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N◦ national de thèse : 2015SACLC017
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Apostolos Destounis, Subhash Lakshminarayana, Luca Rose, Axel Müller, Matthieu
de Mari, Vineeth S Varma, Sylvain Azarian, Raul de Lacerda, Romain Couillet,
Jakob Hoydis, Veronica Belmega, Abla Kammoun, Samir Perlaza Medina, Salam
Akoum, Laura Luzzi, Najett Neji, Emil Björnson, Franck Iutzeler, Anthony Mays,
Nguyen Linh-Trung, Thang Le Xuan, Thuy-Quynh Tran, Giovanni Geraci, Stefano
Boldrini, Baher Mawlawi, Nikolaos Pappas, Maria Michou, Yacine Hebbal, Adrien
Pelletier, Liusha Yang, Serve Shalmashi, Aymeric Thibault, Harry Sevi, German
Bassi, Stefan Mijovic, and Apostolos Karadimitrakis.

... all my friends and colleagues who were active members of the group (or somehow connected)
in the time of my defence, particularly, Kenza Hamidouche, Azary Abboud, Gil Katz,
Matha Deghel, Evgeny Kusmenko, Hafiz Tiomoko Ali, Fei Shen, Luca Sanguinetti,
Jerome Gaveau, Asma Ghorbel, Chien-Chun Cheng, Zheng Chen, Salah Eddine
Hajri, Bakarime Diomande, Chao He, Tanumay Datta, Meysam Sadeghi, Farnaz
Adib Yaghmaei, and Bhanukiran Perabathini.

... all my friends and nice people who I have interacted in CentraleSupélec during these last three
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Abstract

This thesis explores one of the key enablers of 5G wireless networks leveraging small cell
network deployments, namely proactive caching. Endowed with predictive capabilities
and harnessing recent developments in storage, context-awareness and social networks,
peak traffic demands can be substantially reduced by proactively serving predictable user
demands, via caching at base stations and users’ devices. In order to show the effectiveness
of proactive caching techniques, we tackle the problem from two different perspectives,
namely theoretical and practical ones.

In the first part of this thesis, we use tools from stochastic geometry to model and
analyse the theoretical gains of caching at base stations. In particular, we focus on
1) single-tier networks where small base stations with limited storage are deployed, 2)
multi-tier networks with limited backhaul, and) multi-tier clustered networks with two
different topologies, namely coverage-aided and capacity-aided deployments. Therein, we
characterize the gains of caching in terms of average delivery rate and mean delay, and
show several trade-offs as a function of the number of base stations, storage size, content
popularity behaviour and target content bitrate.

In the second part of the thesis, we take a more practical approach of proactive caching
and focus on content popularity estimation and algorithmic aspects. In particular: 1) We
first investigate the gains of proactive caching both at base stations and user terminals, by
exploiting recent tools from machine learning and enabling social-network aware device-to-
device (D2D) communications; 2) we propose a transfer learning approach by exploiting
the rich contextual information extracted from D2D interactions (referred to as source
domain) in order to better estimate the content popularity and cache strategic contents
at the base stations (referred to as target domain); 3) finally, to estimate the content
popularity in practice, we collect users’ real mobile traffic data from a telecom operator
from several base stations in hours of time interval. This amount of large data falls into
the framework of big data and requires novel machine learning mechanisms to handle.
Therein, we propose a parallelized architecture in which content popularity estimation
from this data and caching at the base stations are done simultaneously.

Our results and analysis provide key insights into the deployment of cache-enabled
small base stations, which are seen as a promising solution for 5G heterogeneous cellular
networks.
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Abstract (French)

Cette thèse explore le caching proactif, l’un des principaux paradigmes des réseaux cel-
lulaires 5G, utilisé en particulier dans les réseaux à petites cellules (RPCs). La capacité
de prévision des petites stations de bases couplée avec les récents développements dans le
stockage, la sensibilité au contexte et les réseaux sociaux, le caching distribué permet de
réduire considérablement les pics de trafic dans la demande des utilisateurs en servant de
manière proactive ces derniers en fonction de leurs demandes potentielles, et en stockant
les contenus à la fois dans les stations de base et dans les terminaux des utilisateurs. Pour
montrer la faisabilité des techniques de caching proactif, nous abordons le problème sous
deux angles différents, à savoir théorique et pratique.

Dans la première partie de cette thèse, nous utiliserons des outils de la géométrie
stochastique pour modéliser et analyser les gains théoriques résultant du stockage dans
les stations de base. Nous nous focalisons en particulier sur 1-) les réseaux“niveau-simple”
dans lesquels de petites stations de base ont une capacité de stockage limitée, 2-) Réseaux
“niveau-multiples”avec un backhaul à capacité limitée et 3-) Les réseaux“niveau-multiples
groupés” à deux topologies différentes: déploiements en fonction de la couverture et en
fonction de la capacité. Nous y caractérisons les gains de stockage en termes de débit
moyen fourni et de délai moyen, puis nous montrons différents compromis en fonction du
nombre de stations de base, de la taille de stockage, du facteur de popularité des contenus
et du débit des contenus ciblés.

Dans la seconde partie de la thèse, nous nous focalisons à une approche pratique du
caching proactif et nous nous focalisons sur l’estimation du facteur de popularité des
contenus et les aspects algorithmiques. En particulier, 1-) nous établissons dans un pre-
mier lieu, les gains du caching proactif à la fois au niveau des stations de base et des
terminaux des utilisateurs, en utilisant des outils récents d’apprentissage automatique en
exploitant le transfert des communications appareil-à-appareil (AàA); 2-) nous proposons
une approche d’apprentissage sur la base de la richesse des informations échangées entre
terminaux (que nous désignons par domaine source) dans le but d’avoir une meilleure
estimation de la popularité des différents contenus et des contenus à stocker de manière
stratégique dans les stations de base (que nous désignons par domaine cible); 3-) Enfin,
pour l’estimation de la popularité des contenus en pratique, nous collectons des données
de trafic d’usagers mobiles d’un opérateur de télécommunications sur plusieurs de ses
stations de base pendant un certain nombre d’observations. Cette grande quantité de
données entre dans le cadre du traitement “Big Data” et nécessite l’utilisation de nou-
veaux mécanismes d’apprentissage automatique adaptés à ces grandes masses de données.
A ce titre, nous proposons une architecture parallélisée dans laquelle l’estimation de la
popularité des contenus et celle du stockage stratégique au niveau des stations de base
sont faites simultanément.

Nos résultats et analyses fournissent des visions clés pour le déploiement du stockage
de contenus dans les petites stations de base, l’une des solutions les plus prometteuses des
réseaux cellulaires mobiles hétérogènes 5G.
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Chapter 1

Resumé (French)

1.1 Contexte et Motivation

La récente explosion des smartphones a substantiellement enrichi l’expérience des util-
isateurs mobiles qui a conduit au développement de nouveaux services mobiles à savoir
la diffusion multimédia, les applications web et les réseaux sociaux inter-connectés. Ce
phénomène a été davantage alimenté par la diffusion vidéo mobile qui représente au-
jourd’hui près de 50 % du trafic de données avec une projection de 500 fois plus dans
les dix prochaines années [1]. D’un autre coté, les réseaux sociaux représentent le deux-
ième plus important volume de trafic de données avec une part avoisinant les 15 % [2].
Ces nouveaux phénomènes ont rapidement alerté les opérateurs de services mobiles au
redéploiement de leurs actuels réseaux en développant des techniques plus avancées et so-
phistiquées pour élargir la couverture du réseau, booster la capacité du réseau, et fournir
à faible coût les contenus désirés à proximité des utilisateurs.

