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Abstract—Measuring the complexity of visual content is crucial
in various applications, such as selecting sources to test pro-
cessing algorithms, designing subjective studies, and efficiently
determining the appropriate encoding parameters and bandwidth
allocation for streaming. While spatial and temporal complexity
measures exist for 2D videos, a geometric complexity measure
for 3D content is still lacking. In this paper, we present the first
study to characterize the geometric complexity of 3D point clouds.
Inspired by existing complexity measures, we propose several
compression-based definitions of geometric complexity derived
from the rate-distortion curves obtained by compressing a dataset
of point clouds using G-PCC. Additionally, we introduce density-
based and geometry-based descriptors to predict complexity.
Our initial results show that even simple density measures can
accurately predict the geometric complexity of point clouds.

Index Terms—Point Cloud, complexity, compression, G-PCC.

I. INTRODUCTION

With the unprecedented diffusion of Extended Reality (XR)
technologies and the availability of many market-ready Head
Mounted Displays (HMDs), the transition from 2D to 3D
visual content is underway [1]. The XR technology may repre-
sent the next major paradigm shift in telecommunications [2].
Consequently, volumetric video, particularly in the form of
Point Clouds (PCs), is expected to be the next generation
of video technology [3]. The live streaming of 3D content
is a key enabler for shared immersive experiences, which
are a core component of the metaverse concept [4]. The
possibility of live streaming remote environments, dynamic
objects and people opens up unlimited applications, including
remote collaboration, training and learning, entertainment, and
remote monitoring [5].

The real-time use of this new generation of video typically
requires the acquisition, encoding, transmission, decoding, and
rendering of PCs [6]. According to [2], XR network require-
ments will be highly dependent on the application. In the short
term, conversational Augmented Reality (AR) is foreseen to
be one of the main applications that require the transmission of
volumetric data stream between source and receiver. Medium-
and long-term scenarios include more complex conditions in
which the AR objects should adapt dynamically to physical
world changes, and user interactivity should be supported. The
overall required bitrate will depend on the content complexity,
resolution, and frame rate [2]. Based on this, the possibility
of determining appropriate compression levels and bandwidth

allocation for 3D visual content is becoming of paramount
importance.

For 2D content, the possibility of evaluating video com-
plexity is considered a crucial step for optimizing adaptive
streaming [7], [8]. Traditionally, spatial information (S7) and
temporal information (7']) are used to represent the spatial and
temporal complexity of video sequences using the Sobel filter.
Specifically, in the ITU-T P.910 recommendations [9], ST and
T1 features are used to select test scenes for subjective testing.
Additionally, new open-source tools called Video Complexity
Analyzer (VCA) [10] and Enhanced Video Complexity Ana-
lyzer (EVCA) [11] have been developed. These tools measure
spatial and temporal complexity features through an energy
function based on the Discrete Cosine Transform (DCT),
building on methodologies from [12]. Furthermore, a novel
supervised feature extraction method called DeepVCA [13]
has been introduced, leveraging deep neural networks to assess
the spatial and temporal complexity of video sequences. In this
method, the number of encoding bits required for each frame
in intra-mode and inter-mode serves as labels for spatial and
temporal complexity, respectively.

However, to the best of our knowledge, similar metrics
for 3D visual content are currently lacking. This work aims
to propose and study complexity measures for PCs, with a
specific focus on PC compression applications. Specifically,
we consider the recently standardized Geometry-based Point
Cloud Compression (G-PCC) codec [14]. G-PCC allows for
direct encoding of content in 3D space and separates the
coding of geometry (i.e., point positions) from the coding of
attributes (i.e., color information).

As a proof of concept, this work focuses only on geometry.
Specifically, we compress a dataset of PCs at different bitrates
and compute the corresponding Rate-Distortion (RD) curves.
From this, we derive a ground-truth measure of geometric
complexity. Subsequently, we investigate how various geo-
metric descriptors could serve as predictors of this ground-
truth geometric complexity. Our preliminary experiments offer
insights into which features of PCs most significantly impact
geometric complexity, paving the way for the design of an
effective and low-cost measure of geometric complexity.

The rest of the paper is organized as follows: Section II
describes the generation of the dataset of compressed PCs
used to define complexity measures; Section III describes



three definitions of ground-truth PC complexity; Section IV
presents statistical and geometric measures to predict the
ground-truth geometric complexity; Section V evaluates the
proposed definitions of complexity, as well as the accuracy of
complexity predictors; finally, Section VI concludes the paper.

