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Abstract

This paper develops a method of stability analysis of linear time-delay systems
with commensurate delays and delay-dependent coefficients. The method is based
on a D-decomposition formulation that consists of identifying the critical pairs
of delay and frequency, and determining the corresponding crossing directions.
The process of identifying the critical pairs consists of a magnitude condition and
a phase condition. The magnitude condition utilizes the Orlando’s formula, and
generates frequency curves within the delay interval of interest. Such frequency
curves correspond to the the delay-frequency pairs such that the decomposition
equation has at least one solution on the unit circle. The delay interval of inter-
est is divided into continuous frequency curve intervals (CFCIs). Under some
non-degeneracy assumptions, the number of frequency curves remains constant
within each CFCI, and the associated decomposition equation has one and only
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one solution on the unit circle at any point on a frequency curve. By travers-
ing through the frequency curves, all the crossing points can be identified. The
crossing direction is related to the sign of the lowest-order nonzero derivative of
the phase angle with respect to the delay, which is a generalization of the exist-
ing literature even for the case with single delay. This conclusion allows one to
determine the crossing direction by examining the phase angle vs delay diagram.
An example is presented to illustrate how a stability analysis can be conducted
if some non-degeneracy assumptions are violated.

Keywords: Stability, differential-difference equations, time-delay systems,
delay-dependent coefficients, commensurate delays

1 Introduction

This paper develops a method of analyzing stability of linear time-delay systems
described by differential-difference equations with commensurate delays and delay-
dependent coefficients. The corresponding characteristic equation has the following
general form

D(λ, τ) =

M∑
k=0

Pk(λ, τ)e
−kλτ = 0, (1)

where Pk(λ, τ) for each given k is continuous with respect to the delay τ and is a
polynomial of the Laplace transform variable λ with real coefficients for any given
τ ∈ [τ l, τu]. Such a system may arise from various scientific disciplines, such as pop-
ulation models with age structure [3], the stellar dynamos [40], and hematopoiesis
dynamics [9]. The delay parameter in the coefficients may also arise from approximat-
ing derivative action by finite-difference in feedback control [23, 24, 36–38] (especially,
see [29] for an example of commensurate delay approximation of derivative in feed-
back control), linearization of nonlinear models about equilibria that depend on the
delay, and the problem of requiring guaranteed exponential convergent rate as will be
shown in Section 2.

In spite of their practical importance, most existing approaches in the literature
only consider systems with coefficients of the characteristic quasipolynominal inde-
pendent of the delay. A notable exception is due to Berreta and Kuang [3], where
an effective method was developed to determine stability of systems with a single
delay and delay-dependent coefficients. In [20], this was generalized to a wider-class
of systems, and the structure of the set of critical delay-frequency pairs are clearly
described.

In [21], which may be considered as a preliminary version of this paper, the results
of [20] are extended to the case of commensurate delays. In addition, the crossing direc-
tion analysis has been extended from the case that uses only the first-order derivative
to the case where higher-order derivatives are needed, which is a generalization even
for the single delay case. The analysis in [21] was based on some assumptions that turn
out to be either overly restrictive or unnecessary, and some proofs are either omitted
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or only sketched. No procedure is given for the calculations of some quantities used in
the stability analysis.

In this paper, a more careful analysis allows us to show the implications of the four
nondegeneracy assumptions. As a result, some assumptions in [21] are either relaxed
or eliminated. The resulting process for stability analysis is simpler and more paral-
lel to the single delay case. Complete proofs are provided and made more rigorous,
and procedure of calculating the quantities needed for stability analysis are provided.
Specifically, Assumptions II, III and IV in [21] are relaxed to Assumptions II, IV and
III in this paper. In the analytical crossing direction analysis, Assumption IIIa is intro-
duced, and its relationship with Assumption III, which parallels the single delay case,
is presented. A new theorem (Theorem 1) has been introduced, which made Assump-
tion V in [21] unnecessary. This also made the stability analysis process described
Section 3 of this paper simpler and more parallel to the single delay case given in
[20]. An important basis of establishing Theorem 1 is understanding the cases where
no unit circle solution exists even though the Orlando magnitude equation is satisfied
(see the discussions after Lemma 2 and Examples 1, 2 and 3). In the crossing direction
analysis described in Section C of [21], only a sketch for the proof of the main result,
Theorem 1, was provided, and the proof for Proposition 3 (which supports Theorem
1) was omitted. Furthermore, no procedure for the calculation of the quantities in
Theorem 1 was provided. In this paper, the presentation of crossing direction analysis
has been reorganized, the proofs are provided and made more rigorous. Four appen-
dices have been introduced to provide background, cover technical details, and provide
procedure of calculting quantifies necessary for crossing direction analysis. Additional
observations are made to facilitate the analysis, including the possibility of making
judgement of crossing direction by observing the crossing of r2π lines by the phase vs
delay diagram (see Corollary 2), and invariance of two quantities used in the analysis
(see Proposition 1).

In the following, we will provide a more extensive review of the background
literature and highlight the new results in this paper and their significance.

1.1 D-decomposition

D-decomposition method [10] is a very effective method in the stability analysis of
time-delay systems. The method is based on identifying the set of parameters, which
we call stability crossing set [14], for which there is at least one characteristic root
on the imaginary axis. In most practical cases, the characteristic roots depend on the
parameters continuously. As a result, the stability crossing set divides the parameter
space into regions with fixed number of characteristic roots on the right half-plane
(RHP). By determining the direction the characteristic roots cross the imaginary axis,
the number the RHP characteristic roots in each such region can be determined,
especially, the parameter regions where there is no RHP characteristic root (thus the
system is stable) can be identified.

When the parameter concerned is the delay, the D-decomposition method is also
known as the τ -decomposition method [27]. Due to periodic nature of the exponential
function with imaginary exponent, significant complication may arise as compared
with D-decomposition problem where no delay parameter is involved.
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1.2 System with single delay and delay-dependent coefficients

In [3], the crossing direction in a neighborhood of a crossing pair was studied. In [20],
an assumption in [3] was relaxed, and a method of searching all critical pairs was
developed. In the following, we will outline the main idea of the method developed in
[20] using a slightly different notation and terminology in order to make its relationship
with the current paper more clear. For a system with characteristic equation

D(s)(λ, τ) = P (λ, τ) +Q(λ, τ)e−λτ = 0, (2)

using the same principle as used in [39] for the single delay case, the critical pairs
(ω, τ) may be identified by using a magnitude condition

F(s)(ω, τ) = P (jω, τ)P (−jω, τ)−Q(jω, τ)Q(−jω, τ) = 0 (3)

and a phase condition

∠θ(s)(ω, τ) = ∠P (jω, τ)− ∠Q(jω, τ) + ωτ + π = 2rπ. (4)

Under nondegeneracy assumptions, the interval of interest T may be divided into
subintervals T (i) = [τ (i−1), τ (i)], which will be called Continuous Frequency Curve
Intervals (CFCIs) in this paper. The dividing points τ (i), i = 1, 2, . . . ,K − 1 satisfy

∂ωF(s)(ω, τ) = 0 (5)

for some ω. The number of real solutions of (3) for ω remains constant within the

interior of each subinterval T (i), and these solutions are continuous functions ω
(i)
k (τ),

k = 1, 2, . . . ,m(i) of τ . By traversing through these curves, all the critical pairs can be
identified by using the phase condition (4).

1.3 System with multiple delays

Many practical systems have multiple delays. Such systems have a characteristic
equation of the form

D(λ) =

M∑
k=0

Pk(λ)e
−τ(k)λ = 0, (6)

where Pk(λ) are polynomials. Earlier studies consider systems with two delays. See
[16, 32, 34] for the special case of Pk(λ) =constant, [35, 42] for two studies of the gen-
eral case, [15] for a complete description of the problem structure and a procedure of
stability analysis. When the coefficient polynomials Pk also depend on the delays, [1]
extended the method in [15] to an interesting special class of such systems. Unfortu-
nately, a thorough analysis of such systems with more than two delays becomes much
more complicated [5, 11, 14] .
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1.4 System with commensurate delays

In some systems, the delays τ(k) in (6) are constrained to be commensurate, i.e.,
τ(k) = kτ for some τ > 0. Such systems arise naturally in practice, such as from using
more than two terms to more accurately approximate derivatives in feedback control
[38] and from multivariable differential-difference equations with a single delay as will
be shown in Section 2. The stability analysis for such systems with delay-independent
coefficients has been carried out in, for example, [6, 7, 18, 19, 39].

This paper considers the stability analysis of systems with commensurate delays
and delay-dependent coefficients. Similar to the single delay case discussed in [20],
the conditions for the critical pairs consist of a magnitude condition and a phase
condition. However, the magnitude condition is defined implicitly by requiring the
following equation

M∑
k=0

Pk(jω, τ)x
k = 0 (7)

to have at least one solution on the unit circle. The phase condition is expressed in
terms of the phase angles of such unit circle solutions.

