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Abstract: This article advocates the use of conformal prediction (CP)
methods for Gaussian process (GP) interpolation to enhance the calibration
of prediction intervals. We begin by illustrating that using a GP model
with parameters selected by maximum likelihood often results in predictions
that are not optimally calibrated. CP methods can adjust the prediction
intervals, leading to better uncertainty quantification while maintaining the
accuracy of the underlying GP model. We compare different CP variants
and introduce a novel variant based on an asymmetric score. Our numeri-
cal experiments demonstrate the effectiveness of CP methods in improving
calibration without compromising accuracy. This work aims to facilitate the
adoption of CP methods in the GP community.

keywords Gaussian processes; Prediction intervals; Calibration; Confor-
mal Prediction

1 Introduction

Building an approximation—whether interpolation or regression—of a
computer code represented by a function f : X → R, where X ⊆ Rd and
d ∈ N∗, allows for predicting the result of the possibly expensive evaluation of
f at a given x ∈ X. It is often necessary to estimate the uncertainty resulting
from the approximation. Using the framework of Gaussian Processes (GP) is
a standard Bayesian approach to build such approximations, together with
predictive distributions that quantify uncertainty.

This work was supported by Transvalor S.A.
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In the following, we focus on interpolation and we consider a prior on
f under the form of a GP Z ∼ GP(m, k), where m : X → R is a mean
function and k : X × X → R is a positive definite covariance function.
Given data Dn = {(x1, Z1), . . . , (xn, Zn)}, with Zi = Z(xi), i = 1, . . . , n, the
posterior mean function mn(·) = E(Z(·) | Dn) provides an approximation of
the underlying function and the posterior variance σ2

n(·) = var(Z(·) | Dn)
offers a measure of confidence in the approximation (see, e.g., Rasmussen and
Williams, 2006, Stein, 1999). This allows for the construction of prediction
intervals and the identification of regions where uncertainty is high, which
is often used for guiding further data collection and model refinement, as in
Bayesian optimization (see, e.g., Feliot et al., 2017).

However, in GP interpolation, the posterior variance does not depend
on the Zis but only on m, k and the xis. To make the posterior variance
depend on the data, which is obviously desirable, parameterized processes Z
are considered, with a parameter θ that is commonly selected by maximum
likelihood (ML) or cross-validation techniques, thus making it dependent
on the observed data. Numerical findings by Petit et al. (2023) show that
ML generally yields good predictive distributions when the covariance is an
anisotropic Matérn function. Additionally, Karvonen et al. (2020) show that
ML predictions are generally not too optimistic, in the sense that the pos-
terior variance does not decrease too quickly as the number of observations
increases over a fixed domain.

Consider prediction intervals In,α(x) at level α ∈ [0, 1[, for the approx-
imation of Z at x ∈ X from Dn. Typically, such intervals can be derived
from the posterior distributions within the Bayesian framework:

In, α(x) =
[
mn(x) + Φ−1((1− α)/2)σn(x), mn(x) + Φ−1((1 + α)/2)σn(x)

]
,

(1)
where Φ−1 stands for the quantile function of the normal inverse distribution.
For any x ∈ X, we have Pn(Z(x) ∈ In, α) = α, where Pn stands for the
conditional probability given Dn. For any α, the empirical coverage

δn, α =
1

ntest

ntest∑
i=1

1Ztest
i ∈In,α(xtest

i )

computed on ntest points (xtest
i , Ztest

i ), with Ztest
i = Z(xtest

i ), should ideally
be close to α, as this is a desirable property expected by users. In this case,
we say that the prediction intervals are well calibrated.

