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A Proofs of the auxiliary results

Proof of equations (4). For each n € N5, we have that {Z = n} € F, E(M on) = Mn
and Var(M o n) = diag(Vn). Indeed,

S
Zm” ZE my On] Zm@jnj = (Mn),
j=1

and, since the counting sequences involved into Mo are mutually independent, we have

S S S S
Cov Z My j © Ny, E miion | = Z E Cov(m; ; onj, myony)
j=1 =1

j:I =1

S
= E dir Var(mg j on;) = O E mi (1 —my j)n;

S

=0k Y _ vign; = (Vn);
i=1

for all i,k =1,...,S. Then (4) follows by a truncation argument. Namely, we have that
E(M o Zx(|Z]| <n)|F) = Y X(Z=n)E(Mon)
[n]l<n

= > xX(Z=n)Mn=MZx(|Z| < n)

[n]<n



for all n € N, where x(A) denotes the indicator function of a set A. By the monotone
convergence theorem, this formula implies the first equality of (4) as n — oo. The proof of

the second equality is similar. O

Proof of Equation (10). Define the matrices Cs = 25:2 ajeje;»r_l, s=1,...,8, where the
empty sum is defined to be 0. One can see that C1 =0 and Cg = A. Since

s s—1
(I—CHA®) = [T - ZozjejejT_l <I+asese;r_1> =1- Zajeje;r_l =1-Cs_1
j=2 j=2

for all s =2,...,5, we have by iteration that

(I —A)AS) .. AC) —(] = Cg)A®) ... AP = (] — Cg_1) AV ... A®)
= .. =(I-0C)AP =T, =1 O

Proof of Lemma 1. (i) < (ii) Since det( — A) = 1, by Laplace’s formula, we have
det(z] — (I — A)7'B) = det (I — A)det(z(I — A) — B) = Q(z)
i.e., Q is the characteristic polynomial of the matrix (I — A)~!B and the assertion follows.

(7i1) < (iv) By Laplace’s formula P is the characteristic polynomial of the matrix A+ B and

the statement follows.

(17) & (i1i) By (i) < (i7) and (iii) < (iv) @ and P are the characteristic polynomials of
non-negative matrices. Thus, by the Perron theorem (see Theorem 8.3.1 in Horn and Johnson
(2012)), the maximal roots in modulus of the polynomials () and P are non-negative real
numbers. Thus, it is enough to show that (a) Q(z) > 0 for all z > 1 if and only if (b) P(z) > 0
for all z > 1. On the one hand, Q(z) < P(z) if z > 1 implies (a) = (b). On the other hand,

since

J=1 7j=1 7=1 7=1
S S
=" H(z—ﬁj)—zSHa] < 275Q(2),
j=1 j=1
for all z > 1, we have (b) = (a). O

Proof of Lemma 2. By definition of A and B, M := A+ B is a strictly substochastic matrix
since Z;qzl m;; =a; + 3 <lforalli=1,...,5. By Theorem 8.1.22 in Horn and Johnson
(2012), we obtain p(A) < max;<i<g Zle mij < 1. O

Proof of Lemma 3. (i) The recursion for Ys, s = 1,...,5, follows from the form of A
immediately. Define the Nj-valued r.v.’s Zs := (Y1,...,Ys, Zss1,.--,25) , s =1,...,8 — 1,



and let Zg :=Y . Since Y1 = Z; by the form of A, we have Z1 = Z. By the recursion, one
can see that Z, = A®) o Z,_; for all s =2,...,S which implies (12).

(ii) By recursion, (12) implies that Y has finite mean provided Z has a finite first moment.
By the law of total conditional expectation and (4), we have
E(AoY|F) = E(E(Ao Y|V, F)|F) = E(AY|F) = AE(Y | F).
Thus, by taking conditional expectation of (11), we have
E(Y|F) = AE(Y'|F) + E(Z|F)

which implies (13). The formulas for E(Y'|Z) and E(Y) follow immediately.