Une approche prometteuse pour faire face à ces nouvelles demandes de trafic consiste
au développement des réseaux à petites cellules (RPCs) [3]. Les RPCs représentent un
nouveau paradigme des réseaux basé sur le déploiement de petites stations de base (PSBs)
à faible couverture, faible consommation d’énergie et faible coût en adéquation avec le
réseau macro cellulaire sous-jacent. De nos jours, la grande majorité des travaux de
recherche se focalisaient sur les problèmes liés à l’auto-organisation, à la coordination de
l’interférence entre cellules (CIEC), au déchargement du trafic, et à l’efficacité énergétique,
etc (voir [4] et les références relatives). Ces études étaient établies sous l’existence du
paradigme réseau réactif, dans lequel les demandes de trafic utilisateurs et les flux doivent
être servis de manière urgente ou rejetés, ce qui induit des pertes. Pour cela, le paradigme
des réseaux à petites cellules est loin de résoudre les problèmes de pic de demande de
trafic dont le déploiement à grande échelle nécessite des coûts élevés pour l’acquisition,
l’installation des sites et de backhaul. Ces défauts deviendront de plus en plus importants
au vu du nombre de plus en plus important de terminaux connectés et de l’avènement
des réseaux ultra denses, et continueront à limiter les infrastructures de réseaux cellulaires
actuels. Ces observations clés nécessitent un nouveau paradigme réseau, qui va au delà du
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1.1. Contexte et Motivation

déploiement réseaux cellulaires à petites cellules et hétérogènes actuels, en tenant compte
des récents développements en stockage, la sensibilité au contexte et les réseaux sociaux
[5].

Le nouveau paradigme réseau est pro-actif en ce sens que les nœuds aux bords du
réseau (à savoir PSBs et terminal utilisateurs (TUs)) prédisent les besoins en information
des utilisateurs et pré-stockent intelligemment les contenus stratégiques dans le but de
décharger le backhaul en même temps que de satisfaire la qualité de service (QdS) des
utilisateurs. Cela va au-delà de l’objet des réseaux cellulaires traditionnels qui avaient été
développés en supposant des TUs muets avec capacité de stockage et de traitement limités.
De nos jours, les TUs sont plus sophistiqués qu’avant, donnant l’opportunité d’exploiter
leurs capacités et celles des RPCs, en stockant les contenus prédits aux bords du réseau.
Cela implique des gains considérables en termes de ressources réseau et minimise les
dépenses opérationnelles [4].

Comme énoncé précédemment, des résultats récents ont montré que les comportements
humains sont corrélés et prédictibles sur un large horizon [6]. A ce titre, les PSBs sont
supposées équipées d’unités de stockage et le backhaul à faible débit est utilisé pour leurs
larges connexions. Ensuite, comme nous montrerons dans les prochaines sections, stocker
de manière pro-active les contenus des utilisateurs dans les PSBs évite d’avoir un backhaul
chargé et des utilisateurs insatisfaits. Le caching pro-actif est basé sur l’idée du stockage
des contenus populaires au niveaux des PSBs. Pour y parvenir, la popularité des contenus
doit être estimée. En utilisant des outils d’apprentissage automatique et en analysant les
journaux de l’infrastructure (comme dans [7]), un trésor d’informations cachées sur les
utilisateurs peut être obtenu. Ces analyses entrent dans le cadre du phénomène de big
data où les méthodes de filtrage collaboratif (FC) peuvent être appliquées pour l’inférence.

Dans la suite de cette section, nous donnerons dans un premier lieu un aperçu des
avancées passées, futures et récentes dans les RPCs. Ensuite, nous discuterons brièvement
l’historique du stockage et résumerons les efforts récents dans le contexte des réseaux
mobiles cellulaires. Le plan de la thèse sera présenté en conséquence.

1.1.1 Réseaux à Petites Cellules: Passé, Présent et futures ten-
dances

Les Smartphones ont exponentiellement augmenté le trafic de charge dans les réseaux
cellulaires actuels ne présentant aucun signe de lenteur [1,2]. Il est maintenant bien connu
qu’une manière effective d’augmenter la capacité du réseau est d’avoir de très petites
cellules en réduisant la distance aux utilisateurs [4]. En fait, la densification des cellules
est allée de l’ordre de centaines de kilomètres carrés (dans les années 80) à une fraction
de mètres carrés ou moins avec l’avènement des hot-spots. Il y a eu récemment un grand
intérêt pour le déploiement des relais, des antennes distribuées et de cellules à petits points
d’accès (telles que micro/pico/femto cellules) dans les maisons résidentielles, les passages
souterrains, les entreprises et les surfaces hot-spot. Ces architectures réseau qui sont à la
fois déployés par les opérateurs ou les utilisateurs sont connues sous le nom de réseaux
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hétérogènes (ResHéts) ou RPCs [3, 4]. En déployant des nœuds réseaux additionnels à
couverture locale et en rapprochant les utilisateurs au réseau, les réseaux à petites cellules
peuvent significativement améliorer la réutilisation spatiale et la couverture, booster la
capacité et décharger le trafic plus efficacement [3].

Il existe une large littérature sur le sujet des ResHéts et des RPCs abordant plusieurs
aspects allant de la gestion des interférences, de l’association des cellules, la modélisa-
tion stochastique du réseau, la CIEC, l’efficacité énergétique, les réseaux self organisés
(RSOs), la gestion de la mobilité, les réseaux long term evolution (LTE)/Wi-Fi, pour
ne citer que ceux là (voir [3] pour une large revue). L’une des clés tirée de ces études
est que la la coordination stricte d’interférence entre les macro cellules d’une part et les
micro/pico/femto cellules adjacentes d’autre part est nécessaire pour atteindre des gains
importants suite à la répartition en cellules. Cela repose sur la disponibilité d’un backhaul
à faible latence et à grande capacité [8]. Les approches de modélisation de réseau basées
sur les outils de géométrie stochastique ont permis d’établir des bornes inférieures aux
gains de performance en termes de capacités globale et par utilisateur. La caractéristique
intéressante de ces approches est attribuée au fait que malgré la consommation en temps
des niveaux de simulations, de fondamentales visions peuvent être tirées de ces outils,
dont un certain nombre ont été corroborés par des essais dans le domaine de l’industrie et
des observations provenant de simulations [9]. En parallèle à cela, la gestion de la mobilité
a reçu une attention significative aussi bien dans le secteur du sans fil industriel que dans
les groupes de recherches et les organismes de standardisation [10]. Contrairement aux
réseaux homogènes conventionnels où les TUs utilisent typiquement le même ensemble de
paramètres handover (à savoir marge d’hystérésis, temps de vie (TDV), etc.), utiliser le
même ensemble de paramètres de handover dans les ResHéts pour toutes les cellules et/ou
pour tous les TUs peut dégrader les performances de mobilité. Ceci parce que les macros
TUs à grande mobilité pourraient rapidement entrer dans la surface de couverture des pe-
tites cellules avant que le TDV optimisé pour les macro-cellule expire, entrâınant donc un
échec du handover (suite à une dégradation du rapport signal sur interférence plus bruit
(RSIB)) [11]. Les stratégies décentralisées de gestion/réduction des interférences dans les
scénarios impliquant des interférences co-canal ont aussi été étudiées en détails, où les
petites cellules sont capables de s’organiser par elles mêmes sur la base des informations
locales et d’optimiser leurs stratégies de transmission (à savoir puissance/fréquence) sur
la base de l’échange d’un minimum d’information [12]. Cela conduit à un ensemble de
compromis en termes de rapidité/lenteur de convergence au prix d’information partielle/-
complète. L’agrégation de porteuse (AP) et ses améliorations uni/multiflux ont également
été examinés comme moyens pour booster de plus en plus, la capacité du réseau et de celle
par utilisateur, opération dans laquelle les utilisateurs peuvent être simultanément servis
sur plusieurs bandes [13]. En plus, avec l’augmentation asymétrique du trafic en uplink
(UL) par rapport au downlink (DL), de nouveaux mécanismes d’associations de cellules et
d’architectures sont nécessaires pour faire face aux nouveaux types d’interférences entre
nœuds (DL-to-UL), ouvrant par conséquent de nouvelles issues de recherche telles que
les communications DL/UL flexibles, massif-entrées multiples sorties multiples (massif-
EMSM), appareil-à-appareil (AàA), full-duplex, etc. [4] [14]. Enfin, le sujet de la coexis-
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tence LTE et Wi-Fi a reçu une attention énorme due à l’aptitude multi-mode des PSBs1

et la possibilité d’utiliser à la fois des bandes licenciées et non licenciées. A cet égard,
la balance de charge dynamique et les mécanismes de pilotage du trafic ont été proposés
pour faciliter la disponibilité du Wi-FI à fournir des services de best-effort, charge de
trafic, tolérance au délai, etc [15].