A method to write the magnitude condition in an explicit form is to apply the
Orlando’s formula [22, 33], which is presented in Appendix A. However, a number
of complications arise: 1) There may be cases that such explicit form of magnitude
condition is satisfied, but the equation (7) does not have any solution on the unit
circle; 2) The equation (7) may have more than one solutions on the unit circle. To
circumvent these complications, some assumptions are made regarding the invariance
of unit circle solutions of (7) in [21], which may be considered as a preliminary verison
of this paper. In this paper, it was shown that the nondegeneracy assumptions imply
that the explicit form of magnitude condition guarantees that the equation (7) has
one and only one solution on the unit circle when the delay is restricted to the interior
of any CFCI. This significantly simplified the structure of the problem. As a result, it
is possible to make the solution process more parallel to the single delay case.

In addition, this paper also generalized the analytical crossing condition from the
case that can be determined by the first-order derivative to the one that requires
higher-order derivatives.

Arriving at these results depends on an analysis of the derivatives of polynomial
roots with respect to parameters which may be constrained by another equation. Such
analysis is more subtle, and requires some additional tools as compared with [20]. For
example, when a multiple solutions of polynomial is concerned, a puiseux series [25, 26]
is needed for such analysis, and a higher-order derivatives of one variable with respect
to one or more other variables defined by implicit function relations are needed.

1.5 Outline of the paper

Section 2 sets up the problem, defines the magnitude and phase conditions, introduces
the nondegeneracy assumptions, and discusses the implications of these assumptions.
Section 3 discusses the stability analysis, including the description of continuous fre-
quency curves and continuous frequency curve intervals, the determination of critical
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pairs, the crossing directions, culminating in the determination of stable delay inter-
vals. Section 4 presents an analytical method to determine the crossing direction of
critial pairs that generalizes the existing results to one that may require higher-order
derivatives, and relate the crossing direction of the characteristic roots at the imagi-
nary axis to that of the phase angle as a function of delay at some designated horizontal
lines. Some invariant results are also presented. Section 5 presents some illustrative
examples, including one that illustrates the stability analysis of a system that violates
some nondegeneracy assumptions. Section 6 presents some conclusions of this paper
and potential further research. Four appendices are included to provide supplemen-
tary materials. Appendix A presents the Orlando’s formula. Appendix B discusses
the derivatives of one variable with respect to one or more other variables defined by
implicit functions. Appendix C discusses the derivatives of phase angle as a function
of delay. Appendix D presents the proof of one of the main theorems (Theorem 2).

1.6 Notation

For a complex number c, R(c), I(c) and c denote its real part, imaginary part and
complex conjugate, respectively. The unit circle in the complex plane is denoted by S.
R stands for the set of real numbers, R+ for positive reals, and R̄+ for nonnegative
reals. For a function defined in a closed interval, say [a, b], its derivatives at a and b
are understood as the right and left derivative, respectively. We sometimes use ∂ with

a subscript to denote partial derivatives. For instance, ∂λD(λ, τ) := ∂D(λ,τ)
∂λ . For a

function with two variables, we may write one variable as a subscript to indicate that
we consider this variable as a fixed parameter. For example, if D(λ, τ) is continuous
function of τ and polynomial of λ, then Dτ (λ) = D(λ, τ). With this notation, we can
sayDτ (λ) is a polynomial. Similarly, for a function of three variables such as Φ(ω, τ, x),
then Φωτ (x) = Φ(ω, τ, x), but we consider Φωτ (x) as a function of x, and ω and τ as
fixed parameters. For a function of single variable f(x), its derivative is denoted by
f ′(x). For a polynomial P (λ), its degree is denoted as deg(P )1.

2 Systems with commensurate delays

Consider a system represented by a multivariable differential-difference equation with
the characteristic equation given in the equation (1), where each Pk(λ, τ) is continuous
with respect to the delay τ and is a polynomial of the Laplace transform variable
λ with real coefficients for any given τ ∈ T , and T = [τ l, τu] is the delay interval
of interest. For a τ ∈ T , let Nu(τ) be the number of characteristic roots of (1) on
the strict RHP for the given τ . We assume Nu(τ l) is known (well-known methods
such as the one given in [39] may be used to determine this). Our objective is to find
the set of τ contained in T for which the system with characteristic equation (1) is
asymptotically stable.

The characteristic equation given in (1) has commensurate delays and delay-
dependent coefficients. As indicated in the introduction, this form of characteristic
equation appears frequently in practical systems. As a specific example, consider a

1This was denoted as “ord(P )” representing the order of the polynomial in [20, 21]. We now use the term
“degree” instead to avoid potential ambiguity.
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system represented by the following multi-variable differential-difference equation,

ẋ(t) = A1(τ)x(t) +A2(τ)x(t− τ),

where A1 and A2 are real matrices that depend on τ . It is easily verified that its char-
acteristic equation is indeed of the form (1) with M equal to the dimension of x. Note
that in this case commensurate delays may appear in the corresponding characteris-
tic equation even though there is only one delay in the original differential-difference
equation. In addition, characteristic equations with delay-dependent coefficients may
arise from the α-stability analysis of systems with delay-free coefficients. Consider a
system with the characteristic equation [6], [18]:

λ+ e−τλ + e−2τλ = 0. (8)

The system is said to be α-stable if the real parts of all the roots of (8) are less than
−α. Replacing λ with λ− α in (8), we obtain

λ− α+ eατe−τλ + e2ατe−2τλ = 0. (9)

It is easy to see that the α-stability of the system with characteristic equation (8)
is equivalent to the asymptotic stability of the system with characteristic equation
(9), which has delay-dependent coefficients, even though the coefficients of (8) are
independent of the delay τ .

It is instrumental to define

Φ(ω, τ, x) =

M∑
k=0

Pk(jω, τ)x
k, (10)

and

Ψ(ω, τ, x) =

M∑
k=0

Pk(−jω, τ)xM−k. (11)

According to the definition,

D(jω, τ) = Φ(ω, τ, e−jωτ ). (12)

Then the following lemma is obvious.
Lemma 1. The characteristic equation (1) has a solution for λ on the imaginary
axis, i.e.,

Dτ (jω) = 0 (13)

for some ω ∈ R if and only if
Φωτ (x) = 0, (14)
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or equivalently,
Ψωτ (x) = 0, (15)

has a solution on the unit circle x ∈ S such that

∠x = −ωτ + r2π (16)

for some integer r.

Proof. The equations (14) with x ∈ S and (16) are equivalent to (13) in view of (12).
Therefore, it is sufficient to show that (14) and (15) are equivalent for x ∈ S. Take
complex conjugate of (14), multiply the resulting equation by xM and observe that
x̄ = x−1 when x ∈ S, we obtain (15). This process is reversible.

A crucial step in carrying out the τ -decomposition process is to identify all the pairs
(ω, τ) ∈ R+ × T such that (13) is satisfied. Parallel to the single delay case discussed
in [20], Lemma 1 decomposes the requirement (13) into two parts: the magnitude
condition (i.e., (14) is satisfied for some x ∈ S) and the phase condition (16). Because
of its role in the decomposition to the magnitude condition and the phase condition,
the equation (14) will be referred to as the decomposition equation. Similarly, the
equation (15) will be referred to as the alternate decomposition equation.

While the magnitude condition in the single delay case is very simple, the commen-
surate delay counterpart discussed here is defined implicitly. Fortunately, an explicit
condition is still possible by utilizing the Orlando’s formula, which is restated in
Appendix A. Define the Schur-Cohn-Fujiwara matrix [6, 7, 18, 19],

Θ(ω, τ) = ΨH(ω, τ, S)Ψ(ω, τ, S)− ΦH(ω, τ, S)Φ(ω, τ, S), (17)

where a supercriptH represents conjugate transpose of the matrix, and S is theM×M
shift matrix defined in (A4) in Appendix A. Define

F (ω, τ) = −detΘ(ω, τ). (18)

Then the magnitude condition can be expressed in terms of F in view of the following
lemma.
Lemma 2. If ω and τ are such that

PM (jω, τ) ̸= 0, (19)

then

F (ω, τ) = − |PM (jω, τ)|2M
M∏
i=1

M∏
k=1

(1− xΦix̄Φk), (20)

where xϕi, i = 1, 2, . . . ,M are the M solutions of the decomposition equation (14). If
ω and τ satisfy

P0(jω, τ) ̸= 0, (21)
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then

F (ω, τ) = (−1)M+1 |P0(jω, τ)|2M
M∏
i=1

M∏
k=1

(1− xΨix̄Ψk), (22)

where xΨi, i = 1, 2, . . . ,M are the M solutions of the alternate decomposition equation
(15).