(iii) By recursion, (12) implies that Y has finite variance matrix provided Z has finite second
moment. Clearly, by (11), we have Y = (I — A)"}(A0oY — AY + Z). By the law of total

conditional covariance, we have
Cov(AoY — AY ,Z|F) =Cov(E(AoY — AY|Y, F),E(Z|Y, F)|F)
+E(Cov(AoY — AY , Z|Y ,F)|F) =0

because the first term is 0 since (4) implies E(A o Y|Y, F) = AY, and the second term is 0

since
Cov(AoY,Z|Y,F)=Cov(E(AoY|Y,Z,F),E(Z|Y,Z,F)|Y,F)
+E(Cov(AoY,Z|Y,Z,F)|Y,F)
=Cov(AY,Z|Y,F)=ACov(Y,Z|Y,F)
again by the law of total conditional covariance, (4), and Cov(AoY,Z|Y,Z,F) = 0. Thus,
by (13), we have
Var(Y|F) =Var (I — A" (Ao Y — AY + Z|F)
—(I — A)"" (Var(Ao Y — AY|F) + Var(Z|F)) (I — A"

Hence, (14) is derived since, by the law of total conditional variance, we obtain

Var(AoY — AY |F) =Var(E(AoY — AY|Y , F)|F) + E(Var(Ao Y — AY|Y, F)|F)
=E(Var(Ao Y|Y,F)|F) = E(diag(V4Y )| F) = diag(VAE(Y | F))

where the first part is 0 by (4), and in the second part the conditional variance formula of (4)
is applied, and finally E(Y|F) is replaced by (13). The last assertion for Var(Y|Z) follows
by Var(Z|Z) = 0, while the formula for Var(Y') can be derived by taking expectation of (14)

and using the law of total conditional variance. O



Proof of covariance formula in Remark 2. By the law of total conditional covariance,
we have
Cov(Y,Z|F)=Cov(E(Y|Z,F),E(Z|Z,F)|F)+E(Cov(Y, Z|Z,F)|F)
=Cov((I - A)'Z,Z|F) =1 - A~ Var(Z|F)

since Cov(Y, Z|Z,F) = 0. O

Proof of Lemma 4. For all n,n’ € Ny and binomial thinning operator o with counting

sequence {{;} we have
Eloon —aon/|=a(nvn —nAn)=an—n|

/
since |aon —aon/| = Z?;/ZM,H ¢;. Thus, for all n,n’ € N5, we have E[M on — M on/|yec <

M|n — n/|yec since

S S S S
/
E E :mi,jonj_ E :mi’jonj E Elm; ;o m”on]\ = E :mm’"J U

By the law of total conditional expectation, we have the statement of the lemma as

EIMoZ — Mo Z'|vee =E(E(|M 0 Z — M 0 Z'|vec| Z, Z"))
SE(M’Z - Zl|vec) = ME‘Z - Z/’vec O

Proof of Equation (17). We prove the statement by induction. The statement is true for
n = 1 since Yk( ) =0 and Y(l) Z(l) for all k € Z. Assume that (17) holds for n € N. Then,

we have
Yk(n—H) :Yk(n) + Z}gn+1)

o— Tl—l o) n
=(I — Ay) 1 (Bk o Y’k(il ) + €k) (I — Ak)\B: Y(" Do, (Bk O|Yk(31_1) Z]g)1>

I Ak (Bk‘on; 1 +€k+Bk O‘Y<n 1) Z]E: )1>

—(I - A)° " (Byo (Y, +Z,§)l)+sk)
k

(
—(I—A °1<BkoY 1—|—€k> O

Proof of the properties of {Yk(n)} and {Z,gn)}. For each k € Z, define the probability space
(U, Ag, Pr) as Q := ({0, 1} x {0, 1}N) x N¥ | the o-algebra Ay generated by the cylinder sets
of Qy, and, for each wy = ((xs, Ys)s=1,....s, n) where x5 € {0, 1}V, y, € {0, 1}, N, M, € N,

