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This paper is concerned with the modeling and simulation of the evolution of fretting wear of interacting 
solids submitted to cyclic loading and possibly undergoing large mechanical transformations. A Lagrangian 
formalism of the virtual work principle integrating significant worn volumes from the interacting solids is 
given. An extension of the Archard’s wear model to the large transformations framework is developed and 
explained. Variational large transformations Lagrangian hybrid contact wear formulations are then derived. 
Wear explicit and wear implicit solution methodologies are described. A delocalized Archard’s law is 
introduced to bound the wear of a structure under a corner or an edge of contact. Further, we resort to the 
multimodel Arlequin framework to capture efficiently wear concentrations as well as significant material 
removal due to wear, while enhancing the modeling flexibility and reducing the simulation costs of wear of 
structures, particularly thin ones. Our global methodology is assessed by some didactic numerical tests.

KEY WORDS: wear; finite transformations; extended Archard’s law; sharp frictional contact; nonlocal
wear law; Arlequin method

1. INTRODUCTION

Fretting wear refers to a very complex physical, chemical, and mechanical phenomenon that induces
a damage of the near-interface zone of two interacting solids submitted to vibration or to cyclic
loading. It leads to macroscopic cracks and/or to a material removal, creating in this case debris,
sometimes labeled third corps. Wear is experienced by many engineering components (see e.g
[1–3]), as well as biological ones (e.g. [4]). It might lead to their failure (see e.g. [5, 6]). In many
industries, accurate wear prediction is important for the estimation of the remaining lifetime of
critical components experiencing wear. Particularly in the nuclear industry, this issue is not only
essential for a relevant safety diagnostic of existing nuclear infrastructures (see e.g. [7, 8]), but
also for the design of components of the next nuclear plant generation.

From a computational point of view, wear prediction requires mainly the consideration of the
following three items:

(i) a macroscopic wear model that describes correctly the involved phenomena;
(ii) an accurate contact modeling;

∗Correspondence to: Hachmi Ben Dhia, Ecole Centrale Paris, MSSMAT, UMR ECP-CNRS 8579, 92295 Chatenay
Malabry Cedex, France.
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(iii) an efficient numerical methodology for the simulation of a highly non-linear mechanical
problem.

A large amount of work has been done on point (i). We refer to Meng and Ludema [9] for a signif-
icant overview. We also refer to [10, 11] and to a recent work by Stolz [12] (see also the references
therein) for a thermodynamical approach of wear, considered as a moving discontinuity [13, 14].

In our work, although an extension to the finite transformations framework of the Archard’s
wear law is given and explained, item (ii) and item (iii), with special attention to the modeling
and simulation of wear under sharp contact, are the main points of focus.

Although recognized as a crucial engineering issue, the numerical simulation of wear evolution
is a rather recent computational research activity. This might well be linked to substantial numerical
difficulties due to coupled non-linearities of contact conditions and wear criterion, to geometry
changes of interacting worn solids and (last but not the least) to a missing simple and validated
wear model [9].

Based on Archard’s wear model [15], Goryacheva et al. [16] developed an analytical approach
to investigate a model elastic two dimensional problem of fretting wear under partial slip. Based on
the same wear model, Johansson [17] pioneered a finite element wear simulation in which contact
is modeled by means of a penalty method. However, the latter is known to give interface fields quite
sensitive to the penalty parameter, at least for reasonable choices of this parameter (namely not
leading to ill-conditioning of the discrete mechanical system). An augmented-Lagrangian method
(see e.g. [18–24]) all with a modified local Archard’s model (e.g. [25]) is used by Stromberg [26].
These works were carried out under small perturbations hypotheses. Observe however that, for
instance, a large mechanical transformations framework would be more appropriate for the simu-
lation of wear of wire rope strands or more generally for cables (see e.g. [27] for a theoret-
ical approach and [28] for a numerical one). Furthermore, the geometry change of significantly
worn solids was not taken into account either in [17], or in [26, 29]. In [4], an extension of the
Archard’s model to the large transformations framework is developed. But the physical meaning
of the additive decomposition of the deformation on which relies this extended (objective) model
is not clear. The geometry change of the worn solids was developed by Podra and Andersson
[30, 31] and further improved by Oqvist [32] and McColl et al. [25], by adapting the place-
ment of the worn nodes of the mesh at each fictive time step of the wear process (considered
in a quasi-static regime). Promising results were obtained by these authors. However, as reported
in [25], the maximum wear depth control is mandatory to avoid instabilities. Moreover, without
(costly) global remeshing, the adaptation of the placement procedure may lead to degenerated
finite elements. For treatment of this issue, Paulin et al. [33] (see also [34]) suggest to confine
the adaptation to the near interaction zone by selecting, from the beginning of the simulation, a
set of nodes labeled the wear box. Note here that in [33], the authors use a simplified acceler-
ation algorithm (inferred by experimental results) for the prediction of the evolution of wear to
reduce the costs of simulation. A similar idea has been developed by McColl et al. [25] who
suggested to use a refined local incompatible mesh in the critical interaction zone, coupled to
the global mesh via the multipoint constraints to simplify the treatment of local surface adapta-
tion. The possible distortion of elements due to this geometry adaptation is solved in Molinari
et al. [35] via a precise continuous adaptive meshing (that might well become costly for complex 3D
geometries).

In the (non-exhaustive) list of numerical papers on wear simulation reported above, very few
of them have been dedicated to fine scales involved by the wear phenomenon. For instance, wear
near a corner of contact has been considered in [36]. But the computational analysis of this simple
but relevant problem was not fully investigated by the authors. A more accurate mesh adaptivity
is used in [35] to approximate the problem. Moreover, the efficient wear modeling and simulation
of thin elastic structures submitted to sharp contact, is in an even younger stage of development
(see e.g. [37–40]).

The improved modeling and the numerical enhancement of the simulation of evolution of wear
of elastic structures, particularly thin ones, submitted to the action of solids with sharp corners or
edges of contact is the main goal of our paper. In particular, the multimodel Arlequin framework
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[41–44] all with a simple nonlocal Archard’s wear model, are shown to be effective engineering
tools to address these issues.

