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A Proofs of the auxiliary results

Proof of equations (4). For each n ∈ NS
0 , we have that {Z = n} ∈ F , E(M ◦ n) = Mn

and Var(M ◦ n) = diag(V n). Indeed,

E

 S∑
j=1

mi,j ◦ nj

 =

S∑
j=1

E(mi,j ◦ nj) =

S∑
j=1

mi,jnj = (Mn)i

and, since the counting sequences involved into M◦ are mutually independent, we have

Cov

 S∑
j=1

mi,j ◦ nj ,

S∑
l=1

mk,l ◦ nl

 =

S∑
j=1

S∑
l=1

Cov(mi,j ◦ nj ,mk,l ◦ nl)

=

S∑
j=1

δik Var(mi,j ◦ nj) = δik

S∑
j=1

mi,j(1−mi,j)nj

=δik

S∑
j=1

vi,jnj = δik(V n)i

for all i, k = 1, . . . , S. Then (4) follows by a truncation argument. Namely, we have that

E(M ◦Zχ(∥Z∥ ≤ n)|F) =
∑

∥n∥≤n

χ(Z = n)E(M ◦ n)

=
∑

∥n∥≤n

χ(Z = n)Mn = MZχ(∥Z∥ ≤ n)
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for all n ∈ N, where χ(A) denotes the indicator function of a set A. By the monotone

convergence theorem, this formula implies the �rst equality of (4) as n → ∞. The proof of

the second equality is similar.

Proof of Equation (10). De�ne the matrices Cs =
∑s

j=2 αjeje
⊤
j−1, s = 1, . . . , S, where the

empty sum is de�ned to be 0. One can see that C1 = 0 and CS = A. Since

(I − Cs)A
(s) =

I −
s∑

j=2

αjeje
⊤
j−1

(
I + αsese

⊤
s−1

)
= I −

s−1∑
j=2

αjeje
⊤
j−1 = I − Cs−1

for all s = 2, . . . , S, we have by iteration that

(I −A)A(S) · · ·A(2) =(I − CS)A
(S) · · ·A(2) = (I − CS−1)A

(S−1) · · ·A(2)

= . . . = (I − C2)A
(2) = I − C1 = I

Proof of Lemma 1. (i) ⇔ (ii) Since det(I −A) = 1, by Laplace's formula, we have

det(zI − (I −A)−1B) = det−1(I −A) det(z(I −A)−B) = Q(z)

i.e., Q is the characteristic polynomial of the matrix (I −A)−1B and the assertion follows.

(iii) ⇔ (iv) By Laplace's formula P is the characteristic polynomial of the matrix A+B and

the statement follows.

(ii) ⇔ (iii) By (i) ⇔ (ii) and (iii) ⇔ (iv) Q and P are the characteristic polynomials of

non-negative matrices. Thus, by the Perron theorem (see Theorem 8.3.1 in Horn and Johnson

(2012)), the maximal roots in modulus of the polynomials Q and P are non-negative real

numbers. Thus, it is enough to show that (a) Q(z) > 0 for all z ≥ 1 if and only if (b) P (z) > 0

for all z ≥ 1. On the one hand, Q(z) ≤ P (z) if z ≥ 1 implies (a) ⇒ (b). On the other hand,

since

0 < P (1) =

S∏
j=1

(1− βj)−
S∏

j=1

αj ≤
S∏

j=1

(1− βjz
−1)−

S∏
j=1

αj

= z−S

 S∏
j=1

(z − βj)− zS
S∏

j=1

αj

 ≤ z−SQ(z),

for all z ≥ 1, we have (b) ⇒ (a).

Proof of Lemma 2. By de�nition of A and B, M := A+B is a strictly substochastic matrix

since
∑S

j=1mi,j = αi + βi < 1 for all i = 1, . . . , S. By Theorem 8.1.22 in Horn and Johnson

(2012), we obtain ρ(A) ≤ max1≤i≤S
∑S

j=1mi,j < 1.

