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Localized modeling of uncertainty
in the Arlequin framework

R. Cottereau, D. Clouteau, and H. Ben Dhia

Abstract This paper discusses the coupling and interaction of a classical continuum

model with another continuum model with random parameters. The former model,

deterministic, aims at representing a part of the domain where the local fluctuations

of the parameters, such as Young’s modulus, do not influence the output of inter-

est in a significant manner, and where a homogenized model is sufficient to predict

this output. The latter model, stochastic, stands for the part of the domain where the

local behavior is of interest and the fluctuations of the parameters cannot be consid-

ered only in a homogenized way. The coupling of these models is performed in the

Arlequin framework. This paper focuses on the technical definitions of the spaces

and operators introduced in the Arlequin framework for that particular problem, and

on the definition of the corresponding discretized formulations. A simple example

is shown, emphasizing the gain in computational power to compute the mean and

confidence intervals in the region of interest.

1 Introduction

Classical deterministic models provide global predictions that are satisfactory for

many industrial applications. However, when one is interested in a very localized

behavior or quantity, or when multiscale phenomena come into play, these models
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may not be sufficient. For instance, the limited heterogeneity of a material modeled

as a continuum might have no influence on its behavior on a large scale, while the

study of a local stress intensity factor would strongly depend on the local hetero-

geneity of the mechanical parameters. Likewise, the prediction of the outbreak of a

fracture in a structure might be performed with homogeneous models, while the in-

corporation of atomic modeling would be necessary to follow the exact path of that

fracture. Unfortunately, for these problems, the information necessary to parameter-

ize the relevant, very complex, models is usually not available. Stochastic methods

have therefore been proposed and now appear unavoidable in multiscale modeling.

Although the use of stochastic models and methods has expanded rapidly in the

last decades, the related numerical costs are still often prohibitive. Hence, the ap-

plication of these methods in a complex or industrial context remains limited. An

important field of research is therefore concerned with the reduction of the costs as-

sociated with the use of stochastic methods, for example by using iterative methods

specially adapted to the structure of the matrices arising in the Stochastic Finite El-

ement (FE) method [11, 14], using reduced bases for the representation of random

fields [9], or using special domain decomposition techniques for parallel resolution

on clusters of computers [16].

The present paper proposes an alternative to these purely mathematical/numerical

approaches through the coupling of two models: one deterministic and one stochas-

tic. The general goal is that of modeling a global problem in a mean or homogeneous

way where it yields sufficient accuracy, while retaining a stochastic model where

needed. Hence, additional complexity is added in the model only where required,

and the general approach is both more elegant and numerically cheaper than a global

all-over stochastic model would be. Further, the cuts on computational costs mean

that industrial applications come within reach.

More specifically, we discuss here the interaction and coupling of a classical con-

tinuum model with another continuum model with random parameters. The former

model, deterministic, aims at representing a part of the domain where the local fluc-

tuations of the parameters, such as Young’s modulus, do not influence the output of

interest in a significant manner, and where a homogenized model is sufficient to pre-

dict this output. The latter model, stochastic, stands for the part of the domain where

the local behavior is of interest and the fluctuations of the parameters cannot be con-

sidered only in a homogenized way. The coupling of these models is performed in

the Arlequin framework [2, 4, 5, 6, 3]. Note that the choice of two continuous mod-

els is by no means a restriction of the contents of this paper, and that the Arlequin

method can accomodate different models [8]. However, considering similar models

allows us to concentrate more particularly on the specific aspects of the coupling of

a deterministic model with a stochastic one.