An outline of the paper is the following: in the section following the introduction, a quasi-
static Lagrangian Virtual Work Principle is written on the reference worn configurations of two
solids undergoing large transformations, under frictional wearing contact. Section 3 is dedicated
to the interface laws: the global classical Archard’s wear law and its local version are recalled
in Subsection 3.1. The extension of the Archard’s wear law to the considered quasi-static large
transformations framework is developed in Subsection 3.2, by using a conservation of worn mass.
Equivalent settings of Signorini and Coulomb’s friction laws [45, 46] integrating wear, are given in
Subsections 3.3 and 3.4, respectively. By following in essence the works reported in [45, 46], the
weak continuous Lagrangian formulation of the wear problem is developed in Section 4. Section 5
is dedicated to a description of the numerical strategy used to solve the problem defined in Section 4:
explicit and implicit wear incremental schemes are presented and discussed. Moreover, a brief
description of the finite element method and our special quadrature technique are briefly recalled.
The wear modeling of plates under sharp contact is developed in Section 6, by using the multimodel
and multiscale Arlequin framework. A delocalized wear model is introduced in Subsection 6.1 to
tackle the singular behavior of wear under a corner or an edge of contact. Section 7 is devoted to the
numerical solution of some quasi-static wear problems. A first bidimensional academic example
consisting on a sharp rectangular elastic block acting on a larger elastic block is considered. This
didactic test (similar to the one considered in [36] in 2D and in [26] in 3D) introduces a corner
or an edge of contact. Several computations are carried out for this test to assess our theoretical
investigations: first, we verify numerically that a local Archard’s law leads to unbounded wear
under the contact corner or edge (due to the singularity of the contact pressure) and show that the
introduction of our simple nonlocal Archard’s law bounds and stabilizes the wear profile in the
critical contact zone. Second, we compare the numerical results obtained with a unilateral wear
model (for which one solid is assumed to be not sensible to wear) to the ones derived with a
bilateral wear model (wear of the two contacting solids). Third, the Arlequin framework is used
to improve the flexibility of wear modeling and to reduce the simulation numerical costs. The
influence of the change of geometry is also studied numerically. The last test is devoted to the
feasibility of numerical simulation, in the Arlequin framework, of wear of a thin plate submitted
to a sharp contact. The paper ends with some concluding remarks.

2. A LAGRANGIAN VIRTUAL WORK PRINCIPLE WITH MATERIAL REMOVAL

2.1. Notations, hypotheses, and problem position

We consider the problem of frictional wear-contact between two deformable solids B1 and B2.
The classical Lagrangian localization of these two contacting solids relies upon their respective
reference configurations. Because of material removal, taking into account finite wear requires a
modification of the classical Lagrangian formalism. Indeed, as represented in Figure 1, the reference

Figure 1. The contact/wear problem.

3



Acc
ep

te
d 

M
an

us
cr

ip
t

configurations of the worn solids become time-dependent. Let us notice �
1
0,t and �

2
0,t the (unknown)

initial domains used to localize the worn solids at time t . Then, the current configurations of the
solids B1 and B2 taking wear into consideration occupy the closures of the domains �

1
t,t and �

2
t,t ,

defined, for each time t in the time interval I = [0,T ] of study of the system, by the following
deformation (or motion) application (for i =1,2):

�i
t :�i

0,t →�
i
t,t

(pi ) �→�i
t (p

i )
(1)

The boundary of each domain �
i
0,t is partitioned into parts �

i
u (assumed to be fixed) where the

displacements are prescribed, �
i
g (assumed also to be fixed) where the surface loads are given and

�
i
c,t the evolving ‘reference’ potential contact surface (at time t). The current positions of these

boundary parts, denoted �i
u,t , �i

g,t , and �i
c,t , respectively, are assumed to constitute a partition of

the boundary of �
i
t,t .

In the remainder of the paper, the inertia terms and debris (third corps) will be neglected and the
(fictive) time t will refer to an evolving loading. We shall be concerned with the quasi-static regime
of the mechanical system. Further, body and boundary classical forces are omitted to simplify the
notations. Only contact loads are considered.

2.2. Virtual work principle

Using classical notations, the Virtual Work Principle, combined with the action and reaction
principle, reads as (for each fictive time t;0<t�T ):

Find u(t)= (u1(t),u2(t))∈CAu,t =CA1
u,t ×CA2

u,t ,r(t)∈R; ∀w= (w1,w2)∈CAu,t ,

G int(u(t),w)=Gc(r,w) (2)

where, for i =1,2, (CAi
u,t )i=1,2 denotes the space of kinematically admissible fields defined in

�
i
0,t , ui is the displacement field,

G int(u(t),w) =
2∑

i=1
Gi

int =
2∑

i=1

∫

�
i
0,t

T r [Pi (ui (t))(∇wi )T]d�
i (3)

Gc(r,w) =

∫

�c,t

r.[[w]]d� (4)

with �c,t (=�
1
c,t ) being the potential ‘slave’ and reference contact surface, Pi the first Piola–

Kirchhoff stress tensor defined in �
i
0,t and r(p, t)=r1(p, t)=−r2(p, t) the nominal vector-valued

unknown density of contact forces experienced on �c,t by the worn solid B1 from the worn solid B2

(namely, r=P1N1,N1 referring to the unit outward normal vector to �c,t ). The (time depending)
material point p̄ refers to a point belonging to the ‘master’ surface �

2
c,t paired with the material

point p of the ‘slave’ surface �
1
c,t by using the classical closest point application [47] (see also

[45, 48] for alternative pairing applications).
Moreover, in (4) and for p∈�c,t , [[w]](p)=w1(p)−w2(p) is the jump-like field defined on �c,t .
System (2)–(4) has to be supplemented with material behavior laws, initial conditions, wear

and contact laws. For the sake of simplicity, a hyperelastic behavior is assumed for the solids B1

and B2. That is:

P
i =�i

0
�W i (Fi )

�Fi
(5)
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where W i is a local internal elastic energy per mass unit and Fi is the deformation gradient tensor.
The solids are assumed to be initially free of residual stresses. As initial condition, we take:

ui (0)=ui0 =0 in �
i
0,0 (6)

where the reference initial configuration of Bi is known and denoted by �
i
0,0.

