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Abstract—Understanding the interdependence between au-
tonomous and human-operated vehicles remains an ongoing chal-
lenge, with significant implications for the safety and feasibility of
autonomous driving. This interdependence arises from inherent
interactions among road users. Thus, it is crucial for Autonomous
Vehicles (AVs) to understand and analyze the intentions of
human-driven vehicles, and to display behavior comprehensible
to other traffic participants. To this end, this paper presents
GTP-UDRIVE, a unified game-theoretic trajectory planner and
decision-maker considering a mixed-traffic environment. Our
model considers the intentions of other vehicles in the decision-
making process and provides the AV with a human-like trajec-
tory, based on the clothoid interpolation technique. Among highly
interactive traffic scenarios, the intersection crossing is particu-
larly challenging. Hence, we choose to demonstrate the feasibility
and effectiveness of our method in real traffic conditions, using an
experimental autonomous vehicle at an unsignalized intersection.
Testing results reveal that our approach is suitable for 1)
Making decisions and generating trajectories simultaneously.
2) Describing the vehicle’s trajectory as a piecewise clothoid
and enforcing geometric constraints. 3) Reducing search space
dimensionality for the trajectory optimization problem.

I. INTRODUCTION

Autonomous Vehicles (AVs) are expected to gradually join
the transportation realm, coexisting with conventional vehicles
throughout a transition period [1]. Although this cohabitation
has great potential, it is still not straightforward and may
lead to uncertain interactions [2]. First, given the complexity
and the unpredictability of human behavior on the road and
second, due to the possibility of misinterpreting autonomous
vehicles’ decisions by other traffic participants. Therefore,
it becomes imperative for AVs to understand and account
for interactions with human drivers, while also exhibiting a
behavior recognizable by other road users [3]. In light of this
context, the research questions that motivate our work are:
Would emulating a human-like decision process assist AVs in
understanding and accounting for human drivers’ intentions
and decisions? Which behavior should autonomous vehicles
exhibit to garner human drivers’ acceptance?

Within the scope of this study, we focus on instances
where autonomous vehicles display behavior that is both
comprehensible to humans and conforms to road traffic rules.

1 Institut VEDECOM, (nouhed.naidja@vedecom.fr)
2 CentraleSupelec, Laboratoire des signaux et systemes (L2S),

(nihed.naidja@centralesupelec.fr), (stephane.font@centralesupelec.fr),
(guillaume.sandou@centralesupelec.fr)

3 Dotflow, (marc.revilloud@dotflow.fr)
*The authors acknowledge the infrastructure and the support of the SCAR-

LET team of Vedecom institute. Special thanks to Benoı̂t Lusetti and Alexis
Warsemann for their involvement in the implementation and experimentation.

In this paper, we first adopt a human-like clothoid-based
model to describe the trajectories of turning vehicles. Second,
we emphasize the utilization of game theory to incorporate the
social dynamics embedded in strategic interactions between
AVs and human drivers. The main contribution of our work
is a novel approach where the decision-making and trajectory
generation are merged in a cohesive framework. The distinc-
tive aspect of our model is that the decision-maker assesses the
feasibility of trajectories, and the generated trajectory triggers
the update of the decision-making process.

This paper is an extension of our former work presented
in [4]. It is structured as follows: section I and section II
provide an introduction and a literature overview, respectively.
In section III, we expose the proposed trajectory generation
methodology, followed by a comprehensive description of the
decision-making process: starting from the game formulation
to the players’ payoff design. Section IV showcases the ex-
perimental results and the validation of the proposed approach
through both implementation of our algorithm using a proto-
type autonomous vehicle under real road scene conditions, and
a Matlab simulation of an unsignalized intersection crossing.
Finally, section V concludes the paper.