The framework of this paper is very different from that of classical microme-

chanics [24, 7] and homogenization [13]. In these, the objective is to find a mean, or

homogenized, behavior for a material, that will allow its study on a higher scale. In

our case, we wish to study the local behavior of a small subdomain of that material,

while the influence of the rest of the domain is taken into account in some homoge-

nized way. Even when homogenization techniques are embedded within a stochastic
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FE framework, with both scales actually represented, the coupling does not go both

ways, and only the low scale influences the high one (see for instance [21]). This

type of one-way coupling approach is also very classical in climate modeling [22],

where the influence of the small, unresolved, details at the global scale are taken

into account through stochastic models more or less tuned on a lower scale. Never-

theless, we will re-use some notions explored extensively in homogenization tech-

niques. In particular the notion of size of a Representative Volume Element, with

respect to the correlation length of the parameters of the medium and/or the number

of realizations of that medium (see in particular [12, 13, 20, 23]) will be discussed

in relation with the size of the coupling zone between our two models.

This work is closely related to previous works in the literature [18, 8]. However,

in [18], the theoretical basis, different from the Arlequin formulation, is less general.

In particular, it is only aimed at coupling a deterministic Boundary Element method

with a stochastic FE method. In the recent work [8], the authors aim at coupling two

stochastic models, one continuous, and one atomistic. However, many theoretical

questions are left out. In particular, the coupling is performed between realizations

of the stochastic operators, while we try to describe here the coupling at the level of

the stochastic operators. The definition of the coupling operators is explicit, and the

question of stability of the mixed problem can therefore be discussed (this will be

done in a forthcoming paper). Also, it opens up the possibility of choosing among

different numerical schemes, while the approach in [8] is limited to the Monte Carlo

technique.

2 The classical Arlequin method

We first recall the Arlequin framework in the classical case of the coupling of two

deterministic continuum models, with different meshes [2, 4, 5, 3]. This will allow

to introduce more gently the relevant material for the coupling of a deterministic

and a stochastic continuum models, which is of interest in this paper. Further, this

will emphasize the novelty of the work presented here, and will make it easier for

the reader already at ease with the Arlequin method.

Let us consider a domain Ω of R
d , with smooth boundary ∂Ω separated into

Dirichlet and Neumann boundaries ΓD and ΓN , such that ΓD∪ΓN = ∂Ω , ΓD∩ΓN = /0,

and ΓD �= /0 (figure 1, left). We consider Poisson’s equation, with a parameter K0,

considered here constant, a bulk loading field f (x), defined on Ω , and a surface

loading field g(x), defined on ΓN . Assuming for simplicity that the Dirichlet bound-

ary condition is homogeneous, the weak formulation for this problem reads: find

u0 ∈ V0 such that

a0(u0,v) = ℓ0(v),∀v ∈ V0, (1)

where a0 : V0 ×V0 → R and ℓ0 : V0 → R are defined, respectively, by a0(u,v) =
∫

Ω K0∇u ·∇v dΩ , and ℓ0(v) =
∫

Ω f v dΩ +
∫

ΓN
g ·nv dΓ , and
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Fig. 1: Description of the model problem (left), and zoom on the zone where the

two models are superposed (right), with the definition of the different domains: the

homogenized domain Ω and the stochastic patch Ωs, itself partitioned into a free

zone Ω f and a coupling zone Ωc = Ωs\Ω f

V0 = {v ∈ H
1(Ω),v|ΓD

= 0}.

This problem can be shown to have a unique solution u0, which may, for example,

be approximated by the Finite Element method.

Depending on the problem at hand, for example when there is a localized defect,

it may be interesting to consider two very different meshes. A patch Ωs ⊂ Ω is

therefore selected around the defect, and further partitioned into a free zone Ω f and

a coupled zone Ωc, with Ω f ∩Ωc = /0, and Ω f ∪Ωc = Ωs. A coarse finite element

basis (supported by a coarse mesh) will be used on Ω to account for large scale

deformations and stresses, and a refined one (supported on a fine mesh) will be used

on Ωs to reproduce more accurately the local effects around the defect. The Arlequin

method allows to couple these two problems through the resolution of the following