3. CONTACT LAWS TAKING WEAR INTO ACCOUNT

The contact interface model taking wear into account constitutes the subject of this section. Global
and local Archard’s wear models are recalled in Subsection 3.1. Our extension of the Archard’s
local law to the large transformations framework is developed and explained in Subsection 3.2.
Signorini’s and Coulomb’s contact laws, taking wear into account, are detailed in Subsections 3.3
and 3.4, respectively.

3.1. Archard’s wear model

Archard [15] suggested a wear global model written in terms of worn volume loss. Actually,
Archard’s model relates wear to the dissipated frictional work. It reads as:

V w =C Ps (7)

where V w is the total worn volume, C the wear coefficient, P the applied normal load, and s the
total accumulated sliding.

The local setting of the global Archard’s model relates the local variation of the normal wear
field of the interface, denoted here by w, to local interface fields. It reads as (see e.g. McColl
et al. [25]):

�w=C��s (8)

where C , �, and �s are the local wear coefficient, the normal local pressure and the relative
objective sliding (e.g. [23]), respectively.

3.2. An extension of the Archard’s wear law to a large transformations framework

The law defined by (8) is valid under small mechanical perturbations hypotheses. In the large
transformations framework considered here, we suggest that the current local variation of wear,
pulled-back to the reference configuration, measured along the inward unit normal to the reference
contact interfaces �

i
c,t and denoted by �wi

p (the indice p referring to the reference configuration)
is given by the following extended local Archard’s law:

�wi
p =C i JF i �p�sp on �

i
c,t (9)

where JF i is the Jacobian of transformation �i , �sp refers to the objective relative sliding pulled-
back to the reference interface, �p is, at each reference material point p∈�c,t , the nominal normal
contact pressure (measured along the unit normal to the current configuration at point x=�(p, t)
of �c,t ), and C i are wear coefficients, providing (supposedly) agreement between theory and
experiment (see e.g. [31, 32]). Observe that the variation of the reference normal wear depth is
defined on �

i
c,t .

To explain (9), let us admit that the current wear variation �wi
x is given by the Archard’s local

law, namely:

�wi
x =C i�x�sx on �i

c,t (10)

Now, for i =1,2, denote by (�x Si ;�p Si ), (�x mi,w;�pmi,w), and (�x V i,w;�x V i,w), the couple of
infinitesimal surfaces, worn masses, and worn volumes, respectively, defined in the current and

5



Acc
ep

te
d 

M
an

us
cr

ip
t

reference configurations and associated to each other by means of the mechanical transformation �i .
Denote by (�i,w

x ;�
i,w
p ) the couple of densities of mass. Then, the current and reference infinitesimal

local worn masses are given by:

��mi,w =�i,w
� ��V i,w (�= p or x) (11)

and, thanks to (10), the current infinitesimal local worn volume is given by:

�x V i,w =�x Si�wi
x (12)

If we admit that at each (fictive) time t and during the whole process (assumed to be quasi-static),
the variation of the worn local mass is conserved in the following sense:

�x mi,w(xi )=�pmi,w(pi , t) for xi =�i (pi , t), pi ∈�
i
c,t (13)

which is a reasonable hypothesis, then the announced law can be established easily. Indeed, to
get the infinitesimal variation of the wear pulled back to the reference configuration, first, we
notice that:

�pV i,w =�wi
p�p Si (14)

Second, using all of (10)–(14), a local Lagrangian setting of the mass conservation �
i,w
x = JF i �

i,w
p ,

(assumed to hold for infinitesimal worn material), and the classical Piola relation, namely:

�p =�x

�x Si

�p Si
(15)

we recover (9).

3.3. Signorini’s unilateral model with wear

For notation simplification purpose, the subscript reference to the reference particle p is omitted in
the sequel. Contact fields are defined by means of Signorini and Coulomb interface models. One
of our formulation key points is the equivalent setting of the latter in terms of equations via the
use of unknown Sign-like fields, defined on the assumed to be known potential contact surfaces
(see [45, 46] and the references therein).

The Signorini contact laws read as:

dw
n (p, t) � 0 for (p, t)∈�c,t ×I (16)

�(p, t) � 0 for (p, t)∈�c,t ×I (17)

dw
n (p, t)�(p, t) = 0 for (p, t)∈�c,t ×I (18)

where dw
n (p, t)= [[�(p, t))]]·n(p, t) is the so-called normal signed distance, n(p, t) being the unit

inward normal vector to the master surface at the point paired to p at time t . In the sequel,
each vector-valued field (∗), defined on the contact interface is decomposed into its normal and
tangential parts as (∗)= (∗)nn+(∗)�, with (∗)n = (∗) ·n.

Now, by introducing a Sign-like function, denoted by Sw
u , and by decomposing the nominal

contact load as r=�n+r�, (with �=r·n), the Signorini contact laws (16)–(18) taking wear into
account, are transformed into the following multi-valued equalities that are equivalent to (16)–(18)
(the explicit reference to p and t being omitted):

� = Sw
u (�−�ndw

n ) (19)

Sw
u = 1

R
−(�−�ndw

n ) (20)

where, for a subset K of a space H, 1K denotes the characteristic function of the set K (namely, for
each x ∈H, 1K(x)=1 if x ∈K and 1K(x)=0, otherwise) and �n is a strictly positive real parameter,
homogeneous to a string rigidity. (Observe that in (19), (20), the set K is the semi-axis of negative
real numbers R

−.)
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3.4. Coulomb’s frictional model with wear

In the same manner as for Signorini contact laws, we can prove that, by introducing a Characteristic-

Set field S f , Coulomb’s friction laws can be equivalently written as follows (see [46]):

(1−Sw
u )K=0 (21)

rs=	Sw
u �K (22)

K= S fK+(1−S f )

(
K+��[[v�]]

||K+��[[v�]]||

)
(23)

S f =1B(0,1)(K+��[[v�]]) (24)

where Sw
u is defined by (20), K is the semi-Lagrange friction multiplier, v is the objective relative

velocity field, 	 is the friction coefficient, � is the nominal local contact pressure, �� is a strictly
positive real parameter, and B(0,1) is the unit ball of R

d (d =2,3). Observe that when the contact
is not active, namely when Sw

u =0, then there is no local friction load (r� =0). When the contact is
active, namely when Sw

u =1, then if S f =1 no sliding is possible (K acts as a Lagrange multiplier)
and if S f =0, the sliding is possible (in this situation, K gives the sliding direction). Moreover,
the infinitesimal sliding �sp is equal to ‖[[v�]]‖�t .