II. RELATED WORK

A. Vehicle interaction and decision making

Autonomous cars should be aware of human drivers’ inten-
tions and act consistently with respect to their expectations.
Game theory provides rigorous mathematical frameworks to
analyze and understand strategic interactions among multiple
decision-makers, where the outcomes depend on the choices
made by all parties [5]. By considering the interactions and
interdependencies among different road users, game theory
aids to predict the outcomes of decisions made by these
agents [6]. In this context, the two-player game-based model
formulated in [7] enables efficient coordination between AVs
and human drivers. However, the study was limited to the
”going straight” scenario, and turning movements were not
considered. More promising in this regard, the paper [8]
considers a complete vehicle model and includes kinemat-
ics constraints while designing a decision-making algorithm
for autonomous roundabout passing. Finally, the study [9]
from Stanford University, introduced a trajectory optimization
problem in a Nash-style, dynamic game. The algorithm out-
performs benchmark algorithms in complex driving scenarios.
The proposed game solver guaranteed local convergence, but
not a global one.



Given the aforementioned studies, we believe that game-
theoretic approaches provide a suitable framework for design-
ing a decision-making system that accounts for interactions
with human drivers. Our contribution regarding the decision-
making module builds upon Stanford University’s study [9].

B. Modeling of vehicle turning maneuver
Autonomous vehicle’s turning maneuver has given rise to

significant research work [10]. The study in [11] highlights that
spline interpolation, Bézier curves, and clothoid-based models
are particularly suitable for vehicle navigation in complex road
geometries. Clothoid-based interpolation provides a linear,
continuous, and smooth curvature variation along the curve.
This characteristic offers better comfort and maneuverabil-
ity, prevents undesirable jerks, and allows smooth curvature
transitions while entering or exiting a curved road section
from a straight road segment [12]. Furthermore, clothoid
curves are already used by road network design standards
[13]. Lastly, the study in [14] highlights that clothoid-based
models provide accurate representations of human drivers’
turning maneuvers, and can handle non-holonomic and dy-
namic constraints. Consequently, AVs utilizing clothoid-based
interpolation can interact more effectively with human drivers,
reducing the potential for misunderstandings or unpredictable
behavior. The reasons above motivate numerous researchers
to investigate clothoids interpolation for AVs navigation. For
instance, the solution presented in [15] minimizes both route
length and curvature jumps by connecting two clothoids. This
approach uses a modified Q-learning algorithm to approximate
the waypoint linking the two clothoids. Also, the authors in
[16] used a Convolutional Neural Networks-based tool that
extracts left-turning trajectories from real traffic recordings.
The extracted trajectories consist of straight lines, circular
arcs, and clothoids. Choosing among interpolation techniques
depends on the requirements of the road scenarios, and the
desired driving behavior. In light of our review of the existing
literature, we posit that clothoid-based interpolation best meets
the specific requirements and objectives of our study.

III. GTP-UDRIVE: UNIFIED TRAJECTORY PLANNER AND
DECISION-MAKER FOR AUTONOMOUS DRIVING

Autonomous vehicles display their intentions and actions to
human drivers through their trajectories [17]. These trajecto-
ries stem from the choices taken during the decision-making
process. This tight connection between decision-making and
trajectory generation requires a well-coordinated relationship
to ensure the systems’ reliability. Consequently, we developed
GTP-UDRIVE, a unified decision-making and trajectory plan-
ning framework. In this framework, a safety and efficiency-
aware decision-maker considers the feasibility of the trajectory.
The performed trajectory, in turn, triggers the update of the
decision-making process.

In this section, we present a comprehensive overview of our
contributions. The first subsection focuses on the trajectory
generation methodology, discussing the technique used to
generate optimal trajectories. The second subsection will delve

Figure 1: Trajectory description: Starting from an initial position ps(xs,ys,θs)
and aiming to reach the desired destination pg(xg,yg,θg), we investigate the
conflict zone space to generate feasible trajectories

into the decision-making algorithm, outlining its consideration
of human-operated vehicle’s intentions in the decision-making
process.