Proof. The expression (20) is obtained by applying the Orlando’s formula given in
Appendix A to the polynomial Φωτ (x). The expression (22) is obtained by applying
the Orlando’s formula to the polynomial Ψωτ (x).

It is immediately clear from Lemma 2 that

F (ω, τ) = 0 (23)

whenever the decomposition equation (14) admits a solution on the unit circle unless
both PM (jω, τ) and P0(jω, τ) vanish. We will refer to (23) as the Orlando magnitude
equation.

Suppose that either (19) or (21) is satisfied. It is still possible for the Orlando
magnitude equation (23) to be satisfied even if the decomposition equation (14) has
no solution on the unit circle. This case arises when there are two solutions xi and xk

of (14) (when PM (ω, τ) ̸= 0) or (15) (when P0(ω, τ) ̸= 0) that are on the same radial
line and their magnitudes are reciprocal of each other:

|xi| = 1/ |xk| , (24)

∠xi = ∠xk + r2π, r integer. (25)

The above can be easily seen from (20) and (22).
We will introduce some assumptions in order to avoid some degenerate cases and

present our approach within a limited amount of space. The cases that violate one
or more assumptions can usually be treated individually based on the same principle
presented here. An example will be presented in Section 5.

Assumption I. For all τ ∈ T ,

deg(P0τ ) = n, (26)

deg(Pkτ ) ≤ n, k = 1, 2, · · · ,M. (27)

Furthermore, all the roots of the following equation

sM + c1τs
M−1 + c2τs

M−2 + · · ·+ cM−1,τs+ cM = 0 (28)

satisfy |s| < 1, where

ckτ = lim
λ→∞

Pkτ (λ)

P0τ (λ)
, k = 1, 2, . . . ,M.
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Assumption II. No (ω, τ) ∈ R× T simultaneously satisfies

PM (jω, τ) = 0, (29)

and

P0(jω, τ) = 0. (30)

Assumption III. Any (ω∗, τ∗) ∈ in R+ × T that satisfies (13) must also satisfy

∂λD(λ, τ)|λ=jω∗,τ=τ∗ ̸= 0. (31)

Furthermore, let λ(τ) be the unique function implicitly defined by (1) in a sufficiently
small neighborhood of τ∗ taking value within a small neighborhood of jω∗, then

R(λ(τ)) ̸= 0 for all τ ̸= τ∗ (32)

in this small neighborhood.
Assumption IV. There are only a finite number of (ω, τ) ∈ R+ × T that

simultaneously satisfy the Orlando magnitude equation (23) and the following equation

∂ωF (ω, τ) = 0. (33)

In the remaining part of this paper, these four nondegeneracy assumptions will be
assumed to be satisfied unless specifically pointed out.

The above four assumptions parallel those for the single delay case given in [20].
Indeed, Assumption I assures that τ -decomposition is applicable. In this assumption,
(28) is the difference equation associated with the system (1). When the system is of
retarded type [12, 17], (27) is satisfied with strict inequality because ckτ = 0, k =
1, 2, . . .M , and the assumption is automatically satisfied. When the system is of neutral
type [12, 17], the assumption implies that there exists an ε > 0 such that only a
finite number of characteristic roots of the system (1) are on the right hand side of
the vertical line R(λ) = −ε, and they are continuous functions of τ [12]. It should be
pointed out that the assumption Pk(λ, τ), k = 0, 1, . . . ,M be continuous with respect
to τ is essential. Indeed, [28] gives an example that a characteristic root may suddenly
appear on the positive real axis when the characteristic quasipolynomial depends on
1
τ (and thus discontinuous at τ = 0).

Assumption II implies that the Orlando magnitude equation (23) is satisfied for
all the pairs (ω, τ) such that the decomposition equation (14) has at least one root on
the unit circle. Violation of this assumption would require two real variables ω and
τ to satisfy two complex equations (29) and (30), which are equivalent to four real
equations. Therefore, it is indeed rare that this assumption would be violated.

Assumption III means that all imaginary roots of Dτ (λ) are simple, and the curve
λ(τ) intersects with the imaginary axis only at one point λ(τ∗) in a small neighborhood
of τ∗. When D(λ, τ) is differentiable with respect to τ , then a sufficient condition for
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the assumption is
R(λ′(τ∗)) ̸= 0. (34)

Assumption IV is a very minor restriction. Similar to the single delay case, F (ω, τ)
is an even polynomial function of ω for any given τ . If the pair (ω, τ) satisfies both
(23) and (33), then ω is a multiple root of this polynomial.

The following theorem plays an important role in simplifying stability analysis.
Theorem 1. Let (ω, τ) ∈ R×T satisfy the Orlando magnitude equation (23) and the
following equation

∂ωF (ω, τ) ̸= 0. (35)

Then, there is one and only one root of Φωτ (x) on the unit circle, and this root is
simple.

Proof. Let (ω∗, τ) ∈ R× T satisfy (23) and assume PM (jω∗, τ) ̸= 0. It is sufficient to
show that (35) must be violated if Φω∗τ (x) has either one of the following two types
of roots:

I) At least two roots are on the unit circle;
II) Two roots xi, xk that are not on the unit circle, and satisfy (24) and (25).

We will first show Case I). This case can be further divided to two subcases:
Ia) At least two simple roots are on the unit circle;
Ib) There is a multiple root on the unit circle.
For Case Ia), according to the equation (20) in Lemma 2, we may write

F (ω, τ) = R(ω, τ)(1− xix̄i)(1− xkx̄k), (36)

where R(ω, τ) is continuous, and xi and xk are continuously differentiable with respect
to ω at ω∗. Furthermore,

x∗
i = xi(ω

∗), x∗
k = xk(ω

∗)

satisfy
x∗
i x̄

∗
i = x∗

kx̄
∗
k = 1. (37)

Apply Lemma 4 in Appendix B, we conclude that F is differentiable with respect to
ω at ω∗, and

∂ωF (ω∗, τ) = R(ω∗, τ)
d

dω
[(1− xix̄i)(1− xkx̄k)]xi=x∗

i ,xk=x∗
k

= R(ω∗, τ){(1− x∗
i x̄

∗
i )[−x′

k(ω
∗)x̄k(ω

∗)− xk(ω
∗)x̄′

k(ω
∗)]

+[−x′
i(ω

∗)x̄i(ω
∗)− xi(ω

∗)x̄′
i(ω

∗)](1− x∗
kx̄

∗
k)}

= 0

in view of (37).
For Case Ib), let the root x = x0 ∈ S have multiplicity p when ω = ω∗. Then,

for ω = ω∗ + ε, the multiple root splits into p roots, and, from the equation (20) in
Lemma 2,

F (ω, τ) = S(ω, τ)

p∏
i=1

p∏
k=1

(1− xix̄k), (38)
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where S (ω, τ) and xi, i = 1, 2, . . . p are continuous. In general, these xi’s are not
differentiable with respect to ω at ω∗. Indeed[25, 26], they can be expressed using
puiseux series as

xk = x0 + ckε
1/p + o(ε1/p), k = 1, 2, . . . p, (39)

where ck, k = 1, 2, . . . , p are complex constants. It can be calculated that,

1− xix̄k = 1− (x0 + ciε
1/p + o(ε1/p))(x0 + ckε1/p + o(ε1/p))

= 1− x0x̄0 − (x0c̄k + x̄0ci)ε
1/p + o(ε1/p)

= −(x0c̄k + x̄0ci)ε
1/p + o(ε1/p).

Therefore,

F (ω, τ) = S(ω, τ)

p∏
i=1

p∏
k=1

(1− xix̄k)

= S(ω, τ)(cΠε
p + o(εp)),

where

cΠ =

p∏
i=1

p∏
k=1

(−x0c̄k − x̄0ci). (40)

As a result,

∂ωF (ω, τ) = lim
ε→0

S(ω, τ)(cΠε
p + o(εp))

ε
= 0.

For case II), we will only show the case where both xi and xk are simple. The case
with multiple roots can be shown in a way similar to Case Ib). Similar to the case Ia),
we may again write, from the equation (20) in Lemma 2,

F (ω, τ) = Q(ω, τ)(1− xix̄k)(1− xkx̄i), (41)

where Q(ω, τ) is continuous, and xi and xk are differentiable at ω = ω∗, and xi(ω
∗) =

x∗
i , xk(ω

∗) = x∗
k satisfy

x∗
i x̄

∗
k = x∗

kx̄
∗
i = 1. (42)

Apply Lemma 4 in Appendix B, we again conclude that F is differentiable with respect
to ω at ω∗, and

∂ωF (ω∗, τ) = Q(ω∗, τ){(1− x∗
i x̄

∗
k)[−x′

k(ω
∗)x̄i(ω

∗)− xk(ω
∗)x̄′

i(ω
∗)]

+[−x′
i(ω

∗)x̄k(ω
∗)− xi(ω

∗)x̄′
k(ω

∗)](1− x∗
kx̄

∗
i )}

= 0.