Quoique la densification du réseau par de petites cellules constitue la bonne voie à
suivre, un certain nombre de défis techniques restent non résolus. En fait, bien qu’il a
été montré que la densification avec de petites cellules permet de booster la capacité,
ajouter simplement des petites cellules peut être inefficace énergétiquement [16]. De plus,
l’utilisation du backhaul ainsi que le positionnement des stations de base sont des facteurs
qui impactent considérablement la performance des réseaux cellulaires, et doivent donc
être optimisés avant de pouvoir déployer les petites stations de base. L’importance de
backhaul est davantage mis en évidence avec la prolifération sans relâche des smartphones
avec la grande plage de nouveaux services sans fil (à savoir streaming multimédia, ap-
plications web, etc.). De ce fait, de nouvelles approches aux réseaux à petites cellules
avec backhaul sous-jacent ont récemment été proposées dans la littérature [17] à savoir
comment découpler de façon optimale les plans de contrôle et de données pour faire des
cellules plus adaptées aux demandes de trafic dynamiques et l’état du réseau tout en
ayant une vue globale du réseau, le déchargement de backhaul via un stockage intelligent
aux bords du réseau [18–20], réseau d’accès radio du cloud (RAR-C) [21], réseau défini
par logiciel (RDS) [22], virtualisation du réseau et des ressources, réseaux ultra-denses,
massif-EMSM, etc. Parmi ces approches, dans cette thèse, nous nous focalisons sur le
stockage pro-actif aux bords du réseau comme un moyen de faire face au surchargement
de backhaul dans les PSBs, un fait spécialement crucial dans les déploiements de réseaux
denses.

1.1.2 Caching: Bref historique et travaux liés

L’idée du caching remonte aux années soixante utilisé pour le design d’algorithmes pour
systèmes d’exploitation [23]. D’après [23], la stratégie optimale de retrait de contenu lors
de l’arrivée d’une nouvelle requête consiste à retirer de la mémoire, le contenu qui ne sera
pas utilisé dans un futur proche. Au delà de ces travaux, il y a eu aussi des études poussées
sur le web caching au cours des décennies précédentes dans le but d’améliorer l’évolutivité
du world wide web et de décharger le réseau, en stockant des contenus dans des serveurs
proxy et/ou des nœuds intermédiaires du réseau (voir [24] pour une littérature brève).
De nombreux algorithmes de stockage pour les réseaux fournisseur de contenu (RFC)
ont émergé récemment [25], permettant aux fournisseurs de services de réduire les délais
d’accès aux contenus demandés par les utilisateurs. Conceptuellement, il existe aussi les
réseau centré sur l’informations (RCIs) qui ont but de changer la manière d’accéder aux
données sur internet, en nommant de façon unique les contenus et en les distribuant de
façon intelligente à travers le réseau que d’avoir traditionnellement une seule source pour

1Le terme ”PSB” sera utilisé de manière interchangeable avec ”petite cellule” dans cette thèse.
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l’accès aux contenus [26] (voir aussi [27] pour une récente revue). A côté de ces travaux, le
problème du caching, comme un moyen de décharger les infrastructures de réseaux sans fil,
est récent. Similairement à ce que nous présentons dans la thèse, la littérature croissante
est principalement basée sur le caching aux bords du réseau. Une liste exhaustive de
littérature récente est donnée dans [18–20,28–176]. Dans la suite, nous résumons certains
de ces travaux sur la base de leurs similarités et directions.

Caching pro-actif et estimation de la popularité des contenus

Le stockage pro-actif dans les RPCs avec parfaite connaissance de la popularité des con-
tenus est donnée dans [39]. Dans [18], en exploitant la sensibilité au contexte, les réseaux
sociaux, les communications AàA, les approches de stockage pro-actif pour les RPCs sont
étudiées à la fois au niveau des PSBs et au niveau des TUs, montrant que plusieurs gains
sont possibles sous des conditions numériques de départ. A cet égard, au lieu d’avoir
une parfaite connaissance de la popularité des contenus, une estimation est faite via des
outils d’apprentissage automatique (le FC en particulier), en exploitant les corrélations
entre les comportements humains et leurs préférences. Ainsi, en ayant cette estimation, la
décision de caching est appliquée plus efficacement, impliquant une meilleure performance
en termes de satisfaction utilisateur et de décharge du réseau. D’un autre côté, un prob-
lème très connu dans la littérature du FC est le problème du “cold-start” qui peut arriver
dans le cas d’une estimation avec très peu d’information. Par conséquent, pour booster
l’estimation de la popularité de contenu, une approche abordée dans la littérature de
l’apprentissage automatique est l’apprentissage via transfert, basé sur l’idée de transférer
intelligemment de l’information d’un domaine cible vers le domaine source (voir [177] pour
une revue). Inspiré de cela, une étude préliminaire sur l’apprentissage via transfert pour
le caching dans les RPCs a été faite dans [35]. Malgré que cette approche a ses propres
propres limites (transfert négatif par exemple), il a été montré dans [34] que l’estimation
de la popularité des contenus via FC peut être améliorée par cette approche. D’autres
analyses sont nécessaires pour combiner cette approche avec le caching pro-actif dans les
RPCs. En plus, dans le contexte du caching pro-actif , des mesures de centralité pour
le placement des contenus sont exploitées dans [43]. A ce titre, un simple traitement de
dissémination de contenu est introduit et les résultats préliminaires de performance de la
méthode de placement basé sur la centralité sont donnés via des simulations numériques.
Comme alternative à ces approches, formulation basée sur la théorie des jeux du prob-
lème de caching pro-actif comme jeu de similarité plusieurs-à-plusieurs est introduite dans
[41]. Un algorithme de similarité qui atteint un résultat stable est établi pour le problème
du caching, montrant que le nombre de demandes satisfaites peut atteindre trois fois la
satisfaction due à un caching aléatoire.

Algorithmes d’approximation

L’idée du FemtoCaching est donnée dans [19], dans laquelle les PSBs, dans une archi-
tecture avec faible débit de backhaul mais avec des unités à haute capacité de stockage,
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sont chargées de délivrer les contenus aux utilisateurs à travers des transmissions à courte
distance. L’analyse est faite à la fois pour les cas codés et non codés, montrant que
l’assignation optimale des contenus est NP-hard, tandis que le cas codé est formulé comme
problème convexe qui peut être réduit plus loin à un programme linéaire. Un greedy algo-
rithme pour le cas codé et des résultats numériques sont donnés, montrant que le débit de
la vidéo peut être amélioré par un facteur de 3−5 dans des scénarios réels. Des extensions
à ce travail, incluant le cas AàA sont données dans [85,88]. Alternativement, un problème
de caching multicast est formulé dans [101] et un algorithme heuristique est proposé à ce
titre, montrant que le coût de service peut être réduit jusqu’à 52% en comparaison au cas
multicast agnostique.