However, particularly when the model is misspecified, ML may yield
overly optimistic or overly pessimistic predictions (too small or too large
empirical coverage). This is illustrated in Figure 1, which shows a scatter
plot of the values of the integrated absolute error (IAE, Marrel and Iooss,
2024)

JIAE(θ) =

∫ 1

0
|δα − α|dα ,
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Figure 1: IAE versus RMSE, computed by leave-one-out (LOO) on the left-hand
side, and on a test set of 1500 points on the right-hand side. Each red point
correspond to a different value for the variance and the range/lenghscale parameters
of the covariance of Z. The blue square represents the parameter selected by REML,
and the green star represents the metrics computed when a conformal prediction
method (Jackknife+ for GP) is used to build the prediction intervals. Values, in
LOO, above JIAE > 0.3 and RMSE > 5 · 104 are not shown.

that quantifies the calibration of the predictive distributions, versus the root-
mean-square error (RMSE) for a given θ. Here, the data Dn is obtained using
one draw of a uniform distribution in X, with n = 150 points, evaluated on
the Goldstein-Price test function (d = 2 ; see, e.g., Surjanovic and Bingham,
2013). The GP model Z has an unknown constant mean and an anisotropic
Matérn covariance function (Stein, 1999), with regularity parameter ν =
2.5. Each point corresponds to a random value for the parameter θ of the
covariance (variance at origin, range/lengthscale parameters). On the left-
hand side, the metrics (RMSE, IAE) are computed using Dn only and a
leave-one-out (LOO) strategy is used, while on the right-hand side, they are
computed on a test set of 1500 points.

The blue square corresponds to the parameter selected by restricted-ML
(REML) (Stein, 1999). Notice that on the left hand-side, the REML point
minimizes the RMSE as noted by Petit et al. (2023). On the test set, the
REML point does not minize the RMSE but stays nevertheless close to the
Pareto front. No red points reach a value of zero for the IAE, meaning
that no parameter of the GP model yields perfectly calibrated predictive
distributions. While being a particular case, and a particular function, this
situation is by no means exceptional. The code to reproduce this experiment
is available to the reader1.

As shown in Figure 1, it turns out that it is possible to improve the cali-
bration of the prediction intervals using conformal prediction (CP). CP is a
framework originally proposed by Vovk et al. (2005) to construct prediction
intervals for any prediction algorithm, with known statistical properties, un-
der certain assumptions. Recent developments have extended the original

1See https://github.com/gpmp-dev/lod2024-conformal
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method to make it more suitable for Gaussian process approximation (Jaber
et al., 2024, Lei et al., 2018). Thus, in Figure 1, the green star point rep-
resents the metrics computed when the Jackknife+ for GP (J+GP) method
of Jaber et al. (2024) is used to construct the prediction intervals. IAE is now
closer to zero with the same RMSE, and the calibration has been improved
significantly without reducing the accuracy.

The first objective of this article is to advocate for CP-type methods
for GP approximation to encourage their adoption by the GP community.
Compared to existing works, particularly the work of Jaber et al. (2024), this
article specifically examines the noise-free case, that is, GP interpolation,
whereas Jaber et al. (2024) only consider the case with observation noise,
i.e., GP regression. Additionally, our numerical experiments cover a larger
number of functions. We also include in our comparisons the full conformal
prediction for GPs proposed by Papadopoulos (2023), as well as a new variant
based on an asymmetric score.

The article is organized as follows. In Section 2, we recall the main ideas
of CP. Section 3 shows how to apply CP to Gaussian process approximation.
In Section 4, we conduct numerical experiments to compare different variants
of CP in the case of GP interpolation, using several test functions.

2 Conformal prediction for regression

In this section, we briefly recall the principles of conformal prediction for
regression. The reader is referred to Lei et al. (2018), Barber et al. (2021)
for more details.

2.1 Non-conformity scores

Consider i.i.d. data (Xi, Zi), i = 1, 2, . . ., from a common distribution onX×
R, where the Xis are covariates and the Zi are the corresponding responses,
with mean E(Zi | Xi) = f(Xi). We assume that a method is available for
constructing regression functions, denoted by s( · ; D), that estimates f from
a finite dataset D = {(Xi, Zi), i = 1, 2, . . .}.

