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ABSTRACT

The Arlequin method allows for concurrent multimodel and multiscale analyses of mechanical
problems. This method relies on a number of parameters, the rigorous choice of which being
an essential issue. Some analyses are carried out in this article and are shown to be helpful
for the design of reliable choices. These theortical investigations are enlightened by simple but
relevant numerical tests.
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1. INTRODUCTION

To adapt locally in a given zone S of a given global
mechanical model that is inappropriate in S, the Ar-
lequin methodology [1-4] proceeds as follows:

e superpose in S a local appropriate model to the
global locally inappropriate one

e define a partition of energies of the superposed
models by using weight parameter functions

e couple the models in a part of S, named the
“gluing” or the ”coupling” zone.

The resulting Arlequin model is then obtained as a
partition of the superimposed models. A prototype
is shown in Fig. 1, where a fine 2-D cracked finite el-
ement model is locally superimposed and glued in
the yellow zone to an uncracked global coarse 2-D
finite element model to simulate (hopefully with en-
hanced modeling flexibility) a global cracked plate.
The Arlequin method has been assessed nu-
merically for the superposition and coupling of
continuum-continuum models [1-10]. We also
refer to [11-17] for the coupling of atomistic and
continiuum models by using approaches taking
a cue from or having similarities with the Ar-
lequin method. However, this method involves
many parameters: the superposition zone and
its partition into a gluing and a free zone, the
coupling operator, the Lagrange multiplier space
(called the mediator space), and the weight pa-
rameter functions. The choice of a reliable set
of these parameters is an essential issue. Some
choices have already been designed formally [1,2]

or through first mathematical stability results [6,18].
The latter were established under relatively strin-
gent conditions on the weight parameter functions
that do not allow, for instance, for the consideration
of regular weight functions such as the ramp func-
tions used in [11] and [12]. Recently, by revisiting
and extending numerical works that can be found
in [4], a discussion concerning the L? and H' cou-
pling operators and the weight parameter functions
was reported in [10]. However the L? coupling is
misinterpreted in [4] and [10], leading to a misin-
terpretation of the numerical results obtained with
the finite element L? coupling and consequently to
coarse comparisons between the L? and H' cou-
pling operators. Moreover, in all the works reported
on the Arlequin method, no precise definition is
given of the superposition zone, the coupling zone,
and the free zone. Finally, though it is intuitively
expected that by stressing the local alterated model,
the Arlequin solution would be near the solution of
the monomodel alterated mechanical problem, and
though this intuition seems to be numerically well
founded, there is still a lack of precise and optimal
hypotheses on the parameters under which a rigor-
ous proof can be established for what can be called
the relevance of the Arlequin framework.

The main topic of the article is to carry out some
analyses of continuous and discrete finite element
Arlequin problems that provide further insights
on choices of reliable Arlequin parameters. For
this, the linear elasticity problem is formulated in
the Arlequin framework by considering different
Lagrange multiplier-based coupling operators,
and the obtained mixed Arlequin problems are first

FIGURE 1. A typical Arlequin model: a cracked plate is superimposed locally to a sound global plate. The right part
is a zoom around the local cracked model, showing the mesh refinement in the neighbor hood of the crack tips



discussed in Section 2. Of particular interest is
the interpretation of the discrete L? coupling as an
approximation of the continuous duality coupling
(and not the continuous L? coupling). This interpre-
tation enlightens the finite element Lagrange multi-
plier irregularity, noticed first in [4] (with disconti-
nous weight functions) and in [10] (Fig. 10) for con-
tinuous weight functions, when an L? coupling is
used. Section 2 ends with a consistency result. In
Section 3, we derive continuous and discrete stabil-
ity results for the mixed Arlequin problems under
suitable hypotheses on the parameters of the ap-
proach. Concerning these results, let us underline
two salient points. First, we extend to the case of
regular partitions of the internal energy the proofs
of the stability of the mixed continuous and dis-
crete finite element Arlequin problems, established
for discontinuous partitions in [18], giving, in this
way, a rigorous assessment of the use of regular
weight functions such as ramp functions. Second,
we clarify the very local loss of stability that may oc-
cur when coarse and fine finite element models are
superposed and when the space of Lagrange mul-
tipliers is taken to be equal to the restriction of the
gluing zone of the coarse finite element space. In
Section 4, we prove theretically the relevance of the
Arlequin framework.

Numerical results are given in Section 5 to as-
sess our theoretical results, and the article closes
with a summary of our major conclusions concern-
ing practical choices of the Arlequin method param-
eters. Some perspectives and ongoing works are
also given.

2. SOME ARLEQUIN FORMULATIONS OF THE
ELASTICITY PROBLEM

To give simple and comprehensive derivations and
analyses of Arlequin problems, we consider the fol-
lowing representative model.

2.1 The Classical Linearized Elasticity Problem

Let us consider an elastic body occupying the clo-
sure of a bounded regular domain ; included in
Re withd = 1,2, or 3in practice (observe that here
and in the sequel, the regularity of a domain will
refer to a Lipschitz continuity of its boundary). It
is submitted to a field of volume density of forces

f € L*(Q;) and clamped on I',, a nonzero mea-
sured part of its boundary 0€); whend = 2 or d = 3.
The remaining I, of the boundary is assumed to be
free.

The weak primal (monomodel) formulation of this
problem reads as follows (e.g., [7]):

find ug € Wy
Vog € Wy, ao(uo, vo) = lo(vo) (1)

where the admissible displacement field space W)
and the virtual works of the inner and outer forces,
respectively, read

Wy ={vg € H'(Q) vo=0 onT,} (2)
V(UQ, ’Uo) e Wy x Wy

a0, Vo) = / o (uo) ¢ £(v0) 3)
0
Vvg € Wy, lo(vo) :/ f-vo (4)
1951

In these equations, £(vy) and o(vy) denote the lin-
earized strain and stress tensors, associated with
field vy, which are assumed to be connected through
Hooke’s law:

05 = Rijri €m (5)

where ¢, j, k, and [ range from 1 to d and the
convention of summation over repeated indices is
used. The elasticity moduli R;;;; are assumed to
satisfy classical regularity, symmetry, and coercivity
hypotheses:

Rijkl c Loo(ﬂl) (6)

Rijii = Rjiki = Ryij (7)

de > 0; VTij = Tji, Rijleikal > CTi Tkl in Q4 (8)

It is well known that, under the hypotheses listed

previously, the problem defined by (1)—(5) is well
posed.