Proof of Lemma 3. (i) The recursion for Ys, s = 1, . . . , S, follows from the form of A

immediately. De�ne the NS
0 -valued r.v.'s Zs := (Y1, . . . , Ys, Zs+1, . . . , ZS)

⊤, s = 1, . . . , S − 1,

2



and let ZS := Y . Since Y1 = Z1 by the form of A, we have Z1 = Z. By the recursion, one

can see that Zs = A(s) ◦Zs−1 for all s = 2, . . . , S which implies (12).

(ii) By recursion, (12) implies that Y has �nite mean provided Z has a �nite �rst moment.

By the law of total conditional expectation and (4), we have

E(A ◦ Y |F) = E(E(A ◦ Y |Y ,F)|F) = E(AY |F) = AE(Y |F).

Thus, by taking conditional expectation of (11), we have

E(Y |F) = AE(Y |F) + E(Z|F)

which implies (13). The formulas for E(Y |Z) and E(Y ) follow immediately.

(iii) By recursion, (12) implies that Y has �nite variance matrix provided Z has �nite second

moment. Clearly, by (11), we have Y = (I − A)−1(A ◦ Y − AY + Z). By the law of total

conditional covariance, we have

Cov(A ◦ Y −AY ,Z|F) =Cov(E(A ◦ Y −AY |Y ,F),E(Z|Y ,F)|F)

+ E(Cov(A ◦ Y −AY ,Z|Y ,F)|F) = 0

because the �rst term is 0 since (4) implies E(A ◦ Y |Y ,F) = AY , and the second term is 0

since

Cov(A ◦ Y ,Z|Y ,F) =Cov(E(A ◦ Y |Y ,Z,F),E(Z|Y ,Z,F)|Y ,F)

+ E(Cov(A ◦ Y ,Z|Y ,Z,F)|Y ,F)

=Cov(AY ,Z|Y ,F) = ACov(Y ,Z|Y ,F)

again by the law of total conditional covariance, (4), and Cov(A ◦ Y ,Z|Y ,Z,F) = 0. Thus,

by (13), we have

Var(Y |F) =Var
(
(I −A)−1(A ◦ Y −AY +Z|F

)
=(I −A)−1 (Var(A ◦ Y −AY |F) + Var(Z|F))

(
(I −A)−1

)⊤
Hence, (14) is derived since, by the law of total conditional variance, we obtain

Var(A ◦ Y −AY |F) =Var(E(A ◦ Y −AY |Y ,F)|F) + E(Var(A ◦ Y −AY |Y ,F)|F)

=E(Var(A ◦ Y |Y ,F)|F) = E(diag(VAY )|F) = diag(VAE(Y |F))

where the �rst part is 0 by (4), and in the second part the conditional variance formula of (4)

is applied, and �nally E(Y |F) is replaced by (13). The last assertion for Var(Y |Z) follows

by Var(Z|Z) = 0, while the formula for Var(Y ) can be derived by taking expectation of (14)

and using the law of total conditional variance.
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Proof of covariance formula in Remark 2. By the law of total conditional covariance,

we have

Cov(Y ,Z|F) =Cov(E(Y |Z,F),E(Z|Z,F)|F) + E(Cov(Y ,Z|Z,F)|F)

=Cov((I −A)−1Z,Z|F) = (I −A)−1Var(Z|F)

since Cov(Y ,Z|Z,F) = 0.

Proof of Lemma 4. For all n, n′ ∈ N0 and binomial thinning operator α◦ with counting

sequence {ξj} we have

E|α ◦ n− α ◦ n′| = α(n ∨ n′ − n ∧ n′) = α|n− n′|

since |α◦n−α◦n′| =
∑n∨n′

j=n∧n′+1 ξj . Thus, for all n,n
′ ∈ NS

0 , we have E|M ◦n−M ◦n′|vec ≤
M |n− n′|vec since

E

∣∣∣∣∣∣
S∑

j=1

mi,j ◦ nj −
S∑

j=1

mi,j ◦ n′
j

∣∣∣∣∣∣ ≤
S∑

j=1

E|mi,j ◦ nj −mi,j ◦ n′
j | =

S∑
j=1

mi,j |nj − n′
j |

By the law of total conditional expectation, we have the statement of the lemma as

E|M ◦Z −M ◦Z ′|vec =E(E(|M ◦Z −M ◦Z ′|vec|Z,Z ′))