II. DATASET PREPARATION

We employ the G-PCC codec v23.0 to encode PCs at dif-
ferent bitrates, using the Octree coding scheme. This method
is based on a recursive subdivision of the three-dimensional
space into octants. In particular, each subset is further divided
into eight parts only if there is at least one point inside it;
otherwise, it becomes a leaf of the recursion tree. Then, the
geometry of each node of the tree containing at least one
point is encoded with a byte, where each bit represents the
occupancy of a child node. Once the octree is created, G-PCC
uses context-based arithmetic coding to efficiently entropy
code the octree symbols. For the purpose of this study, we
do not employ other coding modes such as trisoup, which
will be considered in future work.

The PCs used in this paper are from the BASICS
dataset [15]. This dataset contains 75 pristine PCs catego-
rized into three semantic groups: (i) Humans & Animals,
(i) Inanimate Objects, and (iii) Buildings & Landscapes. All
PCs are voxelized by 10-bit quantization prior to coding.
After compressing all the PCs using G-PCC, RD curves are
computed to evaluate the compression results. The distortion
introduced by the codec is assessed using the PCC quality
measurement software version 0.14.1 provided by MPEG [16].
This software computes both point-to-point (D1) and point-
to-plane (D2) distances, allowing the estimation of the overall
distortion based on the Mean Squared Error (MSE) or the
corresponding Peak Signal to Noise Ratio (PSNR) value.
In this analysis, PSNR related to point-to-point distance is
considered. The rate is measured by calculating the average
number of bits per input point, with the total bitstream size
derived from the output of the encoder.

III. DEFINITIONS OF GROUND-TRUTH COMPLEXITY

In the literature, there are multiple definitions of the cod-
ing complexity of a signal. In classical RD theory, coding
complexity characterizes the RD function of a given source
and depends solely on the source’s statistics [17]. A more
general definition is related to the concept of Kolmogorov
complexity, which is the number of bits required to describe
a source. Based on this concept, [18] defines the ground truth
complexity for 2D images using the compression ratio, which
is the ratio of the output size to the input size at a specific
quality level. In this work, we consider three approaches to
define the ground-truth geometric complexity of PCs, which
are detailed in the following.

A. Point-based definition

We consider an approach similar to [18], i.e., we eval-
uate the bitrate required by the G-PCC codec for a given
quantization step. In G-PCC there are six configurations

corresponding to different quality levels. In this work, we
consider two bitrate values, BP Py 125 and BP F,9375, which
represent the bits per point when using scaling factors of
0.125 and 0.9375, respectively. In G-PCC, these scaling factors
correspond to quantizing the point coordinates with a step size
that is inversely proportional to the scaling factor. The selected
factors correspond to the minimum and maximum quality
levels available in G-PCC. The main limitation of this point-
based approach is that it only considers single operational
points in the RD plane and does not account for compression
complexity across different quality levels.

B. Area-based definition with content-specific interval

To overcome the limitations of the previous approach and
measure the average complexity across different bitrates, we
measure the area under the RD curve for a given PC, taking
inspiration from the Bjontegaard delta metrics. Specifically,
two measures are considered, depending on whether the area
is calculated with respect to the rate (Irarg) or the distortion
(Ipsnr)- IraTe and Ipgngr are computed on 6 points according
to the GPCC standard configuration files. It is important to
note that this measure still depends on the specific codec con-
figuration used to produce the curves. Despite this dependency,
the metric enables the assessment of performance across
different quality levels, making it a more general measure of
complexity.

C. Area-based definition with uniform interval

The integration interval for the area-based measure de-
scribed above might vary significantly with contents. To
overcome this variability, we propose to integrate over the
intersection of the supports of the curves for different contents,
avoiding extrapolation outside defined regions. RD curves are
interpolated using Piecewise Cubic Hermite Polynomials for
reliability.

The resulting measure, Intprs (for simplicity, computed
using the PSNR as the integration axis), depends on the con-
tents of the dataset through the integration interval. For large
and diverse datasets, the intersection of all supports might be
empty, thus special care should be considered when computing
this measure. We assess and compare these definitions of
ground-truth geometric complexity in Section V.

IV. GEOMETRY COMPLEXITY PREDICTORS

In this section, we examine density-based and geometry-
based features of a point cloud as potential predictors of its
ground-truth geometric complexity.

