]

=

[
𝛾s−1(1)
𝛾s(S)

]

, (46)

for all s = 1, … , S. Thus, the parameters 𝛼s, 𝛽s, s = 1, … , S, are determined by the perACF’s 𝛾s, s = 1, … , S,
at lags 0, 1, S − 1, S in this particular case.

By (22) and (23) respectively, the mean vector 𝝀 and the variance matrix Σ
𝜺

of the immigration vector can be
expressed in the following form

𝝀 = (I − A − B)𝝁
Σ
𝜺
= (I − A)Σ(I − A)⊤ − BΣB⊤ − diag((VA + VB)𝝁), (47)

as functions of the parameters 𝛼s, 𝛽s, s = 1, … , S, the mean vector 𝝁 and the variance matrix Σ of the stationary
solution.

Finally, the spectral distribution matrix of the weakly stationary state process {Yk} is given by

fY(𝜆) =
1

2𝜋
F−1(e−i𝜆)(I − A)−1ΣM

(
(I − A)−1

)
⊤
(
F−1(ei𝜆)

)
⊤

= 1
2𝜋

G−1(e−i𝜆)ΣM

(
G−1(ei𝜆)

)
⊤

,

𝜆 ∈ (−𝜋, 𝜋], where F(z) ∶= I − (I − A)−1Bz and G(z) ∶= I − A − Bz, z ∈ C, see section 11.8 in Brockwell and
Davis (2013) and proposition 4.2 in Latour (1997). Note that det F(z) ≠ 0 and det G(z) ≠ 0 for all |z| ≤ 1 under
Assumption 1.

7. SIMULATION OF PINAR(1,1S) PROCESSES

Two simulation methods are investigated here for generating a PINAR(1, 1S) process with sample size T = nS.
We take S = 4, the immigration process {𝜀t} is independent Poisson distributed, and the parameter set 𝝑 is the
same as in Filho et al. (2021), i.e. (𝛼1, 𝛼2, 𝛼3, 𝛼4) = (0.1, 0.42, 0.23, 0.39), (𝛽1, 𝛽2, 𝛽3, 𝛽4) = (0.47, 0.25, 0.36, 0.3)
and (𝜆1, 𝜆2, 𝜆3, 𝜆4) = (4, 3, 2, 1). The spectral radius of matrices in Lemma 1 are 𝜌((I − A)−1B) = 0.5239 and
𝜌(A + B) = 0.6079, thus Assumption 1 is satisfied for these parameters, hence, by Corollary 1, a unique PC
process exists that satisfies the PINAR(1, 1S) model. The parameters are estimated by the YW equations where
the perACF’s are replaced by their natural estimates obtained from the sample estimate of the covariance matrix
Γ of the weakly stationary state process {Yk}, see p. 407 in Brockwell and Davis (2013). Of course, more efficient
parameter estimation methods exist for a PINAR(1, 1S) model, e.g. the conditional quasi-maximum likelihood
method in Filho et al. (2021). Here, we use the simple YW estimation method only to compare the two proposed
simulation methods based on these estimates. The results of YW estimation for sample size n = 250, 1000, 4000
are displayed in Table II. The empirical bias and root mean square error (RMSE) correspond to 1000 replications.
All simulations were carried out using the Numpy library of Python language, the program codes are available on
request.

The first simulation method (Sim1) is the Markovian simulation which is based on equation (9) and the Markov
property of the state process {Yk}. In this simulation, at each step, we generate an immigration vector 𝜺 and
binomial distributed r.v.’s belonging to matricial binomial thinning operators A◦ and B◦ which are mutually inde-
pendent. To avoid the problem of initial distribution, we start from the integer part of the theoretical mean vector
𝝁, and, before generating n observations from the process, 200 pre-iterations are performed by recursion (9) to
ensure that the simulation starts near the stationary distribution.

wileyonlinelibrary.com/journal/jtsa © 2024 The Authors. J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12746

 14679892, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/jtsa.12746 by C

entraleSupélec, W
iley O

nline L
ibrary on [21/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



EXISTENCE OF A PERIODIC AND SEASONAL INAR PROCESS 17

The second simulation method (Sim2) is based on the infinite immigrant generation representation (34) of the
PINAR process. In this case, by recursion (16), we generate mutually i.i.d. stochastic processes {Z(j)k+j−1|j ∈ N},
k = 1, … , n. Note that it is not necessary to shift the matricial binomial thinning operators during the simulation,
only mutually independent copies of A◦ and B◦ are needed. Each process is generated until its extinction, which
occurs exponentially fast, see problem I.5 in Athreya and Ney (1972). Then, by Theorem 2, the diagonal sum
Y(k)k ∶=