S N S,% — . My s, — -
s = ]-7 .- '7S7 and n € Ngv Pk(wk) = ans:l Hi:l S (]‘ - )1 o H] 1 y J(l_/B )1 ys’]a
where p, = P(exy = n), n € Ng. Then, wp represents a cylinder set in € whose set

generates all cylinder sets. Thus, P can be uniquely extended to the o-algebra A as a



probability measure by Theorem 8.2.2 in Dudley (2004)). Let (€2,.4, P) be the infinite product
of (Q, Ag,Pr), k € Z, which is well defined by Theorem 8.2.2 in Dudley (2004) too. By
construction, the canonical process {Uy}, defined by Uy(w) := wy, for all w = (wy) € €, follows
the distribution of independent r.v.’s {&rs;}, {Mk.s;}, {€x}. We prove the Gj-measurability
of Yk(n) and Z,gnﬂ) for all k € Z, n € Ny by induction. Clearly, Yk(o) is Gr-measurable for
all £ € Z. Suppose that, for a fixed n € Ny, the r.v. Yk(") is Gp-measurable for all k € Z.
Then, by (19), Yk(nﬂ) depends on {&k.sj}sjs {Mk,s,5}s,j> {EkS+s}ts, and Yk(f)l, hence Yk(nH)
is Gp-measurable as well. Similarly, Z,gl) is Gp-measurable by definition, and the induction
follows by (16).

For all h € Z, m € N and n € Ny, define the probability distribution Pgs)h on NS”S as
PO (Y1 ) =P (Yh(ﬁ)l =y1,.... Y\ = ym)

where y1,...,ym € N5. To prove that {Y/,g(n)}/r{J is strictly stationary, it is sufficient to show
(n)

moh does

that Pis)h does not depend on h. This statement is true for n = 0. Suppose that P
not depend on h for a n € Ny. By the law of total probability, the recursion (17) and since

the sequence {(Ago, Bio,ex)} is i.i.d., we obtain, for all h € Z and m € N, that

m

Pt ) = > PYL (e za) [[P (= AP (Boz+6) = )

zl,...,szNg Jj=1

for all y1,...,ym € Ng. In this formula, the right-hand side does not depend on h. Thus, by
induction, {Yk(n)}/r€ is strictly stationary for all n € Ny. To prove the non-anticipativity, we
note that the Ng—valued r.v.’s Yj(n)7 j < k, are Gp_1-measurable for all n € Ny. Since Gi_4
and {& sj, M55 €15+s | § € Nys=1,...,5,1 > k} are mutually independent for all k£ € Z, the
non-anticipativity follows. Finally, to prove the ergodicity, let T : 2 — € denote the bilateral
shift operator on (2, .4, P), see page 271 in Dudley (2004). By Theorem 8.4.5 in Dudley (2004)
T is an ergodic measure preserving transformation. By construction, if T'(§)(w) := &(Tw) for
all w € Q and r.v. &, then one can see that T'(&ksj) = kt1s5: L (Mh,sj) = NMk+1,s,5, and
T(ersts) = Et1)s+s for all k € Z, j € Nand s = 1,...,S. We prove by induction that
T(Yk(n)) = Yk(i)l for all k € Z and n € Ny. This statement is true for n = 0. Suppose that
the statement holds for a n € Ny. Then, by (19), we have the statement for n 4+ 1. Thus,
Yk(”) (Tw) = Yk(j:)l (w) for allw € Q, k € Z, n € Ny which implies that {Yk(n)}k is ergodic for all
n € Ny. By construction and assumptions of the PINAR(1, 1g) model, {Z Igl)}k is a sequence
of independent NUS—vaIued r.v.’s. Moreover, the r.v.’s involved from the counting sequences
into the definition of Z,gn), k € Z, n € N, are mutually independent by (16). Hence, for each
k € Z, the r.v. Z,gn) depends on Z,gnH and a set R, of r.v.’s for all n € N, which are
mutually independent. This implies that the sequence {Z,E,n)}n consists of independent r.v.’
for all k € Z.