mixed problem: find (u0,us,Φ) ∈ V0 ×Vs ×Vc such that

⎧

⎪

⎨

⎪

⎩

a0(u0,v)+C(Φ ,v) = ℓ0(v), ∀v ∈ V0

as(us,v)−C(Φ ,v) = 0, ∀v ∈ Vs

C(Ψ ,u0 −us) = 0, ∀Ψ ∈ Vc

, (2)

where the bilinear functions a0 : V0×V0 → R and as : Vs×Vs → R are weighted re-

strictions of a0, defined, respectively, by a0(u,v)=
∫

Ω α0K0∇u ·∇v dΩ and as(u,v)=
∫

Ωs
αsK0∇u ·∇v dΩ , the coupling functional C : Vc ×Vc → R is defined by

C(u,v) =

∫

Ωc

(κ0uv+κ1∇u ·∇v)dΩ , (3)

with κ0 and κ1 two constants (see for example [5] for details), the weights are chosen

such that
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⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

α0,αs ≥ 0 in Ω

α0 +αs = 1 in Ω

α0 = 1 in Ω/Ωs

α0,αs constant in Ω f

, (4)

and the functional spaces are Vs = {v ∈ H 1(Ωs)} and Vc = {v ∈ H 1(Ωc)}.

Note that, for simplicity, this has been derived in the case when the patch Ωs

is totally included inside the domain Ω . In particular, the patch does not intersect

the Dirichlet boundary condition, i.e. ∂Ωs ∩ΓD = /0, and the loads are outside the

patch, i.e. that is f (x ∈ Ωs) = 0. However, more general results can be obtained

without any further theoretical difficulty [3]. Several important propositions have

been derived in different papers and summed up and completed in [3]. We recall

two such propositions below, in the simplified case considered, and without the

corresponding proofs.

Proposition 1 (Stability). Under classical regularity hypotheses on the domains

Ω0, Ωs, Ωc and Ω f , with Ωc∪Ω f = Ωs, Ωc∩Ω f = /0, and meas(Ωs) �= 0, assuming

the hypotheses (4) on the weights, and supposing K0 > 0, the Arlequin problem (2)

admits a unique solution (u0,us,Φ) in V0 ×Vs ×Vc.

Proposition 2 (Consistency). Under the hypotheses (4) on the weights, the solution

uarl of the Arlequin problem (2), defined by

uarl =

{

u0 in Ω0\Ωs

α0u0 +αsus in Ωs

,

verifies

uarl = u0,

where u0 is the unique solution of the monomodel reference problem (1). Further, if

the restriction to Ω f of the displacement field solution is regular, we also have

u0 = us = u0 in Ω f .

3 The continuous stochastic-deterministic Arlequin formulation

In this section, we introduce the main result of this paper, i.e. the mixed formulation

for the coupling of a stochastic continuous model with a deterministic continuous

model. This is an extension of the results described in the previous section, and

the main novelties are in the choice of the coupling and lift operators. We start by

introducing the stochastic monomodel, where the physical parameter is modeled as

stochastic on the entire domain Ω , and then move on to the coupled formulation.
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3.1 The stochastic monomodel

Let us therefore consider that the physical parameter is modeled by a random field

K(x)∈L 2(Θ ,R), where (Θ ,F ,P) is a complete probability space, with Θ a set of

outcomes, F a σ -algebra of events, and P : F → [0,1] a probability measure. We

suppose (as in [1] for example) that this field is bounded and uniformly coercive,

that is to say ∃ Kmin,Kmax ∈ (0,+∞), such that P(K(x) ∈ [Kmin,Kmax],∀x ∈ Ω) = 1.

The weak formulation of the corresponding stochastic boundary value problem now

reads: find u0 ∈ W0 such that

A 0(u0,v) = L0(v),∀v ∈ W0 (5)

where A 0 : W0×W0 →R and L0 : W0 →R are defined, respectively, by A 0(u,v) =
E [

∫

Ω K∇u ·∇v dΩ ], and L0(v) =
∫

Ω f E[v] dΩ +
∫

ΓN
g ·nE[v] dΓ , E[·] denotes the

mathematical expectation, and

W0 = L
2(Θ ,V0).