A. Clothoid Fitting for Trajectory Generation

Vehicle trajectories are often represented by a multitude
of variables or parameters. Exploring the navigable space
can lead to many possible trajectories, resulting in a sig-
nificant number of optimization parameters. However, tra-
jectory optimization within this expansive search space is
computationally intensive and time-consuming. To address
the complexity of the optimization problem, we propose to
reduce the dimensionality of the search space. To achieve this,
instead of explicitly optimizing every point along each possible
trajectory, we choose to represent the trajectories by a set
of waypoints {p1,p2,p3} ∈R33

,pi (xi,yi,θi) ∈R3, i = {1,2,3}
as illustrated in figure (1). This shifts the optimization focus
toward determining the optimal positions of the waypoints.
After that, we use a clothoid-fitting method to generate a
smooth trajectory passing through the optimized waypoints.
For further details on the clothoid construction procedure, we
refer readers to our previous work [4].

We derived inspiration from [16] to describe a trajectory T
as a succession of a straight segment L1 followed by a curve
segment S2, and ending by another straight segment L3, we
note: T = L1

⊕
S2

⊕
L3.

In the case of a right turn maneuver, the curved segment
consists of an elementary clothoid C2 =C1. Whereas, for a left
turn maneuver, the curve segment S2 is formed by combining
two elementary clothoids S2 = C1

⊕
C2 (dashed blue and red

segments illustrated in figure (1)).



We choose to address the left turn maneuver due to its
complexity. Our solution is adaptable to the right turning
maneuver as well.

Discontinuities may arise at the bridging waypoints due to
the difference in curvature between the different segments.
To tackle this problem, we ensure that the position (x,y), the
tangent direction θ , and the curvature κ at the ith segment’s
end-point, and at the starting point of the (i+ 1)th segment,
are identical by holding the following [18]:

∀pi,


xi+1(0) = xi(LCi)
yi+1(0) = yi(LCi)
θi+1(0) = θi(LCi)
κi+1(0) = κi(LCi)

(1)

Where (LCi) denotes the length of the segment Ci.
Also We ensure the uniqueness of the curve S2 by generating

clothoid segments that satisfy the system (2), following [19]:
xS2(0) = x1, xS2(LS2) = x3
yS2(0) = y1, yS2(LS2) = y3
θS2(0) = θ1, θS2(LS2) = θ3
κS2(0) = κ1, κS2(LS2) = κ3

(2)

In addition, we constrain the point where the vehicle starts
its turning maneuver at p1 =

( l
2 ,R,

π

2

)
, where l is the lane

width, and R is a characteristic distance before entering the
intersection (see figure (1)). Finally, we assume that the vehi-
cles’ destination is predetermined. Consequently, the tangent
angles θ2 and θ3 at the locations p2 and, p3, are known.

Within this structural configuration, four degrees of free-
dom persist, representing the coordinates of the two remain-
ing waypoints p2(x2,y2) and p3(x3,y3). These coordinates
form a reduced set of new waypoints denoted as: Wp =
{(x2,y2),(x3,y3)} ∈ R4. Identifying this set is both necessary
and sufficient to fully define the trajectory T .

In the next section, we introduce a decision-making algo-
rithm that explores a four-dimensional search space, to find
the optimal set of waypoints Wopt

p described above.

B. Decision-Making : A Game-Theoretic Perspective
In this paper, we aim to capture social interactions between

an AV and a human-driven car. To this end, we explicitly
incorporate the human driver’s decision and intention while
designing our decision-making algorithm. Nash Equilibrium
(NE) is a solution concept that captures strategic interac-
tions among multiple players. It identifies a set of strategies,
one for each player, in which no player can improve their
outcome by independently changing their chosen strategy
[20]. In the context of autonomous driving, Nash equilibrium
allows autonomous vehicles to make strategic choices that
balance their objectives with the actions of other vehicles,
leading to smoother traffic and improved safety. Furthermore,
Nash equilibrium models players symmetrically and assumes
that all players are rational decision-makers. Nevertheless,
in the case of intersection crossing, drivers’ objectives are
interconnected by coupled requirements for collision avoid-
ance. This optimization problem belongs to Generalized Nash

Equilibrium Problems (GNEPs), an extension of the original
Nash equilibrium. In GNEPs, the objective functions and
constraints of each player are influenced by the strategic
space of their opponents [21]. A solution of a GNEP is a
set of players’ strategies satisfying all players’ optimization
requirements. The present study proposes a non-cooperative
dynamic game between two players. Given the symmetry of
Nash-style games, the two players are modeled equivalently
throughout this paper.