Finally, if PM (jω, τ) = 0, then P0(jω, τ) ̸= 0 per Assumption II. The proof
proceeds similarly using the expression (22) instead of (20).
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In the following examples, the equation (23) is satisfied, but the condition (35) in
Theorem 1 is violated for the given ω and τ . According to the theorem above, Φωτ (x)
cannot have one and only one simple root on the unit circle. They illustrate a number
of possible scenarios.
Example 1. Consider the characteristic equation (1) with

P0 = −0.6τ + 0.8λ, P1 = −0.9τ − 1.8λ, P2 = 1.

At ω = 1 and τ = 1, Φωτ (x) has no root on the unit circle. However, it has two roots
x1 = 0.4 + 0.8j and x2 = 0.5 + j satisfying (24) and (25).
Example 2. Consider the characteristic equation (1) with

P0 = −2τ, P1 = 1− λτ, P2 = λτ.

At ω = 2 and τ = 0.5, Φωτ (x) has two distinct simple roots x1 = 1 and x2 = j on the
unit circle.
Example 3. Consider the characteristic equation (1) with

P0 = λτ, P1 = −
√
2−

√
2λτ, P2 = 0.64τ2.

At ω = 0.8 and τ = 1.25, Φωτ (x) has a double root x1 = x2 =
√
2
2 +

√
2
2 j on the unit

circle.

3 Stability analysis

Due to Theorem 1, the general process of stability analysis for systems with com-
mensurate delay can be made parallel to the one for the single delay case. The first
step of the process is to determine the critical delay corresponding to the imaginary
characteristic roots. These critical delays divide the delay interval of interest T into
subintervals. The number of characteristic roots on the RHP is fixed for τ to be within
each such subinterval. The second step is to determine the increment of RHP roots
at each critical delay. This will allow us to determine the number of RHP roots for
each delay subinterval, especially, those delay subintervals without RHP roots can be
identified, and the stability analysis is complete.

3.1 Determination of critical delays

The first step of our analysis is to identify all τ values such that the characteristic
equation has at least one imaginary root.

Recall that if λ = jω is an imaginary root of Dτ (λ), ω must be a real root of Fτ (ω).
Therefore it is natural to expect that the real roots of Fτ (ω) will play an important
role in the analysis. We first show that T can be decomposed into disjoint intervals in
which the number of real roots of Fτ (ω) is invariant.

Let τ (i) ∈ T , i = 1, 2, . . .K − 1 be the set of τ ∈ T such that the equations (23)
and (33) are simultaneously satisfied by such an τ and some ω ≥ 0 (as Fτ (ω) is an

13



even function of ω, it is sufficient to restrict ourselves to studying ω ≥ 0). Arrange
this set in ascending order,

τ (1) < τ (2) < · · · < τ (K−1),

and write τ (0) = τ l, τ (K) = τu. Then, the interval T can be divided intoK subintervals

T (i) = [τ (i−1), τ (i)], i = 1, . . . ,K. (43)

Each subinterval T (i) is known as a continuous frequency curve interval (CFCI). It has

been shown in Proposition 1 of [20] that, for all τ within T (i)
o , the interior of the CFCI

T (i), Fτ (ω) admits a fixed number of simple real roots. These roots are continuous

functions of τ , denoted as ω
(i)
k (τ), k = 1, 2, ...,m(i), and are known as frequency curves.

The definition of these continuous functions (and the frequency curves) is extended to
T (i) by requiring them to be continuous at τ (i−1) and τ i.

For any τ ∈ T (i)
o , Theorem 1 implies that the decomposition equation

Φ
ω

(i)
k (τ),τ

(x) = 0 (44)

has one and only one solution on the unit circle. This has two important implications:

First, the pair (ω
(i)
k (τ), τ) satisfies the magnitude condition. Second, there is no need

to consider more than one solutions of the decomposition equation (44) on the unit
circle.

Let the unique unit circle solution of the decomposition equation (44) be denoted

as z
(i)
k (τ), then z

(i)
k (τ) is a continuous function of τ , and we can extend its definition

to the entire CFCI by requiring the function z
(i)
k (τ) to be continuous at the two ends

of T (i).
Define

θ
(i)
k (τ) = ∠z(i)k (τ) + ω

(i)
k (τ)τ, (45)

where ∠z(i)k (τ) is the phase angel of the complex number z
(i)
k (τ) and is required to

be a continuous function of τ in T (i). Notice, the value of ∠z(i)k (τ) is not necessarily
restricted to any 2π interval due to continuity requirement.

Using Lemma 1, we obtain the following result immediately.
Corollary 1. For any given i, a pair (ω∗, τ∗) ∈ R̄+ × T (i) satisfies (13) if and only

if there exist some index k such that ω∗ = ω
(i)
k (τ∗) and

θ
(i)
k (τ∗) = 2rπ (46)

for some integer r.

Going through each interval T (i) and traversing through each curve ω
(i)
k (τ), k =

1, 2, . . . ,m(i), within T (i), we may identify all τ∗ = τl, l = 1, 2, . . . , L such that (46)
holds for some integer r and indices k and i. Each such τl is known as a critical

14



delay. For each given critical delay τl, it is possible that (46) is satisfied for more than
one k. Denote these k’s as kh, h = 1, 2, . . . ,Hl. Then we denote the corresponding

ω
(i)
kh
(τl) ≥ 0 as ωlh, h = 1, 2, . . . ,Hl. In this way we can identify all the pairs (ωlh, τl),

h = 1, 2, . . . ,Hl; l = 1, 2, . . . , L, that satisfy (13).

3.2 Determination of stable delay intervals

We now describe the second step of stability analysis mentioned at the beginning of
the section. Under Assumption III, Equation (1) defines an implicit function λ(τ) in a
small neighborhood of τl, and λ(τ) lies in a small neighborhood of jωlh, and satisfies
(32) for τ ̸= τl.

If τl ̸= τ l, define

Inc(ωlh, τl) = lim
ϵ→0+

sgn (R (λ(τl + ϵ)))− sgn (R (λ(τl − ϵ)))

2
. (47)

Due to Assumption III, possible values of Inc(ωlh, τl) are −1, 0, and 1. When
Inc(ωlh, τl) = 1, a characteristic root moves from left half-plane (LHP) to RHP
through jωlh on the imaginary axis. The movement is in the opposite direction if
Inc(ωlh, τl) = −1. The root touches the imaginary axis and returns to the same side
of the imaginary axis without crossing it if Inc(ωlh, τl) = 0.

If τl = τ l, which implies τl = τ1, define instead

Inc(ω1h, τ1) = max{0, lim
ϵ→0+

sgn (R (λ(τ1 + ϵ)))}. (48)

Now let the number of RHP roots of Dτ (λ) be Nu(τ). For any τ ∈ T , τ ̸= τl,
l = 1, 2, . . . , L, it is easy to see that the following relation holds:

Nu(τ) = Nu(τ l) +

Lτ∑
l=1

Inc(τl), (49)

where Lτ = max{l | τl < τ} and

Inc(τl) = 2

Hl∑
h=1

Inc(ωlh, τl). (50)

The coefficient 2 in the above equation is due to the fact that the crossing direction is
the same at jωlh and −jωlh. The subintervals of T corresponding to Nu(τ) = 0 can be
determined. These subintervals of T give the set of τ corresponding to stable system.

4 Crossing direction analysis

In the last section, we have described a process of determining the set of τ for the
system to be asymptotically stable within the given interval of interest T = [τ l, τu]
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provided that Inc(ω∗, τ∗) can be determined for any given critical pair (ω∗, τ∗). A
critical pair is one that satisfies

D(jω∗, τ∗) = 0. (51)

In general, Inc(ω∗, τ∗) may be determined by a numerical method. It is, however,
obviously of interest to use an analytical method. This is the focus of this section.
For this purpose, we first replace Assumption III by one that can be easily verified
analytically.

Assumption IIIa. The pair (ω∗, τ∗) satisfies (51), D(λ, τ) is differentiable with
respect to τ up to Nth order in a neighborhood of (jω∗, τ∗). Furthermore,

∂ωF (ω∗, τ∗) ̸= 0. (52)

It should be pointed out that Assumption IIIa is not equivalent to Assumption
III. For the single delay case, it was shown in Lemma 1 of [20] that the last part of
Assumption IIIa implies the first part of Assumption III. The following lemma shows
that this is also true for the commensurate delay case.
Lemma 3. Suppose (ω∗, τ∗) satisfies (51), and D(λ, τ) is differentiable with respect
to τ in a neighborhood of (jω∗, τ∗). If it satisfies the condition (52) in Assumption
IIIa, then it also satisfies the condition (31) in Assumption III.