≤E(M |Z −Z ′|vec) = ME|Z −Z ′|vec

Proof of Equation (17). We prove the statement by induction. The statement is true for

n = 1 since Y
(0)
k = 0 and Y

(1)
k = Z

(1)
k for all k ∈ Z. Assume that (17) holds for n ∈ N. Then,

we have

Y
(n+1)
k =Y

(n)
k +Z

(n+1)
k

=(I −Ak)
◦−1

(
Bk ◦ Y

(n−1)
k−1 + εk

)
+ (I −Ak)

◦−1

|Bk◦Y
(n−1)
k−1 +εk

(
Bk ◦|Y (n−1)

k−1

Z
(n)
k−1

)
=(I −Ak)

◦−1

(
Bk ◦ Y

(n−1)
k−1 + εk +Bk ◦|Y (n−1)

k−1

Z
(n)
k−1

)
=(I −Ak)

◦−1
(
Bk ◦ (Y

(n−1)
k−1 +Z

(n)
k−1) + εk

)
=(I −Ak)

◦−1
(
Bk ◦ Y

(n)
k−1 + εk

)
Proof of the properties of {Y (n)

k } and {Z(n)
k }. For each k ∈ Z, de�ne the probability space

(Ωk,Ak,Pk) as Ωk := ({0, 1}N×{0, 1}N)S×NS , the σ-algebra Ak generated by the cylinder sets

of Ωk, and, for each ωk = ((xs,ys)s=1,...,S ,n) where xs ∈ {0, 1}Ns , ys ∈ {0, 1}Ms , Ns,Ms ∈ N,
s = 1, . . . , S, and n ∈ NS

0 , Pk(ωk) := pn
∏S

s=1

∏Ns
i=1 α

xs,i
s (1−αs)

1−xs,i
∏Ms

j=1 β
ys,j
s (1−βs)

1−ys,j ,

where pn := P(εk = n), n ∈ NS
0 . Then, ωk represents a cylinder set in Ωk whose set

generates all cylinder sets. Thus, Pk can be uniquely extended to the σ-algebra Ak as a
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probability measure by Theorem 8.2.2 in Dudley (2004). Let (Ω,A,P) be the in�nite product

of (Ωk,Ak,Pk), k ∈ Z, which is well de�ned by Theorem 8.2.2 in Dudley (2004) too. By

construction, the canonical process {Uk}, de�ned by Uk(ω) := ωk for all ω = (ωk) ∈ Ω, follows

the distribution of independent r.v.'s {ξk,s,j}, {ηk,s,j}, {εk}. We prove the Gk-measurability

of Y
(n)
k and Z

(n+1)
k for all k ∈ Z, n ∈ N0 by induction. Clearly, Y

(0)
k is Gk-measurable for

all k ∈ Z. Suppose that, for a �xed n ∈ N0, the r.v. Y
(n)
k is Gk-measurable for all k ∈ Z.

Then, by (19), Y
(n+1)
k depends on {ξk,s,j}s,j , {ηk,s,j}s,j , {εkS+s}s, and Y

(n)
k−1, hence Y

(n+1)
k

is Gk-measurable as well. Similarly, Z
(1)
k is Gk-measurable by de�nition, and the induction

follows by (16).

For all h ∈ Z, m ∈ N and n ∈ N0, de�ne the probability distribution P
(n)
m,h on NmS

0 as

P
(n)
m,h(y1, . . . ,ym) := P

(
Y

(n)
h+1 = y1, . . . ,Y

(n)
h+m = ym

)
where y1, . . . ,ym ∈ NS

0 . To prove that {Y (n)
k }k is strictly stationary, it is su�cient to show

that P
(n)
m,h does not depend on h. This statement is true for n = 0. Suppose that P

(n)
m,h does

not depend on h for a n ∈ N0. By the law of total probability, the recursion (17) and since

the sequence {(Ak◦, Bk◦, εk)} is i.i.d., we obtain, for all h ∈ Z and m ∈ N, that