4. WEAK CONTINUOUS LAGRANGE FORMULATION OF THE WEAR PROBLEM

By using (2)–(4), (19)–(20), and (21)–(24), a weak–strong hybrid formulation of the problem
described above can be derived by following in essence the lines given in [46] and [45]. For each
t ∈ I , it reads as:

Find (u,�,K, (wi
p)i=1,2, Sw

u , S f )∈CAu×Hc×H f ×(H i
w)i=1,2×L∞(�c,0; {0,1})2; ∀(wi ,�∗,�∗),

• Virtual work principle

2∑
i=1

Gi
int(u

i ,wi )−
∫

�c,t

Sw
u �[[wn]]d�

−

∫

�c,t

	Sw
u �

[
S fK+(1−S f )

K+��[[v�]]

‖K+��[[v�]]‖

]
[[w�]]d�=0 (25)

• Signorini–Archard weak law

−
1

�n

∫

�c,t

[�−Sw
u (�−�ndw

n )]�∗ d�=0 (26)

• Coulomb–Archard weak law

1

��

∫

�c,t

	Sw
u �

{
K−

[
S f (K+��[[v�]])+(1−S f )

K+��[[v�]]

‖K+��[[v�]]‖

]}
K

∗ d�

+

∫

�c,t

(1−Sw
u )KK∗ d�=0 (27)

• Sign-like fields

Sw
u = 1

R
−(�−�ndw

n ) (28)

S f = 1B(0,1)(K+��[[v�]]) (29)

• Archard’s type local wear law

�wi
p(t)=C i JF i (t)�(t)�sp(t) on �

i
c,t i =1,2 (30)
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• Initial conditions

ui (0) = 0 in �
i
0,0 =�

i
0, i =1,2 (31)

wi
p(0) = 0 on �

i
c,0 =�

i
c, i =1,2 (32)

where

– Gi
int is defined by (3),

– CAu , Hc, H f , and (H i
w)i=1,2 are the spaces of kinematically admissible displacement fields,

contact Lagrange multipliers, friction (semi-) Lagrange multipliers, and wear fields, respec-
tively.

Observe that for the sake of clarity of notations, the explicit reference to time, both for the unknown
and virtual fields and for the unknown domains, was omitted.

For the numerical solution of the problem (25)–(32), the main difficulty when compared to
classical contact problems, is related to the unknown evolution of the potential reference contact
surface position, due to wear. The following section focuses mainly on the latter issue.

5. NUMERICAL SOLUTION ALGORITHM

Friction loads depend on the relative tangential velocity field and require an incremental (fictive)
time strategy. The wear variation law is more intricate: it is an evolution law that leads to the
alteration of the interacting solids, changing consequently the reference domains occupied by
these solids. The incremental form of the wear problem (25)–(32) has to rigorously take into
account this geometry variation. In practice and due to complexity of wear problems, more or
less simplified incremental formulations have been developed. Here, we distinguish two main
incremental formulations: an explicit and an implicit one. For this, we consider the time interval
I= [0,T ] to be a collection of non-overlapping subintervals [tk, tk+1], i.e. I=

⋃nT

k=0[tk, tk+1], with
0= t0<t1 · · ·<tk<tk+1< · · ·<tnT +1 =T . We denote by �tk = tk+1 − tk =�t the time step (chosen
here to be constant for simplicity) and by (∗)k the approximation of the field (∗)(tk) at time.
Moreover, we assume that, at a time step tk , for k =1,nT , the displacement field uk−1, the wear
field wi

p,k−1 and consequently the placement of the potential reference contact surface �c,k−1
are known.

5.1. Wear explicit algorithm

In this strategy, the reference slave contact surface �c,t , at time snap-shot tk , (k>0), is frozen
to its (known) position at time tk−1. This leads to the following wear explicit incremental large
transformations elastic frictional contact problem:

Find (uk,�k,Kk, ((wi
p)k)i = 1,2), Sw

uk, Sfk) ∈ CAu,k−1 × Hc,k−1 ×H f,k−1 ×(H i
w,k−1)i=1,2×L∞

(�c,k−1; {0,1})2;

G int(uk,w)+Gcont(�k,uk,w)+Gfric(Kk,�k,uk,w) = 0 ∀w∈CAu,k−1 (33)

Gweak
cont (�k,uk,�

∗) = 0 ∀�∗ ∈ Hc,k−1 (34)

Gweak
fric (Kk,�k,uk,K

∗) = 0 ∀K∗ ∈H f,k−1 (35)

with

G int(uk,w) =
2∑

i=1

∫

�
i
0,k−1

T r [�i
k(∇wi )T]d�

i (36)

Gcont(�k,uk,w) = −

∫

�c,k−1

Sw
ukgw

nk[[wn]]d� (37)
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Gfric(Kk,�k,uk,w) = −

∫

�c,k−1

	Sw
uk�k

{
SfkKk +(1−Sfk)

g�k

‖g�k‖

}
·[[w�]]d� (38)

Gweak
cont (�k,uk,�

∗) =

∫

�c,k−1

−
1

�n

{�k −Sw
ukgw

nk}�
∗ d� (39)

