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ABSTRACT. The Arlequin method offers an alternative framework for the multimodel mechanical
simulations. This paper aims at showing the promising potentialities of this approach to intro-
duce defects in a sound model with great flexibility. The formulations and the related theoretical
results are recalled and the key points for numerical implementation are discussed. Numerical
examples illustrate their efficiency.

RÉSUMÉ. La méthode Arlequin offre un cadre de modélisation alternatif pour la simulation de
problèmes mécaniques multimodèles. Dans cet article, nous montrons les potentialités impor-
tantes de cette méthode pour introduire des défauts dans un modèle sain avec une grande flexi-
bilité. Nous rappelons les principes et le cadre d’application de la méthode et nous discutons sa
mise en œuvre informatique. Des résultats numériques éclairent notre démarche et témoignent
de la pertinence de l’approche.

KEYWORDS: defects, Arlequin method, numerical aspects, applications.
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1



1. Introduction

Solving mechanical problems with defects (such as cracks or inclusions) is essen-
tial in the designing or the maintaining of large structures. The main difficulty lies in
the discrepancy between the scale of the defects and the structure. In finite element
methods, this requires specially refined meshes. Such meshes must be generated for
each distribution of defects and the generation of one of them is almost always a time-
consuming and tedious task.

This concern is akin to a more general one : multiscale mechanical problems. In
the past few years, many approaches based on the same ideas have been designed.
In those methods (eg. [Bab 00, Hug 98, Lad 99, Ode 97, Suk 97]), the structure is
coarsely meshed and special correction terms are added to the finite element functions
basis. In a word, the approximation space is enlarged by summing vector spaces.

An alternative strategy lies in substituting a product for this sum; it results in the
Arlequin method [Ben 98, Ben 99]. It is based on three ideas. (I �) The core idea
is to superpose several mechanical states in some zones of the material system. (I �)
The superposition lies then in the global formulation by making the virtual works be
shared by the different states thanks to weight parameter functions. (I �) In order to
link the superposed models together, fictive forces are activated to weakly control the
deviation between the respective fields of the models, in parts of the overlapping zones
(called glue zones).

Arlequin is thus a general method to glue one model to another one. Therefore by
superposing models, three different modelling actions can be combined (see fig. 1):
(A�) superposing to locally refine models (zoom), (A�) superposing to link structure
models and (A�) superposing to alter models locally by means of an internal junction.
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Figure 1. Modelling actions

In this paper, we will focus on the use of this third modelling action and show
how it can be used to quickly and easily add defects or inclusions in a sound model.
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The outline is the following. We first recall the continuous and the discrete mixed
Arlequin equations for a model elasticity problem and some theoretical results stating
the well-posedness of those formulations [Ben 01b, Ben 01a]. In the section 3, the
discretisation by the finite element method and the related implementation concern
are described. Finally numerical results showing the efficiency of the method are
presented in section 4 for relevant mechanical examples.

2. Arlequin formulations and mathematical results

The Arlequin formulations [Ben 98] and the mathematical results established in
[Ben 01b] are recalled for completeness of purpose.

2.1. Continuous Formulation

We consider a static bi-dimensional linearized elasticity problem defined in a poly-
gonal domain �. We let �, � , � and � respectively denote the clamped part of the
boundary ��, the applied density of surface forces, the linearized strain and stress
tensors. We assume that the constitutive material law is a Hooke one:

��� � ����� ��� [1]

The elasticity moduli ����� are assumed to satisfy the following classical symmetry,
coercitivity and regularity hypotheses (usual conventions of summation over repeated
indices are used):

����� � ����� � ����� [2]

� 
� � � � ����� � ��� �� � 
� � ��� �� � � � �� � � �� [3]

����� � ����� [4]

The classical displacement problem then reads as follows:

�	
��� ���� [5]

� � �� ������ � � � � on�� [6]

���� � �
�������� ���� [7]

��	��� �
�
�
��	� � ���� 	� [8]

���� �
�
� �
� 	� [9]

�� ��	� �
�
� ���	� � ��	�� [10]

To rewrite this problem according to the Arlequin method, we consider that � is
covered by two overlapping polygonal domains � � and ��. The clamped part � is
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assumed to be, say, in ���. We let �� denote the glue zone supposed to be a non
zero measured polygonal subset of �� � �� (see fig. 2).