Conformal prediction aims at producing a prediction interval In,α(X) for
a new response Z at X, given D. The main idea of CP is to evaluate how well
a potential value z for Z fits with the existing dataset when added as a new
data point. This is done by introducing a non-conformity score, R, which
measures the "distance" or non-conformity of an observation (x, z) ∈ X×R
with respect to the dataset D. A common choice for the non-conformity
score is the residual error

R(x, z ; D) = |z − s(x ; D)|.
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2.2 Full conformal prediction

Let Dn = {(Xi, Zi), i = 1, . . . , n}. For a new random covariate Xn+1 and a
potential value z ∈ R for the response Zn+1, define the augmented dataset

Dn+1,z = {(X1, Z1), . . . , (Xn, Zn), (Xn+1, z)}.

Consider the scores

Rz,i = R(Xi, Zi ; Dn+1,z), i = 1, . . . , n, and Rz,n+1 = R(Xn+1, z ; Dn+1,z).
(2)

The original CP method of Vovk et al. (2005), also called full conformal
prediction (FCP), consists in building the prediction interval at Xn+1 defined
by

IFCP
n, α (Xn+1) =

{
z ∈ R, γ(z) ≤ ⌈α(n+ 1)⌉

}
, (3)

where

γ(z) =

n+1∑
i=1

1Ri,z≤Rn+1,z (4)

is the number of non-conformity scores less than or equal to Rn+1,z.
The interval IFCP

n, α verifies the finite-sample coverage property: P(Zn+1 ∈
IFCP
n,α (Xn+1)) ≥ α (see Lei et al., 2018; Theorem 2.1), where the probabil-

ity is taken over the n + 1 i.i.d. draws (X1, Z1), . . . , (Xn+1, Zn+1). While
FCP provides statistically calibrated intervals, it can be computationally
expensive since it requires testing several potential values z to get (an ap-
proximation of) IFCP

n, α (Xn+1). For each candidate z, one needs to recalculate
the non-conformity scores, which requires fitting a new model. This process
results in significant computational overhead, especially for large datasets or
complex models. This limitation has led to the development of alternative
approaches, such as split conformal prediction, as recalled next.

2.3 Split conformal prediction

An alternative approach is split conformal prediction (SCP), which partitions
the data into two sets: a training set and a calibration set. The training set is
used to fit the regression model, while the calibration set is used to compute
the non-conformity scores: given a partition of the data Dn = Dtrain∪Dcal, fit
the regression model on Dtrain and use Dcal to compute the non-conformity
scores.

The prediction interval for a new response Zn+1 at Xn+1 is then given
by

ISCP
n,α (Xn+1) =

{
z ∈ R, R(Xn+1, z ; Dtrain) ≤ qα

}
, (5)

where qα is the α quantile of the set {R(Xi, Zi ; Dtrain), (Xi, Zi) ∈ Dcal} of
non-conformity scores from the calibration set.
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This approach provides a computationally efficient way to construct pre-
diction intervals while maintaining statistically valid coverage. However, the
choice of the split between the training and calibration sets can significantly
affect the tightness and coverage of the prediction intervals because each
split uses fewer data for training and calibration. To address these limita-
tions, alternative methods such as Jackknife conformal prediction have been
developed. These methods aim to use the entire dataset more effectively,
reducing the dependency on a single partition.

2.4 Jackknife conformal prediction

Jacknife conformal prediction (JCP) uses all data points both for training
and calibration by employing a LOO strategy, where, for each data point
(Xi, Zi) in Dn, the regression model is fitted on the dataset Dn,−i = Dn \
{(Xi, Zi)}.

The prediction interval for a given point x ∈ X is then defined by

IJCP
n,α (x) = [s(x;Dn)− qα, s(x;Dn) + qα] (6)

where qα is the empirical α-quantile of the set of scores R(Xi, Zi ; Dn,−i),
for i = 1, . . . , n.

Contrarily to FCP and SCP, JCP does not provide strong theoretical
guarantees, but has nevertheless the (weak) following finite-sample in-sample
property: P(Zi ∈ IJCP

n, α (Xi)) ≥ α, for all i = 1, . . . , n. If the dataset is large
enough, we can expect this property to extend to a new, unobserved point
(see Barber et al., 2021; Section 4). Moreover, since JCP uses the entire
dataset for both model fitting and calibration, JCP can often produce tighter
intervals than those obtained with SCP.