This model problem will now be formulated in

the Arlequin framework without, in a first step, in-
troducing any alteration.

2.2 Lagrange Multiplier-Based Arlequin
Formulations of the Elasticity Problem

Let Q3 be a nonzero measured given bounded regu-
lar domain overlapping €2;. Let ;5 be the overlap



(denoted by S in Section 1). For clarity and with
no major restrictions, it will be assumed that 25 is
strictly embedded in ;, leading to ;2 = 25 (situ-
ation depicted by Fig. 1). The overlap is partitioned
into two regular nonoverlapping domains, i.e.,

Qi = Q5 U QF, 9)

where 2, is the models gluing zone and Q{Q is the
free zone. The former is assumed to satisfy the fol-
lowing hypotheses (see the yellow zone of the zoom
in Fig. 1):

009 C 8952 (10)

meas(Q],) >0 (11)
In the latter, the models are superimposed but not
coupled to each other. They are free from each other
(see the pink zone of the zoom in Fig. 1). It will also
be assumed in the sequel that €25, 2f,, and, subse-
quently, Q{Q are given (adaptivity is needed other-
wise).

Now, to define Arlequin formulations of the elas-
ticity problem, we denote by W; and W the follow-
ing spaces of kinematical admissible fields:

W, = {’Ul S HI(Q1) ; v1 =0o0n Fu} (12)

W = H' () (13)

Weighted internal and external virtual works are de-
fined by

ui, V1 € W1
al(ul,vl) = /Q X1 ()'(ul) : £(’U1) (].4.)

Ug, Vg € WQ
CLQ(UQ,’UQ) = /Q X2 O'(UQ) : 8(’02) (15)
v € Wi, li(vr) = ; P1 f.vn (16)
(17)

vy € Wa, [s(v2) = B2 f.vo
Q2

where weight parameter functions (x;,$:) and
(2, B2) are defined, respectively, in §2; and €2, and
satisfy (see Fig. 2)

A
el 0 &
0 f
912
Q
Q

FIGURE 2. Weight parameter functions «;,: = 1,2

oG > 0 in Qi, X; = 1 in QZ’/Q:[Q
X1 +oe=1 in Qi (18)
B;i >0 in Q, B;=1 in Q;/Qp
Bi1+P2=1 in Qi (19)

Observe that with the hypotheses (18) and (19),
these functions are bounded.!

2.2.1 Dual Volume Coupling

The dual volume coupling-based continuous Ar-
lequin formulation of the model elasticity problem
reads [2]

find (ul, U9, q)d) e Wy x Wy x My
V(’Ul, V2, ‘I’) e Wi x Wy x My

al(ul, ’Ul) + Cd(q)d, ’01) = ll(’Ul) (20)
az(uz, v2) — Ca(Rg, v2) = l2(v2) (21)
Cd(‘I’, uy — UQ) =0 (22)

where W, Wy, a;, as, 11, and [y are defined by
(12) to (17), respectively, with the weight param-
eters verifying (18) and (19). The (dual) mediator
space is denoted by Mj. It is the dual space of
M = Wy /Q5, = Wy/Q5, = H(QS,). The volume
coupling operator, denoted by Cj, reads

V(\I’,’U) e M, x M, Cd(‘I’,’U) = <‘Il7v>Md,M (23)

where (., .)m,, m stands for the duality bracket.

L Other couples of weight parameter functions have to be intro-
duced if one takes into account other types of energy or virtual
mechanical works such as virtual works of inertial forces in dy-

namic regimes, and so on.



The dual volume coupling is a natural mechan-
ical coupling operator in the sense that, interpret-
ing the Lagrange multiplier field ®, as a density
of forces, it has to be in the dual space M, of the
space of the displacements in 2f,. However, with
this operator, the finite element approximation of
Egs. (20)—(23) is an intricate issue. This is due to
the subtlety of elements of M. Actually, for the dis-
crete finite element approximation of the Egs. (20)—
(23), the operator C; can be approximated by an
L?(%,) scalar product. But, unless appropriate-
ley scaled [9], this L?-coupling operator would lead
to an ill conditioning of the associated discrete Ar-
lequin problems (as shown in the numerical sec-
tion).

A suitable coupling alternative is defined in the
next subsection.

2.2.2 Energy Coupling

By using the classical Riesz-Fréchet representation
theorem (e.g., [20]), the natural H'-scalar product of
the space M = H'(Q¢,) can be substituted into the
duality bracket. For the model elasticity problem,
a second mixed Arlequin problem using an equiv-
alent energy scalar product can then be derived. It
reads as follows:

find (ul, U2, @) eEW; x Wy x M
V’Ul EWl, al(ul,vl)—i—C((I), Ul):ll(vl) (24)

Yoy € Wa,  az(ug, v2) — C(®, va) = l2(v2) (25)

VW e M, C(‘I’, ul—u2):0 (26)

where the coupling operator, denoted by C(.,.), is
now defined by

V(P,v)e M x M

C(W, v) = / ko {T.o) 4+ {e(®): e(v)} (27)
Q1p

The positive parameters kg and k; are homogeneous

to a string rigidity divided by a length and to a ma-

terial rigidity, respectively.

Observe here that while the (dual) Lagrange mul-
tiplier ®, appearing in (20)—(23) is homogeneous to
a volume density of forces that controls the devia-
tion between u; and wu; in (2f,, the Lagrange mul-
tiplier ® appearing in (24)-(27) is homogeneous to

a displacement field. This field can be understood
as the (primal) Lagrange multiplier that controls the
deviation between forces in f,. Actually, this re-
mark gives precisely a mechanical interpretation of
the Riesz representation theorem.