To model the gluing forces, we use the choice suggested in [Ben 98] and analysed
in [Ben 01b]. Thus those forces are modelled as Lagrange multipliers belonging to
the functional space �� ������ � called mediator.
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Figure 2. Superposed models and the glue zone

In this way, the problem can be rewritten as the following saddle-point variational
principle:

�	
��������� ��� �
��
����

������� � ������ � 
����� � ���� [11]

� � � ��� ��
����� � �� � � on�� [12]

� � ������� [13]

�� ������ � [14]

������ �
�
����������� ������ [15]

���	����� �
�
��


� ��	�� � ����� 	� [16]

������ �
�
��

�� �
�� 	� [17]


����� �
�
��

��
� � ��� ���� 	� [18]

where 
�, �� and � respectively denote two weight parameter functions and a strictly
positive adimensional parameter.

The weight parameter functions 
� and �� are required not to count the energy in
the overlap twice. Therefore they are assumed to be positive piecewise continuous
functions in �� and to satisfy the following equalities:


� � 
� � �� � �� � � in �� � �� [19]


� � �� � � in �� 	 ��� � ��� [20]

2.2. Discrete formulations

The discrete formulations are derived from the continuous one by means of the
finite element method. To this end, for 
 varying in the set ��� ����, we consider
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triangulations of ��, denoted �����. We let� �
� 
� � denote the related conforming

finite element spaces. Then the discrete problem reads:

�	

���

�
���

�
��� �

�
�� �

�

��

�����

�

����
�
� � � ����

�
� � � 
������� � �

�
� � [21]

The Euler equations are then derived from [21]. They read :

Find �	�� �	
�
� ��

�� �� �
� ��

�
� ��

�
� ; � ���� ��

�
� �


�� �� �
� ��

�
� ��

�
� ,

���	
�
� ��

�
� � � ����

�
� �� 
������� � [22]

���	
�
� ��

�
� � � ����

�
� � � 
������� � [23]


�
��	�� � � 
�
��	�� � [24]

Note that in [22] and [23], the second member of the right hand side terms stands
for the virtual work of the junction forces and that [24] is the weak junction system.

2.3. Mathematical results

In [Ben 01b], we established the following theorems. They state that, under con-
ditions which are easy to satisfy, the continuous and the discrete problems are well-
posed. We let denote� �� � ���� � � �� �. The natural norm of the space � and
the greater diameter of the triangles in the triangulation ����� are denoted by ���� and
��, respectively.

Theorem 1 .
Under the hypotheses [2]-[4] for the elasticity moduli and [19]-[20] for the weight
paramater functions. If

�
 � ��� ��� �
�� � � � 
� � 
�� 
��� � �� [25]

Then the continuous problem [1], [10], [11]-[18] admits a unique solution �	 ��	����
in� � �� � ��� .

Theorem 2 .
Under the hypotheses [2]-[4] for the elasticity moduli and [19]-[20], [25] for the
weight paramater functions. Assume that the triangulations �����, ����� and ���� �
are regular enough to use interpolation theory and inverse inequalities [Cia 78]. If,
in addition,

� �
� 
� �

� ���
�� � �

� 
� �
� ���

[26]

Then the discrete problem [1], [10], [15]-[18], [21] admits a unique solution �	�
� ,

	�� , ��� in� �
� ��

�
� ��

�
� .
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Theorem 3 .
Under the hypotheses of Theorem 2, the solution of the continuous and discrete prob-
lems satisfy an optimal a priori error estimate.
If 	� �� � ��

�����, 	� �� � ��
����� and � ��� ������ �, then :

�� � � indepedent of ��, �� and �� �

�	� � 	���� �
� �	� � 	���� �

� ��� ����� 
 � ��
���� ��� �� � [27]

Theorem 1 results in the identity between the restriction to �� and �� of the so-
lution 	 of problem [5] and �	�� 	�� of problem [11], since �	��	�� is unique and
�	���

� 	���
� satisfies the equilibrium equations related to [11]. The inequality [27]

establishes that, in the worst case, the discretization error is controlled by the step of
the coarser triangulation.

We will see in subsection 3.1 that the condition [25] on the weight parameter func-
tions 
� presents no pratical difficulty. In addition, the compatibility condition [26]
can rather easily be satisfied in pratice. Indeed the triangulation ���� � can be chosen
as the restriction to�� of ����� or �����. This choice has an influence on the solution
as the numerical example 4.1 in [Ben 01a] shows. This question, related to the com-
patibility of the motion of models is now being studied in an enlarged framework by
the first author of this paper and will be tested for the particular case of the Arlequin
approach.

3. Implementation issue

This section is adressed to the key points for the numerical implementation of the
Arlequin method, namely how to numerically represent the weight parameter func-
tions, then how to choose them, what is the linear system and how to cope with the
incompatibility of models.

3.1. Numerical representation of the weight parameter functions

When a generalised heterogeneous superposition of � models is considered, the
conditions [19]-[20] show that the weight parameter functions must be defined by
pieces. Therefore we first focus on these pieces. To this end, we index the subdomains
related to each model by ��, �� ... �	 . Denoting by �	 the set of parts which can
be constituted with the � indices � ��� � , a partition of the domain � (see fig. 3a) is
obtained by considering the following subdomains called elementary subdomains:

� � � �	 � �
 � � �
��


��� 	 � �
� ��


��� when�
 �� � [28]

These elementary subdomains make up the pieces on which the weight parameter
functions must be defined and indeed an easy way to satisfy [19]-[20] consists in
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gathering in each�
 , the weight parameter functions
� and �� in vector fields denoted
by � and � defined as follows. At a point � in �
 , the field, say, � is equal to
�
����� ��� 
�� ���� where �
�� ���� 
�� � � . The generalised conditions [19]-[20] are
then simply rewritten as follows :

� � � �
�� ���� 
�� � �	 �
��

��� 
�� � � in�
 [29]

For instance, in figure 2, � corresponds to �
�� 
�� in ������ � �� � �� and to
�
�� in ���� � �� 	 ��� � ���. The equation [28] results in 
� � 
� � � in������

and 
� � � in����.

Θ{1}
Θ{2}

Θ{3}

Θ{1,2}

Θ{1,3}
Θ{2,3}

Θ{1,2,3}

Ω1

Ω3

Ω2

x

Figure 3a. Subdomains�
 Figure 3b. Association between � and �


If we assume that the functions 
� and �� are continuous in the elementary subdo-
mains �
 , the fields � and � can be discretized over a finite element space. Nonethe-
less, given the definition of these fields, this space must be generated by independent
triangulations of�
 . We have thus chosen the easiest representation consisting in tak-
ing� and � as vector-valued fields which are constant in each elementary subdomain.

Since ��
� stands for a partition of the domain �, each point � in � can be
associated with a �
 (except in some boundaries for which a choice is automatically
made). Numerically this association can be achieved in finding the list of subdomains
���� ������ � in which � is located (see fig. 3b, where, for clarity, the subdomains have
been translated).