2.5 Jackknife+ conformal prediction

While JCP method has the advantage of using the entire dataset for both
training and calibration, it does not provide strong theoretical guarantees
as mentioned above. To address this, Barber et al. (2021) introduced the
Jackknife+ method (J+), which enhances JCP to provide prediction intervals
with finite-sample coverage properties.

Barber et al. observe that regression algorithms can be sensitive to the
specific dataset used for training, causing the predictions from models trained
on slightly different datasets (e.g., Dn,−i) to vary significantly. To mitigate
this issue, J+ modifies JCP by considering two sequences,

ξ+i = s(Xn+1;Dn,−i) +Ri and ξ−i = s(Xn+1;Dn,−i)−Ri, (7)

where Ri = R(Xi, Zi ; Dn,−i), i = 1, . . . , n.
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The sequences {ξ−i }ni=1 and {ξ+i }ni=1 are then ordered, and the J+ confi-
dence interval at Xn+1 is defined by

IJ+α (Xn+1) =
[
ξ−(⌊(n+1)(1−α)⌋), ξ+(⌈(n+1)α⌉)

]
, (8)

provided α ≤ n/(n+ 1).
The J+ method verifies the finite-sample coverage property

P
(
Zn+1 ∈ IJ+n,α(Xn+1)

)
≥ 2α− 1

under the i.i.d. assumption for (X1, Z1), . . . , (Xn+1, Zn+1) (see Barber et al.,
2021; Theorem 1), but typically achieves coverages close to α in practice.

3 Conformal prediction for Gaussian processes

In this section, we return to the case of GP interpolation, as presented earlier
in this article. More precisely, we consider an unknown function f and aim
to build an approximation using the framework of GP interpolation. To this
end, we assume a GP prior Z ∼ GP(m, k) with known mean and covariance
functions, typically determined through a model selection procedure such as
maximum likelihood or cross-validation techniques. Given a dataset Dn =
{(x1, Z1), . . . , (xn, Zn)}, where Zi = Z(xi) for i = 1, . . . , n, GP interpolation
consists in computing the posterior distribution of Z(x) for all x ∈ X. We
now briefly present the adaptation of CP to GP interpolation. Subsequently,
we introduce a novel non-conformity score for the Jackknife+ method.

3.1 Adaptation of Full-Conformal Prediction and Jackknife+

3.1.1 Full-Conformal Prediction for GP (FCP-GP) —

FCP is adapted by Papadopoulos (2023) to GP interpolation, building on
the earlier adaptation of CP to kernel ridge regression by Nouretdinov et al.
(2001). The main idea involves rewriting the non-conformity scores (2).

Specifically, given a dataset Dn, and a new point x ∈ X, define the
augmented dataset

Dn+1 = Dn ∪ {(x, Zn+1)} , Zn+1 = Z(x),

assuming that all points xi and x are distinct. Denote by mn+1,−i(x) and
σ2
n+1,−i(x) the posterior mean and variance of Z(x) from the LOO dataset

Dn+1,−i = Dn+1 \ {(xi, Zi)}, i = 1, . . . , n+ 1. Then, consider the scores

Ri =
|Zi −mn+1,−i(xi)|
max(ϵ, σβ

n+1,−i(xi))
, i = 1, . . . , n+ 1, (9)

where β > 0 is a parameter that controls the sensitivity to changes in the
variance σ2

n+1,−i(xi), and ϵ ≥ 0 is a small constant introduced to ensure
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numerical stability when σ2
n+1,−i(xi) is small. Taking β = 1 is a sensi-

ble choice, since under our Bayesian setting, the random variables (Zi −
mn+1,−i(xi))/σn+1,−i(xi) are N (0, 1) and do not depend on the parameters
of the GP model.

The FCP-GP method replaces the definition of γ in (4) by

γ(z) = E
[n+1∑
i=1

1Ri≤Rn+1 | Zn+1 = z
]

(10)

and computes the prediction intervals as in (3). Using the linearity of
mn+1,−i with respect to Zn+1, Papadopoulos (2023) shows that these in-
tervals can be computed efficiently. Note also that Papadopoulos (2023)
proposes other types of scores that we do not present here.