2.3 Consistency of the Arlequin Framework

In the Arlequin problems, defined previously, the
superposed models use the same linearized elastic-
ity model. It is then natural to require that the so-
lution u” of the monomodel elasticity problem, de-
fined by (1)—(5), be recovered through the Arlequin
solutions. This consistency result is proved here.
For this, we anticipate the stability results of the next
section and assume that the Arlequin problems are
well posed.

Proposition 2.1 Under the hypotheses (18) and (19) and
by assuming that the weight parameters «;,i = 1,2, are

constant in O, the solutions of the Arlequin problems,
defined by (20)—(23) and (24)—(27), verify

uarl — ’U,O

in Ql (28)
where u' is the unique solution of the monomodel refer-
ence elasticity problem, defined by (1)~(5) and where u®"

is defined by

Q1/2

Q12 ®)

uarl _ u ?I’I
X1 UL+ X us 1IN

Moreover, if one assumes that «; = P;, 1 = 1,2, and
that the restriction to the free zone O, of the displace-
ment field solutions are reqular, then we also have

up = uy = u’ in QF, (30)
Proof. Let us give the proof for the solution of the
Arlequin problem (24)—(27) since exactly the same
proof can be carried out for the solution of the other
problem.

Observe that if (u;,u2) is the displacement part
of the solution of problems (24)—(27), then, thanks to
(26), (27), and (11), the Arlequin displacement, de-
fined by (29), is an element of W,

Let now vy be any admissible field in W,,. Take
v; equal to the restriction of vy to 2; in (24). Take
v equal to the restriction of vy to Q2 in (25). This
gives two equations. The result given by (28) is
then obtained by adding these two equations, using



(26), (27), the fact that the «; are constant in Q{Q (as
shown by Fig. 2), and the uniqueness of the solution
of the linearized elasticity problem.

The second part of the proposition is a conse-
quence of the fact that, under a sufficient regularity
of u°, u; and u,, in Q{Q, one can check easily (by
using once more the fact that the «; are constant in
Q{Z) that, in 9{2, the three fields are governed by
the same local linearized elasticity problem , with
the same prescribed (u”) Dirichlet boundary condi-
tion on 89{2. A uniqueness of solution argument
for the latter problem ends, then, the proof of the
proposition.

Before analyzing the stability of the Arlequin
problems defined previously, let us make here some
remarks:

1. The coupling operator C(.,.), defined by (27),
can be replaced by any other scalar product that
is equivalent to the natural energy scalar prod-
uct. One choice consists of using the following
expression:

V(¥ ,v) e M x M (31)

C(lb,v):/as ke{W.v} +/QC ki{e(®): e(v)}

where ky and k; are positive parameters ho-
mogeneous to a string and a material rigidity,
respectively, and where 05, is a nonzero mea-
sured part of 0.

2. The practical importance of the Arlequin
framework is actually recovered in a second
step: Since the Arlequin formulations, defined
previously, involve two superposed mechan-
ical models, different approximations and/or
alterations of these models are potentially pos-
sible. For instance, different finite element ap-
proximations, behavior laws, structure model-
ing, material cohesion, and so on can be used.
This is precisely the prime goal of the Arlequin
framework.

3. For the static Arlequin problems defined previ-
ously, the models are coupled basically by en-
forcing weakly the equality between the dis-
placement fields in 2f,. For more complex su-
perposed models, such as atomistic and contin-
uum models, it has been suggested to equate

weakly in Qf, a transformation of these dis-
placement fields by means of interpolation, av-
eraging, or molifying operators (which can be
called the accommodation operators). We refer to
[1,2] for first considerations of this aspect and
to [13,14,17] for examples in which a discrete 1-
D atomistic displacement field is transformed
to a continuum one by means of an interpola-
tion operator (using a linear finite element basis
and the atoms as nodes), before being coupled
to the continuum displacement. Moreover, an
approximation of the atomistic energy by a sum
of (1) the continuum energy evaluated at the
accomodated atomistic field in an appropriate
part of the gluing zone and (2) the atomistic
energy for the atoms located in the remainder
of the superposition zone (containing the free
zone) seems helpful for the achievement of an
effective atomistic-continuum coupling (this is
an ongoing work).

3. STABILITY OF THE ARLEQUIN PROBLEMS

In this section, we analyze the stability of the Ar-
lequin problems, defined in the previous section,
and give through our investigations indications on
the way one can choose the parameters of the ap-
proach. Of particular practical interest are the
proofs of stability of the continuous and discrete fi-
nite element mixed Arlequin problems, under less
stringent conditions on the internal weight func-
tions than in [18].

3.1 Some Hypotheses and Notations

In addition to (18), the couple of internal weight pa-
rameter functions is assumed to satisfy

Vie {1,2}, Jog > 0; o > g, in 7, (32)
Observe that the condition (32) is less stringent than
the one considered in [18], namely,

Vi € {1,2}, Joag > 0; o > g, in 249 (33)

The difference between (32) and (33) is important
from a practical point of view since (32) allows for
the use of regular couples of weight functions «;,
i = 1,2, such as the ramp function plotted in Fig. 2,
while (33) does not. Indeed, with (33), «; has to
drop from 1 in the outside of {215 to at most 1 — o



when crossing 0€215. We will refer to (32) and (33)
as the regular and irregular x-weight conditions, re-
spectively.

The stability results given in the sequel rely on
the Babuska and Brezzi theories [21,22] for mixed
problems. To cope with these theories, the following
notations and definitions are helpful. For a given
regular and bounded domain w included in R¢ and
for an integer m > 0, classical Sobolev spaces (e.g.,
[23]) are denoted by H”(w). In these Hilbert spaces,
classical norms are denoted by ||.|,,,w, for m rang-
ing from 0 to m. We define now the following prod-
uct space of kinematically admissible fields:

W = W1 X W2 (34:)
equipped with the norm ||.||y:
VoeW, |olw =lvlig, +lvlie, @5

We also define the following global bilinear and lin-
ear (obviously) continuous forms:

Vu,veW, a(u,v) = ai(ur,v1)+az(uz,v2) (36)

Voe W, [(v)=10h(v1)+l2(v2) (37)

with ay, ag, l;, and [ defined by (14) to (17), respec-
tively.