P
(n+1)
m,h (y1, . . . ,ym) =

∑
z1,...,zm∈NS

0

P
(n)
m,h−1(z1, . . . ,zm)

m∏
j=1

P
(
(I −A)◦−1(B ◦ zj + ε) = yj

)
for all y1, . . . ,ym ∈ NS

0 . In this formula, the right-hand side does not depend on h. Thus, by

induction, {Y (n)
k }k is strictly stationary for all n ∈ N0. To prove the non-anticipativity, we

note that the NS
0 -valued r.v.'s Y

(n)
j , j < k, are Gk−1-measurable for all n ∈ N0. Since Gk−1

and {ξl,s,j , ηl,s,j , εlS+s | j ∈ N, s = 1, . . . , S, l ≥ k} are mutually independent for all k ∈ Z, the
non-anticipativity follows. Finally, to prove the ergodicity, let T : Ω → Ω denote the bilateral

shift operator on (Ω,A,P), see page 271 in Dudley (2004). By Theorem 8.4.5 in Dudley (2004)

T is an ergodic measure preserving transformation. By construction, if T (ξ)(ω) := ξ(Tω) for

all ω ∈ Ω and r.v. ξ, then one can see that T (ξk,s,j) = ξk+1,s,j , T (ηk,s,j) = ηk+1,s,j , and

T (εkS+s) = ε(k+1)S+s for all k ∈ Z, j ∈ N and s = 1, . . . , S. We prove by induction that

T (Y
(n)
k ) = Y

(n)
k+1 for all k ∈ Z and n ∈ N0. This statement is true for n = 0. Suppose that

the statement holds for a n ∈ N0. Then, by (19), we have the statement for n + 1. Thus,

Y
(n)
k (Tω) = Y

(n)
k+1(ω) for all ω ∈ Ω, k ∈ Z, n ∈ N0 which implies that {Y (n)

k }k is ergodic for all
n ∈ N0. By construction and assumptions of the PINAR(1, 1S) model, {Z(1)

k }k is a sequence

of independent NS
0 -valued r.v.'s. Moreover, the r.v.'s involved from the counting sequences

into the de�nition of Z
(n)
k , k ∈ Z, n ∈ N, are mutually independent by (16). Hence, for each

k ∈ Z, the r.v. Z
(n)
k depends on Z

(1)
k−n+1 and a set Rn of r.v.'s for all n ∈ N, which are

mutually independent. This implies that the sequence {Z(n)
k }n consists of independent r.v.'

for all k ∈ Z.
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One can easily see that the N0-valued r.v.'s Y
(n)
k and Z

(n+1)
k are measurable w.r.t. the σ-

algebra generated by the r.v.'s {ξl,s,j , ηl,s,j , εlS+s | j ∈ N, s = 1, . . . , S, k − n ≤ l ≤ k} for all

k ∈ Z and n ∈ N. Thus, {Y (n)
k }k is an n-dependent process, see De�nition 6.4.3 in Brockwell

and Davis (2013). This fact also implies the ergodicity of {Y (n)
k }k for all n ∈ N.

We apply recursion (18) and Lemma 3 by choosing Y = Y
(n)
k , Z = Bk ◦ Y

(n)
k−1 + εk and

F = Gk−1. By (4), we have E(Bk◦Y
(n)
k−1+εk|Gk−1) = BY

(n)
k−1+λ and Var(Bk◦Y

(n)
k−1+εk|Gk−1) =

diag(VBY
(n)
k−1) + Σε. Using (18) and Lemma 3, we have

E
(
Y

(n)
k |Gk−1

)
=(I −A)−1(BY

(n−1)
k−1 + λ), (A1)

Var
(
Y

(n)
k |Gk−1

)
=(I −A)−1

(
diag

(
VA(I −A)−1(BY

(n−1)
k−1 + λ) + VBY

(n−1)
k−1

)
(A2)