∑k
j=1Z(j)k is a good approximation of the state vector Yk when k is large enough. Here, the upper limit k

of the summation can be replaced by the maximum Mn of the extinction times of the processes {Z(j)k+j−1|j ∈ N},
k = 1, … , n, which is approximately O(ln n). It is also worthwhile to omit the first Mn elements of the series
{Y(k)k |k = 1, … , n} to improve the accuracy of the approximation.

A precise probabilistic study of the simulation Sim2 is as follows. Let Q ∶= minj{j ∶ Zj = 0} denote the

extinction time of a process {Zj} which is a copy of i.i.d. processes {Z(j)k+j−1}, k = 1, … , n. Then, by Markov’s
inequality, there exists C > 0 such that, for all j ∈ N,

P(Q > j) = P(Zj ≠ 0) = P(||Zj||1 ≥ 1∕2) ≤ 2||𝝂(j)||1 ≤ C||((I − A)−1B)j||1,

where ||v||1 ∶=
∑

i |vi| for a vector v = (vi) and ||M||1 ∶=
∑

i,j |mi,j| for a matrix M = (mi,j). Let 𝜌 ∶=
𝜌((I − A)−1B) < 1 and 0 < 𝜖 < 1 − 𝜌. We deduce from corollary 5.6.13 in Horn and Johnson (2012) that there
exists C > 0 such that, for all k ∈ N,

P(Q > j) ≤ C(𝜌 + 𝜖)j.

Thus, the tail probabilities of Q decrease exponentially, see a simulation study in Table I. Let {cn} be a sequence
of non-negative numbers such that n−1cn → ∞ as n → ∞ and define the non-negative sequence {an} with an ∶=
−(ln cn+ln C)∕ ln(𝜌+𝜖), n ∈ N. Then, for the maximum Mn of the extinction times of the processes {Z(j)k+j−1|j ∈ N},
k = 1, … , n, we have

P(Mn ≤ an) = P(Z(j)an
= 0, j = 1, … , n) = (P(Zan

= 0))n

≥ (1 − C(𝜌 + 𝜖)an)n =
(
1 − c−1

n

)n
→ 1,

as n → ∞. By choosing cn ∶= n𝜘 where 𝜘 > 1, we have that Mn = OP(ln n).
Thus, the algorithmic complexity of the simulation algorithms Sim1 and Sim2 is O(n) and O(n ln n) respectively,

where n is the length of the simulation as the number of periods. The running times of the simulations confirm
these asymptotics. However, while the first algorithm (Sim1) is not parallelizable, the second algorithm (Sim2)
has a parallelized version with n threads, since the processes {Z(j)k+j−1|j ∈ N}, k = 1, … , n, are mutually indepen-
dent. The algorithmic complexity of the parallelized version of Sim2 is O(ln n) which allows a significantly faster
execution.

Finally, we compare the statistical efficiency of the two simulation algorithms. In Table II, the bias and the
RMSE of YW estimator of the parameters of a PINAR(1, 14) model with Poisson immigration are presented. As
was expected, in general, the performance of the YW estimator presents estimates quite accurate even for a small
sample size. By increasing n, the bias and RMSE of the estimates decrease and show n1∕2 asymptotic (the ratio of

Table I. Empirical tail probabilities of extinction time Q of {Zj} with sample size n = 10,000

j 1 2 3 4 5 6 7 8 9

P(Q > j) 0.9895 0.8834 0.6643 0.4282 0.2551 0.1419 0.0768 0.0393 0.0213
j 10 11 12 13 14 15 16 17 18
P(Q > j) 0.0109 0.005 0.0025 0.0013 0.0008 0.0006 0.0003 0.0002 0.0001

J. Time Ser. Anal. (2024) © 2024 The Authors. wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12746 Journal of Time Series Analysis published by John Wiley & Sons Ltd.
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18 M. ISPÁNY, ET AL.