Finally, for each coupling operator C' and for each
subspace m of the (primal) mediator space M, we

define the kernel, with respect to m, of C' denoted
by N, (C):

N C)={veW; Vo em, C(¥,v;— v,)=0} (38)

3.2 Stability Results for the Arlequin Problems

The well-posedness of the previously defined Ar-
lequin problems is shown in this subsection.

3.2.1 Analysis of the Duality Coupling-Based
Arlequin Problem

The main result follows.

Proposition 3.1 Under classical reqularity hypotheses
on the domains Qq, Q2, Qfy, and Q{Q, the hypothe-
ses (9)—=(11) on the overlapping and coupling domains,
the hypotheses (6)—(8) on the elasticity moduli, and the
hypotheses (18),(19), and (32) on the weight parameter

functions, the problem defined by (20)—(23), with (5) and
(12)—~(17), admits a unique solution (u, ®4) in W x M.

Proof. The considered problem is a linear mixed
problem for which mathematical theories are avail-
able. We use the theory of Brezzi [22] (quite linked
to the one of Babuska [21]). To cope with this theory,
one has to check some properties for the bilinear and
linear forms defining problems (20)—(23). The two
main properties (the others being obvious) are the
coercivity of the bilinear form a on Nz, (Cy) and the
Inf-Sup (or LBB) condition.

e Coercivity: Though it is possible to derive the
same result in more general situations, for the
sake of clarity, it is assumed here that «; is
equal to 0 in Qf,. Moreover, here and in the se-
quel, and unless mentioned explicitly, c denotes
a strictly positive constant, independant of the
fieldv € W.

Now, for all v in Ny, (Cy), using the proper-
ties (6)—(8) of the elasticity moduli, a Korn’s in-
equality, and the definition of Nz, (Cq) imply-
ing the equality of the fields v; and v2 in F,,
one can easily deduce that

a(v,v) > c{[lvilli g, + le@)F0,} (39

But since vy and vp are equal in €)f,, one can
deduce from (39) (with a different positive con-
stant ¢, of course) that

a@, v) > c{[[v1[[{ o H €@ o5t llv2lli os,} (40)

Thanks to the hypothesis meas(£2{,) > 0, a sec-
ond use of Korn’s inequality allows us to con-
clude from (40), coercivity of the bilinear form
a.

e Inf Sup condition: By definition, the norm of a
field ¥ in My is given by

(T, v)
|®|lar, =  sup Ma M (41)
veM ||'UHLQ§2
|v|lar # O



For the bilinear form C,, we have

Ca(¥,v1 —v2)

[ollw

VW& € My, sup

veW

[v]lw # 0
Cd(‘I’,’Uz) (42)

> sup
HvzHl,QQ

vy € Woy
[v2]lw, # 0

Referring to (41) and (42), the existence of a con-
tinuous extension operator from H'(Q,) into
H'(9,), relying on the assumed regularity of
Qf, (see, e.g., [24]), allows us to end the proof
of the Inf-Sup condition and thus the proof of
the proposition.

3.2.2 Analysis of the Energy Scalar Product-Based
Arlequin Problems

By using exactly the same arguments as those devel-
oped in the poof of proposition 3.1, we can establish
the following existence and uniqueness result.

Proposition 3.2: Stability of the H'—coupling Ar-
lequin problem. Under the hypotheses of proposi-
tion 3.1, the problem defined by (24)—(27), with (5) and
(12)—(17), admits a unigue solution (u, ®) in W x M.?

3.2.3 Stability of Discrete Arlequin Problems

Let us here recall a discrete stabiliy result given in
[18]. Assume that the domains 24, 25 and 2, are
polygonal in 2-D and polyheral in 3-D. Consider
regular triangulations of 2; and 2 and define con-
formal linear finite element spaces W},,, W},,, and
W, = Wy, x Wy, (see, eg., [25,26]). For the
construction of the finite element (primal) mediator
space Mj,, we assume for simplicity that €f, is
composed of elements of the mesh of 2, (yellow
zone of Fig. 1),

My, = Wi, | Qf, (43)

or 2, is composed of elements of the mesh of 2,

2 1f, in problems (20)—(23), one replaces the duality coupling by
an L? coupling, the obtained problem could be meaningless. The
numerical example given in the left part of Fig. 5 shows clearly
that when an L2(Q5,) coupling is used, with constant weight
functions «;, the Lagrange multiplier is not an L2 field.

My, = Wi, | Q1 (44)
where W}, |€2{, denotes the restriction of the space
Wy,,,1 = 1,2, to the coupling zone )f,. Moreover,
we define the following discrete kernels of the cou-
pling operator C:

NI (C)={v € Wy V¥ em, C(¥,v1—v2)=0} (45)

The family of discrete Arlequin problems, derived
from the continuous H' scalar product-based Ar-
lequin problem, reads

find (up,, Un,, ®n,) € Wi, X Wy, x My,
Yo, EWh,, a1(p,, vp,)+C (P, ,vn, ) =11(vh,) (46)
Yop, € Wh,, as@p,, vn,) —C(®,, vn,) =12(vh,) (47)

VW, € My, C(Pp,, up, —up,) =0 (48)

For each of these discrete Arlequin problems, we
have the following:

Proposition 3.3 Under the hypotheses of proposi-
tion 3.2, with (33) substituted into (32), and under the
hypotheses listed previously on the domains 2y, Qo and
Qf,, the hypotheses on the meshes and on the discrete
finite element spaces Wp,,, W,,, and Mj,,, each of the
discrete problems, defined by (46)—(48), admits a unique
solution (uyp,, ®p,) € Wy, x My, . Moreover, we have an
optimal convergence of the finite element solutions to the
continuous Arlequin solution, i.e., 3¢ > 0 (independant
of hi, ha, and hy):

lw—unllw + @ — @, |1, 05, (49)