+Σε

) (
(I −A)−1

)⊤
Clearly, µ(0) = E(Y

(0)
k ) = 0 for all k ∈ Z. By taking expectation of recursion (A1), for any

n ∈ N, we have

E
(
Y

(n)
k

)
= (I −A)−1BE

(
Y

(n−1)
k−1

)
+ (I −A)−1λ =

n−1∑
j=0

(
(I −A)−1B

)j
(I −A)−1λ

for all k ∈ Z, where the right-hand side is �nite and does not depend on k. Moreover, this

implies that {µ(n)} satis�es the recursion (20). Under Assumption 1, by Lemma 1 and Corol-

lary 5.6.16 in Horn and Johnson (2012), the in�nite series
∑∞

j=0((I − A)−1B)j is convergent

and the limit is (I − (I −A)−1B)−1. Thus, we obtain by (26) that

0 ≤ µ(n) ≤
∞∑
j=0

(
(I −A)−1B

)j
(I −A)−1λ =

(
I − (I −A)−1B

)−1
(I −A)−1λ = µ

for all n ∈ N0. Hence {µ(n)} is non-decreasing, bounded and the limit of {µ(n)} is µ. The

recursion for {ν(n)} follows from (16) by Lemma 3.

Clearly, Σ0 = Var(Y
(0)
k ) = OS×S for all k ∈ Z. By the law of total conditional variance, (A1),

(A2), for any n ∈ N, we have

Var
(
Y

(n)
k

)
=Var

(
E(Y

(n)
k |Gk−1)

)
+ E

(
Var(Y

(n)
k |Gk−1)

)
=(I −A)−1

(
BVar(Y

(n−1)
k−1 )B⊤ + diag(VAµ

(n) + VBµ
(n−1)) + Σε

) (
(I −A)−1

)⊤
=

n−1∑
j=0

(
(I −A)−1B

)j
(I −A)−1(diag(VAµ

(n−j) + VBµ
(n−j−1))

+ Σε)
(
(I −A)−1

)⊤ ((
(I −A)−1B

)j)⊤

for all k ∈ Z, where the right-hand side does not depend on k. Thus, Σ(n) is �nite for all

n ∈ N, and the sequence {Σ(n)} satis�es the recursion (21). Clearly, Σ(1) − Σ(0) = Σ(1) is a
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symmetric positive semi-de�nite matrix. By (21), we have

Σ(n+1) − Σ(n) = (I −A)−1
(
B
(
Σ(n) − Σ(n−1)

)
B⊤ + diag (VA∆n+1 + VB∆n)

) (
(I −A)−1

)⊤
where ∆n := µ(n) − µ(n−1) ≥ 0 for all n ∈ N. Thus, by induction, {Σ(n)} is monotone non-

decreasing. By using the vec operator, we have the following expression for the vectorized

Σ(n)

vecΣ(n) =
n−1∑
j=0

((
(I −A)−1B

)⊗2
)j (

(I −A)−1
)⊗2

vec
(
diag(VAµ

(n−j) + VBµ
(n−j−1)) + Σε

)
Under Assumption 1, see the proof of Proposition 1, ρ(((I −A)−1B)⊗2) < 1. Thus, Corollary

5.6.16 in Horn and Johnson (2012), implies that the in�nite series
∑∞

j=0(((I −A)−1B)⊗2)j is

convergent. Since µ(n) → µ as n → ∞, one can see that vecΣ(n) converges to the right hand

side of (27) and thus the sequence {Σ(n)} is bounded and Σ(n) → Σ as n → ∞. The proof of

the recursion for {Φ(n)} is similar.

Clearly, Γ(0)(h) = OS×S for all h ∈ Z. By the law of total covariance and (A1), we have, for

all k ∈ Z, n ∈ N0 and m,h ∈ N,

Cov(Y
(m)
k+h ,Y

(n)
k ) = Cov

(
E(Y

(m)
k+h |Gk+h−1),E(Y

(n)
k |Gk+h−1

)
+ E

(
(Cov(Y

(m)
k+h ,Y

(n)
k |Gk+h−1)

)
= Cov

(
(I −A)−1BY

(m−1)
k+h−1 + (I −A)−1λ,Y

(n)
k

)
= (I −A)−1B Cov(Y

(m−1)
k+h−1 ,Y

(n)
k )

since the second term in the total covariance formula is 0 by the Gk+h−1-measurability of Y
(n)
k .

Thus, we obtain by iterating that, for all k ∈ Z and n, h ∈ N,

Γ(n)(h) = Cov
(
Y

(n)
k+h,Y

(n)
k

)
=

((I −A)−1B)hCov
(
Y

(n−h)
k ,Y

(n)
k

)
if 0 ≤ h ≤ n,

((I −A)−1B)nCov
(
Y

(0)
k+h−n,Y

(n)
k

)
if n < h.