Table II. Results of the simulation to estimate the parameter by YW method

n = 250 n = 1000 n = 4000

Parameter Sim1 Sim2 Sim1 Sim2 Sim1 Sim2

𝛼1 −0.00664 0.00045 0.00122 −0.00254 0.00009 0.00031
(0.0758) (0.0756) (0.0355) (0.0356) (0.0184) (0.0178)

𝛼2 0.00508 −0.00168 −0.00279 0.00053 0.00042 0.00017
(0.0603) (0.0608) (0.0286) (0.0298) (0.0145) (0.0147)

𝛼3 0.00148 0.00207 0.00021 0.00212 0.00015 −0.00014
(0.0498) (0.0499) (0.0233) (0.0243) (0.0117) (0.0118)

𝛼4 0.00028 0.00206 0.00043 0.001 −0.00022 −0.00008
(0.0483) (0.0527) (0.025) (0.0244) (0.0123) (0.0125)

𝛽1 −0.01672 −0.01151 −0.00231 −0.00431 −0.00136 −0.00058
(0.0621) (0.0575) (0.0281) (0.0295) (0.0147) (0.0141)

𝛽2 −0.01121 −0.00948 0.00048 −0.003 0.00005 −0.00017
(0.0586) (0.0574) (0.0281) (0.0293) (0.0143) (0.0137)

𝛽3 −0.01031 −0.01178 −0.0031 −0.00218 −0.00044 −0.00023
(0.0593) (0.059) (0.0293) (0.0285) (0.0142) (0.0144)

𝛽4 −0.00908 −0.01162 −0.00179 −0.00326 −0.00083 −0.00034
(0.0552) (0.0585) (0.0273) (0.0286) (0.014) (0.0138)

𝜆1 0.17246 0.09378 0.01641 0.05198 0.011 0.00317
(0.626) (0.6013) (0.2805) (0.295) (0.149) (0.1467)

𝜆2 0.04446 0.08857 0.01376 0.02345 −0.00616 0.0014
(0.6374) (0.6571) (0.3166) (0.3192) (0.1533) (0.1537)

𝜆3 0.05084 0.05645 0.01673 −0.00503 0.00061 0.00235
(0.5327) (0.5292) (0.2596) (0.2616) (0.1248) (0.1257)

𝜆4 0.03626 0.0417 −0.00197 0.00942 0.00538 0.00028
(0.3548) (0.3816) (0.1809) (0.1831) (0.0915) (0.0928)

Note: The table contains the bias (RMSE) of each estimate.

the RMSE values of the estimates of the same parameters are around 2 between two consecutive sample sizes).
Furthermore, the accuracy of the second simulation algorithm (Sim2) is at least as good as the first one (Sim1).
Comparing Tables II and III, we see that the estimates of immigration parameters 𝜆s’s are more precise by taking the
diagonal of the estimated immigration variance matrix than the estimated immigration means, see (47). In figures
of Appendix S1, we compare the distributions of the YW estimates of autoregressive parameters 𝛼s’s and 𝛽s’s and
immigration parameters 𝜆s’s for the two simulation methods. These figures show the asymptotic normality of the
estimates and corroborate the fact that the accuracy of the two simulation algorithms is similar. In Tables IV and V,
simulation results are presented for the parameters as mean and covariance matrix of the stationary distribution
of a PINAR(1, 14) model which also shows satisfactory behavior. Note that the bias values of all elements of the
variance matrix are negative confirming that the variance matrix Σ(n) of Y(n)k approximates the variance matrix Σ
of the stationary distribution from below.

8. REAL DATA APPLICATION

In this application, the time series of counts (Pickup data) refers to the daily number of parcels picked up from
one pickup point (PUP) at a PUP management company. It consists of daily aggregation of all parcels picked
up from a PUP stored in the file Data PUP1.csv, available at https://github.com/cabani/ForecastingParcels, see
Nguyen et al. (2023). This real data set corresponds to the period of July 3, 2017, to December 29, 2019, resulting
in T = 910 daily (n = 130 weeks) observations. The series displayed in Figure 1 contains persistence oscillation
in the sense that the mean and the variance change periodically. This is evidenced in the plots of the sample ACF

wileyonlinelibrary.com/journal/jtsa © 2024 The Authors. J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12746
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EXISTENCE OF A PERIODIC AND SEASONAL INAR PROCESS 19

Table III. Results of the simulation to estimate the immigration parameters by the diagonal of the estimated immigration
variance matrix.