Gweak
fric (Kk,�k,uk,K

∗) =

∫

�c,k−1

−	Sw
uk�k

�
�

{
Kk −

(
SfkKk +(1−Sfk)

g�k

‖g�k‖

)}
K

∗ d�

+

∫

�c,k−1

(Sw
uk −1)KkK

∗ d�=0 (40)

where

�
i
k =�

i (ui
k)

gw
nk =�k −�ndw

nk

dw
nk = [[�k]]·nk

�u�k =u�k −u�(k−1)

Sw
uk =1

R
−(gw

nk)
g�k =Kk +�

�
[[�u�k]]

Sfk =1B(0,1)(g�k)
�

�
>0

Observe that the augmented Lagrangian-like parameter �
�

is homogeneous to the parameter ��

(appearing in the continuous formulation, defined by (25)–(32)), divided by a (fictive) time.
This is now a frictional large transformations elastic contact problem that we solve by means

of the finite element method, a collocation method (namely a particular quadrature procedure for
the contact terms [45]) and an algorithm detailed in [46]. Once this discrete non-linear problem
has been solved, wear is adjusted as follows:

wi
nk =wi

n(k−1)+C i JF i
k
�k‖[[�u�k]]‖ (41)

As long as the final time snap-shot tT is not reached, the potential reference contact surface is
consequently updated and a next time step is solved.

The main drawback of this strategy is that it may lead to numerical instabilities if the wear
variation during one step is too large (e.g. [25]), which is a classical limitation of general explicit
approaches.

Before describing a wear implicit approach, let us observe that the described wear explicit
algorithm can be simplified (especially for infinitesimal wear) by freezing the reference potential
contact interface to its initial position for all the time steps. With this strategy, the wear field can
be considered as an internal variable (calculated by numerical integration of the wear law) and
used to correct the signed normal distance for the contact problems.

5.2. Wear implicit algorithm

Contact forces are known to be very sensitive to the interacting surfaces profiles. Thus, even a
small error on the estimation of the worn surface profiles, due to the use of the approximate explicit
wear algorithm, may significantly change the final worn volumes. In this subsection, we develop
an implicit wear algorithm. With this second strategy, the wear explicit algorithm, developed in
Subsection 5.1, is used iteratively in each current time step tk to adjust, till convergence, the current
slave reference contact surface. More precisely, the following scheme is used:

• step 1: (initialization) set �
0
c,k =�c,k−1;

• step 2: (solution) solve problem (33)–(40) with �c,k replaced by �
0
c,k , exactly as described in

the wear explicit algorithm;
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• step 3: (update) compute �
1
c,k by using the incremental wear law;

• step 4: (test) compare �
1
c,k to �

0
c,k ;

• step 5: (decision) if the two geometries compare to within a given small tolerance, then take
�c,k =�

1
c,k and stop the iterations for the time tk . Otherwise, replace �

0
c,k by �

1
c,k and go to

step 2.

These algorithms are used for the solution of some academic tests in the final numerical section
and let us mention here that, for a significantly important number of loading cycles, we have also
tested the acceleration approximate idea suggested by McColl et al. [25] to reduce the computational
costs of wear evolution simulation.

6. MODELING OF SOME SPECIAL WEAR PROBLEMS WITHIN
THE ARLEQUIN FRAMEWORK

One point of focus of this paper is the modeling and simulation of evolution of wear under sharp
contact. In case where one of the two contacting solids presents a sharp corner or edge of contact,
the contact pressure experienced by the other solid becomes singular in the critical contact zone.
With the local Archard’s model, this leads to a local infinite wear. This situation is obviously not
acceptable from a physical point of view. To correct the model, a delocalized Archard’s law is
suggested in Subsection 6.1.

However, even when a delocalized wear law is used (with a relatively small delocalization
distance), the contact pressure keeps on varying abruptly in the critical contact zone. To capture this
pressure concentration with sufficient accuracy, one can resort to refinement techniques, such as
the h-adaptivity finite elements technique (see e.g. [35]). However, for three-dimensional complex
interfaces, this relevant global refinement technique might well become costly.

In Subsection 6.2, we show how the multimodel and multiscale Arlequin framework can be
easily used to handle this issue. Furthermore, we show how this framework can also be used to
introduce the delocalized wear law of Subsection 6.1 only where it is needed, namely in the near
corner or edges of contact zones, in order to reduce the simulation costs.

6.1. A nonlocal Archard’s wear model

Let us recall here the local wear model we developed in Subsection 3.2:

�wi
p =C i JF i �p�sp on �

i
c,t (42)

The delocalization operator we suggest here consists in replacing in (42) the local normal
nominal contact load � at a point p by an average �̃ of � over the intersection of the potential
contact slave surface �c,t with a disk (in 3D) or a segment (in 2D), contained in the slave surface
�c,t , of radius 
 and centered in p. This leads to the following delocalized wear law:

�wi
p =C i JF i �̃�sp on �

i
c,t (43)

This delocalized wear law is discussed numerically in the last section and we notice that, instead
of the simple averaging technique, one can use a delocalization based on a molifying technique,
namely a convolution of the normal pressure with a gaussian-like function, also called a coarse
graining technique (which will be tested in a forthcoming work). In all cases, the delocalization
radius has to be calibrated numerically. (It could also be related to a kind of Representative Surface

Element when available). Here, to test the feasibility of the approach, we have given a fixed
arbitrary numerical value to the radius 
 in our numerical simulations.

6.2. The Arelquin framework for contact and wear problems

The Arlequin method [41, 42] (see also [43, 44, 49]) is a global–local type partition of model
framework which allows concurrent multiscale and multimodel analyses. This method has already

10



Acc
ep

te
d 

M
an

us
cr

ip
t

Figure 2. (a) Model problem and (b) Arlequin coupling.

Figure 3. Multi-wear laws in the Arlequin framework.

been used in many mechanical fields (e.g. [43, 44, 50–52]). For unilateral contact problems, it
was first used in [53]. It is applied here to sharp wear problems. The Arlequin method consists
in (i) superimposing a local model to a global one in a zone of interest (say S) of the latter,
(ii) distributing the mechanical energies between the super-imposed zones by means of partition
of unity functions, and (iii) gluing the models in a part Sg of S by using Lagrange multipliers, the
remainder of S being the free zone. Figure 2(b) shows how this can be done for a contact problem,
shown by Figure 2(a). Observe that the complementary domain of Sg in S is denoted by S f

(as free zone in which the two models are superposed with no coupling). The main advantage of
the method is that it allows to enrich, with enhanced flexibility and thus reduction of simulation
costs, an existing global model to take into account the local mechanical features of the problem
in hand that are not resolved by the global model.