1) Game formulation
The player V, and its opponent O, control their strategic

spaces Sv ⊂Rn and So ⊂Rm, through their n and m decision
variables respectively.

We define the game joint strategic space as
S game(Sv,So) = Sv ×So ∈ Rn×m, the Cartesian product of
pure strategy sets of the two players.

Qp(sv,so) : Rn×m →R is the payoff function for a player p.
Thus, given an opponent strategy so, a player V aims to

solve the optimization problem in equation (3.a):

minimize
sv∈Sv

Qv(sv,so) s.t. sv,so ∈ S game(Sv,So) (3.a)

Note that the opponent player’s optimization problem is struc-
tured similarly.

minimize
so∈So

Qo(so,sv) s.t. sv,so ∈ S game(Sv,So)

(3.b)
We assume that each player acts rationally and consistently

to solve a GNEP. The rationality we refer to is “the Best
Response” concept, commonly accepted in the context of
game theory. It assumes that every player is motivated by
choosing the best response available to optimize its own
payoff [22]. The solution of this GNEP is then an equilibrium
(s∗,v,s∗,o) ∈ S game such that:

∀sv,∀so
{

Qv(sv∗,so∗)≤ Qv(sv,so∗)
Qo(sv∗,so∗)≤ Qo(sv∗,so)

(4)

We formulate the generalized Nash equilibrium problem for a
non-zero-sum, two-player dynamic game in equation (5):

J(sv,so) = max

{
sup

sv∈Sv

{
Qv(sv,so)−Qv(sv,so),0

}}
+

max

{
sup

s0∈So

{
Qo(sv,so)−Qo(sv,so),0

}} (5)

In the first term of the sum, we aim to find the maximum
improvement in player V’s (the autonomous vehicle) payoff
over all possible alternative strategies. Thus, we analyze the
differences between player V’s payoff when following its cho-
sen strategy sv (i.e. Qv(sv,so)), and Qv(sv,so) the payoff when
considering a potential deviation to an alternative strategy sv

belonging to Sv, the set of player V’s feasible strategies.
If this difference is positive, it indicates that player V could

benefit from deviating to an alternative strategy. Conversely, a
negative difference indicates that player V’s chosen strategy sv



is optimal, and there is no incentive for deviating. Player O’s
payoff is evaluated similarly in the second part of the sum.

Optimizing the problem in equation (5) enables the iden-
tification of the strategic choices sv,so leading to the highest
payoffs for each player. A generalized Nash equilibrium is
attained: both players’ objectives are balanced, and no player
can improve its payoff by independently changing its strategy.

In our study, each strategy represents a possible set of
points of interest sv

i =Wv
i , and so

j =Wo
j , for ego player and

its opponent respectively. Thus, the outcomes of a GNEP
are two sets of optimal waypoints, one for each player, that
ought to be found to generate both AVs and human-driven
vehicles trajectories. This game structure allows for linking the
trajectory generation and the decision-making process, thereby
building a comprehensive driving unit.

2) Players payoff design
The payoff function Qp(sv,so) for each player p is a linear

combination of cost indicators on its trajectory. We hereby
introduce these indicators from the perspective of the ego
vehicle. The opponent vehicle’s payoff function is derived
through symmetry.

• Efficiency Awareness: To achieve efficiency while cross-
ing the intersection, the AV is prompted to keep a
relatively high velocity as outlined in equation (6) below:

Ieff
(sv)

=
|Vmax − v(sv)|

Vmax
(6)

where Vmax is the maximum speed limit permitted
within the intersection, and v(sv) is the average velocity
following strategy sv.