n = 250 n = 1000 n = 4000

Parameter Sim1 Sim2 Sim1 Sim2 Sim1 Sim2

𝜆1 −0.0172 −0.02572 −0.00119 0.01895 −0.00385 −0.00029

(0.6391) (0.686) (0.3293) (0.3263) (0.165) (0.1752)

𝜆2 −0.03092 −0.01963 −0.00317 0.01266 −0.01056 −0.00134

(0.6636) (0.6532) (0.3187) (0.322) (0.1648) (0.1578)

𝜆3 0.00145 −0.00913 −0.00272 −0.01016 0.00031 −0.00292

(0.5058) (0.5086) (0.2565) (0.2543) (0.1251) (0.1324)

𝜆4 −0.01518 0.01671 −0.00238 0.00097 −0.00035 −0.0017

(0.3353) (0.3566) (0.1731) (0.1782) (0.0824) (0.0881)

Note: The table contains the bias (RMSE) of each estimate.

Table IV. Results of the simulation to estimate the means

n = 250 n = 1000 n = 4000

Parameter Sim1 Sim2 Sim1 Sim2 Sim1 Sim2

𝜇1 −0.00139 0.00004 0.00393 0.00678 −0.0002 −0.00051

(0.3133) (0.3218) (0.1549) (0.16) (0.0801) (0.0778)

𝜇2 −0.01271 −0.00966 −0.00497 0.0065 −0.00295 0.00149

(0.2847) (0.3006) (0.1388) (0.1428) (0.0721) (0.0733)

𝜇3 −0.00312 0.000276 −0.00245 0.00266 −0.00236 0.00023

(0.2512) (0.2463) (0.1282) (0.1209) (0.0617) (0.0618)

𝜇4 −0.00891 −0.00093 −0.01231 0.00125 −0.00144 −0.00239

(0.2311) (0.2252) (0.1098) (0.1068) (0.0538) (0.0535)

Note: The table contains the bias (RMSE) of each estimate.

Table V. Results of the simulation (Sim2) to estimate the variance matrix with n = 4000.

𝜎

2
⋅,1 𝜎

2
⋅,2 𝜎

2
⋅,3 𝜎

2
⋅,4

𝜎

2
1,⋅ −0.00185 −0.00093 −0.00121 −0.00463

(0.263) (0.2018) (0.15) (0.1358)

𝜎

2
2,⋅ −0.00198 −0.00188 −0.00257

(0.2451) (0.148) (0.1273)

𝜎

2
3,⋅ −0.00501 −0.00413

(0.1853) (0.1287)

𝜎

2
4,⋅ −0.0063

(0.1548)

Note: The table contains the bias (RMSE) of each estimate.

J. Time Ser. Anal. (2024) © 2024 The Authors. wileyonlinelibrary.com/journal/jtsa
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20 M. ISPÁNY, ET AL.

October 2017 January 2018 April 2018 July 2018 October 2018 October 2019January 2019 April 2019 July 2019

Figure 1. Daily number of parcels picked up from one Pick-Up Point (PUP) at a PUP management company.

and periodogram, as discussed below. The time series is available on request from the authors, together with the
R and Python codes analyzing it. The data have been processed with the standard time series libraries of R with
perARMA for analyzing periodic time series, and Python libraries such as csv, numpy, pandas, and scipy. The
results were verified by comparing the outputs of the two softwares.

Figure 2 shows the sample periodic mean and variance of the series over seasons, the sample ACF, and the
periodogram of the series. The periodic mean and variance curves show a similar shape, with a minimum on Sunday
(2.377 and 3.989 respectively) and a maximum on Thursday-Friday (23.915 and 94.048 respectively). The analysis
of the sample ACF suggests that the series has seasonal autocorrelation of period S = 7 which is an expected result
since the series consists of daily data. The periodogram provides a high peak at frequency 0.14, which corresponds
to the period 1∕0.14 = 7. Tables VI and VII present the sample periodic autocorrelation (perACF) and the sample
periodic partial autocorrelation (perPACF) functions. In these tables, the values in bold are the sample correlations

that exceed the critical value 1.96∕
√

130 = 0.172. All values of the sample perACF are positive except Sunday,
which supports the applicability of the PINAR model. The autoregressive order identification of PAR processes is
based on finding the lowest lag for which the sample perPACF cuts off, see McLeod (1994). The characteristics
of the Pickup data show complex and contradictory behavior, which is not surprising for real data. For example,
the clear weekly seasonality (S = 7) seen on the sample ACF and periodogram in Figure 2 is spread over the lags
6, 7 and 8 in the sample perPACF in Table VII. However, if we want to describe the pickup time series with a
consistent and parsimonious model, based on this preliminary model identification step, the PINAR(1, 17) model
may be adequate to capture the basic dynamic of the data.