SC{

where (u, ®) is the solution of the problem defined
by (24)-(27).

inf  [lu— inf |®— @ }
vhlélw,,,”u vhHW_'_‘I’htHEthtH he 1,02,

The proof of this proposition, mainly the proofs
of uniform discrete coercivity and Inf-Sup conditions,
leading (see, e.g., [22]) to an optimal convergence
of the discrete finite element solutions to the solu-
tion of the continuous Arlequin problem, are estab-
lished in [18]. But let us give here some indica-
tions: under the irregular x—weight condition (33),
one can establish easily (by following a very classi-
cal procedure) a uniform coercivity of a in the space
Ny, (C), where Ro:, denotes the space of rigid
body modes of Qf,. The uniform discrete coercivity
condition of the bilinear form « in N‘g,’}eﬂi2 (C) is then



an obvious consequence of the continuous coercivity
and the assumed embedding of the discrete finite el-
ement space W}, in W. The proof of a uniform dis-
crete Inf-Sup condition is less obvious. By follow-
ing the proof of the Inf-Sup condition for proposi-
tion 3.1, it is achieved by constructing, under, say,
the hypothesis (43), a discrete continuous extension
operator from M, into Wj,. This most delicate
part of the proof is carried out in several steps in
[18]. These steps are briefly described in the follow-

ing:

e M), and W}, are vector-valued finite element
spaces, but we observe that it is sufficient to
construct a continuous extension operator by
considering scalar finite element spaces we de-
note by M}, and W},

e For any given ¥, in M}, we associate the local
Poisson problem Av = 0, in Q{z, with v = ¥y,
on (9(2{2

e We define then an operator from M}, into W5,
by associating to ¥;, in M}, the element vy, (V},)
of W},,, whose restriction to ¢, is equal to ¥},
and whose restriction to 9{2 is equal to the fi-
nite element approximation of the solution of
the variational formulation of the Poisson prob-
lem (defined in the previous step), by using the
space of restriction of W}, to 9{2

e By (1) using a regularity result for the solution
of the Poisson problem with prescribed reg-
ular Dirichlet boundary conditions (see, e.g.,
[24,27]), (2) following by essence the technical
developments of Widlund [28,29], and (3) us-
ing the continuity of the trace operator, we can
check that the operator constructed in the pre-
vious step is a continuous extension operator
from My, into W,

This ends the proof of the proposition.

3.2.4 Analysis of Discrete Arlequin Problems under
Less Stringent Conditions

Internal weight parameter functions like ramp func-
tions do not satisfy the condition (33). Hence, for
a reliable use of such functions (which may be im-
portant in practice), we have to prove the stabil-
ity of the discrete mixed Arlequin problems, under

the less stringent condition (32). Actually, referring
to the proof of proposition 3.3, the main point that
has to be rechecked is the discrete uniform coerciv-
ity. Let us address partially this issue, referring to
Section 5.2 for a complementary enlightening nu-
merical result (and to a forthcoming work for an ex-
tended analysis).

If the condition (33) is weakened to the condi-
tion (32), while keeping all the other hypotheses of
proposition 3.3, then, by following exactly the lines
as for the proof of the coercivity for proposition 3.1,
a discrete uniform coercivity of a in Ny, (C), de-
fined by (45), can be established easily if one as-
sumes that the following H-hypothesis is satisfied:
the finite element spaces Wj,1, Wj2, and M, are
such that the elements of the kernel space Ny, (C)
verify vy = vy, in Qf,.

One can easily check that the H-hypothesis is
satisfied, for example, when the spaces W, |Q{,
and W}, | 2§, are compatible with each other, with
Wi, | 5, finer than W, | Qf, and M}, = W, | Qf,
(the [primal] mediator space is equal to the finer dis-
placement space). On the contrary, if one takes
M;, = Wy, |Qf, (the [primal] mediator space is
equal to the coarser space), then, depending on the
choice of the «;, the coercivity condition may become
mesh-dependent or even be lost, leading to instabil-
ities. The second example given in the numerical
Section 5 enlightens this aspect (see also [10], Fig. 12,
for the case of a H' coupling with a ramp weight
function and a coarse multiplier space).

4. RELEVANCE OF THE ARLEQUIN
FRAMEWORK

Until now, we have considered two similar super-
posed models to address the stability and consis-
tency of the Arlequin problems. But as already men-
tioned at the end of Section 2, the fundamental in-
terest of the Arlequin framework relies on the fact
that the Arlequin formulations involve concurrently
blended mechanical models. Different approxima-
tions and/or alterations of these blended models
are thus potentially possible, leading to real mul-
timodel (or multiscale) problems. The main theo-
retical issue is the analysis of the link that may ex-
ist between the multimodel Arlequin solution and
the related monomodel mechanical solution. Funda-
mentally, the question is, What is the link between
the classical (monomodel) solution of a linear elas-



tic problem modeling a cracked elastic solid and
the solution of the problem modeling the same but
uncracked (or sound) elastic solid, to which a lo-
cal cracked solid is superimposed in the Arlequin
framework (see Fig. 1), in a way that the cracks are
located exactly in the same place?

As a final result of our article, we establish a limit
behavior result for the family of the Arlequin solu-
tions, indexed by the weight parameter functions.
To achieve this task, we keep on considering the
energy scalar product-based continuous Arlequin
problem.