• Safety Enhancement: Continuous Collision Check
We encapsulate each generated trajectory into a convex
Oriented Bounding Box (OBB) described by its ver-

tices as
{−→

Bv
j

}4

j=1
= convexhull(

{
(xv

1,y
v
1), · · · ,(xv

4,y
v
4)
}
)

and
{−→

Bo
j

}4

j=1
= convexhull({(xo

1,y
o
1), · · · ,(xo

4,y
o
4)}), rep-

resenting the ego vehicle and the opponent vehicle bound-
ing boxes, respectively.
We predict potential collisions between the two boxes Bv

and Bo by continuously computing the remaining Gap
To Collision (GTC) at each time t, using an algorithm
based on the Separating Axis Theorem (SAT) [23]. In
this algorithm, we identify candidate separating axes,
including the normal vectors

−→
N i of the OBBs. Then,

the vertices of both Bv and Bo are projected onto each
candidate axis, yielding the minimum and the maximum
projections. The projected distance Dpro j of a vertex of
the ego vehicle’s OBB

−→
Bv

j
4
j=1 onto a normal vector

−→
N i is

given by the expression in equation (7):

Dpro j(
−→
B v

j ,
−→
N i)

j ∈ {1, ..,4}
(i = x, i = y)

=


(∣∣∣∣−→B v

j ·
−→
N i

−→
N i

∣∣∣∣) if
−→
B v

j ·
−→
N i∣∣∣−→N i

∣∣∣ < 0(∣∣∣∣−→B v
j ·
−→
N i

−→
N i

∣∣∣∣− ∣∣∣−→N i

∣∣∣) if
(∣∣∣∣−→B v

j ·
−→
N i

−→
N i

∣∣∣∣− ∣∣∣−→N i

∣∣∣)> 0

0 Otherwise
(7)

where j ∈ {1, ..,4} denotes the index of the vertex, and
i indicates the direction of the normal vector (x or y).
The remaining Gap To Collision (GTC) is computed
following the equation (8) as:

GTC = max
i

{(
max

(
De

min,i,D
o
min,i

)
−min

(
De

max,i,D
o
max,i

))
,0
}

(8)

With De
min,i and De

max,i representing the minimum and the
maximum extents for the ego vehicle’s OBB along the
axis i respectively, and Do

min,i and Do
max,i the extents for

the opponent vehicle. We utilize this metric to formulae
a safety indicator as follows:

Isafe
(sv,so)

= min
tmin<t<tmax

e−
(

GTC(t)
Gcrit

)
(9)

[tmin, tmax] is the duration of interaction between two vehi-
cles. Gcrit is a critical threshold that must be maintained
consistently between two vehicles.

• Collision Avoidance:
We design an adaptive elliptic safety zone ζ that encom-
passes each vehicle to ensure collision-free navigation. At
each time, t we guarantee:

∀t ∈ [tmin, tmax], ζ (t)
⋂

Bo(t) = /0 (10)

We continuously check that the constraint in equation (10),
is respected for each vertex vo

j(x
o
j ,y

o
j), belonging to Bo, the

OBB encapsulating the opponent vehicle by holding the con-
dition in equation (11) :[

cos(θ) · (xo
j − x)+ sin(θ) · (yo

j − y)
]2

D(sv)2 +[
sin(θ) · (xo

j − x)− cos(θ) · (yo
j − y)

]2

d2 > 1

(11)

Where (x,y) represents the center coordinates of the ellipse
ζ (t), and θ its orientation. These parameters are determined
based on the position and orientation of the vehicle’s COG.

This elliptic safety zone dynamically evolves according to
D(sv) and d, the major and minor semi-axes of the ellipse,
respectively. {

D(sv) = 1
2 Lv +TTC · v(sv)

d = 1
2 lv +dsa f e

(12)

Note that: v(sv) is the speed achieved when adopting strat-
egy sv. The parameters Lv and lv correspond to the vehicle’s
length and wheelbase, respectively. dsa f e is a parameter repre-
senting a lateral safety distance. The Time To Collision (TTC),
is a safety indicator that quantifies the remaining time until a
collision occurs [24]. This metric is employed to adjust the
safety zone of the ego vehicle and to ensure that a sufficient
distance is maintained from the opponent vehicle.