On the one hand, this implies that Γ(n)(h) = OS×S if n < h. On the other hand, we prove

that Cov(Y
(n−h)
k ,Y

(n)
k ) = Σ(n−h) for all 0 ≤ h ≤ n ∈ N. Let U

(n)
k := Bk ◦ Y

(n)
k−1 + εk and

V
(n)
k := Bk ◦|Y (n−1)

k−1

Z
(n)
k−1 for all k ∈ Z, n ∈ N. Moreover, de�ne the σ-algebra Hk ⊂ A

generated by the N0-valued r.v.'s {U (n)
l | l ≤ k, n ∈ N} for all k ∈ Z. Then, by (i), Ak◦

and Hk are mutually independent. We have, by (15), (16), Remark 1, and the law of total
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covariance, for all k ∈ Z, n,m ∈ N that

Cov
(
Y

(n)
k ,Z

(n+m)
k

)
=Cov

(
(I −Ak)

◦−1U
(n−1)
k , (I −Ak)

◦−1

|U (n+m−2)
k

V
(n+m−1)
k

)
=Cov

(
E
(
(I −Ak)

◦−1U
(n−1)
k |Hk

)
,E

(
(I −Ak)

◦−1

|U (n+m−2)
k

V
(n+m−1)
k |Hk

))
+ E

(
Cov

(
(I −Ak)

◦−1U
(n−1)
k , (I −Ak)

◦−1

|U (n+m−2)
k

V
(n+m−1)
k |Hk

))
=(I −A)−1Cov

(
U

(n−1)
k ,E(V

(n+m−1)
k |Hk)

) (
(I −A)−1

)⊤
=(I −A)−1Cov

(
U

(n−1)
k ,V

(n+m−1)
k

) (
(I −A)−1

)⊤
since the second term is 0 in the total covariance formula because the monotonicity of {Y (n)

k }n
implies U

(n−1)
k ≤ U

(n+m−2)
k and Cov(Y ,E(Z|F)) = Cov(Y ,Z) if Y is F-measurable. More-

over, for all k ∈ Z, n ∈ N0, m ∈ N, we have

Cov
(
U

(n)
k ,V

(n+m)
k

)
=Cov

(
E(U

(n)
k |Gk−1),E(V

(n+m)
k |Gk−1)

)
+ E

(
Cov(U

(n)
k ,V

(n+m)
k |Gk−1)

)
=Cov

(
BY

(n)
k−1 + λ, BZ

(n+m)
k−1

)
= B Cov

(
Y

(n)
k−1,Z

(n+m)
k−1

)
B⊤

since

Cov
(
U

(n)
k ,V

(n+m)
k |Gk−1

)
= Cov

(
Bk ◦ Y

(n)
k−1 + εk, Bk ◦|Y (n+m−1)

k−1

Z
(n+m)
k−1 |Gk−1

)
= 0

because Y
(n)
k−1 ≤ Y

(n+m−1)
k−1 and εk is independent of Gk−1. Thus, we have

Cov
(
Y

(n)
k ,Z

(n+m)
k

)
=(I −A)−1B Cov

(
Y

(n−1)
k−1 ,Z

(n+m−1)
k−1

) (
(I −A)−1B

)⊤
=
(
(I −A)−1B

)n
Cov

(
Y

(0)
k−n,Z

(m)
k−n

) ((
(I −A)−1B

)n)⊤
= 0

This implies that

Cov
(
Y

(n−h)
k ,Y

(n)
k

)
= Var

(
Y

(n−h)
k

)
+

n∑
j=n−h+1

Cov
(
Y

(n−h)
k ,Z

(j)
k

)
= Σ(n−h)

which completes the proof.

Proof of Proposition 1. Since for a stationary solution µk = µk−1 = µ we have (22) by

(37), (note that (22) is the same as the equation at the bottom of p. 547 in Filho et al. (2021)).