To illustrate the application of the method to sharp wear contact problems, we consider the
bidimensional case of two solids, represented in Figure 3. In the near corner of contact zone, a
refined patch is superimposed to the coarsely meshed solid located at the bottom. The gluing or
coupling zone is marked by crosses in the figure.

Two main features of the Arlequin method can be noticed here. The first is that the patch can
be meshed much more finely than the global model (whose mesh can be kept fixed) in order to
capture the contact pressure concentration near the corner of contact. Second, in the free zone of
the patch S, the contact between the two solids is taken into account by means of the interaction of
the patch surface with the upper solid. Further, the wear law used in this local part of the contact
interface, (denoted by �

nonlocal
c,t in Figure 3) can be the nonlocal one, defined by (43), in order to
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bound the wear field in this zone. At the same time, the local wear law (42) can be used in the

remainder of the contact interface �
local
c,t , (with �

local
c,t ∪�

nonlocal
c,t =�c,t and �

local
c,t ∩�

nonlocal
c,t =∅). In

the latter part, the contact pressure is regular.
Another important numerical application of the Arlequin method concerns the treatment of

contact problems with finite wear amounts. Actually, when the material removal from solid surfaces
due to wear actions is relatively small, the only correction of the contact gap field might be
sufficient to simulate the wear evolution front (as mentioned at the end of Subsection 5.1). But,
when the wear amounts are no more negligible, this simplified modeling may suffer precision.
A remeshing (eventually adaptive remeshing) can be used to account for physical material loss.
Let us explain here how this issue can be addressed, with enhanced flexibility (and thus reduction
of simulation costs) within the Arlequin modeling framework. (Observe here that an alternative
approach, based on the Level Set method of Osher and Sethian [54] can also be used. A comparison
of both techniques will be done in a forthcoming work.)

Let us consider the sound (unworn) solid B, occupying the closure of the initial domain �0,0

(see Figure 4(a)). Let us suppose that the solid B experiences the removal of a part Bdebris of its
material, that occupied the closure of a sub-domain �

debris
0,t of �0,0 (see Figure 4(b)). The worn

solid occupies now the closure of the domain �0,t . In order to model the worn solid living in the
closure of �0,t , we superimpose to the sound (unworn) domain �0,0 a (copy of a) significantly
smaller subdomain S0,t of �0,0, whose geometry reflects the material loss (cf. Figure 4(c)). Then,
following the ideas of the Arlequin approach, we:

• duplicate the mechanical fields in S0,t ,
• let the mechanical energies be shared in S0,t by the superposed models,
• couple the two states in a gluing sub-zone of S0,t (denoted Sg in Figure 4(c))

to derive an Arlequin problem (see e.g. [44]).
Note that, since the superposition zone S0,t is chosen in such a manner that it lies in the sound

solid B and since we neglect the debris, then the (Arlequin) weight � we affected to �
debris
0,t is �≈0.

Thus, the portion of the internal global work, defined in �
debris
0,t , corresponding to the neglected

lost material, is almost zero.
Now, in terms of Finite Element discretization of the Arlequin problem, while keeping a global

unchanged FE model, defined in the initial domain (and, consequently, using a fixed global coarse
mesh to approximate the regular part of the solution), we insert, at some time increments for which
worn volume is considered to be significant, a local geometrically adapted Arlequin patch, i.e. a
local model whose geometry is updated according to the wear scar.

Observe here that whereas the methodology of [34] uses a single global mechanical field-based
formulation and (cumbersome) multipoint constraints to glue the super-imposed ‘wear patch’, the
present methodology uses one local and one global mechanical fields and ad hoc coupling operators
in the Arlequin framework.

The relevance of the Arlequin approach in dealing with all these special wear problems is
assessed in the following section through simple numerical tests that illustrate:

(1) the importance of delocalization of the wear law to correct the singularity of Archard’s local
wear profiles near contact corners or edges;
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(2) the feasibility of local unilateral/bilateral geometry update (without any change of the global
sound mesh) to account for material removal due to wear;

(3) the multimodel computing of wear of a thin structure, under sharp contact conditions.

7. NUMERICAL RESULTS

The problem of two interacting blocks is chosen to demonstrate the feasibility and relevance of
the methodology developed in the previous sections. The two-dimensional version of this problem,
depicted in Figure 5, consists in a 10×0.5cm2 elastic block, fixed at its left edge, clamped on
the bottom and unilaterally constrained at its top edge by a sharp elastic tool which is 1000 times
stiffer than the elastic block. The tool is subjected to the surface loads f and F , where f is a
given normal pressure acting on its top edge and F is a shearing cyclic load acting on its right
edge, with an amplitude of 10daN/mm (see the right part of Figure 5). These loading conditions
lead to fretting wear of the first block. The block and the tool are approximated by 64×10 and
32×10 four-nodes bilinear finite elements, respectively. The potential contact surface at the top
of the block is approximated by 16 1D linear finite elements to approximate the contact forces.
The trapezoidal quadrature rule is used. Consequently, the contact integration points coincide with
the nodal displacement points of the contact surface. This particular choice of the nodes located
on the boundary �ch is the well-known node-on-facet strategy which is accurate for compatible
interacting meshes. Observe that, for accuracy, more involved quadrature rules are mandatory
for general incompatible contact interface meshes [45, 53]. Each shear cycle is discretized by
nincr =4 ‘(fictive) time steps’ or increments. Linearized and homogeneous elasticity is assumed.
The parameters and material properties used in the finite element computations are:

• Young’s modulus for the elastic block E =210GPa
• Poisson’s ratio �=0.3
• friction coefficient 	=0.3
• constant wear coefficient C =1.0×10−11 Pa−1

In the sequel, several variants of this numerical test are achieved:

(i) The first test aims to stress the mesh-dependency and unboundness of the wear profile
induced by the locality of Archard’s model in the vicinity of the contact corner and assesses
the engineering effectiveness of the wear delocalization in the Arlequin framework.