We fit a PINAR(1, 17) model to the data using the YW method which consists in solving the vector equation
(46), where the perACF’s are replaced by their sample estimates, to find estimates of 𝛼s and 𝛽s and to use (39),
where the periodic means are replaced by their sample estimates, to derive estimate of 𝜆s for s = 1, … , 7. This
estimation method does not require any assumptions about the thinning and immigration distribution. The YW
estimates of the parameters of the PINAR(1, 17)model are displayed in Table VIII. These parameter values provide
deeper insights to understand the dynamics of the time series. They show that the first-order temporal dependence
is significant each day except Sunday and it is stronger than the seasonal dependence. The largest first-order
autoregressive coefficient is Thursday, showing strong dependence on the previous Wednesday’s value, while the
largest seasonal autoregressive coefficients are Friday and Saturday, indicating a stronger seasonal dependence
between consecutive weekends. In contrast, the impact of immigration is largest at the beginning of the week
(Monday and Tuesday). Finally, since the autoregressive parameters are not significant on Sunday, the time series
behaves as white noise here, which is corroborated by the corresponding correlation values in Tables VI and VII.

wileyonlinelibrary.com/journal/jtsa © 2024 The Authors. J. Time Ser. Anal. (2024)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12746
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EXISTENCE OF A PERIODIC AND SEASONAL INAR PROCESS 21
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Figure 2. The sample periodic mean and variance over days of the week, the sample ACF, and the periodogram of Pickup data

Table VI. Sample periodic ACF of the pickup data

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8 h = 9 h = 10

Sunday 0.072 0.008 0.118 −0.021 0.036 0.120 −0.042 0.000 −0.058 −0.012
Monday 0.261 0.215 0.370 0.287 0.321 0.075 0.169 0.084 0.184 0.186
Tuesday 0.328 0.438 0.241 0.208 0.081 0.281 0.060 0.168 0.205 0.115
Wednesday 0.548 0.479 0.373 0.215 0.342 0.171 0.222 0.238 0.238 0.232
Thursday 0.486 0.450 0.196 0.278 0.196 0.222 0.308 0.406 0.245 0.096
Friday 0.521 0.149 0.381 0.351 0.314 0.398 0.368 0.363 0.097 0.337
Saturday 0.244 0.332 0.238 0.341 0.312 0.443 0.406 0.260 0.234 0.135

9. PROOFS OF THE MAIN RESULTS

Proof of Theorem 1. (i)⇒ (ii) Suppose that {Yt} is a PC process of period S. Then, we have

𝜇(j) = 𝜇(kS + j), R(i, j) = R(kS + i, kS + j),

for all i, j ∈ {1, … , S} and k ∈ N. This implies that 𝛍0 = 𝛍k = 𝛍 and Σ0 = Σk = Σ for all k ∈ N. Thus, the random
vector (Y1, … ,YS)⊤ has mean 𝛍 and covariance matrix Σwhich satisfy (22) and (23) by (37) and (40) respectively.

J. Time Ser. Anal. (2024) © 2024 The Authors. wileyonlinelibrary.com/journal/jtsa
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Table VII. Sample periodic PACF of the pickup data

h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8 h = 9 h = 10

Sunday 0.072 −0.011 0.174 0.237 0.009 −0.037 −0.068 −0.045 −0.088 −0.021
Monday 0.261 0.142 0.114 0.240 0.091 0.015 0.033 0.081 0.067 −0.022
Tuesday 0.328 0.326 0.260 −0.116 0.085 0.142 0.118 −0.045 0.027 0.005
Wednesday 0.548 0.290 0.002 0.134 −0.004 0.297 0.065 0.204 −0.086 −0.156
Thursday 0.486 0.264 0.064 −0.008 0.152 0.117 0.152 0.063 −0.104 0.017
Friday 0.521 0.027 0.096 0.109 −0.021 −0.025 −0.081 0.202 −0.080 0.010
Saturday 0.244 0.327 0.258 0.074 0.164 0.157 0.003 −0.052 0.020 0.158

Table VIII. Application of PINAR(1, 17) model to the pickup data

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

𝛼 0.065 0.224 0.280 0.337 0.547 0.398 0.346
𝛽 −0.072 0.165 −0.014 0.171 0.196 0.207 0.218
𝜆 1.393 12.321 14.072 10.122 7.092 10.137 5.698

Note: The parameters are estimated by the YW method.