Since Σk = Σk−1 = Σ, we deduce (23) from (40). Under Assumption 1, ρ((I−A)−1B) < 1 by

Lemma 1, hence the �rst part of (24) is an immediate consequence of (22), while the second

part follows from(
I − (I −A)−1B

)−1
(I −A)−1(I −A−B) =

(
I − (I −A)−1B

)−1
(I − (I −A)−1B) = I

Finally, ρ((IS − A)−1B) < 1 implies ρ(((IS − A)−1B)⊗2) < 1, thus the matrix IS2 − ((IS −
A)−1B)⊗2 is also non-singular. Applying (41) in case of Σk = Σk−1 = Σ and solving the linear

equation, we obtain (25).
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Proof of the properties of innovation sequence {Mk}. Since Γ(k, ℓ) = E(XkX
⊤
ℓ ) for

all k, ℓ ∈ Z and, by (32), Mk = (I − A)Xk − BXk−1 for all k ∈ Z, we have for all k, ℓ ∈ Z
that

E(MkM
⊤
ℓ ) =(I −A)Γ(k, ℓ)(I −A)⊤ − (I −A)Γ(k, ℓ− 1)B⊤

−BΓ(k − 1, ℓ)(I −A)⊤ +BΓ(k − 1, ℓ− 1)B⊤

Thus, by (23) and (42), we obtain for k = ℓ that

E(MkM
⊤
k ) = (I −A)Σ(I −A)⊤ −BΣB⊤ = ΣM

and for k ≥ ℓ

E(MkM
⊤
ℓ ) =(I −A)

(
(I −A)−1B

)k−ℓ
Σ(I −A)⊤ − (I −A)

(
(I −A)−1B

)k−ℓ+1
ΣB⊤

−B
(
(I −A)−1B

)k−ℓ−1
Σ(I −A)⊤ +B

(
(I −A)−1B

)k−ℓ
ΣB⊤ = OS×S

These prove that {Mk} is an uncorrelated sequence with variance matrix ΣM .

Proof of Proposition 2. To show that the in�nite series on the right-hand side of (33)

converges almost surely and in the mean square for all k ∈ Z, by Proposition 3.1.1 of Brock-

well and Davis (2013) and Proposition C.9 of Lütkepohl (2005), it is enough to see that

supk∈Z E(M
⊤
k Mk) = trΣM < +∞ and

∑∞
j=0 ∥((I − A)−1B)j∥ converges which follows from

Assumption 1 and Theorem 5.6.15 in Horn and Johnson (2012). By iterating (32) we have

Xk = ((I −A)−1B)nXk−n +

n−1∑
j=0

((I −A)−1B)jWk−j

for all n ∈ N and k ∈ Z. Thus, to show that Xk is the limit of the in�nite series on

the right-hand side of (33) almost surely and in the mean square, it is enough to see that

((I − A)−1B)nXk−n converges to 0 as n → ∞ almost surely and in mean square. Markov's

inequality and Theorem 5.6.12 of Horn and Johnson (2012) imply, for all ϵ > 0,

P
(∥∥((I −A)−1B)nXk−n

∥∥ ≥ ϵ
)
≤P

(∥∥((I −A)−1B)n
∥∥ ∥Xk−n∥ ≥ ϵ

)
≤ϵ−2 tr(Σ)

∥∥((I −A)−1B)n
∥∥2 → 0

as n → ∞, thus the almost sure convergence follows. On the other hand, the inequality

0 ≤ E∥((I−A)−1B)nXk−n∥2 ≤ tr(Σ)∥((I−A)−1B)n∥2 → 0 as n → ∞ implies the convergence

in mean square.

Proof of Remark 4. On the one hand, we have by (35) that, for all k ∈ Z,

∞∑
n=1

V
(n)
k =

∞∑
n=2

(
Z

(n)
k − (I −A)−1BZ

(n−1)
k−1

)
+Z

(1)
k − ν(1) = Yk − (I −A)−1BYk−1 − ν(1)

=Yk − (I −A)−1 (BYk−1 + λ) = Yk − E(Yk|FkS) = Wk

9



On the other hand, by recursion of {ν(n)}, we have the recursion

Z
(j+1)
k − ν(j+1) = V

(j+1)
k + (I −A)−1B

(
Z

(j)
k−1 − ν(j)

)
,

for all j ∈ N, k ∈ Z, which implies the formula for Z
(n)
k − ν(n).