Le placement optimal de contenus dans une PSB dans une architecture à capacité
backhaul limitée est aussi étudié dans [107], montrant que le problème peut être réduit à
un problème de knapsack lorsque la distribution de la popularité du contenus est connue.
Supposant que la distribution de la popularité de contenus n’est pas connue à l’avance, le
problème est formulé comme un problème bande multi armes (BMA) tel que la distribution
de la popularité de contenus peut être apprise online et le placement de contenus peut
être fait en conséquence. Trois différents algorithmes de mise en cache sont fournis pour
montrer le compromis exploration vs exploitation de ce problème. Comme extension,
une dérivation des bornes de regret ainsi que des analyses plus poussées des algorithmes
à travers des simulations numériques sont présentées dans [108]. Additionnellement, un
modèle de caching distribué avec plusieurs PSB est donné dans [109] dans le cadre du
problème BMA, montrant que le caching codé peut surmonter le cas non codé. A côté des
approches du BMA, une approche d’approximation basée sur le problème de facilité de
location est donnée dans [102]. Aussi, pour une certaine demande de trafic, un algorithme
de caching distribué basé sur l’algorithme des directions alternées (ADDA) est présenté
dans [45].

Gains du caching codé

La formulation du problème de caching vue d’un point de vu théorie de l’information
est étudiée par [65]. Là, les gains global et local de caching, dépendant de la mémoire
disponible de chaque utilisateur et de la mémoire cumulative de tous les utilisateurs re-
spectivement, sont déterminés sur la base d’un schème de caching codé. La structure
proposée consiste en des phases de placement et de livraison: (i) donné pour un setup
centralisé où le placement des contenus est géré par un serveur central, (ii) est essentielle-
ment hors ligne puisqu’il n’y a pas de placement de contenu durant la phase de livraison,
(iii) a été montré plus performant que les schèmes non codés conventionnels sous pop-
ularité de contenus uniforme , et (iv) fonctionne sur un unique lien partagé au lieu de
plusieurs réseaux généraux. Ces résultats son ensuite étendus à des popularités de con-
tenus non uniformes dans [66,69], des accès de stockage non uniformes dans [70], des tailles
de stockage hétérogènes dans [79], des systèmes de caching on-line dans [68], des réseaux
de caching hiérarchiques dans [67] et le cas multi-serveurs dans [76]. En plus, les bornes
sont données dans [72, 75], le cas contenu sensible au délai est étudié [71] et les aspects
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sécurité du point de vue théorie de l’information sont présentés dans [73]. Dans la même
lignée de travaux, une approche décentralisée pour réseaux AàA avec caching aléatoire est
étudiée dans [86, 89] en termes de lois de normalisation où un modèle de protocole canal
similaire à celui dans [178] est pris en compte. Dans le même ordre d’idées, la performance
du placement dans les techniques de caching décentralisées avec un schème de livraison
codé est donné dans [87,90], où le débit moyen est caractérisé par des demandes aléatoires
avec des popularités suivant une distribution de Zipf.

Dans le contexte des systèmes de stockage distribués et de codage, les performances
de simple caching, les codes de réplication et régénération sont étudiés dans un scénario
AàA dans [111], lequel énonce de simples règles de choix de simples techniques de caching
et de réplication , dérivés pour minimiser le coût total moyen en termes de consommation
d’énergie. D’un autre coté, l’étude des fonctionnalités de la couche physique des systèmes
de stockage distribués sans fil est faite dans [113] du point de vue codes de stockage
spatial. Basé sur ce travail, un système de stockage sans fil qui communique à travers un
canal à évanouissement est étudié dans [112] et un nouveau protocole de transmission est
proposé basé sur les codes algébriques spatiaux, dans le but d’améliorer la fiabilité tout
en gardant le décodage à un niveau acceptable. Il est montré que le protocole proposé est
mieux performant que le simple protocole accès multiple par répartition en temps (AMRT)
et entre dans la famille des optimaux compromis des gains diversité-multiplexage (CDM).
Alternativement, une approche de codage sur réseau triangularisé pour placement du
contenu à mettre en caching est présenté dans [128], dans lequel le placement de contenu
non codé et les stratégies de codage en réseau triangularisé sont comparées via des résultats
numériques. Additionnellement, un schème de mise en cache codé à travers le canal radio
à évanouissement est présenté dans [80], tandis que [77] réduit le problème de caching en
en un problème de codage source multi-terminal avec information sur l’état.

Design conjoint

En termes de conception, une approche à double échelle à la fois sur l’optimisation de
puissance et le contrôle du caching est donnée dans [117] pour systèmes EMSM oppor-
tunistes et coopératifs utilisant le caching. Dans un premier temps, pour les échelles de
temps courtes, les expressions complètes pour le contrôle de puissance sont calculées sur
la base d’équations de Bellman approximées. Ensuite, pour les échelles de temps longues,
le problème de caching est translaté en un problème d’optimisation stochastique convexe
et un algorithme de sous-gradient stochastique est fourni comme solution. La solution
proposée a été montrée être asymptotiquement optimale pour de large rapport signal sur
bruit (RSB) tandis que sa comparaison avec des approches baseline sont faites via des sim-
ulations. Une autre solution pour des échelle de temps mixes pour les systèmes EMSM
coopératifs est donnée dans [116]. Là, dans le but de minimiser la puissance émise sous
contrainte de QdS, le pré-codage EMSM est optimisé pour une échelle de temps court et
le contrôle de la mise en cache est fait dans une échelle de temps long terme. En addition
à ces approches, l’optimisation conjointe du contrôle de cache et de la gestion du buffer
playback pour la diffusion vidéo est donnée dans [118]. Le caching conjointement avec
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le beamforming pour des réseaux à backhaul de capacité limitée est étudiée dans [134],
et enfin le caching conjointement avec l’alignement d’interférence (AI) dans les systèmes
EMSM à canal interférant sous backhaul à capacité limitée est présenté dans [32].

Mobilité

Les aspects de mobilité dans la délivrance des contenus codés sont analysés dans [100]
sur la base de modèles de châınes de Markov à temps discret. Dans le but de minimiser
l’utilisation de la station de base principale dans ce modèle, un algorithme d’approximation
distribué basé sur des inégalités de large déviation est introduit et des résultats expéri-
mentaux sur des données réelles ont été donnés pour l’algorithme proposé. Un autre
schème de caching qui exploite la mobilité de l’utilisateur est donné dans [129], lequel met
en exergue l’influence des paramètres du système sur les gains de délai et est confirmé
via différents niveaux de simulations. Les travaux dans [137] et [135] considèrent aussi
l’impact de la mobilité dans les réseaux où le caching est effectué.

Consommation d’énergie

Les aspects de consommation d’énergie dans le caching à la fois en termes de consom-
mation de puissance et d’efficacité énergétique sont traités dans [33]. Là, les stations de
base avec caching actif sont distribuées selon un processus ponctuel de Poisson (PPP)
homogène et l’optimisation est faite en utilisant un modèle de puissance détaillé. D’un
autre coté, les aspects mettant l’accent sur l’énergie du caching pro-actif est mise en
exergue dans [125], et un mécanisme de poussée effectif pour l’aspect énergétique des pe-
tites stations de base alimentées en puissance est proposée dans [124]. Aussi, le caching
conjointement à l’activation des stations de base dans les “green” réseaux cellulaires est
proposé dans [106].