The above hypothesis on the parameter field K(x) ensures that the stochastic bilinear

form A 0 is continuous and coercive on W0 ×W0. The Lax-Milgram theorem can

therefore be used [1] to prove the existence and uniqueness of the solution u0. An

approximation of this solution can be obtained, for example, by using a Stochastic

FE method [10, 17] or a Monte Carlo method [15].

Note that the requirement of boundedness of the mechanical parameter field is a

quite stringent one. Another set of conditions has been derived in [19] that relaxes

the upper bound property, while still preserving the solvability of the associated

stochastic boundary value problem.

3.2 The Arlequin formulation

We now wish to superpose, in the Arlequin framework, two models: one determin-

istic, in Ω ; and one stochastic, in Ωs. We will therefore consider two models of the

parameter field: a deterministic one, K0, supposed constant on the domain Ω ; and

a stochastic one, K(x), modeled as a random field on Ωs. We further suppose that

K(x) verifies the conditions described above, and that E[K(x)] = K0. The stochastic-

deterministic Arlequin problem reads: find (u0,us,Φ) ∈ V0 ×Ws ×Wc such that

⎧

⎪

⎨

⎪

⎩

a0(u0,v)+C(Φ ,v) = ℓ0(v), ∀v ∈ V0

As(us,v)−C(Φ ,v) = 0, ∀v ∈ Ws

C(Ψ ,u0 −us) = 0, ∀Ψ ∈ Wc

, (6)

where the bilinear forms a0 : V0×V0 →R, As : Ws×Ws →R, and C : Wc×Wc →R

are defined by
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a0(u,v) =
∫

Ω
α0K0∇u ·∇v dΩ ,

As(u,v) = E

[

∫

Ωs

αsK ∇u ·∇v dΩ

]

,

and

C(u,v) = E

[

∫

Ωc

(κ0uv+κ1∇u ·∇v)dΩ

]

,

the fields α0(x) and αs(x) verify the conditions (4), and the functional spaces Ws

and Wc are given by

Wc =
{

v(x)+θIc(x)|v ∈ H
1(Ωc),θ ∈ L

2(Θ ,R),E [θ ] = 0
}

,

and

Ws = L
2(Θ ,H 1(Ωs)),

and where the indicator function I(x) is such that Ic(x∈Ωc) = 1 and Ic(x /∈Ωc) = 0.

Note that the space Wc can be seen as composed of functions with a spatially varying

mean and perfectly spatially correlated randomness.

Note that, thanks to the specific structure of the space Wc, the last line of the

system (6) can be written equivalently,

C(Ψ ,u0 −us) = E

[

∫

Ωc

(κ0(Ψ +θIc)(u0 −us)+κ1∇Ψ ·∇(u0 −us))dΩ

]

= C(E [Ψ ] ,u0 −E [us])+E

[

θ
∫

Ωc

(u0 −us)dΩ

]

= 0, ∀Ψ ∈ Wc.

Therefore, this condition imposes that the mean of the field us should be equal

to the field u0, in all points of Ωc, and that the variability of
∫

Ωc
(E [us]−us)dΩ

should cancel. In other words, this means that some degree of homogenization takes

place within the coupling zone. In particular, if that zone is not big enough with

respect to the correlation lengths of the fields K(x) or us(x), the Arlequin scheme

is expected to yield results that would be different from those obtained with the

stochastic monomodel. It would mean that there is not enough localization of the

variability and stochasticity for the Arlequin scheme to make sense.

The next section addresses the issue of the discretization of the mixed formula-

tion to obtain computable estimates of the different solution fields.