When two really different models are superim-
posed, the consistency issue addressed in proposi-
tion 2.1 is irrelevant. Indeed, in these situations, the
Arlequin solutions depend strongly on the choice
of the weight parameter functions. We refer to the
results shown by Fig. 3, on which we calculate a
2-D elastic model, defined in a sound domain €2,
on which we superimpose a local elastic model, de-
fined in a cracked domain €25. A coarse bilinear fi-
nite element space is used to approximate the global
solution, and a fine bilinear finite element space is
used to approximate the local solution. The left edge
of the structure is clamped, the right is free, and the
two other edges are submitted to a traction load. We
use the energy-based Arlequin formulation and we
glue the two models away from the crack, in a zone
whose boundary contains the boundary of the su-
perposition zone. In Fig. 3(left), the local model
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fissure

is stressed (o2, denoted by aggsure in the figure, is
taken to be constant and equal to 0.999 in the whole
domain 23), while in Fig. 3(left), the global sound
model is stressed (Xgssure = 0.001). One can notice
the dramatic sensibility of the Arlequin solutions to
the internal weight parameters.

Thus, when using the Arlequin framework to
mix different models, an essential practical issue
is the appropriate choice of these weight parame-
ter functions. To our best understanding, and for
some particular partitions of different models (de-
formable and rigid models, for instance), the appro-
priate choice of the «; is trivial (see [3,9]), the limit
behavior of the Arlequin solutions, whenever either
the pair (o1, 1) or the pair (o2, f2) tends to (0,0)
in Q{Q, is the most relevant practical issue. This is
precisely the point of focus of this section.

Let us consider two superposed linear elastic
models in the Arlequin framework. But let us now
assume that in Q{Q the model defined in the do-
main (), is geometrically alterated, say, by a hole
to fix the ideas, so that ), is transformed to Qy, =
(Q2/91,)UQLS, where Q% denotes the alterated free
zone. The model, defined in the domain 24, is not
changed (see Fig. 8(left)). Moreover, we assume that
the alteration is strictly embedded in the interior of
Q.

The new continuous alterated H!-scalar product-
based Arlequin problem reads
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FIGURE 3. Sensibility of the Arlequin solution to the weight internal energy parameters
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find (’U,l, U2q, (I’) e Wy x Wy, x M

Vv, € Wl, al(ul, Ul) + C(i’, ’Ul) = ll(’l)l) (50)
Ve € Way, a2q(U2q,v2) —C(®,v2) =124 (v2) (51)
V¥ e M, C(‘I’, Ul—UQa):O (52)

where W3, ay, [;, and C are defined by (12), (14),
(16), and (27), respectively, and where:

W2a - Hl (Q2a) (53)

(J,Qa(Uga, Ug) = /Q X9 O"(Uga) H S(’Ug) (54)

B f.v2

Q2a

lga (’02) = (55)
Under similar hypotheses to those of proposi-
tion 3.2, it can be proved that this problem admits
a unique solution.

Let us then introduce two global classical
(monomodel) problems. The first is identical to the
reference problem defined in Section 2.1. Its solu-
tion is u’. The second is defined in the alterated do-
main Q, = (91/9{2) U Qg,, with the same loading
than for the previous problem. Its solution is de-
noted by u®. This second problem reads

find u® € W,
Vo' e W, / o(u?): e(v?) :/ fo®  (56)
Qa Qa.

where

W,={v*c H'(Q,); v*=0 onT,} (57)
It is well known that under classical regularity hy-
potheses, this problem admits a unique solution
u® € W,.

For the convergence result given by proposi-
tion 4.2, the following lemma (whose proof can be
skipped by the noninterested reader) will be useful.

Lemma 4.1 Under reqularity of the domains, under hy-
potheses (6)—(8), (18), and (19), and for ko, k1 > ko,
with ky strictly positive, the semi-norm denoted by v and
defined on W by

YoeW, v(v)={a(v,v)+C(vi—vs, ’Ul—’Ug)}% (58)
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where W, a, and C' are defined by (34), (36), and (27),
respectively, is a norm on W, equivalent to the natural
one, defined by (35).

Proof. It is quite easy to prove that v is a norm
and that this norm is uniformly bounded by the one
defined on W by (35). It remains, then, to prove that
the norm, defined by (35), is uniformly bounded by
V.

Let us distinguish two situations. First, we as-
sume that the irregular o- weight condition (33) is
satisfied. Then, by using hypothesis (33), the Korn’s
inequality, and the fact that the measure of I',, (in-
cluded by hypotheses in the boundary of ;) is
strictly positive, we can assert that there exists a con-
stant ¢ (still denoting a generic positive constant in-
dependent of v) such that

v()?* = c{lvillio, + lle(®2)llfq, (59)

+ [lor = vallg o, + lle(wr — )l 0c }

Hence

(v(¥)* Zc{ w17 o, He(@F o, Hlviv2l[§ a5, (60)

Let us now recall the Young’s inequality: For all k >
0 and for any two scalars b and d, we have

d2
2bd < kb* 4+ — (61)
By using (60) and the Young’s inequality (61), with
b = |lvillo,es, and d = |[|va[lo,0c,, an appropriate
choice of k (see, e.g., [30] for a similar development),
both with a second use of a Korn’s inequality, leads
us to the following inequality:

v(©)?* = cfllvilio, + lvlie,} (62
which ends the proof of lemma 4.1 under the hy-
pothesis (33).

Now we assume that the less stringent regular o-
weight condition (32) is satisfied. In this case, one
of the «; can be null in some zones of €){,, while the
other is equal to 1 in the same zone. To simplify,
without reducing the generality of our proof, it can
be assumed that 3 is null in Qf,. In this situation,
instead of the inequality (59), we have

) > cflloilia, + lle@) a0, — (63)

Hlvr = v2[[§ ag, + lle(vi — v2)ll s, }



But a use of the Young’s inequality, with a second
appropriate choice of k to bound the (tensorial) L?-
scalar product of €(v1) and &(v2), allows us to de-
rive from (63) an inequality similar to (59). This
leads us to the first situation and ends the proof of
lemma 4.1.

Now we are able to prove the following relevance
result for the Arlequin framework.