(ii) The point of focus of the second test is the illustration, in the Arlequin framework, of the
feasibility of (unilateral) wear geometry update of the ‘slave’ contacting surface by means
of geometrically adapted local patches integrating the worn volumes.

Figure 5. A 2D elastic block subjected to given normal and shear cyclic loads.
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(iii) The third test shows the differences between the consideration of unilateral and bilateral
wear models, combined with the wear-related geometry update.

(iv) The fourth and last test considers the fretting wear for a mixed 3D/plate (bi)model.

7.1. Effectiveness of the nonlocal Archard’s law

The same fretting test as in Figure 5 is used here to show the engineering effectiveness of the
delocalized wear law. The potential contact surface corresponds to the interval �ch ={(x,0); x ∈

[0,5](in cm)}. Two different FE models are considered, a classical coarse one and a second using
a fine Arlequin patch superposed to the coarsely meshed elastic block:

• For the classical coarse FE model, 32×10 bilinear finite elements are used for the tool and
64×10 bilinear finite elements are used for the elastic block,

• For the second FE model, a 1.625cm×0.2cm Arlequin rectangular patch, composed of 24×16
bilinear finite elements, is superimposed to the lower elastic block. The top edge of the patch
is centered at the corner of contact (as indicated in Figure 3).

Local and delocalized Archard’s-like wear laws are used for both models. The length of the
nonlocal wear zone is l =1cm (i.e. �

local
c,h = [0,4]cm and �

nonlocal
c,h = [4,5]cm). The parameter 
 is

equal to 0.3125cm.
The results plotted in Figure 6 show how the use of the nonlocal Archard’s law stabilizes the

results obtained with the local Archard’s law.
In order to confirm the stabilization induced by the nonlocal wear law, we consider, for the

second finite element model described above, three increasingly refined meshes of the Arlequin
patch, (each refinement consisting in subdividing uniformly each rectangular element of the
previous mesh into four rectangular elements), while conserving the same nonlocal wear zone
�

nonlocal
c,h = [4,5]cm, the same delocalization radius 
=0.3125cm and the same coarse finite element

model.
Figure 7 depicts the wear scars corresponding to the three FE models when using either a local or

a nonlocal wear law in the contact interface of the patch. We clearly observe that the wear profiles
corresponding to the local Archard’s model are mesh-dependent, whereas those corresponding to
the nonlocal wear law are stabilized, despite the narrower refinement in the neighborhood of the
contact corner.
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Figure 6. Comparison of wear results obtained with a local and a nonlocal Archard’s wear law.
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Figure 7. Stabilized wear profiles with respect to the mesh for the delocalized wear law.

7.2. Simulation of significant worn volumes

In this section, we exemplify the potential of the Arlequin framework to simulate finite fretting
wear problems, with significant worn volumes requiring for accuracy a material removal from the
initial interacting solids. Here, the wear-related geometry update procedure is unilaterally applied
to the lower ‘slave’ block contacting surface of the numerical test represented by Figure 5. For
this test, the implicit version of the developed geometry adaptation procedure has been applied up
to Nt =10000 fretting cycles. We have used the acceleration approximate procedure of McColl
et al. [25] with an acceleration factor k =100. Each ‘representative’ fretting cycle is discretized
into four increments.

The wear depth and normal contact pressure distributions resulting from numerical simulations
with and without unilateral wear-related geometry correction are plotted in Figure 8. It is worth
mentioning that the Arlequin-based geometry update leads to sharper stress gradients and deeper
wear depths at the leading contact edge. This means that the nonphysical updating geometry
procedure is not conservative.

Among other reasons explaining the local sharp stress variations mentioned above, one can point
out the fact that the tool is not wearing out and that its geometry is not updated. In the following
subsection, we consider bilateral wear and bilateral-related geometry update.

7.3. Unilateral vs bilateral wear and geometry update

We consider the same model problem of Figure 5 and we assume that the tool is wearing out even
if the amount of material lost from this (almost) rigid block is relatively small when compared
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Figure 8. Wear depth and normal contact pressure distributions with and without
unilateral wear-related geometry update.
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Figure 9. Influence of tool wear and geometry update: (a) contact pressure distribution on the elastic block
and (b) wear depth profiles on the elastic block and the sharp tool.

to the elastic block. The wear coefficients used in Archard’s wear laws for the elastic block and
the tool are C1 =1.0×10−11 Pa−1 and C2 =1.0×10−12 Pa−1, respectively. Two tests are carried
out. In the first one, wear is calculated only on the ‘slave’ elastic block (unilateral wear) whereas,
in the second, wear is calculated on both ‘slave’ elastic block and ‘master’ tool (bilateral wear).
The results in Figure 9(b) show that under bilateral wear assumption the tool is actually worn out.
As for the elastic block, wear patterns are donut-shaped with large values at the contact corners.
Contact pressures corresponding to unilateral and bilateral wear are depicted in Figure 9(a). At the
leading contact corner, one can notice that bilateral wear modeling gives weaker wear gradients
when compared to the ones obtained with unilateral wear modeling. The appreciable ‘flattening’
effect observed on the wear profiles can be directly related to the rounded edges of the local
geometrically adapted patches and to the inherent increase of the surface conformity yielding to
the wear processes.

7.4. Wear of thin structures

Engineering thin structures may be subjected to wearing contact actions that are so localized that
their analysis by means of thin structure FE models becomes locally irrelevant.
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Figure 10. Fretting wear with a mixed plate/3D Arlequin (bi)model.

The potential of the Arlequin method to couple a global thin shell model and a local 3D patch
has been reported in [44]. Here, we show a feasibility test of computation of a problem of wear
of a thin structure under sharp contact conditions. For this, we consider a thin plate occupying
the closure of the domain �×]−e/2,e/2[, where �=]−L/2, L/2[×]− B/2, B/2[ and e are the
mid-surface and the thickness of the plate, assumed to be clamped on two opposite lateral faces,
free on the other two lateral faces, clamped on a part of its bottom face and submitted to the wear
action of a sharp tool at its top face (see Figure 10 for details and data).