• Respect the lane boundaries:
The vehicle has to keep driving in the middle of its lane.
Thus, we substitute the vertex vo

j ’s coordinates (xo
j ,y

o
j) in



equation(11) by (xpb ,ypb), the coordinates of the closest
point on each road boundary noted pb.

We want to minimize the risk of collision and unnecessary
stops in the conflict zone. Thus, we formulated the objective
of the player in equation (13) as a weighted linear combination
of safety and efficiency indicators:

f (sv,so) = ω1 · Isafe
(sv,so)

+ω2 · Ieff
(sv)

, 0 ≤ ωi ≤ 1 (13)

This objective is subject to nonlinear constraints associated
with the left-turn maneuver as well as the strategies of the
opposing vehicle. The optimization problem that the player
needs to solve can be stated as follows:

min
sv,so

f (sv,so), s.t. C(sv,so)≤ 0, (14)

Where C(sv,so) encompasses the inequality constraints out-
lined in equation (11).

We transform the problem in equation (14) to an uncon-
strained optimization problem. Thus, we add a term penalizing
constraints violation, and re-write equation (3.a) representing
the former optimization problem of a player in equation (15):

Qp(sv,so) = f (sv,so)+G (C(sv,so)) (15)

The penalty function G (C(sv,so)) is formulated as follows:

G (C) =

{
0 if C(sv,so)< 0
λ ·C(sv,so) Otherwise

, λ ∈ R∗+ (16)

λ is a penalty coefficient that affects the sensitivity of the
optimization algorithm to constraint violations.

Finally, this study investigates the same game solver based
on Particle Swarm Optimization (PSO), introduced in our
recent paper [4], to find a strategic combination (sv,so) that
solves the GNEP in equation (5).

IV. EXPERIMENTATION AND SIMULATION
RESULTS

The experiments have been performed on unsignalized
intersection located in All.des Marronniers, Versailles-Satory
(78000), France. We validate our trajectory generator using
the experimental autonomous vehicle of Institut VEDECOM,
which is an electric Renault Zoe equipped with different
perception and localization sensors as shown in figure (2).

A. Validation of the Trajectory Generation Methodology

Generated trajectory VS human driver trajectories
To validate whether the proposed trajectory generation

methodology provides accurate representations of human
drivers’ turning maneuvers, we recorded 10 left turn human
driver trajectories at All.des Marronniers intersection. The
recorded trajectories were performed by a single driver, in-
structed to drive in the middle of the lane. The recordings
are compared to a GTP-UDRIVE generated trajectory (rep-
resented in dashed red in figure (3)) using identical initial
conditions, and geometric layout parameters. These parameters
are provided in Table(I). Comparison results are shown in
figure (3).

Figure 2: Experimental Autonomous test vehicle of Institut VEDECOM

Figure 3: All.des Marronniers intersection: Comparison between recorded left
turn human driver trajectories, and GTP-UDRIVE generated trajectory (in
dashed red)

The current sample size does not offer a comprehensive
validation, yet it can provide an initial validation of the
functionality of the proposed method.

B. Vehicle Interaction and Decision Making

Traffic Scenarios
We consider an unprotected left-turn driving scenario in a
mixed traffic environment. This scenario is illustrated in (4),
where an autonomous vehicle (in red) is turning left in front of
an oncoming human-driven car (in green). In our simulation,
our main focus lies on scenarios where direct communication
between the two vehicles is unavailable. We exclude Vehicle
to Vehicle communication (V2V) as we assume that the
human operated vehicle is devoid of V2V communication

Table I: Simulation Parameters

Simulation Parameters
Dist to intersection R = 80m Lane width l = 3.5m
Time To Collision T TC = 2s Wheelbase lv = 1.9m
Maximum Speed Vmax = 13m/s Vehicle length Lv = 3.9m
Lateral distance dsa f e = 0.2m Penalty coefficient λ = 103



technology. Consequently, the autonomous vehicle only relies
on perception to estimate its opponent’s position and direction.