Aspects de déploiement

Concernant les aspects de déploiement des PSBs avec caching activé et backhaul à ca-
pacité limitée, une étude est donnée dans [36]. Dans cette étude, les PSBs avec caching
activé sont stochastiquement distribuées pour l’analyse en lieu et place des modèles“grids”
traditionnels. Les expressions de la probabilité d’outage et du débit de livraison de con-
tenu moyen sont dérivés en fonction du RSIB, de l’intensité des PSBs, du débit binaire
du contenu cible, de la taille de la mise en cache et de la forme de la distribution de la
popularité de contenu. Suivant les travaux dans [36], les résultats dans [132] montrent
que stocker les contenus les plus populaires est bénéfique seulement dans des scénarios
particuliers de déploiement. D’un autre côté, pour les systèmes de communication AàA
avec caching activé, une autre approche stochastique est présentée dans [53], en se bas-
ant sur deux métriques de performance qui quantifient les fractions locale et globale des
contenus demandés qui ont été servis. Aussi, une autre étude sur les noeuds avec caching
activé, stochastiquement distribués est donnée dans [121]. Sachant que le coût est défini
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comme une fonction de la distance, le coût moyen pour obtenir le contenu complet sous
des stratégies d’allocation de contenus codés ou non codés est investi. Comme extension
de [121], un compromis coût moyen de déploiement de mise en cache vs. le taux moyen
de reconstruction de contenus stockés est analysé dans [122].

1.2 Plan de la thèse et contributions

Cette thèse contient trois parties. Dans la partie I, nous nous focalisons sur la modélisation
et l’analyse de performance des réseaux cellulaires avec mise en cache activée en utilisant
des outils de géométrie stochastique. En particulier :

Dans le chapitre 3 (Réseaux Cellulaires Niveaux Simples), nous considérons
un modèle de réseau où les PSBs ont des capacités de caching comme moyens d’éviter
le chargement de backhaul et de satisfaire en même temps les demandes des utilisateurs.
Les PSBs sont stochastiquement distribuées dans le plan suivant un PPP, et servent les
utilisateurs soit (i) en apportant les contenus depuis internet à travers un backhaul à débit
fini ou (ii) en les servant des caches locaux. Nous dérivons les expressions closed-form de la
probabilité d’outage et du débit moyen délivré en fonction du RSIB, de la densité de PSB,
du débit binaire des contenus cibles, de la taille de stockage, la longueur du contenu et la
popularité des contenus. Nous analysons ensuite l’impact des paramètres opérationnels
clés sur la performance du système. Il est montré qu’une certaine probabilité d’outage
peut être atteinte soit en augmentant le nombre de stations de base soit la taille totale de
stockage.

Dans le chapitre 4 (Réseaux Cellulaires à Niveaux Multiples), nous con-
sidérons un réseau hétérogène à multiple niveaux où les noeuds à chaque niveau sont
modélisés comme PPP homogène. En particulier, nous supposons un réseau hétérogène
à quatre niveaux constitué de terminaux mobiles (utilisateurs), de petites cellules avec
caching activé, des macro cellules et des routeurs centraux. Le réseau est sujet à des
délais en downlink, backhaul et caches. Supposant que les petites stations de base sont
en mesure de stocker du contenu à l’avance, nous caractérisons ensuite les délais moyens
des utilisateurs connectés aux macro et petites stations de base. En particulier, en vue
de modéliser les modèles d’accès spatio-temporels des utilisateurs, nous considérons des
popularités de contenus fixes, des popularités dépendant de la distance et dépendant de
la charge. En ayant une parfaite connaissance de ces popularités de contenus, nous em-
ployons ensuite trois différentes stratégies de caching qui reposent essentiellement sur la
popularité de contenus et la randomisation. A la fin de ce chapitre, nous validons nos
résultats à travers des simulations numériques et tirons plusieurs conclusions par rapport
à ce type de réseaux hétérogènes.

Dans le Chapitre 5 (Réseaux Cellulaires Clusterisés), nous considérons un
réseau à niveaux multiples qui consiste en des terminaux d’utilisateurs mobiles, de sta-
tions de base en clusters avec mise en cache activée, des macro cellules et des routeurs
centraux. Le déploiement des petites stations de base suit deux différents processus de
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clustering à savoir déploiements 1)basés sur la couverture et 2) basés sur la capacité.
Dans la première topologie, les petites stations de base sont modélisées par un processus
de “trou” Poisson qui permet d’être dans le trou couverture des macro cellules. Dans la
seconde topologie, les petites stations de base avec caching activé sont modélisées par un
processus de cluster Matérn, sont ainsi installées en hot-spots dans la région de couver-
ture, permettant d’améliorer la capacité dans des scénarios de réseaux denses. Dans les
deux topologies, nous caractérisons le débit moyen délivré des utilisateurs connectés aux
macro et aux petites cellules en clusters. Cette métrique de débit moyen délivré capture
des paramètres de couche physique tels que la taille de stockage, le débit binaire ciblé, le
backhaul limité. Bien que les expressions de débit moyen délivré reposent sur des approx-
imations (puisque ces processus de point sont raisonnablement difficiles à manier et des
dépendances apparaissent à l’intérieur de chaque processus), nous montrons à travers des
simulations numériques que plusieurs visions clés peuvent être tirées. Un modèle hiérar-
chique est aussi présenté dans le but de montrer les manipulations potentielles sur ces
réseaux en clusters.

Dans la seconde partie de cette thèse à savoir Partie II, nous prenons une approche
plus pratique pour examiner l’apport du caching. En particulier:

Dans le chapitre 6 (Caching Proactif), nous explorons le nouveau paradigme
du caching proactif dans les RPCs qui vient suite aux récents développements dans le
stockage, la sensibilité au contexte et les réseaux sociaux. En particulier, nous examinons
deux études de cas qui exploitent la structure sociale et spatiale du réseau, où le caching
proactif joue un rôle crucial. En premier lieu, dans le but d’éviter la congestion de back-
haul, nous proposons un mécanisme par lequel les contenus/fichiers sont pro-activement
mis en cache durant des périodes à moindre pic de demandes sur la base de la popu-
larité des contenus et des corrélations entre les utilisateurs et des modèles d’accès aux
contenus. En second lieu, en se basant sur les réseaux sociaux et les communications
AàA, nous proposons une procédure exploitant la structure sociale du réseau en prédisant
l’ensemble des utilisateurs influant, à mettre en cache de manière pro-active des contenus
stratégiques et à les disséminer de leurs liens sociaux à travers les communications AàA.
Avec cette approche nous montrons que des gains importants peuvent être obtenus, avec
des décharges de backhaul et des hauts ratios d’utilisateurs satisfaits atteignant les 22%
et 26%, respectivement.

Dans le chapitre 7 (Apprentissage par Transfert), nous proposons une nouvelle
procédure de caching basée sur l’apprentissage par transfert effectué au niveau de chaque
petite station de base. Ceci est fait en exploitant la riche information contextuelle (à savoir
l’historique des vues des utilisateurs, des liens sociaux, etc.) extrait des interactions AàA,
référé comme domaine source. Cette primo information est incorporée au dit domaine cible
où le but est de mettre en cache de manière optimale des contenus stratégiques au niveau
des petites stations de base en fonction du stockage, de la popularité de contenus estimée,
de la charge de trafic, et de la capacité de backhaul. Il est montré que l’approche proposée
surmonte les célèbres problèmes de sparsité de données et “cold start”, en apportant des
gains significatifs en termes de Qualité d’Expérience (QdE) des utilisateurs et de décharge
du réseau avec des gains atteignant les 22% dans un setting constitué de quatre petites
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stations de base.