3.1.2 Jackknife+ for GP (J+GP) —

Using the scores Ri defined by (9) computed with the training dataset Dn

instead of the augmented dataset Dn+1, Jaber et al. (2024) propose another
CP method for GP approximation based on a modification of the J+ method.
The sequences (7) are replaced by

ξ+i (x) = mn,−i(x) +Rimax
(
ϵ, σβ

n,−i(x)
)
, (11)

ξ−i (x) = mn,−i(x)−Rimax
(
ϵ, σβ

n,−i(x)
)
, (12)

and the prediction intervals are computed using (8). Intervals calculated
in this way have the same coverage property as that of the J+ method for
i.i.d. data (X1, Z1), . . . , (Xn+1, Zn+1), conditional on Z—as when the Xi are
uniformly distributed on X.

Remark. Score normalization has been suggested by Vovk et al. (2005),
Chapter 2.3, in their application of full-conformal to ridge regression to adapt
to noisy observations. They choose a normalization coefficient such that all
the non-conformity scores have relatively the same variance. Later, Lei et al.
(2018) discussed the scaling of residual errors |z− s(z,D)| in the case of het-
eroscedastic noise on the observations, by a measure of the local dispersion.

3.2 Asymmetric scores

Barber et al. (2021) advocate using signed scores when dealing with skewed
data. If the data exhibit asymmetry, such as local excursions, the prediction
intervals should ideally reflect this asymmetry. To this end, we introduce a
modification of the scores (9) by removing the absolute value:

Ri =
Zi −mn,−i(xi)

max(ϵ, σn,−i(xi))
. (13)
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Then, define the sequence

ξi(x) = mn,−i(x) +Rimax (ϵ, σn,−i(x)) .

The prediction intervals for a given x ∈ X is obtained as

IasymJ+GP
n,α (x) =

[
ξ⌊(1−α)/2(n+1)⌋(x) , ξ⌊(1+α)/2(n+1)⌋(x)

]
. (14)

We refer to this method as asymJ+GP. Moreover, the finite-sample cov-
erage property for i.i.d. data, P

(
Zn+1 ∈ IJ+α (Xn+1)

)
≥ 2α−1, remains valid,

as demonstrated in Appendix A of Barber et al. (2021).

4 Numerical Comparison

In this section, we conduct a numerical comparison between the different CP
methods. We use GPmp, the Python GP micro package (Vazquez, 2024),
for the implementation.

We consider GP models Z with a constant mean and a Matérn covariance
function with regularity ν = p+1/2, where p ∈ N⋆. The Matérn correlation
structure κν is defined in Chapter 2.7 of Stein (1999), and the corresponding
anisotropic covariance function can be written as

kσ,ν,ρ(x, y) = σ2κν


√√√√ d∑

i=1

(x[i] − y[i])2

ρ2i

 x, y ∈ Rd . (15)

The parameter ν controls the regularity of the covariance, σ2 is a variance
parameter, and the parameters ρi are lengthscale parameters controlling the
scale of variations along each dimension. The parameters σ2 and the ρis are
selected by REML.

The goal is to understand the behavior of the prediction intervals com-
puted either using (1) or a CP method when the GP model has different and
not necessarily “optimal” values of regularity ν.

For a given value of ν, we sample ntrain = 20×d points inX, (x1, . . . , xntrain),
using the uniform distribution on X, and compute the outputs f(x1), . . . ,
f(xntrain). We apply the same strategy to compute the test set with ntest =
1100 points. This procedure is repeated 40 times to compute on each rep-
etition the empirical coverage δα, with α = 90%, the spatial average of the
width of the intervals, and the IAE on the test set. All non-conformity scores
are computed with β = 1.

The test functions used for experiments are the Goldstein-Price function
(d = 2), the Hartmann4 function (d = 4), the Hartmann6 function (d = 6),
the Park function (d = 4), the Branin function (d = 2), and a Becker function
in dimension d = 2. Information about the Goldstein-Price, and Hartmann
functions can be found in Surjanovic and Bingham (2013) and information
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about the Branin function can be found in Dixon and Szego (1978). The
Park function is defined in, e.g., Cox et al. (2001). The Becker functions are
from Becker (2020).