Proof. It is sufficient to show that if (31) is not satisfied, then (52) is not satisfied. In
other words, we only need to show that

∂λD(jω∗, τ∗) = 0, (53)

implies
∂ωF (ω∗, τ∗) = 0. (54)

Let (53) be satisfied. First, assume PM (jω∗, τ∗) ̸= 0. Consider the decomposition
equation

Φωτ∗(x) =

M∑
k=0

Pk(jω, τ
∗)xk = 0. (55)

The equation (51) means that, for ω = ω∗, the polynomial equation (55) has a solution
x∗ = e−jω∗τ∗

. If x∗ is a multiple root of Φω∗τ∗(x), then (54) is satisfied according to
Theorem 1. It remains to be shown that (54) is satisfied when x∗ is a simple root of
Φω∗τ∗(x).

For ω sufficiently close to ω∗, let

ε = −D(jω, τ∗) = −Φωτ∗(e−jωτ∗
). (56)

Then, (51) and (53) imply that jω∗ is a multiple root of Dτ∗(jω). It follows that

lim
ω→ω∗

ε

ω − ω∗ =
dε

dω

∣∣∣∣
ω=ω∗

= −j
dDτ∗

dλ

∣∣∣∣
λ=jω∗

= 0. (57)
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Equation (56) can be written as

P0(jω, τ
∗) + ε+

M∑
k=1

Pk(jω, τ
∗)x̂k = 0, (58)

where
x̂ = e−jωτ∗

. (59)

Comparing the equations (58) and (55), the two polynomial equations differ by a small
parameter ε in the constant term. Therefore, there is a solution of (55)

x = x̂+ δ, (60)

where δ is small. Furthermore, as x is a simple root of Φωτ∗(x), δ is also differentiable
with respect to ε. Therefore

lim
ε→0

∣∣∣∣δε
∣∣∣∣ < ∞. (61)

Applying Lemma 2 to Φω∗τ∗(x∗) and Φωτ∗(x), we obtain

F (ω∗, τ∗) = 0, (62)

and
F (ω, τ∗) = Q(ω, τ∗)(1− xx̄), (63)

where Q(ω, τ∗) is continuous. But

1− xx̄ = 1− (x̂+ δ)(x̂+ δ)

= 1− |x̂|2 − x̂δ −
(
x̂δ̄
)
− δδ̄

= −x̂δ̄ −
(
x̂δ̄
)
− δδ̄. (64)

Therefore,

∂ωF (ω∗, τ∗) = lim
ω→ω∗

−Q(ω, τ)
[
x̂δ̄ +

(
x̂δ̄
)
+ δδ̄

]
ε

ε

ω − ω∗

= 0 (65)

in view of (61) and (57). In other words, (54) is satisfied.
If PM (jω∗, τ∗) = 0, then P0(jω

∗, τ∗) ̸= 0 due to Assumption II. We may consider
Ψωτ∗(x) instead of Φωτ∗(x), and the proof proceeds similarly.

Under Assumption IIIa, the above lemma indicates that the equation

D(λ, τ) = 0 (66)
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defines a unique function λ(τ) when τ is in a sufficiently small neighborhood of τ∗,
and λ is restricted to a small neighborhood of jω∗. This function is differentiable up
to Nth order. Furthermore, if for some m ≤ N ,

R
(
dkλ(τ∗)

dτk

)
= 0, k = 1, 2, . . .m− 1, (67)

R
(
dmλ(τ∗)

dτm

)
̸= 0, (68)

and τ∗ > τ l, then

Inc(ω∗, τ∗) =

{
sgn

(
R
(dmλ(τ∗)

dτm

))
, if m is odd,

0, if m is even.
(69)

If τ∗ = τ l instead, then

Inc(ω∗, τ∗) = max

{
0, sgn

(
R
(
dmλ(τ∗)

dτm

))}
. (70)

In view of the above discussions, calculating m and sgn
(
R
(dmλ(τ∗)

dτm

))
is critical

in the determination of the crossing direction of characteristic roots. In [20], the case
with single delay and m = 1 was solved. The following theorem generalizes the result
to the commensurate delay case with m ≥ 1.
Theorem 2. Let Assumption IIIa be satisfied. For all τ in a sufficiently small neigh-
borhood of τ∗, let (ω(τ),θ(τ)) be the unique solution in a small neighborhood of
(ω∗, 2rπ) to the equation

Φ(ω, τ, ej(θ−ωτ)) = 0, (71)
and let λ(τ) be the unique solution in a small neighborhood of jω∗ to the equation
(66). If

dkθ(τ∗)

dτk
= 0, k = 1, 2, . . .m− 1, (72)

dmθ(τ∗)

dτm
̸= 0, (73)

then, (
R
(
dkλ(τ∗)

dτk

))
= 0, k = 1, 2, . . .m− 1, (74)

sgn

(
R
(
dmλ(τ∗)

dτm

))
= (−1)Nx(τ

∗) sgn

(
∂F (ω∗, τ∗)

∂ω

)
sgn

(
dmθ(τ∗)

dτm

)
, (75)

where Nx(τ ) is the number of roots of the polynomial Φω(τ)τ (x) outside the unit circle
if PM (jω(τ), τ) ̸= 0, or the number of roots of the polynomial Ψω(τ)τ (x) inside the
unit circle if P0(jω(τ), τ) ̸= 0.
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The proof of this theorem will be given in Appendix D. The theorem indicates
that if the devatives of θ(τ) vanish up to the (m−1)th order, then the real part of the
derivatives of the critical characteristic roots also vanish up to the (m − 1)th order.
Furthermore, the sign of the lowest-order nonzero derivative of θ(τ) can be related to
sign of the real part of the lowest-order derivative of critical characteristic root with
nonzero real part. This means that the crossing direction of a critical characteristic
root can be obtained by the crossing direction of the phase curve θ(τ), which is formally
stated in the following corollary.

Corollary 2. Let τ∗ ∈ T (i)
o = (τ (i−1), τ (i)), and m ≤ N . If θ(τ) moves from

below the 2rπ line to above it as τ increases through τ∗, then, Inc(ω∗, τ∗) =

(−1)Nx(τ
∗) sgn

(∂F (ω∗,τ∗)
∂ω

)
. If θ(τ) crosses the 2rπ line from above to below instead,

then Inc(ω∗, τ∗) = (−1)Nx(τ
∗)+1 sgn

(∂F (ω∗,τ∗)
∂ω

)
.

Proof. This is obvious from (75) in Theorem 2 and (69).

The above corollary means that if the curve θ(τ) generated in Section III is suffi-
ciently smooth, then the crossing direction (and therefore Inc(ω∗, τ∗)) can be obtained
by observing the direction that θ(τ) crosses the 2rπ line, provided that Nx(τ

∗) and the

sign of ∂F (ω∗,τ∗)
∂ω are available. The following proposition means that these two values

need to be checked only at one point in each continuous frequency curve in each CFCI.

Proposition 1. Within each T (i)
o and for each continuous frequency curve ω(τ)

that satisfies F (ω(τ), τ) = 0 defined in T (i)
o , sgn

(
∂F (ω,τ )

∂ω

∣∣
ω=ω(τ)

)
and Nx(τ) remain

constant.

Proof. By the definition of T (i)
o ,

∂F (ω(τ), τ)

∂ω
̸= 0, τ ∈ T (i)

o . (76)

To show sign invariance of ∂F (ω,τ )
∂ω

∣∣
ω=ω(τ)

, observe that ∂F (ω,τ )
∂ω

∣∣
ω=ω(τ)

is a continuous

function of τ , and its sign can change only if it vanishes first, which contradicts (76).
To show the invariance of Nx(τ), observe that Φω∗τ∗(x) has Nx(τ

∗) roots outside
of the unit circle, one root on the unit circle, and M −Nx(τ

∗)−1 roots inside the unit

circle if PM (jω(τ), τ) ̸= 0. In order for Nx(τ) to change within T (i)
o , due to continuity

of the roots of Φω(τ)τ (x) with respect to τ when PM (jω(τ), τ) ̸= 0, either one of roots
outside the unit circle, or one of the roots inside the unit circle must first reach the

unit circle for some τ = τ̂ ∈ T (i)
o . But this would mean that Φω(τ̂)τ̂ (x) has two roots

at the unit circle, which would require ∂F (ω,τ̂ )
∂ω

∣∣
ω=ω(τ̂)

= 0 in view of Theorem 1, thus

contradicting (76).
At a τ such that PM (jω(τ), τ) = 0, then P0(jω(τ), τ) ̸= 0 per Assumption II, the

invariance of Nx(τ) can be shown by considering Ψω(τ)τ (x) instead of Φω(τ)τ (x).
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It is also possible to analytically obtain dkθ(τ)
dτk , k = 1, 2, . . .m. This can be done

by taking the derivatives of the equation Φ(ω, τ, ej(θ−ωτ)) = 0,

dk

dτk
Φ(ω, τ, ej(θ−ωτ))|τ=τ∗ = 0, (77)

and solving for dkθ(τ∗)
dτk and dkω(τ∗)

dτk . The nonzero dmθ(τ∗)
dτm may be obtained by a recur-

sive process, although the formulation is progressively more tedious as m increases. In
Appendix C, it will be shown that this process is always possible and more specifics
of this solution process are provided there.