Dans le chapitre 8 (Big Data pour Caching), Comme énoncé précédemment,
les réseaux cellulaires mobiles deviennent de plus en plus complexes à gérer puisque les
déploiements classiques/techniques d’optimisation et les solutions actuelles (à savoir den-
sification des cellules, acquisition de plus de spectre,etc.) sont inefficaces en termes de
coût et sont donc considérés comme des bouche-trou. Cela a conduit au développement de
nouvelles approches qui prennent levier sur les récents développements en stockage/mé-
moire, la sensibilité au contexte, le edge/cloud computing, et entrent dans le cadre du big
data. Par contre, le big data en lui-même est un autre phénomène complexe à aborder et
est souvent lié aux célèbres 4V: vélocité, voracité, volume et variété. Dans ce chapitre,
nous adressons les problèmes d’optimisation dans les réseaux cellulaires sans fil 5G via
la notion de caching pro-actif dans les stations de base. En particulier, nous examinons
les gains de caching pro-actif en termes de décharge de backhaul et de satisfactions des
requêtes tout en abordant la question de l’estimation de la popularité avec la large masse
de données existante. Dans le but d’estimer la popularité des contenus, nous collectons
en premier lieu le trafic de données d’utilisateurs mobiles d’un opérateur de téléphonie
Turque sur plusieurs de ses stations de base pendant un certain nombre d’observations.
Ensuite, une analyse est effectuée localement sur une plateforme big data et les gains de
caching proactif dans les stations de base sont étudiés via des simulations numériques. Il
arrive que plusieurs gains sont possibles en fonction du niveau des informations disponibles
et de la taille de stockage. Par exemple, avec 10% de contenus estimés et 15.4 Gigaoctets
de taille de stockage (87% de la taille totale du catalogue), le caching pro-actif fournit
100% de satisfaction des requêtes et décharge de 98% le backhaul lorsque l’on considère
16 stations de base.

Enfin, la Partie III inclut nos conclusions et futurs travaux liés aux travaux présen-
tés dans la thèse. Notons que chaque chapitre ci-dessus contient ses propres notations
mathématiques.

1.3 Publications

Liste des publications au cours de cette thèse sont énumérés ci-dessous. Les résultats /
détails qui sont entièrement ou partiellement fournies dans ce manuscrit sont marqués
avec ∗.

Chapitres de Livres

[31]∗ E. Baştuğ, M. Bennis, and M. Debbah, ”Proactive Caching in 5G Small Cell Net-
works”, Towards 5G: Applications, Requirements and Candidate Technologies, Wi-
ley, In Press (2015). (Chapitres 1 et 2)
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Papiers de Journaux

[179]∗ E. Baştuğ, M. Kountouris, M. Bennis, and M. Debbah, ”Modelling and Delay Anal-
ysis of Geographical Caching Methods in Cellular Networks”, (être soumis à) IEEE
Journal on Selected Areas in Communications, 2016. (Chapitre 4)

[180]∗ E. Baştuğ, M. Bennis, M. Kountouris, and M. Debbah, ”Modelling and Analysis
of Geographical Caching Methods in Clustered Cellular Networks”, (être soumis à)
IEEE Transactions on Wireless Communications, 2016. (Chapitre 5)

[181] B. Perabathini, E. Baştuğ, M. Kountouris, M. Debbah and A. Conte, ”Energy Con-
sumption Aspects of Cache-Enabled 5G Wireless Networks”, (être soumis à) IEEE
Transactions on Wireless Communications, 2016.

[182] F. Dilmi, E. Baştuğ, and M. Debbah, ”FlexibleEarth3D : Un kit de visualisation
pour les simulations des réseaux 5G”, (être soumis à une revue nationale), 2016.

[29]∗ E. Zeydan, E. Baştuğ, M. Bennis, M. Abdel Kader, A. Karatepe, A. Salih Er, and
M. Debbah, ”Big Data Caching for Networking: Moving from Cloud to Edge”, IEEE
Communications Magazine, Soumis (2015). (Chapitre 8)

[30]∗ E. Baştuğ, M. Bennis, E. Zeydan, M. Abdel Kader, A. Karatepe, A. Salih Er, and
M. Debbah, ”Big Data Meets Telcos: A Proactive Caching Perspective”, Journal of
Communications and Networks, Special Issue on Big Data Networking-Challenges
and Applications, vol. 17, no. 6, pp. 549–558, December 2015. (Chapitre 8)

[36]∗ E. Baştuğ, M. Bennis, M. Kountouris, and M. Debbah, ”Cache-enabled Small Cell
Networks: Modeling and Tradeoffs”, EURASIP Journal on Wireless Communi-
cations and Networking, Special Issue on Technical Advances in the Design and
Deployment of Future Heterogeneous Networks, vol. 2015, no. 1, pp. 41, 2015.
(Chapitre 3)

[42]∗ K. Hamidouche, E. Baştuğ, M. Bennis, and M. Debbah, ”Le caching proactif dans
les réseaux cellulaires 5G”, La Revue de l’Electricité et de l’Electronique (REE), vol.
2014-4, 2014. (Chapitre 1)

[18]∗ E. Baştuğ, M. Bennis, and M. Debbah, ”Living on the Edge: The role of Proactive
Caching in 5G Wireless Networks”, IEEE Communications Magazine, vol 52, no 8,
p. 82-89, 2014. (Chapitres 2 et 6)

[183] M. Maso, E. Baştuğ, L. S. Cardoso, M. Debbah, and Ö. Özdemir, ”Reconfigurable
Cognitive Transceiver for Opportunistic Networks”, EURASIP Journal on Advances
in Signal Processing, vol. 2014, no. 1, 2014.
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Chapter 2

Introduction

2.1 Background and Motivation

The recent proliferation of smartphones has substantially enriched the mobile user expe-
rience, leading to a vast array of new wireless services, including multimedia streaming,
web-browsing applications and socially-interconnected networks. This phenomenon has
been further fueled by mobile video streaming, which currently accounts for almost 50% of
mobile data traffic, with a projection of 500-fold increase over the next 10 years [1]. At the
same time, social networking is already the second largest traffic volume contributor with
a 15% average share [2]. This new phenomenon has urged mobile operators to redesign
their current networks and seek more advanced and sophisticated techniques to increase
coverage, boost network capacity, and cost-effectively bring contents closer to users.

A promising approach to meet these unprecedented traffic demands is via the deploy-
ment of small cell networks (SCNs) [3]. SCNs represent a novel networking paradigm based
on the idea of deploying short-range, low-power, and low-cost small base stations (SBSs)
underlaying the macrocellular network. To date, the vast majority of research works has
been dealing with issues related to self-organization, inter-cell interference coordination
(ICIC), traffic offloading, energy-efficiency, etc (see [4] and references therein). These
studies were carried out under the existing reactive networking paradigm, in which users’
traffic requests and flows must be served urgently upon their arrival or dropped causing
outages. Because of this, the existing small cell networking paradigm falls short of solving
peak traffic demands whose large-scale deployment hinges on expensive site acquisition,
installation and backhaul costs. These shortcomings are set to become increasingly acute,
due to the surging number of connected devices and the advent of ultra-dense networks,
which will continue to strain current cellular network infrastructures. These key obser-
vations mandate a novel networking paradigm which goes beyond current heterogeneous
small cell deployments leveraging the latest developments in storage, context-awareness,
and social networking [5].

This novel network paradigm is proactive in the sense that the nodes at the edge of
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the network (i.e., SBSs and user terminals (UTs)) predicts users’ context information
and pre-store intelligently strategic contents, in order offload the backaul and satisfy
users’ quality-of-service (QoS). This goes beyond the scope of traditional cellular networks
which they have been designed assuming dumb UTs with limited storage and processing
features. Nowadays, UTs are much more sophisticated than before, giving the opportunity
to exploit their capabilities in conjunction with SCNs by storing the predicted contents
at the network edge. This in turn yields significant gains in terms of network resources,
minimizing operational and capital expenditures [4].

As stated before, recent results have shown that the human behaviour is correlated
and predictable to a large extent [6]. Therefore, SBSs are assumed to be equipped with
storage units and the low-speed backhaul is used for their broadband connections. Then,
as we will show in the latter sections, proactively caching users’ contents at SBSs alleviates
the backhaul load and incurs higher users’ satisfaction. The proactive caching procedure
is based on the idea of storing the popular contents at the SBSs. To achieve this, the
popularities of the contents have to be estimated. Using tools from machine learning and
analysing the infrastructure logs (such as in [7]), a trove of hidden information about users’
behaviour can be revealed. Analysing these traces falls into the big data phenomenon
where collaborative filtering (CF) methods can be successfully applied for inference.