3.2. Choice of the weight parameter functions 
�

The weight parameter functions 
� are assumed to be given. The optimal choice
seems to be a rather intricate question. A heuristic one consists then in relating 
 �

to the relative finess of the associated model. The limit case is obtained when one
model is only consitituted of rigid body motions. Since the internal energy is then
equal to zero, the associated weight parameter function must be null. In this way, we
recover the method developed by Glowinski et al. [Glo 00], called fictitious domain
method with a distributed Lagrange multiplier (whose applications to fluid/rigid cou-
pling problem are quite important). A use of the Arlequin framework for fluid / solid
coupling is a work in progress.
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3.3. Linear system

We now focus on the linear system to solve. For the sake of simplicity, we consider
that only two models are superposed. We let ���

� �, ��
�
� � and ���

� � denote the finite

element basis functions of � �
� , � �

� and � �
� , respectively. The vectors �U�℄, �U�℄

and ��℄ stand respectively for the coordinates of 	�, 	� and � in those bases. The
linear system reads :

�
� K� B�

K� �B�

B�� �B��

�
�
�
� U�

U�

�

�
� �

�
� F�

F�
�

�
� [30]

�K�℄� � �

�
��


� ���
�
�� � ����

�� 	� [31]

�B�℄� � �
�
��

��
� 
�

�
� � ����

� ����
� 	� [32]

�F�℄� �
�
��

�� �
�
�
� 	� [33]

Note that there are two kinds of matrices, namely the rigidity matrices �K �℄ and the
coupling matrices �B�℄ related to the junction operator.

The computation of the rigidity matrices �K �℄ and the force vector �F�℄ is achieved
by classically assembling, for each � in ����� or ����� the elementary rigidity matri-
ces �K�

� ℄ and force vectors �F�� ℄.

�
K�
�

	
� �

�

�
�


� ���
�
�� � ����

�� 	� [34]

�
F��

	
�
�

�
�

�� �
�
�
� 	� [35]

�, � degrees of freedom of K

On the other hand, the computation of the coupling matrices �B �℄ is completed in the
following way. We first pair the mediator with the models. Namely, for each triangle
� in ���� �, the lists ���� � of triangles in ����� facing � are computed. The coupling
matrices are then made up by assembling the elementary coupling matrices �B�


� ℄.

�� � ���� �� � � ���� ��

�
B�

�

	
� �

�

�
��


��
� 
�

�
� � ����

� ����
� 	� [36]

�, � degrees of freedom of K and L, respectively

Note that algebraically the triangles � and � play the same role in the integral [36].
Therefore, this integral can be computed either on the restriction of � to � or the
restriction of � to �.
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3.4. Incompatibility and hierarchical quadrature

The Arlequin method presents no a priori restriction on the way the models are
superposed. In particular, there is no restriction about the location of the nodes or the
boundaries of one model with regard to another. Nevertheless this convenience results
in inhomogeneities in the integrals [34]-[36] and the numerical integration must be
more sophisticated. We focus on the computation of �K�℄, �F�℄ and �B�℄.

α = 1

α = .5

���� � ���

�������
�������
�������
�������

��������
��������
��������
�������� ����

����

����
����

��

��

Figure 4a. Inhomogeneous 
 Figure 4b. Inhomogeneous coupling

Given the chosen way to numerically represent the weight parameter functions, the
computation of [34]-[35] may be unusual. Indeed, if there exists a triangle in �� ���
astride the boundary of the overlap �����, 
� and �� are piecewise constant over �
(see fig. 4a).

On the other hand, if there is no relation of inclusion between the triangles of
���� � and ����� in �� , the computation of [36] is unusual. On the example fig. 4b,
we see that if the integration is achieved on �� or ��, we need to integrate, in the
best cases, piecewise polynomia to compute �B�� ��

� ℄.

Hence the integrals [34]-[36] present a priori the same numerical treatment diffi-
culty, viz. integrating piecewise polynomia. Without lost of generality, we consider
[36] with � � �.