Proof of Equation (42). It is enough to prove the recursion Γ(k, ℓ) = (I−A)−1BΓ(k−1, ℓ)

for all k > ℓ. We have, by the law of total covariance, (35) and the FkS-measurability of Yℓ,

that

Cov(Yk,Yℓ) =Cov(E(Yk|FkS),E(Yℓ|FkS)) + E(Cov(Yk,Yℓ|FkS))

=Cov((I −A)−1(BYk−1 + λ),Yℓ) = (I −A)−1B Cov(Yk−1,Yℓ)

since Cov(Yk,Yℓ|FkS) = 0.

Proof of Equation (43). Let i, j ∈ {1, . . . , S}. For all h ∈ N0, we have

(Γ(h))i,j = (Γ(h, 0))i,j = Cov(YhS+i, Yj) = R(hS + i, j)

On the other hand, for all h ∈ N, we have

(Γ(−h))i,j = (Γ(h))j,i = R(hS + j, i) = R(i, hS + j) = R(−hS + i, j)

Proof of Equation (44). By the de�nition of functions γj , j ∈ Z, we obtain

γj(hS+s) = R(hS+s+j, j) = R(j, hS+s+j) = R(−hS−s+(s+j), s+j) = γj+s(−hS−s)

for all h, j ∈ Z and s = 1, . . . , S.

Proof of Yule-Walker equations. By the Yule-Walker (YW) equations of the weakly

stationary process {Yk}, we have

(Γ(h))i,j = αi(Γ(h− δ1i))i−1+δ1iS,j + βi(Γ(h− 1))i,j

for all h ∈ N, i, j = 1, . . . , S which implies (45). Let h = 1. On the one hand, applying (45) in

cases of i = j = s and i = j + 1 = s for all s = 2, . . . , S we have the following linear equation

for the parameter vector (αs, βs)
⊤[

γs−1(S) γs−1(1)

γs(S − 1) γs(0)

][
αs

βs

]
=

[
γs−1(S + 1)

γs(S)

]
. (A3)

On the other hand, in cases of i = j = 1 and i = 1, j = S, since γS(1 − S) = γ1(S − 1) by

(44), we have [
γ1(S − 1) γ1(0)

γS(0) γ1(S − 1)

][
α1

β1

]
=

[
γ1(S)

γS(1)

]
. (A4)
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(A3) and (A4) are the YW equations in the general case. Since ΣB⊤((I − A)−1)⊤ = Γ(1)⊤,

we have by (23) that

Σ = AΣ+BΓ(1)⊤ +ΣM

(
(I −A)−1

)⊤
.

If Σε is a diagonal matrix, then ΣM

(
(I −A)−1

)⊤
is an upper triangular matrix. Thus, for

each s = 2, . . . , S, we have the equation Σs,s−1 = αsΣs−1,s−1+βsΓ(1)s−1,s, which is equivalent

to γs−1(1) = αsγs−1(0)+βsγs(S−1). By replacing the �rst equation in (A3) by this equation,

we see that (αs, βs)
⊤ is a solution of (46) for all s = 2, . . . , S. Now, using that γkS+s = γs for

all k ∈ Z and s = 1, . . . , S, we have γ0 = γS . Then, by inverting the �rst and second rows,

(A4) is equivalent to [
γ0(0) γ1(S − 1)

γ1(S − 1) γ1(0)

][
α1

β1

]
=

[
γ0(1)

γ1(S)

]
which is (46) for s = 1.

B Histograms of Yule-Walker estimates

Figure 1: Histograms of YW estimates of parameters αs's for di�erent sample size n generated

with Sim1. (Dotted line denotes the true parameter value.)
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Figure 2: Histograms of YW estimates of parameters αs's for di�erent sample size n generated

with Sim2. (Dotted line denotes the true parameter value.)

Figure 3: Histograms of YW estimates of parameters βs's for di�erent sample size n generated

with Sim1. (Dotted line denotes the true parameter value.)
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Figure 4: Histograms of YW estimates of parameters βs's for di�erent sample size n generated

with Sim2. (Dotted line denotes the true parameter value.)

Figure 5: Histograms of YW estimates of parameters λs's for di�erent sample size n generated

with Sim1. (Dotted line denotes the true parameter value.)
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