Figure 2 displays the boxplots of the empirical coverage and the average
width of the intervals (over the 40 repetitions) when the regularity parameter
varies, in the case of the Goldstein-Price function. All CP methods give
better coverage than the GP model when the parameters are selected by
REML, which is generally overconfident when p increases. The FCP-GP
method is more optimistic (smaller prediction intervals, smaller coverage)
than J+GP or asymJ+GP. The improvement in coverage by the CP methods
is achieved by increasing the size of the prediction interval, as shown by the
right-hand side of Figure 2.
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Figure 2: Coverage and average width of the prediction intervals at level 0.9 for the
Goldstein-Price function with 40 training points. The GP model parameters σ and
ρ are selected by REML. The intervals are computed using the posterior variance,
the FCP-GP method, the J+GP method, and the asymJ+GP method.

Table 1 summarizes the performance of the methods for the other test
functions. The average IAE and the average width of the prediction interval
at the 90% level, computed on the test set, are reported for several values
of model regularity ν = p + 1/2. The IAE reflects the coverage at multiple
levels, and all CP methods improve the IAE compared to REML. All CP
methods produce relatively similar results. The asymJ+GP method gives
very similar results to J+GP and has a better IAE for the Beck function.
However, it should be noted that the asymJ+GP method produces wider
prediction intervals on average than J+GP.

5 Discussion

CP methods can enhance prediction intervals, as shown in Figure 1. All CP
methods provide relatively similar coverage, though J+GP tends to perform
slightly better on average. For data with excursions, such as the Goldstein-
Price function, using asymJ+GP should be preferable. In other scenarios,
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Function p REML FCP-GP J+GP asymJ+GP
90%W IAE 90%W IAE 90%W IAE 90%W IAE

1 0.045 0.21 0.035 0.06 0.043 0.06 0.047 0.06
Beck 5 0.0059 0.1 0.009 0.09 0.01 0.08 0.011 0.07

9 0.0064 0.24 0.012 0.12 0.013 0.11 0.014 0.11
1 1.4 · 101 0.24 7.6 0.06 8.7 0.06 9.1 0.06

Branin 5 0.52 0.12 0.5 0.1 0.51 0.1 0.54 0.1
9 0.75 0.08 0.9 0.09 0.88 0.09 0.91 0.09
1 6.4 · 104 0.19 6 · 104 0.06 7 · 104 0.06 7.4 · 104 0.06

Goldstein Price 5 3.3 · 104 0.09 4.4 · 104 0.08 4.8 · 104 0.08 4.9 · 104 0.08
9 2.9 · 104 0.11 4.2 · 104 0.09 4.5 · 104 0.08 4.6 · 104 0.08
1 0.98 0.08 0.86 0.04 0.9 0.04 0.92 0.04

Hartmann 4 5 0.84 0.05 0.82 0.04 0.83 0.04 0.85 0.04
9 0.83 0.05 0.82 0.05 0.83 0.04 0.85 0.04
1 0.68 0.14 0.54 0.03 0.56 0.03 0.6 0.03

Hartmann 6 5 0.64 0.11 0.54 0.04 0.56 0.04 0.59 0.04
9 0.63 0.11 0.53 0.04 0.56 0.04 0.59 0.04
1 0.072 0.25 0.032 0.04 0.034 0.04 0.034 0.05

Park Function 5 0.0015 0.08 0.0015 0.07 0.0015 0.07 0.0015 0.07
9 0.0012 0.08 0.0013 0.08 0.0014 0.08 0.0014 0.08

Table 1: Average width of 90% interval and average IAE for multiple test functions.
90%W stands for the average width of 90% prediction interval.

J+GP is generally a good choice.
As a final remark, Figure 1 suggests that the RMSE of the GP model

obtained by REML is near optimal, as already noted by Petit et al. (2023).
Our findings indicate that it might be beneficial to decouple the objectives
of achieving high prediction accuracy (low RMSE) and obtaining reliable
prediction intervals (low IAE), but we did not explore the fully Bayesian
approach (see, e.g., Benassi et al., 2011) in this study.
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