A. Density-based predictors

Local density plays a key role in PC coding. Density is
defined as the number of points per unit volume. In denser
regions of a PC, points are closer to each other. This intuitively
indicates a stronger spatial dependency among points, which
typically facilitates the coding task.

Based on this observation, we propose three density-based
predictors of coding complexity:



o Average nearest neighbor distance (AV G1): to compute
this metric, we evaluate the Euclidean distance between
a reference point in the PC and its closest neighbor.
This procedure is repeated for all points (or, to reduce
complexity, on a random subset of points) in the PC.
The average of these distances is then computed as the
predictor.

o Average k-nearest neighbor distance (AV Gy): this mea-
sure generalizes AV G for k > 1, since AV G becomes
meaningless if most points have the same minimum
distance, which can occur in voxelized datasets. Addition-
ally, relying on a single point may not accurately reflect
the density of the PC.

o Standard deviation of the k-nearest neighbor distances
(ST Dy,): a high standard deviation indicates a more irreg-
ular distribution, suggesting greater difficulty in encoding.
For instance, in the case of the described encoder, which
uses a constant scale factor and a fixed number of octree
subdivisions, a significant standard deviation implies non-
uniform quality and potentially increased final distortion.

B. Geometry-based predictors

While density-based descriptors simply measure the oc-
cupation of 3D space, geometry-based descriptors provide
information about the local structures and surfaces in the PC.
To capture these properties, in this paper we consider the local
curvature as a geometric feature.

Curvature measures how much the content deviates from
being locally planar at each point. Typically, high curvature
values indicate significant geometric variability, such as edges,
corners, or transition regions. Conversely, lower curvature
values generally correspond to flatter areas or simple surfaces.
In the literature, curvature is employed in various metrics to
assess the quality of 3D content. For example, in [19], a metric
based on the computation of mean curvature is proposed to
evaluate the quality of a compressed PC by comparing it to
the original content. Curvature is an effective indicator for
defining the difficulty of compressing content, making it a
strong candidate for predicting the geometric complexity of
a PC. Specifically, if the content is characterized by a very
irregular surface with high curvature values, it is likely that
the losses introduced by compression will be significant.

To estimate the curvature at a point p, we first compute
the principal curvatures using Principal Component Analysis
(PCA). With the two principal curvatures, Kpmin and Kmpax, We

can then calculate the mean curvature, defined as:
Kmin T Kmax

; (M

Similarly, the Gaussian curvature can be computed as the
product of the two principal curvatures:

Rm =

KRg = Kmin * Kmax- 2

For this analysis, we focus on the Gaussian curvature
and obtain a single measure of the PC’s complexity K,
by averaging the Gaussian curvature contributions across all
points.

V. EXPERIMENTAL VALIDATION

In this section, we first compare the different ground-truth
geometric complexity definitions proposed in Section III, and
then we evaluate the accuracy of complexity predictors. We
employ Pearson’s Correlation Coefficient as a measure of
linear correlation.

A. Correlation among different definitions of complexity

These definitions provide valid alternatives for computing
the ground-truth complexity of a PC. However, the possibility
of using them interchangeably needs to be investigated. To
this aim, at least for the employed dataset, we compute the
pairwise correlations between measures, reported in Table
I. This analysis suggests that the complexity assessment is
relatively independent from the specific method used. Fig. 1
further supports this finding by comparing the proposed com-
plexity measures with the integral computed with respect to
distortion (/psnr) as a reference. The results closely align with
the identity function, with only one offset factor changing,
indicating that all measures capture nearly the same aspect of
complexity.

Based on this observation, we employ Ipsnr as the ground-
truth complexity measure in the following sections.

B. Accuracy of complexity predictors

1) Density-based predictors: Table II presents the results of
the density-based complexity prediction measures, which are
based on the distance between neighboring points. The average
(AV@G) and the standard deviation (ST D) are considered
for neighbor radii of 1, 5, and 10. The high correlations
observed, regardless of the radius, indicate a strong ability
of these descriptors to predict geometric complexity, at least
with the G-PCC Octree codec. More specifically, we observe
that increasing the neighbor radius from 1 to 5 leads to better
correlations for both the average and standard deviation. This
is intuitive, as the statistics computed on a single point (k = 1)
are very noisy. However, when the radius grows too much
(k = 10) the correlations decrease. This is likely because, for
some sparser point clouds, the 10 nearest neighbors may be
spatially distant from each other, resulting in statistics that fail
to capture the true spatial relationships of the points. Finding
the optimal number of neighbors depends significantly on the
dataset used and should be tuned accordingly.