In the following of this section, we first give an overview of past, recent and future
advancements in SCNs. Afterwards, we briefly discuss the history of caching and sum-
marize recent efforts in the context of mobile cellular networks. The outline of the thesis
will be given accordingly.

2.1.1 Small Cell Networks: Past, Present and Future Trends

Smartphones have exponentially increased the traffic load in current cellular networks
showing no signs of slowing down [1, 2]. It is now well understood that a very effective
way to increase network capacity is making cells smaller by reducing the distance to
the users [4]. Indeed, cell densification has gone from the order of hundreds of square
kilometers (back in the eighties) to a fraction of a square meter or less with the advent of
hotspots. There has been recently a great interest to deploy relays, distributed antennas
and small cellular access points (such as micro/pico/femto cells) in residential homes,
subways, enterprises, and hot-spot areas. These network architectures, which are either
operator-deployed or user-deployed are referred to heterogeneous networks (HetNets) or
SCNs [3, 4]. By deploying additional network nodes within local-area range and making
the network closer to end-users, small cells can significantly improve spatial reuse and
coverage, boost capacity, and offload traffic more efficiently [3].

There exists a comprehensive literature on the topic of HetNets and SCNs tackling
various aspects from interference management, cell association, stochastic network mod-
eling, ICIC, energy-efficiency, self-organizing networkss (SONs), mobility management,
long term evolution (LTE)/Wi-Fi interworking, among others (see [3] for a comprehen-
sive survey). One of the key take-away drawn from these studies is that tight interference
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coordination among macro and femto/picocell tiers is necessary for achieving cell split-
ting gains. This hinges on the availability of low-latency and high-capacity backhauls [8].
Network modeling approaches based on stochastic geometric tools have shown reasonably-
close performance gains (i.e., lower bound) in terms of system-wide and per-user capacities.
Their attractive feature is attributed to the fact that unlike time-consuming system-level
simulations, fundamental insights can be gleaned from these tools, some of which have
been corroborated by industry field trials and observations from detailed simulations [9].
In parallel to that, mobility management has received significant attention from the wire-
less industry, research community, and standardization bodies [10]. Unlike conventional
homogeneous networks where UTs typically use the same set of handover parameters
(i.e., hysteresis margin, time-to-trigger (TTT), etc.), using the same set of handover pa-
rameters in HetNets for all cells and/or for all UTs may degrade mobility performance.
This is because high-mobility macro UTs may run deep inside coverage areas of small
cells before the TTT optimized for macro cells expires, thus incurring handover failure
(due to degraded signal-to-interference-plus-noise ratio (SINR)) [11]. Decentralized inter-
ference management/mitigation strategies in co-channel interference scenarios have also
been studied in details, whereby small cells are able to self-organize based on local informa-
tion and optimize their transmission strategies (i.e., power/frequency) based on minimum
information exchange [12]. This leads to a number of tradeoffs in terms of faster/slower
convergence at the cost of partial/full information. Carrier aggregation (CA) and its
single/multiflow enhancements have also been investigated as a means of further boost-
ing network capacity and per-user throughput, in which users may be served on several
bands simultaneously [13]. Furthermore, with the increasing traffic asymmetry in the
uplink (UL) as compared to the downlink (DL), novel cell association mechanisms and
architectures are needed to cope with new types of inter-node interferences (DL-to-UL),
thereby opening new avenues for research such as flexible DL/UL communication, massive
multiple-input multiple-output (MIMO), device-to-device (D2D), full-duplexing, etc. [4]
[14]. Finally, the topic of LTE and Wi-Fi coexistence has received tremendous attention
due to the multi-mode capability of SBSs1 and the possibility of using both licensed and
unlicensed bands. Therein, dynamic load balancing and traffic steering mechanisms have
been proposed leveraging the availability of Wi-Fi for best-effort services, traffic load,
delay tolerance, etc [15].

While small cell densification is clearly the way to go, a number of technical challenges
remain unsolved. Indeed, while small cell densification was shown to boost capacity,
simply adding small cells may turn out to be energy-inefficient [16]. In addition, backhaul
optimization and the optimal location of small cells represent one of the main limiting
factors before a full rollout of small cells takes place. The importance of the backhaul is
further underscored with the unabated proliferation of smartphones with the vast array
of new wireless services (i.e., multimedia streaming, web-browsing applications, etc.). As
a result, novel approaches to backhaul-aware small cell networking have been recently
proposed in the literature [17] such as how to optimally decouple control and data planes
to make cells more adaptive to traffic dynamics and network state while having a global

1The term ”SBS” will be used interchangeably with ”small cell” in this thesis.
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view of the network, backhaul offloading via smart edge caching [18–20], cloud radio
access network (C-RAN) [21], software defined networking (SDN) [22], resource/network
virtualization, ultra-dense networks, massive MIMO, etc. Among these approaches, in this
thesis, we focus on proactive edge caching as a way of dealing with backhaul offloading in
SCNs, which is especially crucial in dense deployments.

2.1.2 Caching: A Brief History and Related Works

Indeed, the idea of caching goes back to the sixties in the context of algorithm design
in operating systems [23]. According to [23], the optimal content removing strategy in
the case of new content arrival is to evict the content from the memory which is not
going to be requested in the near future. Beside this line of work, there has been also
extensive studies on web caching schemes in the past decades, aiming to improve the
scalability of world wide web and offloading the network, by caching contents in the
proxy servers and/or intermediate nodes of the network (see [24] for a brief literature).
Numerous caching algorithms for content delivery network (CDN) have emerged in the
recent years [25], allowing content providers to reduce access delays to the requested
contents. Conceptually, there exist also information-centric networks (ICNs) which aim
to change the way of accessing the contents on the internet, by uniquely naming the
contents and smartly distribute these across the network, rather than traditionally having
one source for the content access [26] (see also [27] for a recent survey). Beside these
line of works, the caching problem as a way of offloading the wireless communications
infrastructure is recent. Similar to what we present in this thesis, the growing literature
is mostly based on caching at the edge of network. An exhaustive list of recent literature
is given in [18–20,28–176]. In the following, we summarize some of these works based on
their similarities and directions.

Proactive Caching and Content Popularity Estimation

Proactive caching in SCNs with perfect knowledge of the content popularity is given in [39].
In [18], exploiting context-awareness, social networks, D2D communications, the proactive
caching approaches for SCNs are studied both at the SBSs and UTs, showing that several
gains are possible under the given numerical setup. Therein, instead of perfect knowledge
of the content popularity, an estimation is done via machine learning tools (the CF in
particular), by exploiting correlations of human behaviour on their preferences. Thus,
having such an estimation, the caching decision is applied more efficiently, yielding better
performance in terms of the users’ satisfaction and offloading of the network. On the other
hand, a well-known problem in the CF literature is the cold-start problem which can occur
in the case of estimation with very few amount of information. Therefore, to boost the
content popularity estimation, one approach harnessing the machine learning literature
is transfer learning, based on the idea of smartly transferring information from a target
domain to a source domain (see [177] for a survey). Inspired from this, a preliminary
study on transfer learning for caching in SCNs is conducted in [35]. Even though it has
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naturally its own challenges (i.e., negative transfer), it is shown in [34] that the content
popularity estimation via CF can be improved by this approach. Further investigations
are needed to combine this approach with the proactive caching in SCNs. Additionally,
in the context of proactive caching, the centrality measures for the content placement
are exploited in [43]. Therein, a simple content dissemination process is introduced and
the preliminary performance results of this centrality-based content placement methods
are given via numerical simulations. Alternative to these proactive approaches, a game
theoretical formulation of the proactive caching problem as a many-to-many matching
game is introduced in [41]. A matching algorithm that reaches a pairwise stable outcome
is provided for the caching problem, showing that the number of satisfied requests can be
reach up to three times the satisfaction of a random caching policy.