One can easily see that the Nyp-valued r.v.’s Yk(n) and Z,(gnH) are measurable w.r.t. the o-
algebra generated by the r.v.’s {& s, M s €15+s | 7 €N,s =1,...,5k—n <1 <k} for all
k € Z and n € N. Thus, {Yk(n)}k is an n-dependent process, see Definition 6.4.3 in Brockwell
and Davis (2013). This fact also implies the ergodicity of {Yk(n)}k for all n € N.

We apply recursion (18) and Lemma 3 by choosing Y = Yk(n), Z = B o Yk(:l)l + € and

F = Gr_1. By (4), we have E(BroY,"| +ex|Gr_1) = BY,") + A and Var(BoY,") +ex|Gr_1) =
diag(VBYk(ﬂ) + Y. Using (18) and Lemma 3, we have

E(v1Gk 1) =(T— A)HBY" Y + ), (A1)

Var (Y,j”) |gk_1) =(I — A (diag (Val — A)'(BY, "V +0) + YY) (A2)

+3) (T— A"

Clearly, p(0) = E(Yk(o)) = 0 for all k € Z. By taking expectation of recursion (Al), for any

n € N, we have

n—1
E(V") = (- ) BE (V" V) + (- A)7A= Y (1= 4)7'B) (1- 4)7'A
j=0
for all k € Z, where the right-hand side is finite and does not depend on k. Moreover, this
implies that {p(™} satisfies the recursion (20). Under Assumption 1, by Lemma 1 and Corol-
lary 5.6.16 in Horn and Johnson (2012), the infinite series 3 7% ((1 — A)~1B)J is convergent
and the limit is (I — (I — A)~'B)~!. Thus, we obtain by (26) that

0<u <3 (1= A BY (I - A A= (I— (1= A)B) (- Ay A=
j=0

for all n € Ny. Hence {u(™} is non-decreasing, bounded and the limit of {@(} is p. The

recursion for {v(™} follows from (16) by Lemma 3.

Clearly, 3o = Var(Yk(O)) = Ogxg for all k € Z. By the law of total conditional variance, (Al]),
(A2)), for any n € N, we have

Var (Y,j")) — Var (E(Yk(")lgk_1)> +E (Var(Yk(n)|gk—1)>

(I—A)! (B Var(Y,"T)BT + diag(Vap™ + Vepu® V) + 26) (T =A™

n

T

|
—

(1= A7 B) (1 — A)~" (diag(Vap" ) + Vppulr=7=1)

<.
Il
o

+3) (1= (U - A)_lB)j>T

for all k € Z, where the right-hand side does not depend on k. Thus, (™ is finite for all
n € N, and the sequence {3(™} satisfies the recursion (21). Clearly, () — %(0) = »(1) 5 4



symmetric positive semi-definite matrix. By (21), we have
(n+1) _ s(n) _ o -1 (n) _ s(n-1) T : o =N
5 = — (I — A) (B (2 5 ) BT + diag (Valni1 + VBAn)) (1 - 4)™)

where A, := p(™ — p(=1 >0 for all n € N. Thus, by induction, {-("} is monotone non-

decreasing. By using the vec operator, we have the following expression for the vectorized
»n(n)

|
—

n

vee DM — (((I _ A)*lB)®2>j ((I — A)71)®2 vec (diag(VAu(nfj) + VBN(nijil)) + 25)

.
Il
o

Under Assumption 1, see the proof of Proposition 1, p(((I — A)~'B)®?) < 1. Thus, Corollary
5.6.16 in Horn and Johnson (2012), implies that the infinite series > 322 (((1 — A)71B)®%) s
convergent. Since u(™ — p as n — oo, one can see that vec (™ converges to the right hand
side of (27) and thus the sequence {%(} is bounded and (™ — % as n — co. The proof of

the recursion for {®(} is similar.