Crossing without running GTP-UDRIVE: Nominal case
We first simulated the autonomous vehicle and its opponent

entering the conflict zone simultaneously. If the AV maintains
its initial trajectory, it will lead to a collision with its opponent.
Illustration (4).a depicts the collision moment.

Crossing while running GTP-UDRIVE
We run our algorithm GTP-UDRIVE, preserving the nom-

inal scenario’s simulation parameters and initial conditions.
The AV uses these informations to generate the trajectory of
the opponent vehicle following its own trajectory generation
methodology described in the section (III-A). Leveraging the
Nash equilibrium symmetry, the AV estimates the opponent’s
car cost using the objective function in equation (15) and thus,
solves the GNEP in equation (5). The observed behaviors are
illustrated in the figures (4) and (5), and detailed below:

Case 1: The figure (4).b illustrates the first behavior. The
two vehicles decided to cross the intersection without stopping,
since they predicted that the two of them would choose a
free-conflict trajectory. For the ego car (in red), the solution
reveals optimal junction points Wopt

p = {p∗1,p
∗
2}, enabling the

adjustment of the initial trajectory to ensure a collision-free
path. We observe that the gap to the collision at the critical
instant tcrit, when the vehicles are closest, ensures that the AV
remains outside the collision zone (see figure (4).c).

Case 2: This time, the opponent vehicle (the green, human-
operated car) enters the conflict zone prior as in figure (5).a.
In this situation, the ego vehicle does not found an alternative
trajectory that would enable it to avoid conflict with the
trajectory to be executed by the opposing vehicle (Opp). The
gap to collision is lower than the minimum safety threshold
(see figure (5).b), ego vehicles’ best response is to stop during
the time interval [t1, t2], and wait until the opponent vehicle
has safely cleared the conflict zone.

V. CONCLUSIONS

This paper presents GTP-UDRIVE, a unified decision-
maker and trajectory optimizer framework based on the game
theory paradigm. Our main objective was to foster the coex-
istence of autonomous and human-driven vehicles in a mixed
environment and to enhance road safety and efficiency.

We aimed to provide autonomous vehicles with an efficient
decision-making framework that allows the consideration of
human drivers decisions.

We demonstrate that our algorithm is effective in plan-
ning for an autonomous vehicle to negotiate complex driving
scenarios while interacting with other vehicles. The main
advantage of our method is combining the search space
for trajectory optimization with the strategic space of the
vehicles. The results from the proposed model validation are
promising, as predicting other participants’ intentions allows
the two vehicles to cross the intersection safely and avoid an
unnecessary stop.

From these results, it is reasonable to conclude that the
unified framework for trajectory optimization and decision-

a) Crossing scenario without running GTP-UDRIVE

b) Crossing scenario while running GTP-UDRIVE

c) GTP-UDRIVE impact on the Gap To Collide
Figure 4: a) The nominal case at impact time timpact, b) Post-application of
GTP-UDRIVE at tcrit, and c) The evolution of the gap to collision GTC.



a) Ego vehicle yield the way resulting from GTP-UDRIVE

b) Evolution of the Gap To Collide
Figure 5: Case 2: Ego vehicle stops between t1 = 2.85(s) and t2 = 5.76(s)
until the opponent vehicle has safely cleared the conflict zone.

making proposed in our work is appropriate to address inter-
section crossing.

Limitations and future work
Future work will expand the obtained results to consider the
interaction with connected vehicles and other autonomous
vehicles in the road scene. More attention will be given to
experimental validations. It would be interesting to include
the presented results in an adaptive control-type approach
and to consider the evolution of the accurate trajectory of
other drivers. Lastly, one could envision exploring different
notions of rationality and considering other behaviors such as
aggressiveness and altruism.
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