5 Examples

In this section, we will present two examples to illustrate the stability analysis using
the results developed in this paper. The coefficients polynomials depend on the delay
either in poynomial or exponential form so that it is easier to see some of the steps
analytically. In practice, these may be any other functions as long as the continuity
or differentiability conditions are satisfied. We also present an example of stability
analysis when some of the nondegeneracy assumptions are violated.
Example 4. Consider the characteristic equation (9). By definition,

P0 = λ− α, P1 = eατ , P2 = e2ατ .

Set the delay interval of interest T = [0, 0.8] and α = 3
2 . The expression of function

F can be obtained using (18) as

F = −ω4 + a1ω
2 + a2,

where

a1 = 2a4 + a2 − 9

2
,

a2 = −a8 + a6 +
15

2
a4 +

9

4
a2 − 81

16
,

a = e
3
2 τ .

By solving (23) and (33) for (ω, τ) ∈ R+ × T , we find that T can be decomposed into
two CFCIs T (1) = [τ (0), τ (1)] and T (2) = [τ (1), τ (2)], where τ (0) = 0, τ (1) ≈ 0.4045,

τ (2) = 0.8. Polynomial Fτ (ω) has one real solution for τ ∈ T (1)
0 and two real solutions

for τ ∈ T (2)
0 . Consequently the frequency curves ω

(1)
1 (τ), ω

(2)
1 (τ), ω

(2)
2 (τ) are well

defined in the corresponding CFCIs as plotted in Fig. 1a. The associated phase curves

are plotted in Fig. 1b. The graph of θ
(1)
1 crosses the horizontal line 0 at τ1 ≈ 0.2368 and

the graphs of θ
(2)
2 and θ

(2)
1 cross the horizontal line 2π at τ2 ≈ 0.6878 and τ3 ≈ 0.6976

respectively, all from below to above. By definition, we have ω11 = ω
(1)
1 (τ1) ≈ 2.9010,

ω21 = ω
(2)
2 (τ2) ≈ 5.4195, ω31 = ω

(2)
1 (τ3) ≈ 10.0461.
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We verify that the following holds:

∂ωF (ω
(1)
1 (τ), τ) < 0, Nx(ω

(1)
1 (τ), τ) = 1, ∀τ ∈ T (1),

∂ωF (ω
(2)
1 (τ), τ) > 0, Nx(ω

(2)
1 (τ), τ) = 0, ∀τ ∈ T (2),

∂ωF (ω
(2)
2 (τ), τ) > 0, Nx(ω

(2)
2 (τ), τ) = 0, ∀τ ∈ T (2).

Therefore, we conclude from (75) that Inc(ω∗, τ∗) = 1 at all the three crossing points.
In other words, the imaginary roots jω11, jω21, jω31 all move toward the RHP as the
delay value increases and sweeps through τ1, τ2, τ3, respectively. It can be verified that
Nu(0) = 0, thus the number of unstable roots can be easily computed using (49) and
is plotted against τ in Fig. 1c. It can thus be concluded that the system (8) is α-stable
with α = 1.5 for τ ∈ [0, τ1) and not α-stable for τ ∈ [τ1, 0.8].
Example 5. Consider the characteristic equation (1) with the delay interval of interest
T = [0, 0.65] and the following τ -dependent coefficient polynomials:

P0 = λ2 + 4, P1 = (1− 4e−2τ ), P2 = (1− 2e−2τ )λ.

The frequency curves ω
(i)
k (τ) are plotted in Fig. 2a. The associated phase curves θ

(i)
k

are plotted in Fig. 2b. The curves θ
(1)
2 and θ

(2)
3 cross the horizontal line 0 at τ1 ≈ 0.1906

and τ2 ≈ 0.5243, respectively, both from below to above. The following can be checked:

∂ωF (ω
(1)
2 (τ), τ) > 0, Nx(ω

(1)
2 (τ), τ) = 1, ∀τ ∈ T (1).

∂ωF (ω
(2)
3 (τ), τ) > 0, Nx(ω

(2)
3 (τ), τ) = 0, ∀τ ∈ T (2).

Therefore, we can conclude from equation (75) that Inc(ω
(1)
2 (τ1), τ1) = −1 and

Inc(ω
(2)
3 (τ2), τ2) = 1. It can be verified that Nu(0) = 2, then the number of unstable

roots can be easily computed using (49) and is plotted against τ in Fig. 2c. We can
therefore conclude that this system is stable for τ ∈ (τ1, τ2).
Example 6. This example illustrates a degenerate case. Consider the characteristic
equation (1) with

P0 = λ2, P1 = λ+ τ, P2 = λ, P3 = λ,

and the delay interval of interest is T = [0, 3]. The function F (ω, τ) can be calculated
as

F = ω12 − 3ω10 + (2τ − 4τ2)ω8 + 9τ2ω6 − 12τ3ω4 + 4τ4ω2.

Obviously, the equations (23) and (33) are satisfied for all τ ∈ T and ω = 0, which
violates Assumption IV. However, the principles presented in this paper can still be
used to analyze this system.

For τ = τ l = 0, Dτ (λ) has two roots, −1 and 0. The root at 0 moves to the LHP
as τ increases from 0 because

dλ

dτ

∣∣∣∣
λ=0,τ=0

= −
∂D
∂τ
∂D
∂λ

∣∣∣∣
λ=0,τ=0

= −1.
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Fig. 1 Plots for Example 4: (a) Frequency curves: There is one frequency curve, ω
(1)
1 (τ), in T 1; and

there are two frequency curves, ω2
1(τ) and ω2

2(τ), in T 2. (b) The corresponding phase curves: θ
(i)
k (τ)

corresponds to the frequency curve ω
(i)
k (τ). (c) The number of roots on the right half-plane, Nu(τ),

for τ ∈ T .
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Fig. 2 Plots for Example 5: (a) Frequency curves: There are two frequency curves, ω
(1)
k (τ), k = 1, 2

in T 1; and there are four frequency curves, ω
(2)
k (τ), k = 1, 2, 3, 4, in T 2. (b) The corresponding phase

curves: θ
(i)
k (τ) corresponds to the frequency curve ω

(i)
k (τ). (c) The number of roots on the right half-

plane, Nu(τ), for τ ∈ T .

23



Therefore, Inc(τ1) = 0 per the equation (70), and the system is stable for τ sufficiently
small. We may still identify all the crossing points by following the same process
as described in Section III. Indeed, for τ in the entire interval T , there are three
real solutions of ωi(τ), i = 1, 2, 3, and they are plotted in Fig. 3a. For ω3(τ) = 0, it
can be easily calculated that Φωτ (x) has two roots on the unit circle, x = ±j. The
corresponding θ3± = ±π/2. As they do not touch any r2π line, we can conclude that
λ = 0 is not a root for τ > 0, which can also be directly verified. For ω1(τ) and ω2(τ),
Φωτ (x) has a single root on the unit circle, and the corresponding θ1(τ) and θ2(τ)
are plotted in Fig. 3b along with θ3±(τ). It can be seen that θ1(τ) crosses 0 line at
τ2 ≈ 0.5382, and then the 2π line at τ3 ≈ 2.7206, both from below to above. It can be
shown that Theorem 2 still applies, and it can be calculated that ∂ωF (ω1(τ), τ) > 0 and
Nx(ω1(τ), τ) = 2 at both τ = τ2 and τ3. Therefore, Inc(ω1(τ2), τ2) = Inc(ω1(τ3), τ3) =
1, and Nu(τ) is plotted in Fig. 3c, from which we conclude that the system is stable
for τ = (τ1, τ2) = (0, 0.5382).

6 Conclusions and Future Research

A method to analyze the stability of linear time-delay systems represented by
differential-difference equations with commensurate delays and delay-dependent coef-
ficients is developed. This method generalizes the previous results for the single delay
case. The crossing direction analysis has also been extended to the case that requires
higher-order derivatives. The method takes advantage of Orlando’s formula. Under
some nondegeneracy assumptions parallel to the single delay case, it was shown that
the decomposition polynomial has one and only one solution on the unit circle, which
allows us to develop a method of systematic stability analysis parallel to the single
delay case.

To explore further along this line of research, it is interesting to carry out stability
analysis described in this paper for practical systems. Some practical issues such as
complexity and amount of calculation may arise. While the assumptions given in this
paper are “generic”, it would be interesting to see whether these assumptions may be
violated in practice, and extensions such as covered in Example 6 may be desirable.