4 The discretized stochastic-deterministic Arlequin formulation

The general idea here is to use a classical FE approach to discretize the first equation

of the Arlequin system (6) and a stochastic FE method for the second and third

ones. It should be noted that a Monte Carlo resolution of this formulation is not
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straightforward because the coupling equation (the third one) works on the mean

of us, which is not available when one considers only one realization of that random

field. A modified scheme to solve this problem using of Monte Carlo simulations

will be described in a forthcoming paper.

We therefore associate to the domain Ω a mesh T , composed of elements E, to

the domain Ωs a mesh Ts, composed of elements Es, and to the domain Ωc a mesh

Tc, composed of elements Ec. We look for approximate functions of the elements

of V0, Vs and Vc in the functional spaces

V
H

0 = {v ∈ P1(E),v|ΓD
= 0},

V
H

s = {v ∈ P1(Es)},

and

V
H

c = {v ∈ P1(Ec)},

composed of linear functions on each of the elements of the meshes. We then choose

the bases {v0
ℓ(x)}1≤ℓ≤m0

, {vs
ℓ(x)}1≤ℓ≤ms

, and {vc
ℓ(x)}1≤ℓ≤mc

for the functions in

V H
0 , V H

s , and V H
c , respectively. We introduce the matrices A0, C0, and Cs, with

elements

A0,i j =

∫

Ω0

α0K0∇v0
i ·∇v0

j dΩ ,

C0,i j =
∫

Ωc

(

κ0v0
i vc

j +κ1∇v0
i ·∇vc

j

)

dΩ ,

and

Cs,i j =

∫

Ωc

(

κ0vs
i v

c
j +κ1∇vs

i ·∇vc
j

)

dΩ .

For the space Ws, we choose an approximating space as the span of the polynomial

chaos basis [10], of order n and degree p, in conjunction with the previous basis

for the spatial dimension. We denote this space W
H,n,p

s and the elements of its ba-

sis {ws
kℓ(x) = vs

k(x)Γ̂ℓ}1≤k≤ms,0≤ℓ≤N−1, where N is the number of elements in the

polynomial chaos basis, which depends both on n and p. We approximate both the

parameter field K(x), and the solution us(x) in that basis,

us(x) ≈
ms

∑
k=1

N−1

∑
ℓ=0

ukℓ
s vs

k(x)Γ̂ℓ,

and finally obtain the matrix A for the stochastic part of the Arlequin system as

A jℓ,JL =
N

∑
i=1

ci jJ

∫

Ωs

αs(x)ki(x)∇vs
ℓ(x) ·∇vs

L(x) dΩ ,

where ci jJ = E
[

Γ̂i[ξ ]Γ̂j[ξ ]Γ̂J[ξ ]
]

and ki(x) = E[K(x)Γ̂i(ξ )]. Note that the double

indices ( j, ℓ) and (J,L) each correspond to only one index in the matrix form of

the system. We denote by M the ms × (N −1) matrix with general term
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Mkℓ = δℓ

∫

Ωc

vs
k(x)dΩ ,

where the δℓ is related to the vector ordering of the coefficients us
kℓ.

We further denote

A = A0ℓ,0L =
∫

Ω0

αsK0∇vs
i ·∇vs

j dΩ ,

and Ac = A0ℓ,JL the sub-matrix that corresponds to the coupling of the mean part of

the unknown field with the fluctuating part, and As = A j �=0 ℓ,J �=0L that corresponding

to the fluctuating part. We finally get the form of the matrix system for the Arlequin

problem (6):
⎡

⎢

⎢

⎢

⎢

⎣

A0 0 0 C0 0

0 A Ac −Cs 0

0 A
T
c As 0 M

CT
0 −CT

s 0 0 0

0 0 MT 0 0

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

U0

U

Us

Φ
Λ

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

F

0

0

0

0

⎤

⎥

⎥

⎥

⎥

⎦

, (7)

where the coordinates of the vector F are defined by Fi = ℓ0(vi), U0, U, Us, and Φ
are the vectors of coordinates of u0, E[us], us −E[us], and Φ , in the bases of V H

0 ,

V H
s , W

H,n,p
s \V H

s , and V H
c , respectively, and Λ is the vector of the Lagrange multi-

pliers enforcing the homogenization in the coupling zone. Note that the controlling

parameters for the size of that matrix are n and p, and that in most cases, As will

be a very large matrix, much larger than the other ones appearing in the system (7).