Proposition 4.2: A convergence result. Under the hy-
potheses of proposition 2.1, the weight parameter indexed
family of solutions of the family of problems defined by
(50)—(52) and (27), converges strongly, in the following
sense:

if By = 0in Q1,, then

(64)

lim  |lu; —u’l1.0 =0

“1/9{2_’1

where u® is the solution of the sound problem, defined by
(1)~(5), and if B1 = 0 in Q,, then

lim u; —u’ s =0
N I I on0f,

liHl U2q — 'U,a Qf — 0 (65)
062/52{2—& H “ Hl’ 12

where u® is the solution of the alterated monomodel prob-
lem, defined by (56), (57), and (5).

Moreover, the convergence rate is at least of the same
order as o in (64) and oy in (65).

Proof. We only establish the proof of (65) because
the proof of (64) can be carried out similarly (more-
over, (65) is the most interesting result in practice).
The proof is done in two steps:

1. A priori estimation. By taking v; = wu; and
V2 = Uz, in (50)—(55), summing the obtained
first two equations and using (27) and the result
of lemma 4.1, one can easily check that the fam-
ily of Arlequin solutions (u1 /(1 /), uz4) is
bounded by a strictly positive constant, inde-
pendent of the weight parameter functions «;
and 3;,i =1, 2.

Now, thanks to this result and to the facts that
f1 =0in Q{Q and u; = ug, On 89{2, one can
easily establish that the family (u;/ Q1) is also
uniformly bounded, which means that the dis-
placement part of the Arlequin family of solu-
tions is uniformly bounded.

2. Strong convergence. Let us now introduce the er-
ror-like field

U, — U
e =
u; — u®
where (u1, us,) and u® are the solutions of (27)

and (50)—(57), respectively. This field e belongs
clearly to W,,.

in QZa

. (66)
in Q,/07,

Let us also define a field e; of W; by extending
continuously to W; the field of H L/ Q{Q),
defined as the restriction to €2; / Q{Q of e, and let
us finally define a field e; of Wy, as the restric-
tion of e to Q.

By taking v; = e; in (50), v = e3 in (51), and
v® = e in (56), very elementary operations al-
low us to establish that

/O'(e) :e(e) :/f x1{o (o) : e(€) — o(u): e(er)} (67)
Q ofs
Now, by using the a priori estimation proved
in the first step, the Korn’s inequality, and the
equation (67), one can easily achieve the proof
of the proposition.

By using proposition 4.2 and proposition 3.3, one
can check that there is also a convergence of the
discrete Arlequin solutions to the solution of the
alterated monomodel problem when the sizes of
the meshes go to zero and when the alterated lo-
cal model is stressed in the sense of proposition 4.2.
This result, enlightened by the numerical illustra-
tion shown by Fig. 3, is further assessed in the fol-
lowing numerical section.

5. SOME NUMERICAL ILLUSTRATIONS

Let us give other numerical results to enlighten the
theoretical investigations.

5.1 Discrete L? and H' Couplings

The numerical test considered in [3,4] is further
commented on here. The mechanical problem con-
sists of evaluating the vertical displacement field
in an upright elastic bar, occupying the closure of
the domain © =|0, 3[, of constant section and of
Young’s modulus and mass density E and p, respec-
tively, clamped at both ends and loaded by its own
weight (see Fig. 4(left)).

12
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FIGURE 4. Clamped vertical bar and comparison of the conditioning of the discrete Arlequin systems associated

with energy and L? couplings

The discrete finite element Arlequin model for
this problem consists of the superposition of two
equally fine meshes set in |0, 2[ and |1, 3|, with step
denoted by h. The weight functions «; and (;,
i = 1,2, are taken to be constant and equal to 1/2 in
the gluing zone Qf,, coinciding here with the over-
lap €212. Continuous 1-D linear elements are used to
approximate the displacement and Lagrange multi-
plier fields. In Fig. 4(right), we compare the influ-
ence of the mesh size h on the conditioning of the
linear Arlequin systems associated with the H' and
L? scalar products couplings. Clearly the C cou-
pling operator leads to conditioning numbers vary-
ing as 1/h? (which is usual for finite element ma-
trices), whereas the L? scalar product, denoted by
C'12 and approximating in the discrete finite element
model the dual Cy coupling operator, leads to worse
conditioning numbers, varying as 1/h*. The differ-
ent behaviors of the Lagrange multiplier field, de-
noted A, in both cases, are represented in Fig. 5, for
the L? coupling in the left and for the H' coupling
in the right. One can observe that the latter leads
to a smooth field, while the former gives a singu-
lar Lagrange multiplier: We observed that when h
goes to zero, this multiplier tends to be localized at
the boundary of the coupling zone, with a numer-
ical value on the two points of the boundary vary-
ing as 1/h. Actually, up to a homogenization factor

of order 1/h, it seems to converge to a surface La-
grange multiplier. This simple result enlightens the
comment given at the end of Section 2.2.1, where
we stressed the irrelevance of a continuous L? scalar
product coupling operator: The discrete Lagrange
multiplier fields, obtained with this coupling opera-
tor, for the example considered here are singular. It
cannot be an approximation of an L? field.

5.2 A Local Loss of Stability Test

We consider the example of the elastic bar depicted
by Fig. 4, with the same data. This bar is now calcu-
lated by using two different but compatible meshes
for 2 =]0,2[ and Q2 =|1, 3[. Coarse and fine linear
finite elements are used for the respective approx-
imation of the displacement fields u; and ug. The
restriction of the coarse finite element space to the
overlap 12 =]1,2[ (= f,, in the considered ex-
ample) is used for the approximation of the medi-
ator space. The weight functions are regular, with
a; = PB1 =1,in Q; /2 and varying as Hermite cu-
bic functions in ;5. The results (analytical and Ar-
lequin displacements) are plotted in Fig. 6, where
we have varied the fine mesh size, while keeping
the coarse one constant. Only the overlap zone is
shown. One can make the following observations:

200
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-200
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FIGURE 5. L? and H' coupling: comparison of Lagrange multiplier fields for the 1-D bar problem, with h = 0.05
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FIGURE 6. A local loss of stability due to a limit local
loss of coercivity (computed by O. Jamond)

e The coarse and fine displacement fields are not
equal to each other in the overlap. This is due
to the fact that their equality is only enforced
by means of a projection on the coarse mediator
space.

e The converged fine part of the Arlequin solu-
tion is very accurate on the right part of the
overlap, where the fine weight functions are
near 1.

e A kind of instability of the solution uy in the
vicinity of the left boundary of (2;, where the
fine internal weight parameter x, comes to
zero, clarifies the comment concerning the lo-
cal loss of coercivity, given at the end of Sec-
tion 3.2.3.