Clearly, T(©(h) = Ogyxg for all h € Z. By the law of total covariance and (A1), we have, for
all k € Z, n € Ny and m,h € N,

Cov (¥, ), Y{™) = Cov (BTN Grn1), B 1Grin1) + E ((Cov (V7 Y Ghin 1)

— Cov ((1 — AT BY, ) (1 - A, ka"))

= (I - A BCov(Y, ) v,™)

(n)

since the second term in the total covariance formula is 0 by the Gy, 1-measurability of Ykn .
Thus, we obtain by iterating that, for all k € Z and n,h € N,

) (I — A)~'B)" Cov (Yk(”_h), Y,j”)) if0<h<n,

(™ (h) = Cov Yy, ,Y(n)
( S (I — A)~'B)" Cov (Y(O) Yk(”)) if n < h.

k+h—n>
On the one hand, this implies that F(")(h) = Ogxg if n < h. On the other hand, we prove
that Cov(¥" ™™, ¥,) = £("=h) for all 0 < h < n € N. Let U™ := By o Y,"") + ¢ and
Vk(n) = By o‘Yk@;l) Z,(;i)l for all k € Z, n € N. Moreover, define the o-algebra Hi C A
generated by the Np-valued r.v.’s {Ul(") | I < k,n € N} for all & € Z. Then, by (i), Ao
and Hj are mutually independent. We have, by (15), (16), Remark 1, and the law of total



covariance, for all kK € Z, n,m € N that

COV (Yk(n)’ Zlin+m)> - COV ((I B Ak)o_lU]E:n_l)7 (I - Ak)fgél/+nl,72) ‘/k(n-’_m_l))
k

— Cov <E (=AU Vi) € ((1 AR - S VI 3, ))

e (cov (= a0l = At V) )

—(I — A)~! Cov (U,ﬁ”‘”, E(V,j”*’”‘”mk)) (1—a™"
=(I - A)~ Cov (U,g"*”, ka“m*”) (T—a™)"
since the second term is 0 in the total covariance formula because the monotonicity of {Yk(n)}n

implies U,gn_l) < U,gn+m_2) and Cov(Y,E(Z|F)) = Cov(Y,Z) if Y is F-measurable. More-
over, for all k € Z, n € Ng, m € N, we have

Cov (U, V™) = Cov (EWU|G1), E(V" ™ (Gk1)) + E (Cov (@™, V" ™G 1))
= Cov (BY,") + A, BZ{"[™) = B Cov (Y\"), 2{"{™ ) BT
since

Cov <U]§n), V}C("”Lm)]gk,l) Cov (Bk o Y( )1 + €k, Bk O|Y(n+7n 1) Zk 1 ’gk 1> =

because Yk(f)l < Yk(ffm_l) and ey, is independent of Gi_1. Thus, we have
Cov (Y™, Z{"™) =(1 = A)7'B Cov (V" 7, 2" V) (1 - 4)7'B) "

= ((1=4)7'B)" Cov (Y9, 2{™)) (1 = A)7'B)") " =0

This implies that

Cov (V" %) = var (1" ) + Z Cov (V" ™, 2))) = 5nh)
j=n—h+1

which completes the proof. O

Proof of Proposition 1. Since for a stationary solution gy = pr_1 = p we have (22) by
(37), (note that (22) is the same as the equation at the bottom of p. 547 in Filho et al. (2021)).
Since Xy = Y51 = X, we deduce (23) from (40). Under Assumption 1, p((I — A)~'B) < 1 by
Lemma 1, hence the first part of (24) is an immediate consequence of (22), while the second

part follows from
(I-(I—A)"'B) " (I-A) 'I-A-B)=(I-(I-A4)7'B) "(I-(I-A)"'B) =1

Finally, p((Is — A)~'B) < 1 implies p(((Is — A)~"'B)®?) < 1, thus the matrix Ig — ((Is —
A)71B)®? is also non-singular. Applying (41) in case of ¥, = ¥j_1 = ¥ and solving the linear
equation, we obtain (25). O