(ii)⇒ (iii) Suppose that the random vector Y0 = (Y1, … ,YS)⊤ has mean 𝝁 and variance matrix Σ which satisfy
(22) and (23) respectively. Then, by recursion (37), we have that 𝝁k = 𝝁 for all k ∈ Z. (Note that B is an invertible
matrix.) Similarly, by recursion (40), we have that Σk = Σ for all k ∈ Z. Moreover, by (42), Γ(k,𝓁) depends only
on k − 𝓁. Thus, {Yk} is a weakly stationary process.
(iii) ⇒ (i) Suppose that {Yk} is a weakly stationary process with mean 𝝁, variance matrix Σ and covariance

matrix function Γ. For all s, t ∈ Z there exists k,𝓁 ∈ Z and i, j ∈ {1, … , S} such that s = kS + i and t = 𝓁S + j.
Thus,

𝜇(s + S) = 𝜇((k + 1)S + i) = (𝝁k+1)i = 𝜇i = (𝝁k)i = 𝜇(kS + i) = 𝜇(s),

and

R(s, t) = R(kS + i,𝓁S + j) = (Γ(k,𝓁))i,j = (Γ(k + 1,𝓁 + 1))i,j
= R((k + 1)S + i, (𝓁 + 1)S + j) = R(s + S, t + S).

Hence {Yt} is a PC process of period S. ◾

Proof of Theorem 2. Almost sure convergence of {Y(n)k }n. Consider the infinite sum (34) of N
S
0-valued r.v.’s, which

can take infinite value if it is necessary. By the monotone convergence theorem for Lebesgue integral, we obtain

E(Yk) = E
(

lim
n→∞

Y(n)k

)

= lim
n→∞

E
(

Y(n)k

)

= lim
n→∞

𝝁
(n) = 𝝁,

see Section 4, which implies that Yk is finite almost surely and is almost sure limit of the sequence of r.v.’s {Y(n)k }n

for all k ∈ Z.
Mean square convergence of {Y(n)k }n. Since E||Z||2 = ||E(Z)||2 + trVar(Z) for any random vector Z, we have

E||Y(n)k − Yk||
2 = E

‖
‖
‖
‖
‖
‖

∞∑

j=n+1

Z(j)k

‖
‖
‖
‖
‖
‖

2

=
‖
‖
‖
‖
‖
‖

∞∑

j=n+1

𝝂
(j)
‖
‖
‖
‖
‖
‖

+ tr
∞∑

j=n+1

Φ(j)
. (48)
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Then, the assertion follows, since, by Remark 3,
∑∞

j=n+1𝝂
(j) = 𝝁 − 𝝁(n) and

∑∞
j=n+1Φ

(j) = Σ − Σ(n), where the
right-hand sides tend 0 as n → ∞.

Non-negative integer-valued property of {Yk}. The sequence {Y(n)k }n is a non-decreasing sequence of N
S
0-valued

r.v.’s and has an almost-sure finite limit Yk for all k ∈ Z. Consequently, for each k ∈ Z, there exists Ek ∈  such
that P(Ek) = 1 and Y(n)k (𝜔)↗ Yk(𝜔) as n → ∞ for all 𝜔 ∈ Ek. Thus, for each 𝜔 ∈ Ek, there exists Nk(𝜔) ∈ N such
that Yk(𝜔) = Y(n)k (𝜔) for all n > Nk(𝜔), and hence Yk(𝜔) is a N

S
0-valued r.v. for all 𝜔 ∈ Ek.