It is also interesing to extend the results discussed here to multiple group of com-
mensurate delays. Such a problem is rather challenging to solve. However, even some
special cases would be very interesting. Indeed, when there are two groups with each
group consisting of a single delay, a special case was solved in [1].

Appendices

In the appendices, we state the Orlando’s formula in Appendix A, which forms an
important basis of this paper. Appendix B gives a brief discussion on the derivatives
of multivariable functions with dependence between variables. Then we will present a
procedure of calculating the derivatives of phase angle with respect to τ , along with
some important observations in Appendix C. Finally, we will prove Theorem 2 in
Appendix D.
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Fig. 3 Plots for Example 6, which is a degenerate case: (a) Frequency curves: There three frequency
curves, ωk(τ), k = 1, 2, 3 in T , which is not divided in this case. (b) The corresponding phase curves:
θ1(τ) and θ2(τ) correspond to ω1(τ) and ω2(τ). Two phase curves, ω3+(τ) and ω3−(τ) correspond
to the frequency curve ω3(τ). (c) The number of roots on the right half-plane, Nu(τ), for τ ∈ T .
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Appendix A Orlando’s formula

For a polynomial

Γ(x) =

M∑
k=0

akx
k, (A1)

aM ̸= 0, let

Γ̄(x) =

M∑
k=0

āM−kx
k, (A2)

and

Ξ = Γ̄
H
(S)Γ̄(S)− ΓH(S)Γ(S), (A3)

where the superscript H represents Hermitian transpose, and S is an M × M shift
matrix

S =


0 1 0 · · · 0
0 0 1 · · · 0
...
...
...
. . .

...
0 0 0 · · · 1
0 0 0 · · · 0

 . (A4)

Then the following equation is known as the Orlando’s formula[22, 33]

det(Ξ) = |aM |2M
M∏
i=1

M∏
j=1

(1− xix̄j), (A5)

where xi, i = 1, 2, . . .M are the roots of the polynomial (A1). An immediate implica-
tion of the Orlando’s formula is that the polynomial (A1) has a root on the unit circle
only if det(Ξ) = 0. This implication is critical in the stability analysis of systems with
commensurate delays (with coefficients independent of delays)[6, 7, 18, 19]. Indeed, in
stability analysis of such systems, the coefficients ak become polynomials Pk(jω) of
frequency. Setting det(Ξ) to zero allows one to identify the crossing frequencies, one
may identify the corresponding critical delays from the roots of Γ(x) on the unit circle.

Appendix B Derivatives of multivariable functions

The following lemma is useful in the proof of a number of results in this paper.
Lemma 4. Let

h(x) = f(x)g(x),

where f(x) is continuous and g(x) is continously differentiable in a neighborhood of
x∗, and

g(x∗) = 0. (B6)

Then, h(x) is differentiable at x∗, and

h′(x∗) = f(x∗)g′(x∗). (B7)
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Proof. By definition of derivative and using (B6), we obtain

h′(x∗) = lim
x→x∗

f(x)g(x)

x− x∗ = lim
x→x∗

f(x)
g(x)− g(x∗)

x− x∗

from which (B7) is obvious.

We start with making some observations of derivatives of multivariable functions
with variable dependence. The functions are assumed to be continuously differentiable
to a sufficiently high order.
Lemma 5. Consider a function g(x, τ) of two variables x and τ . If x depends on τ ,
then

dkg

dτk
=

∂g

∂x
x(k)(τ) +

∂kg

∂τk
+ Uk, (B8)

where Uk = Uk(x, τ ;x
′, x′′, . . . , x(k−1)) is a polynomial of x′(τ), x′′(τ), . . . , x(k−1)(τ)

that satisfies
Uk(x, τ ; 0, 0, . . . , 0) = 0. (B9)

The coefficients of the polynomial Uk, which are functions of x and τ , are linear
combinations of partial derivatives

∂p+qg

∂xp∂τ q
, 1 ≤ p; 0 ≤ q; 2 ≤ p+ q ≤ k. (B10)

The above lemma can be easily shown by induction. The explicit expression of Uk

may also be obtained for a small k, for example,

U2 =
∂2g

∂x2
[x′(τ)]

2
+ 2

∂2g

∂x∂τ
x′(τ), (B11)

although the expression becomes progressively more tedious as k increases.
Consider now a function of three variables h(x, y, τ). When y depends on τ , it

becomes a function of two variables x and τ . The (p+ q)th order partial derivative of

the function with respect to x and τ considering this dependence is denoted as
∂p+q
y(t)

h

∂xp∂τq .
For example,

∂y(τ)h

∂τ
=

∂h

∂y
y′(τ) +

∂h

∂τ
,

∂2
y(τ)h

∂x∂τ
=

∂2h

∂x∂y
y′(τ) +

∂2h

∂x∂τ
,

∂2
y(τ)h

∂τ2
=

∂2h

∂y2
[y′(τ)]

2
+ 2

∂2h

∂y∂τ
y′(τ) +

∂h

∂y
y′′(τ) +

∂2h

∂τ2
.

With the above notation, Lemma 5 may be applied to a function of three variables to
obtain the following corollary.
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Corollary 3. Consider a function h(x, y, τ). If x and y depend on τ , then

dkh

dτk
=

∂h

∂x
x(k)(τ) +

∂k
y(τ)h

∂τk
+ Uk, (B12)

where Uk = Uk(x, y, τ ;x
′(τ), x′′(τ), . . . , x(k−1)(τ)) is a polynomial of x′, x′′, . . . , x(k−1)

that satisfies
Uk(x, y, τ ; 0, 0, . . . , 0) = 0. (B13)

Furthermore, the term
∂k
y(τ)h

∂τk may be expressed as

∂k
y(τ)h

∂τk
=

∂h

∂y
y(k)(τ) +

∂kh

∂τk
+ Vk, (B14)

where Vk = Vk(x, y, τ ; y
′, y′′, . . . , y(k−1)) is a polynomial of y′, y′′, . . . , y(k−1) that

satisfies
Vk(x, y, τ ; 0, 0, . . . , 0) = 0. (B15)

Appendix C Derivatives of phase angle

With the notation in Appendix B, we will now discuss the calculation of the derivative
dkθ
dτk in a neighborhood of τ∗. For this purpose, define

T (θ, ω, τ) = Φ(ω, τ, ej(θ−ωτ)), (C16)

W (ω, τ) = Φ(ω, τ, e−jωτ ). (C17)

Then θ(τ) and ω(τ) satisfy θ(τ∗) = 2rπ, ω(τ∗) = ω∗, and

T (θ, ω, τ) = 0. (C18)

Taking kth order derivative of the above equation and applying Corollary 3, yield(
dkT

dτk

)
∗
=

(
∂T

∂θ

)
∗

(
dkθ

dτk

)
∗
+

(
∂W

∂ω

)
∗

(
dkω

dτk

)
∗

+(VWk)∗ + (UTk)∗
= 0, (C19)

where (·)∗ means that the expression is evaluated at τ = τ∗, ω = ω∗ and θ = 2rπ,
VWk is a polynomial of ω′(τ), ω′′(τ), . . . , ω(k−1)(τ), and UTk is a polynomial of
θ′(τ), θ′′(τ), . . . , θ(k−1)(τ). In arriving at the above expression, we have used the fact
that T (ω, τ)|θ=2rπ = W (ω, τ).

Suppose (
diθ

dτ i

)
∗
= 0, i = 1, 2, . . . , k − 1. (C20)
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Then
(UTk)∗ = 0. (C21)

Therefore, we can solve (C19) for
(
dkθ
dτk

)
∗ by multiplying

(
∂W
∂ω

)
∗ and taking the

imaginary part (
dkθ

dτk

)
∗
= −

I
((

∂W
∂ω

)
∗ (VWk)∗

)
I
((

∂W
∂ω

)
∗

(
∂T
∂θ

)
∗

) . (C22)

Similarly,
(
dkω
dτk

)
∗ may be solved from (C19) by multiplying

(
∂T
∂θ

)
∗ and taking the

imaginary part (
dkω

dτk

)
∗
= −

I
((

∂T
∂θ

)
∗ (VWk)∗

)
I
((

∂W
∂ω

)
∗

(
∂T
∂θ

)
∗

) . (C23)

The equations (C22) and (C23) may be used starting from k = 1 and increasing k
until we reach (

dkθ

dτk

)
∗
̸= 0,

which means that m in Theorem 2 has been reached.
In order for the equations (C22) and (C23) to be valid, the denominator needs to

be nonzero. In order to prove this, we need the following lemma.
Lemma 6. Let Assumption IIIa be satisfied, and let x1(ω) be a root of Φωτ∗(x) in a
small neighborhood of x∗

1 = e−jω∗τ∗
for ω in a small neighborhood of ω∗. Then x1(ω)

is differentiable and satisfies
R(x′

1(ω
∗)x̄∗

1) ̸= 0. (C24)