Proof of the properties of innovation sequence {M;}. Since I'(k,?) = E(X;,X,) for
all k,¢ € Z and, by (32), My = (I — A) X — BX}_4 for all k € Z, we have for all k, ¢ € Z
that

E(M M, ) =(I — AT(k,0)(I —A)" — (I — AT(k,¢ —1)B"
—BI(k—1,0)({— A" +Br'(k—1,0—1)B"'

Thus, by (23) and (42), we obtain for k = ¢ that
E(MyM,)= (- A% —-A)T" —BEB" =%

and for kK > /¢

k—0+1

E(M.M,) =(I — A) (I - A)"'B)" 'S(1 - A)T — (I - A4)((I - A)"'B) »BT

~B((I-A)"'B)" s -a)T +B((I-A)"'B)" 'SBT = Og.s
These prove that {M}} is an uncorrelated sequence with variance matrix Xpy. O

Proof of Proposition 2. To show that the infinite series on the right-hand side of (33)
converges almost surely and in the mean square for all k € Z, by Proposition 3.1.1 of Brock-
well and Davis (2013) and Proposition C.9 of Liitkepohl (2005), it is enough to see that
suppez (M, M) = trSpr < +oo and >0 I = A)~1B)J|| converges which follows from
Assumption 1 and Theorem 5.6.15 in Horn and Johnson (2012). By iterating (32) we have
n—1
Xp=(I-A)"'B)"Xs_n+»_((I-A)'BYW,_;
j=0
for all n € N and k € Z. Thus, to show that X} is the limit of the infinite series on
the right-hand side of (33) almost surely and in the mean square, it is enough to see that
(I — A)~'B)"X},_, converges to 0 as n — oo almost surely and in mean square. Markov’s

inequality and Theorem 5.6.12 of Horn and Johnson (2012) imply, for all € > 0,

P(I((I =) B)" Xy—n| = €) <P ([[(1 = A)7 B)"|| | Xk—nl| =€)
<e2er(2) ||((T = A)'B)"||* = 0
as n — oo, thus the almost sure convergence follows. On the other hand, the inequality

0<E(I-A)"1B)"X}_,|?> < tr(D)|((I-A)~tB)"||> — 0 as n — oo implies the convergence

in mean square. O

Proof of Remark 4. On the one hand, we have by (35) that, for all k € Z,

Zv;c(n) :Z (Zl(cn) _ (I _ A)_lBZ](!i_ll)> + Zél) _ V(l) =Y, — (I _ A)_lB}/}g,l _ V(l)
n=1 n=2

=Y}, — (I — A7 (BYj_1 + A) = Y}, — E(Y|Frs) = Wi,



On the other hand, by recursion of {V(")}, we have the recursion
Zlgjﬂ) — Ut = Vk(jH) + (- A)_lB <Zlgj—)1 - V(j)) )

for all j € N, k € Z, which implies the formula for Z,gn) — v, O

Proof of Equation (42). It is enough to prove the recursion I'(k,¢) = (I — A)"'BT'(k—1,¢)
for all k£ > ¢. We have, by the law of total covariance, (35) and the Fjg-measurability of Yy,
that

Cov(Yy, Yy) = Cov(E(Y|Frs), E(Ye| Frs)) + E(Cov(Yk, Yi| Frs))
=Cov((I — A)"YBYy_1 +A),Yy) = (I — A)"'BCov(Yy_1,Yr)

since Cov(Yy, Y| Frs) = 0. O
Proof of Equation (43). Let i,j € {1,...,S}. For all h € Ny, we have