These results seem to indicate that when choos-
ing regular weight functions, the coarse, fine, and
mediator spaces should be such that the Arlequin
problem stays stable and the coarse and fine solu-
tions are sufficiently close in the zones where the
fine internal weight function «; becomes near zero.
In practice, this can be achieved in different ways
(e.g., by using a kind of progressive refinement of
the mediator space).

By taking in the considered test M}, equal to the
restriction of the finer finite element space to €22,
the obtained numerical results do not show any in-
stability and the Arlequin solution coincides (in the

overlap) with the coarse monomodel finite element
approximation. Sometimes this strong enforcement
of the equality between the two fields has been abu-
sively qualified as a locking phenomenon.

5.3 A Holed Domain: Comparison of the
Numerical and Analytical Results

We consider here the test described by Fig. 7. It
consists of a holed elastic medium calculated as a
2-D problem under plane strain hypotheses. The
medium is assumed to be submitted to a uniform
traction f on its upper and lower edges and free
on the two other edges (see Fig. 7). The data are
E =300GPa,v=0,3,L =40m, R = 1,3m, and
f = 2MPa. The Analytical value of oge along the
perimeter of the hole is given by, (e.g., [31])

000 = f(1 —2cos20) (68)
The problem is calculated in the Arlequin frame-
work by superimposed a local holed elastic model
to a global elastic sound model with a constant o,
associated to the holed local model equal to 0.999.
The local holed finite element model is fine to cap-
ture the stress concentration, and the sound global
model is coarse. The deformed meshes with the iso-
principal stresses are represented in the left part of
Fig. 8. The numerical oge solution along the hole
perimeter is compared to the analytical one in the
right part of Fig. 8. They are quite similar.
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FIGURE 7. A holed domain
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FIGURE 8. A holed local model superposed to a sound model: deformed Arlequin model, iso-major principal
stresses, and comparison of the numerical solution to the analytical one

5.4 A Convergence Result for a Quantity of
Interest

This last numerical result enlightens the theoret-
ical one, given by proposition 4.2. We consider
a slanted, cracked plate under traction loads, as
shown by Fig. 9. The data are £ = 200 GPa,
v =0,3, f = 100MPa, a = 1mm, and = 37.
Numerical tests are carried out with «» (denoted by
Xerack in Fig. 11), taking values that go progressively
to 1. The global meshed model with a zoom around
the crack is given by Fig. 1.

40 a
)

20 a
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FIGURE 9. A cracked plate is superimposed locally on
a sound global plate
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The iso-major stresses on the deformed zoom and
on a zoom of the zoom around one crack tip are de-
picted in Fig. 10.

The Arlequin numerical energy restitution rates
G are compared, in Fig. 11, to the numerical en-
ergy restitution rate obtained by a globally refined
monomodel, and to the analytical solution (e.g.,
[32]) are given by

2
G= J;mz cos®
The convergence (up to small errors introduced by
the finite element approximations) of the Arlequin
energy restitution rates to the analytical restitution
rate when &,k goes to 1 is clear.

(69)

6. CONCLUSIONS

We have herein given an advanced presentation
of the multimodel and multiscale Arlequin frame-
work. The definition of reliable sets of Arlequin’s
parameters has been given precisely by further the-
oretical analyses. Our most noticible conclusions are
the following:

1. The boundary of the gluing zone has to include
the boundary of the overlap.

2. We need a regularity of the free zone to ensure
a uniform Inf-Sup condition.
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FIGURE 10. A cracked plate is superimposed locally on a sound global plate
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FIGURE 11. A convergence result

. The alteration has to be strictly embedded in
the free zone.

. The solutions related to the superimposed
models have to be quite similar in the gluing
zone.

. The finite element L? coupling is an approxi-
mation of the continuous duality coupling that
leads to ill-conditioned Arlequin problems (un-
less scaled appropriately).

. The weight parameter functions have to satisfy
the conditions (18) and (19), and it is possible
to use regular internal weight parameter func-
tions verifying the condition (32), while ensur-
ing the stability of the continuous and discrete
Arlequin problems. However, the stability of
the latter may become mesh-dependent when
a fine mesh is locally superposed to a coarse

mesh and when the mediator space is chosen
equal to the restriction to the gluing zone of the
coarse finite element space.

. It seems important (for consistency and for the

relevance of results) to take the internal weight

parameters «; to be constant in the free part Q{ 9
of the overlapping zone.

. To let the alteration of a global sound model be

effective, the weight parameter associated with
the locally superposed and alterated model has
to be stressed, by taking it (constant) near 1 in
the free zone (as shown by Fig. 2).

Our theoretical analyses have been enlightened

by numerical tests, some of which had already been
published but were shown herein to assess our the-
oretical investigations.

From another side, it is believed that the Arlequin

framework can be used in many other fields of in-
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terst. For instance, it can be used to capture bound-
ary layers (e.g., in fluid dynamics) or to couple lo-
cally a numerical solution to an experimental one. It
can also be extended to mechanical multifield mixed
problems of De Veubeke-Hu-Washizu type [33-35].
Notice that for these mixed problems, local strains
and stresses can then be part of the coupled fields in
the gluing zones 29,.

Finally, the first results concerning the coupling
of atomistic and continuum models in the Arlequin
framework are promising (see, e.g., [13,14,16]). We
are actively pursuing this work by testing other ac-
commodation operators than the interpolation one
and by approximating the atomistic energy in the
gluing zone (or a part of it) by the consistent contin-
uum energy (when available [36]), evaluated at the
accommodated atomistic fields.
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