Although, based on the correlation values reported in Ta-
ble II, the three radii appear to be promising, a more in-depth
analysis reveals that considering only the nearest neighbor
yields almost meaningless results. With the exception of a
few very sparse contents, the majority of the point clouds
in the dataset exhibit an average nearest neighbor distance
exactly equal to 1. This is due to the voxelization of the
original contents, and it makes this measure inappropriate for
predicting the compression complexity.

For the best-performing number of neighbors (i.e., k = 5)
we provide in Fig. 2 the comparison between the average and
the standard deviation of the average neighbors distance. Both
metrics show a linear trend with respect to the RD complexity,



TABLE I
CORRELATION AMONG GROUND-TRUTH COMPLEXITY MEASURES.

Ipsnr Irate | BPPRy12s | BPPyo37s | IiNters
IpsnR 1.0000
IRATE 0.9547 1.0000
BPPyias | 09519 | 08183 | 1.0000
BPPyoss | 09714 | 0.9980 | 0.8527 1.0000
Inters | 09998 | 09493 | 09571 0.9671 1.000
TABLE II

CORRELATION AMONG IpgNR AND DIFFERENT DISTANCE METRICS.

Featwes | AVG, | STDy | AVGs | STDs | AVGio | STDyo

cC | 0978 | 0955 | 0992 | 0973 | 0989 | 0937
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Fig. 1. Comparison among ground-truth complexity measures.

thus proving their effectiveness as predictors. Extending this
analysis to additional coding configurations and learning-based
codecs would be a valuable next step.

2) Geometry-based predictor: The evaluation of the mean
Gaussian curvature reveals a correlation coefficient of only
0.685. This suggests that the measure does not fully capture
the overall complexity of the content.

Part of this result depends on how the curvature was ob-
tained. The software CloudCompare was used for this purpose.
The procedure, as described in [20], is similar to the one
previously outlined but requires fixing the PCA kernel size. If
the kernel size is too small, the final metric becomes unreliable
because most points cannot approximate the surface locally
with too few neighbors, resulting in statistics based on a
limited portion of the object. In contrast, a too large kernel
size leads to a noisy estimation of the surface, making the
final result once again unreliable. When dealing with a large
and diverse dataset, it is challenging to define a kernel size
that fits all point clouds. In this study, a kernel size of 5 was
considered, which seems to be a reasonable trade-off between
the needs of sparse and dense objects. However, it remains
challenging to find a size that fits all types of point clouds
perfectly.

o AVGq
o) STD5

W
T

Predictor
(3]

B0
1 oo (0]
° awo
O L L L J
0 20 40 60 80 100

RD complexity

Fig. 2. Comparison between the average and the standard deviation of the
average neighbors distance with k = 5.

VI. CONCLUSIONS AND FUTURE WORK

While the complexity of 2D videos has been extensively
studied, the complexity of 3D content remains less explored. In
this paper, we first investigated various definitions of ground-
truth geometric complexity for PCs and proposed several
predictors for estimating this complexity. We analyzed tradi-
tional coding complexity measures, such as bitrate and the
area under the RD curve, along with geometry-based metrics,
including curvature. Our findings suggest that, despite some
variation, these complexity definitions generally align well
and capture similar aspects of PC complexity. The density-
based predictors, such as the average nearest neighbor distance
and its standard deviation, demonstrated a strong correla-
tion with compression-based complexity metrics, when using
the G-PCC Octree codec. These predictors proved effective,
though the optimal number of neighbors remains dataset-
dependent and requires careful tuning. On the other hand,
the curvature-based metric, specifically the average Gaussian
curvature, showed a lower correlation with ground-truth com-
plexity, indicating that it may not fully capture the overall
complexity.

As future work, we will extend our study by incorporating
additional codecs, color information, and a variety of datasets
to evaluate the generalizability of the proposed complexity
measures. This will include exploring higher precision datasets
and analyzing trends among semantic groups to better under-
stand content-specific influences. Additionally, we will assess
the impact of color on complexity prediction. These steps
will strengthen the robustness of our findings across different
encoding schemes and data types.
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