The tool is submitted to a cyclic loading as in the previous tests. To take into account the
local effects of the tool, especially near the edges of contact, an Arlequin bimodel is created.
It is composed of a local 3D solid model, superimposed to a global thin structure model and
partially glued to it. The local 3D solid model is located under the tool and interacts with
it through wearing contact conditions (see Figure 10). This problem is then discretized and
solved by means of the numerical methodology described in the numerical section. In particular,
the mid-surface � of the global plate model is meshed with 50 uniform rectangular elements.
The Arlequin 3D patch is meshed in a first computation with 18×7×8 eight nodes brick
elements and 12×4×4 eight nodes brick elements are used for the sharp indenter for all the
computations.

Figure 11 depicts contact pressures and wear depths on the slave contact surface of the solid
patch, after 10, 20, and 30 cycles.

It is worth noticing a qualitative similarity with results reported in [26] for a different 3D wear
problem consisting of an elastic block unilaterally constrained to a rigid support and submitted to
similar loads as the ones considered here.

Figure 12 represents the restriction to the (x,0, z) plane of the wear profiles obtained with an
equivalent complete 3D (mono)model and the mixed Arlequin (bi)model. One can underline the
similarity between the obtained wear profiles.

Finally, Figure 13 shows that the resulting mixed plate/3D Arlequin (bi)model can display
significant through-the-thickness stresses.

Nevertheless, we are aware that the modeling of this problem (but also the others involving
singularities) has to be pushed forward to derive more accurate numerical solutions. The results
shown by Figure 14 were derived for the same mechanical problem by using a second mesh for
the patch (obtained by subdividing uniformly each brick element of the first mesh of the patch into
eight brick elements). The results given in Figure 15 were derived by using a third mesh obtained
from the second one by using the same refinement procedure. The wear depths on the effective
contact surface obtained with the three FE models after 30 cycles are compared to each other in
Figure 16. One can observe that a reasonable convergence is reached there where the wear field is
regular but not in the near contact edges or contact corner zones. This is more clear in Figure 17
where the wear is represented along particular cross sections of the contact surface. Observe for
instance that in the central part of Figure 17 (wear along the cross-section y =0 of the contact
surface) the three curves are quasi-superposed, where the wear field is regular.
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Figure 11. Contact pressure and wear depth distributions on the contacting surface
after 10, 20, and 30 fretting cycles.

0 1 2
1.5

2

2.5

3

3.5

4

4.5

5

5.5

x (cm)

w
n
 (

m
)

Wear depths at

y = 0.1 cm

after 10 fretting cycles

Wear depths at

y = 0.1 cm

after 20 fretting cycles

Wear depths at

y = 0.1 cm

after 30 fretting cycles

0 1 2
2

3

4

5

6

7

x (cm)

w
n
 (

m
)

0 1 2
2

3

4

5

6

7

8

x (cm)

w
n
 (

m
)

Arlequin (bi)model

3D (mono)model

Arlequin (bi)model

3D (mono)model
Arlequin (bi)model

3D (mono)model

Figure 12. Comparison of wear depth patterns between the fine 3D (mono)model and the
Arlequin mixed plate/3D (bi)model.

As for 2D wear problems, a simple way of stabilization of the pressure and consequently of the
wear fields in the singular zones could be a delocalization of the wear model. Another more involved
and classical approach consists in using h-p-adaptive strategies (e.g. [55]), although we believe
that one has also to refine the physical models themselves near the edges and corners of
contact.

8. CONCLUDING REMARKS

A hybrid Lagrangian continuous formulation of the problem of wear of interacting structures
submitted to cyclic loading, is developed in this paper in a large transformations framework. Using
a conservation of infinitesimal worn material mass, or volume hypothesis, (seemingly original)
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Figure 13. (a) xx; (b) yy; (c) xy; and (d) zz.
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Figure 14. Contact pressure and wear depth distributions on the contacting surface after 10, 20, and 30
fretting cycles with a first refinement.
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Figure 15. Contact pressure and wear depth distributions on the contacting surface after 10, 20, and 30
fretting cycles with a second refinement.

Figure 16. Comparison of wear depths distributions for the three meshes on the
contacting surface after 30 fretting cycles.

extensions of the local Archard’s wear law to large transformations are suggested, explained
and integrated in the hybrid frictional wearing contact problem. A numerical solution strategy is
detailed. In particular, a wear explicit and a wear implicit integration schemes are detailed. One
of the main goals of the paper is to address wear of structures under sharp contact. To achieve
this task, a simple nonlocal wear law is suggested. Its effectiveness to stabilize the wear profiles is
illustrated through a simple but relevant example. Furthermore, the Arlequin framework is shown
to be an appropriate one for the treatment of some particular wear problems with flexibility and
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Figure 17. Comparison of wear depths for the three meshes on three cross sections
(y =−0.1cm, y =0cm, and y =0.1cm).

reduction of costs of the simulations. Two engineering questions, in particular, are addressed in this
framework:

• the fretting simulations taking into account the contact geometry change due to material
removal by wear via geometrically adapted Arlequin patches;

• the fretting wear of thin structures by using the multimodel character of the Arlequin method.

The cyclic localized stresses in cyclic sliding contact give rise to localized contact plastic
deformations and/or to local fatigue failure. The macroscopic elasticity assumed herein in a first
analysis can not provide a precise description of these severe local damage mechanisms that might
cause micro-cracks initiation and macro-crack creation (see e.g. [36, 56]). In the future work, we
will focus on a better integration of more complex physical behaviors to provide a more accurate
elaboration of wear in critical zones coupled to macroscopic wear models in regular zones. The
multiscale modeling Arlequin framework should help us to address these challenging issues.

Finally, let us also mention that the use of Level Set methods with thermodynamically based
wear laws to propagate wear constitutes another horizon for a future work.
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