Strict and second-order stationarity of {Yk}. Clearly, for all k1 < · · · < km, m ∈ N, (Y(n)k1
, … ,Y(n)km

) con-
verges to (Yk1

, … ,Ykm
) almost surely. Thus, {Yk} is a strictly stationary process because it is the almost sure

limit of a sequence of strictly stationary processes. Moreover, the monotone convergence theorem implies that
{Yk} has mean vector 𝝁 and variance matrix Σ. Finally, Γn(h) → Γ(h) for all h ∈ Z implies the formula for the
autocovariance matrix function.
{Yk} is a solution to equation (9). Since Yk = Y(n)k +

∑∞
j=n+1Z(j)k for all k ∈ Z and n ∈ N, we have by (17) that

(I − Ak)◦−1(Bk◦Yk−1 + 𝜺k) = Y(n)k +
∞∑

j=n

(
(I − Ak)◦−1Bk◦

)

|Y(j−1)
k−1

Z(j)k−1,

for all k ∈ Z and n ∈ N. The right-hand side of this equation tends to Yk almost surely as n → ∞ because the
N

S
0-valued r.v.’s in the infinite sum are non-negative and

E

( ∞∑

j=n

(
(I − Ak)◦−1Bk◦

)

|Y(j−1)
k−1

Z(j)k−1

)

= (I − A)−1B
∞∑

j=n

E
(

Z(j)k−1

)

= (I − A)−1B
(
𝝁 − 𝝁(n−1))→ 0,

as n → ∞. Thus, {Yk} is a solution to equation (9).
Ergodicity and non-anticipativity of {Yk}. It is proved in Section 4 that, for each n ∈ N, Y(n)k (T𝜔) = Y(n)k+1(𝜔)

for all 𝜔 ∈ Ω and k ∈ Z where T is an ergodic measure preserving transformation of (Ω,, P). By almost sure
convergence of {Y(n)k }n for all k ∈ Z, there exists A ∈  with P(A) = 1 such that Yk(T𝜔) = Yk+1(𝜔) for all 𝜔 ∈ A

and k ∈ Z. Thus, {Yk} is ergodic. By definition of Yk, this r.v. depends on the r.v.’s {Z(n)k }n, i.e., Yk is k-measurable
for all k ∈ Z, which implies the non-anticipativity of {Yk}.

Uniqueness of {Yk}. Suppose that {Y′k} is another non-anticipative weakly stationary solution to (9). Define
recursively the N

S
0-valued r.v.’s Zk,1 ∶= Bk◦Yk−1+𝜺k, Z′k,1 ∶= Bk◦Y′k−1+𝜺k, Zk,s ∶= A(s)k ◦Zk,s−1, Z′k,s ∶= A(s)k ◦Z′k,s−1,

s = 2, … , S. Then, Yk = Zk,S and Y′k = Z′k,S and, by Lemma 4 and formula (10), we have

E|Yk − Y′k|vec = E|A(S)k ◦Zk,S−1 − A(S)k ◦Z′k,S−1|vec ≤ A(S)E|Zk,S−1 − Z′k,S−1|vec ≤ · · · ≤

≤ A(S)A(S−1) … A(2)E|Zk,1 − Z′k,1|vec = (I − A)−1E|Bk◦Yk−1 − Bk◦Y′k−1|vec

≤ (I − A)−1BE|Yk−1 − Y′k−1|vec

for all k ∈ Z since Ak◦ and Bk◦ are mutually independent of Yk−1 and Y′k−1 by non-anticipativity. Thus, by
Proposition 1, we obtain that

E|Yk − Y′k|vec ≤
(
(I − A)−1B

)n
E|Yk−n − Y′k−n|vec ≤ 2

(
(I − A)−1B

)n
𝝁→ 0,

as n → ∞, see theorem 5.6.12 in Horn and Johnson (2012), and hence Yk = Y′k almost surely for all k ∈ Z. ◾

Proof of Corollary 1. By Theorem 2, let {Yk} be the almost surely unique non-anticipative and weakly stationary
solution to (5). Define the process of N0-valued r.v.’s {Yt} as YkS+s ∶= (Yk)s for all k ∈ Z, s = 1, … , S. One

J. Time Ser. Anal. (2024) © 2024 The Authors. wileyonlinelibrary.com/journal/jtsa
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can easily see that, by considering the coordinates of the stochastic vector equation (5), we obtain equation (1)
of the PINAR(1, 1S) model. Since {Yk} is second-order stationary, {Yt} is PC with period S. Moreover, the strict

stationarity of {Yk} implies the periodically strict stationarity of {Yt}, i.e. (Yt1
, … ,Ytn

)


= (Yt1+S, … ,Ytn+S) for all
t1 < · · · < tn, n ∈ N. Finally, the uniqueness of {Yt} follows from the uniqueness in Theorem 2. ◾
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