Furthermore,

sgn (R(x′
1(ω

∗)x̄∗
1)) = (−1)Nx(τ

∗) sgn (∂ωF (ω∗, τ∗)) . (C25)

Proof. Assume PM (jω∗, τ∗) ̸= 0. Then, we can write

F (ω, τ∗) = R(ω)(1− x1(ω)x̄1(ω)), (C26)

where

R(ω) = − |PM (jω, τ)|2M
(

M∏
i=2

χii

)(
M−1∏
k=1

M∏
i=k+1

χkiχ̄ki

)
, (C27)

χki = 1− xk(ω)x̄i(ω), k, i = 1, 2, . . . ,M,

and xk(ω), k = 2, 3, . . . ,M are the remaining M − 1 roots of Φωτ∗(x). Applying
Theorem 1, we conclude that x1(ω) is differentiable, R (ω) is continuous and satisfies

R(ω∗) ̸= 0. (C28)
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Furthermore, it is easy to see from (C27) that

sgn (R(ω∗)) = (−1)Nx(τ
∗)+1. (C29)

Taking derivative of (C26) and evaluating it at ω = ω∗ using Lemma 4 yield

∂ωF (ω∗, τ∗) = −R(ω∗)(x′
1(ω

∗)x̄∗
1 + x∗

1x
′
1(ω

∗))

= −R(ω∗)2R(x′
1(ω

∗)x̄∗
1)

from which the conclusion follows.
If PM (jω∗, τ∗) = 0, then we can use (22) instead of (20), and follow a similar

process.

With Lemma 6, we can easily arrive at the following proposition.
Proposition 2. Let Assumption IIIa be satisfied, and let θ(τ) and ω(τ) satisfy (C18),
θ(τ∗) = 2rπ, ω(τ∗) = ω∗. Then

I

((
∂W

∂ω

)
∗

(
∂T

∂θ

)
∗

)
̸= 0. (C30)

Furthermore,

sgn

(
I

((
∂W

∂ω

)
∗

(
∂T

∂θ

)
∗

))
= (−1)Nx(τ

∗) sgn (∂ωF (ω∗, τ∗)) . (C31)

Proof. Assume PM (jω∗, τ∗) ̸= 0. Taking derivative of the equation

Φ(ω, τ∗, x1) = 0,

we obtain
∂Φ

∂ω
+

∂Φ

∂x
x′
1(ω) = 0, (C32)

from which we obtain

x′
1(ω

∗) = −
(
∂Φ
∂ω

)
∗(

∂Φ
∂x

)
∗
= −

(
∂Φ
∂ω

)
∗

(
∂Φ
∂x

)
∗∣∣(∂Φ

∂x

)
∗

∣∣2 , (C33)

where (·)∗ means that the expression is evaluated at ω = ω∗, τ = τ∗, and x1 = x∗
1 =

e−jω∗τ∗
. From the definition of T and W , we obtain(

∂T

∂θ

)
∗
=

(
∂Φ

∂x

)
∗
jx∗

1,(
∂W

∂ω

)
∗
=

(
∂Φ

∂ω

)
∗
+

(
∂Φ

∂x

)
∗
(−jτ∗x∗

1).
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Therefore,

I

((
∂W

∂ω

)
∗

(
∂T

∂θ

)
∗

)
= I

((
∂Φ

∂ω

)
∗

(
∂Φ

∂x

)
∗
jx∗

1

)

= −R

((
∂Φ

∂ω

)
∗

(
∂Φ

∂x

)
∗
x∗
1

)

=

∣∣∣∣(∂Φ∂x
)

∗

∣∣∣∣2 R(x′
1(ω

∗)x∗
1).

In the last step above, the equation (C33) was used. The conclusion follows from the
above equation in view of Lemma 6.

If PM (jω∗, τ∗) = 0, then P0(jω
∗, τ∗) ̸= 0. We may use Ψ instead of Φ and follow

a similar process.

Appendix D Proof of Theorem 2

We first prove the following Lemma.
Lemma 7. Let Assumption IIIa be satisfied. Let ω(τ), θ(τ) and λ(τ) be defined as in
Theorem 2. If

dkθ(τ∗)

dτk
= 0, k = 1, 2, . . . , l − 1, (D34)

then

R
(
dkλ(τ∗)

dτk

)
= 0, (D35)

I
(
dkλ(τ∗)

dτk

)
=

dkω(τ∗)

dτk
, k = 1, 2, . . . , l − 1, (D36)

and

R
(
dlλ(τ∗)

dτ l

)
=

I
((

∂W
∂ω

)
∗

(
∂T
∂θ

)
∗

)
∣∣(∂D

∂λ

)
∗

∣∣2
(
dlθ(τ∗)

dτ l

)
, (D37)

where (·)∗ means that the expression is evaluated at τ = τ∗, λ = jω∗, ω = ω∗ and
θ = 2rπ.

Proof. Assumption IIIa and Lemma 3 imply that

∂λD(λ, τ∗)|λ=jω∗ ̸= 0. (D38)

Therefore, the equation
D(σ + jw, τ) = 0 (D39)

determines continuous functions σ(τ) = R(λ(τ)) and w(τ) = I(λ(τ)) differentiable
up to Nth order in a small neighborhood of 0 and ω∗, respectively, for τ in a small
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neighborhood of τ∗. Define

S(σ,w, τ) = D(σ + jw, τ), (D40)

then σ(τ) and w(τ) are determined by

S(σ,w, τ) = 0. (D41)

Taking the kth order derivative and applying Corollary 3, we obtain(
dkS

dτk

)
∗
=

(
∂S

∂σ

)
∗

(
dkσ

dτk

)
∗
+

(
∂W

∂ω

)
∗

(
dkw

dτk

)
∗
+ (USk)∗

+ VWk|ω=ω∗,τ=τ∗,ω(i)(τ∗)=w(i)(τ∗),i=1,2,...,k−1

= 0, (D42)

where USk = USk(σ,w, τ ;σ
′, σ′′, . . . , σ(k−1)) is a polynomial of σ′(τ), σ′′(τ), . . . , σ(k−1)

that satisfies
USk(σ,w, τ ; 0, 0, . . . , 0) = 0. (D43)

In arriving at (D42), we have used the fact that

S(σ,w, τ)|σ=0 = W (ω, τ)|ω=w .

By the assumption (D34), (C20) is satisfied for k = l. Therefore, (C21) is satisfied
for k = 1, 2, . . . , l. Apply (D34) and (C21) in (C19), we obtain(

∂W

∂ω

)
∗

(
dkω

dτk

)
∗
+ (VWk)∗ = 0, k = 1, 2, . . . , l − 1. (D44)

Using (D43) and (D44), it can be easily verified that(
dkσ

dτk

)
∗
= 0, (D45)(

dkw

dτk

)
∗
=

(
dkω

dτk

)
∗
, k = 1, 2, . . . , l − 1, (D46)

satisfy the equation (D42) for k = 1, 2, . . . , l − 1. For k = l, the third term of (D42)
still vanish due to (D43). Furthermore, the last term satisfies

VWl|ω=ω∗,τ=τ∗,ω(i)(τ∗)=w(i)(τ∗),i=1,2,...,l−1 = (VWl)∗

due to (D46). Therefore,(
∂S

∂σ

)
∗

(
dlσ

dτ l

)
∗
+

(
∂W

∂ω

)
∗

(
dlw

dτ l

)
∗
+ (VWl)∗ = 0. (D47)
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The above can be solved for
(
dlσ
dτ l

)
∗ by multiplying

(
∂W
∂ω

)
∗ and taking the imaginary

part, (
dlσ

dτ l

)
∗
= −

I
((

∂W
∂ω

)
∗(VWl)∗

)
I
((

∂W
∂ω

)
∗

(
∂S
∂σ

)
∗

) . (D48)

But by definition, (
∂S

∂σ

)
∗
=

(
∂D

∂λ

)
∗
, (D49)(

∂W

∂ω

)
∗
= j

(
∂D

∂λ

)
∗
. (D50)

Therefore, (
dlσ

dτ l

)
∗
=

I
((

∂W
∂ω

)
∗(VWl)∗

)
∣∣(∂D

∂λ

)
∗

∣∣2 . (D51)

The equation (D37) can be obtained by comparing (C22) and (D51), and the fact that

I

((
∂W

∂ω

)
∗

(
∂T

∂θ

)
∗

)
= −I

((
∂W

∂ω

)
∗

(
∂T

∂θ

)
∗

)
. (D52)

With the above lemma, Theorem 2 becomes obvious.
Proof of Theorem 2. Apply Lemma 7 for l = m, then the equation (74) is

satisfied in view of the equation (D35). To show (75), apply (C31) in Proposition 2 to
(D37) in Lemma 7.
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