However, it is much smaller than the matrix that would be obtained by applying

directly a stochastic FE approach to the entire model.

5 Example of application

For illustrative purposes, we consider the indented domain of Fig. 2, with −3 < x <
3 and −1 < y < 1, with a neck in the zone around x = 0, loading f (x,y) = 1 in

the zone 2.5 < x < 3 (right side of the plate), and homogeneous Dirichlet boundary

conditions on the left side of the plate. The boundary conditions read:

{

u = 0, x = −3

∇u = 0, on ∂Ω\{x = −3}

The resolution of this problem with a homogeneous parameter K0 = 1, using a

FE scheme based on Eq. (1) leads to the intensity field |K0∇u| represented in Fig. 3.

In this figure, we also plot the point-wise mean and the point-wise 90%-confidence

interval of the intensity field |K∇u| of the corresponding stochastic problem given

in Eq. (5). For that problem, the parameter field is modeled as a random field K(x)
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Fig. 2: Scheme of the model problem: indented domain Ω , homogeneous Dirichlet

boundary conditions on the left side, and bulk forces in an area on the right side

as in [19], with a mean E[K(x)] = K0 = 1, a dispersion parameter δ = 0.2 and a

correlation length ℓc = 0.15 m.

Fig. 3: Intensity field |K∇u| corresponding to the solution of the deterministic

monomodel (Eq. (1) (solid line), and of the stochastic monomodel, Eq. (5) (the

dashed line indicates the point-wise mean and the grey shade indicates the point-

wise 90%-confidence interval)

Finally, we solve the corresponding coupled Arlequin problem with a region of

interest Ωs contained in the zone −1.7 < x < 1.7, and with a coupling region Ωc of

length 0.6 on each side (i.e. contained within −1.7 < x < −1.1 and 1.1 < x < 1.7).

We obtain the results plotted in Fig. 4, where it can be seen that the coupled Ar-

lequin problem gives the same solution as the full heterogeneous problem in the

region of interest. Note also that, at the limit of the coupling region, the approxima-

tion obtained from the Arlequin method seems to deteriorate compared to the full

scale simulation. As the ensemble mean and the space mean are intricately woven

in our approach, this was only to be expected. However, if the coupling zone is large

enough, this effect does not contaminate the solution in the free zone Ω f . Further

numerical studies on the convergence of this coupled approach, depending on the

size of the coupling zone and the correlation length, will be performed in future

work.
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Fig. 4: Intensity field |K∇u| corresponding to the solution of the stochastic

monomodel, Eq. (5) (the solid line indicates the point-wise mean and the grey shade

indicates the point-wise 90%-confidence interval), and corresponding values ob-

tained through the resolution of the coupled Arlequin problem of Eq. (6) (dashed

lines for the mean and upper bound of the 90%-confidence interval)

6 Conclusion

We have shown here a method for coupling a probabilistic model of continuum

mechanics with a deterministic one. The numerical costs associated with the reso-

lution of a probabilistic model are heavily lowered, which renders its use in an in-

dustrial setting reasonable. The framework that was described here can very easily

be extended to other problems, be it with different physics (continuum mechanics,

molecular dynamics, nonlinear constitutive relation), using the available literature

on the Arlequin method, or involving two probabilistic models. For the latter, a

discussion will be necessary to choose the adequate coupling operator. In an up-

coming paper, we will discuss further the particularities of the method, and in par-

ticular: the stability of the mixed formulation, the size of the coupling zone with

respect to the definition of representative volume elements in homogenization tech-

niques [12, 13, 20, 23], and the possibility to solve the coupled system using the

Monte Carlo simulation technique.
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