(T'(h))ij = (O(h,0))ij = Cov(Ynsti, Yj) = R(hS + 14, 5)
On the other hand, for all h € N, we have

(I'(=h))i; = (I'(h))ji = R(WS + j,i) = R(i,hS + j) = R(—hS +14,5) O

Proof of Equation (44). By the definition of functions v;, j € Z, we obtain
vi(hS+s) = R(hS+s+74,j) = R(j,hS+s5+j) = R(=hS—s+(s+7J),5+J) = Vj+s(—hS —5s)

forall h,j € Zand s=1,...,5. O

Proof of Yule-Walker equations. By the Yule-Walker (YW) equations of the weakly

stationary process {Y}}, we have
(T(h)ij = ci(T(h = 613))i-145,55 + Bi(T(h = 1))i;

forallh € N, 4,5 =1,...,5 which implies (45). Let A = 1. On the one hand, applying (45) in
casesof i=j=sandi=j+1=sforall s=2,...,5 we have the following linear equation

for the parameter vector (as,Bs)"

[73_1(5) ws_lml H _ [%—1<S+1> (A3)

Ys(S—1)  75(0) Bs ¥s(S)

On the other hand, in cases of i = j =1l and i =1, j = 5, since v5(1 — 5) = 11(S — 1) by

(44), we have
B vs(1)

1S —-1)  7(0)
75(0)  m(S—-1)

10



(A3) and (Ad]) are the YW equations in the general case. Since XB'((I — A)~Y)T =T(1)7,
we have by (23) that
S =AS+ BI()T 4+ Sp (T— A7) .

If ¢ is a diagonal matrix, then Xps ((I — A)_l)T is an upper triangular matrix. Thus, for

each s = 2,...,5, we have the equation X5 o1 = sXs_1 -1+ Fs'(1)s—1,5, which is equivalent

t0 vs—1(1) = asvs—1(0) 4+ Bs7vs(S —1). By replacing the first equation in by this equation,

we see that (o, 85) " is a solution of (46) for all s = 2,...,S. Now, using that yg4s = 7s for

all k € Z and s = 1,...,5, we have 79 = 5. Then, by inverting the first and second rows,
7(0)  m(S-1)

is equivalent to
ar| _ 0(1)
1(S—1)  ~(0) Ej1 7(9)

which is (46) for s = 1. O

B Histograms of Yule-Walker estimates
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Figure 1: Histograms of YW estimates of parameters a;’s for different sample size n generated

with Sim1. (Dotted line denotes the true parameter value.)
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Figure 2: Histograms of YW estimates of parameters a;’s for different sample size n generated

with Sim2. (Dotted line denotes the true parameter value.)
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Figure 3: Histograms of YW estimates of parameters (,’s for different sample size n generated

with Siml. (Dotted line denotes the true parameter value.)
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Figure 4: Histograms of YW estimates of parameters §;’s for different sample size n generated

with Sim2. (Dotted line denotes the true parameter value.)
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Figure 5: Histograms of YW estimates of parameters \’s for different sample size n generated

with Siml. (Dotted line denotes the true parameter value.)
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with Sim2. (Dotted line denotes the true parameter value.)

References

Brockwell, P. J. and R. A. Davis (2013). Time Series: Theory and Methods. Springer Science
& Business Media.

Dudley, R. M. (2004). Real Analysis and Probability. Cambridge University Press.

Filho, P. R. P., V. A. Reisen, P. Bondon, M. Ispany, M. M. Melo, and F. S. Serpa (2021).
“A periodic and seasonal statistical model for non-negative integer-valued time series with
an application to dispensed medications in respiratory diseases”. In: Applied Mathematical
Modelling 96, pp. 545-558.

Horn, R. A. and C. R. Johnson (2012). Matriz Analysis. 2nd ed. Cambridge University Press.

Liitkepohl, H. (2005). New Introduction to Multiple Time Series Analysis. Berlin Heidelberg
New York: Springer.

14