The points and the weight of the quadrature formula we use are respectively de-
noted by �� and �

��. The finite elements ��������� are derived from the reference
element � ��� �� � ��� [Cia 78, Bat 90] and we let ���, �� and ���� � respectively de-
note the 
-th local shape function in ��, the geometric mapping which transforms ��
into � and the jacobian of �� . We consider � and �, two triangles respectively in
���� � and ���� �.

�B� 

� ℄� �

� �� sampling point in �
Compute �� � �

	�

 ��������

� 
 degree of freedom associated to � (related local index : �)
� � degree of freedom associated to � (related local index : �)

�B� 

� ℄� � � �B�


� ℄� � � �
�� ��
 ���� ��� ���� ���������

� � �
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In our case, since we need to integrate piecewise functions, there is no simple
accurate integrating formula. The idea lies in judiciously increasing the number of
sampling points: given the well-known fact that high degree interpolation polynomi-
als badly approximate piecewise continuous functions, we do not use higher degree
polynomial integrating formulae, rather we virtually split the reference element as
explained in figure 5.

Level 0 Level 1 Level 2

K̂ K̂ K̂

Figure 5. Hierarchical integrating levels in ��

Moreover the computation is carried out in a hierarchical way. Namely the er-
ror made at the numerical estimation level 
 can be assessed by comparing the value
obtained at the levels 
 and 
 � �. If the relative difference is greater than a preset
threshold, the computation is achieved at a higher level, by considering that we have
new integrals to compute on the subelements (4 new integrals for the case considered
in figure 5). Though it does not ensure an exact computation, this algorithm gives
good results in practice and only a few levels are required in the situations considered
in our numerical simulations (see numerical example 4.3).

4. Numerical examples

The use of the internal junction (see fig. 1) presents great potentialities. By judi-
ciously choosing the weight parameter functions, a model can be locally substituted
by another one. In this way, one can easily introduce, in a sound model, defects,
such as cracks, holes or, at a lower scale, inclusions or voids. Notice that unlike
other approaches designed to update a local coarse behaviour of a medium [Ode 97],
the Arlequin framework allows for this update with a very significant relative gain of
flexibility.

4.1. How to choose the weight parameter functions ?

The weight parameter functions 
� play a major part when internal junctions are
used. In the overlap, outside the glue zone, the two models are superposed but not
linked to one another. Therefore the higher the weight function is, the more the as-
sociated model asserts itself. Accordingly, by choosing very different values for the
weight functions, we can activate either of the models and in particular, with a small
approximation, we can locally substitute a model for another one.
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To illustrate this potentiality, we consider a square plate on which a cracked model
is superposed. Given their very different behaviour, we use an internal junction. The
glue zone then corresponds to a half ring located at the boundary between the sound
model only and the overlap. The left side of the square is clamped and the upper and
lower sides are loaded by a symmetric linear pulling effort. The weight vector-valued
field � is constant on each elementary subdomain (see subsection 3.1). In figure 6a,
we have given weight to the cracked model (

��
� � ����). In figure 6b, we have
chosen 

��
� � ����.

maj. princ. σ maj. princ. σ

Figure 6a. Activated crack Figure 6b. Disactivated crack

By comparing both figures, we notice that the crack is only open in the activated
crack case, for which we find a singular stress at the crack tip. In addition, note that
this crack can easily (ie. without altering the models) be moved along the right side
of the square, which is another major operational advantage of the approach, when
compared to more classical ones.

4.2. How to choose the glue zone ?

The glue zone stands for the zone where the two models are linked to one another.
This zone must therefore be chosen so that the two models are mechanically compat-
ible in it, viz. each of them can represent the mechanical phenomenon we want to
simulate. The choice of the glue zone is essential when a defect is introduced in only
one element (see numerical example 4.5). To work properly, the defect must be small
in relation with the size of the element and the glue zone must be far enough from it,
where the related perturbation can be neglected.

4.3. Need of an elaborated numerical integration

To illustrate the need to use a somewhat elaborated quadrature strategy, we con-
sider the previous numerical example. The weight is given to the cracked model
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