Approximation Algorithms

The idea of FemtoCaching is given in [19], in which the SBSs (helpers) with low-rate
backhaul but high storage units are in charge of delivering the contents to the users via
short-range transmissions. The analysis is carried out both for coded and uncoded cases,
showing that the optimum content assignment is NP-hard, whereas the coded case is
formulated as a convex problem that further can be reduced to a linear program. A
greedy algorithm for coded case and numerical results are provided, showing that video
throughput can be improved by a factor 3−5 in realistic settings. Extensions to this work,
including D2D case, is given in [85,88]. Alternatively, a multicast aware caching problem
is formulated in [101] and a heuristic algorithm is provided for that purpose, showing that
servicing cost can be reduced down to 52% compared to the multicast-agnostic case.

Optimal content placement in a SBS with limited backhaul capacity is also studied in
[107], showing that the problem can be reduced to a knapsack problem when the content
popularity distribution is known. Assuming that the content popularity distribution is
not known in advance, the problem is formulated as a multi-armed band (MAB) problem
so that the content popularity distribution can be learned online and content placement
can be done. Three different caching algorithm is provided to show the exploration vs.
exploitation trade-offs of this problem. As an extension, a derivation of regret bounds and
more extensive analysis of the algorithms through numerical simulations are presented in
[108]. Additionally, a distributed caching model with multiple SBS is given in [109] in
the framework of MAB problem, showing that coded caching can outperform the uncoded
case. Beside MAB approaches, an approximation framework based on the facility location
problem is given in [102]. Also, for a given traffic demand, a distributed caching algorithm
based on alternating direction method of multipliers (ADMM) is presented in [45].

Coded Caching Gains

Information-theoretic formulation of the caching problem is studied by [65]. Therein, local
and global caching gains, which depend on the available memory of each user and cumu-
lative memory of all users respectively, are derived based on a coded caching scheme. The
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proposed scheme consists of placement and delivery phases (i) is given for a centralized
setup where the content placement is handled by a central server, (ii) is essentially offline
as there is no content placement during the delivery phase, (iii) is shown to outperform
conventional uncoded schemes under uniform content popularities, and (iv) works in a
single shared link instead of more general networks. These results are then extended to
non-uniform content popularities in [66, 69], non-uniform cache access in [70], heteroge-
neous cache sizes in [79], online caching systems in [68], hierarchical caching networks in
[67] and multi-server case in [76]. Moreover, the improved bounds are given in [72, 75],
delay-sensitive content case is studied in [71] and the information-theoretic security as-
pects are shown in [73]. With similar line to these works, a decentralized approach for
D2D networks with random coded caching is studied in [86, 89] in terms of scaling laws
where a protocol channel model similar to [178] is taken into account. In the same vein,
the performance of decentralized random caching placement with a coded delivery scheme
is given in [87,90], where the expected rate is characterized for random demands with Zipf
popularity distribution.

In the context of distributed storage systems and coding, the performance of simple
caching, replication and regenerating codes is studied in a D2D scenario in [111], in
which a simple decision rule for choosing simple caching and replication is derived for
minimizing the expected total cost in terms of energy consumption. On the other hand,
the study of the physical layer functionality of wireless distributed storage systems is
given in [113] from point of space-time storage codes. Based on that work, a wireless
storage system that communicates over a fading channel is studied in [112] and a novel
protocol for the transmission is proposed based on algebraic space-time codes, in order
to improve the system reliability while keeping the decoding at a feasible level. It is
shown that the proposed protocol performs better than the simple time-division multiple
access (TDMA) protocol and falls behind the optimal diversity-multiplexing gain tradeoff
(DMT). Alternatively, a triangular network coding approach for cache content placement
is presented in [128], in which the uncoded content placement and the triangular network
coding strategies are compared in a numerical setup. Additionally, a coded caching scheme
over wireless fading channel is presented in [80], whereas [77] casts the caching problem
into a multi-terminal source coding problem with side information.

Joint Designs

In terms of joint designs, a two time-scale joint optimization of power and cache control is
given in [117] for cache-enabled opportunistic cooperative MIMO. First, for the short time
scales, the closed-form expressions for the power control are derived from an approximated
Bellman equation. Then, for the long time scales, the caching problem is translated into a
convex stochastic optimization problem and a stochastic subgradient algorithm is provided
for its solution. The proposed solution is shown to be asymptotically optimal for high
signal-to-noise ratio (SNR) whereas its comparison with baseline approaches are done
via simulations. Another mixed time-scale solution for cooperative MIMO is given in
[116]. Therein, in order to minimize the transmit power under the QoS constraint, the
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MIMO precoding is optimized in the short time scale and cache control is done in the
long time scale. Additional to these approaches, the joint optimization of cache control
and playback buffer management for video streaming is given in [118]. The joint caching
and beamforming for backhaul limited caching networks is studied in [134], and finally
the joint caching and interference alignment (IA) in MIMO interference channel under
limited backhaul capacity is presented in [32].

Mobility

Mobility aspects of coded content delivery is analyzed in [100] based on a discrete-time
Markov chain model. In order to minimize the probability of using the main base station
in this model, a distributed approximation algorithm based on large deviation inequalities
is introduced and numerical experiments on a real world dataset are conducted for the
proposed algorithm. Another caching scheme that exploits users’ mobility is given in
[129], in which the influence of the system parameters on the delay gains are investigated
via the system level simulations. The works in [137] and [135] also consider the impact of
mobility in cache-enabled networks.

Energy Consumption

Energy consumption aspects of caching both in terms of area power consumption and
energy efficiency are investigated in [33]. Therein, the cache-enabled base stations are
distributed according to a homogeneous Poisson point process (PPP) and the optimization
is done using a detailed power model. On the other hand, energy harvesting aspects of
proactive caching is highlighted in [125], and an effective push mechanism for energy
harvesting powered small-cell base stations is proposed in [124]. Also, a joint caching and
base station activation for green cellular networks is proposed in [106].

Deployment Aspects

Concerning the deployment aspects of cache-enabled SBSs with limited backhaul, a study
is given in [36]. In that study, the cache-enabled SBSs are stochastically distributed
for the analysis rather than the traditional grid models. The expressions for the outage
probability and average content delivery rate are derived as a function of the SINR, SBSs
intensity, target content bitrate, cache size and shape of content popularity distribution.
Following the work in [36], the results in [132] shows that storing the most popular contents
is beneficial only in some particular deployment scenarios. On the other hand, for cache-
enabled D2D communications, another stochastic framework is shown in [53], by relying
on two performance metrics that quantify the local and global fraction of served content
requests. Yet another study for the stochastically distributed cache-enabled nodes is given
in [121]. Given the fact that the cost is defined as a function of distance, the expected
cost of obtaining the complete content under coded as well as uncoded content allocation
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strategies is investigated. As an extension to [121], the expected deployment cost of caches
vs. the expected content retrieval from the caches is analyzed in [122].

2.2 Thesis Outline and Contributions

This thesis contains three parts. In Part I, we focus on the modeling and performance
analysis of cache-enabled cellular networks by using tools from stochastic geometry. In
particular:

In Chapter 3 (Single-Tier Cellular Networks), we consider a network model
where SBSs have caching capabilities as a means to alleviate the backhaul load and satisfy
users’ demand. The SBSs are stochastically distributed over the plane according to a
PPP, and serve their users either (i) by bringing the contents from the Internet through
a finite rate backhaul or (ii) by serving them from the local caches. We derive closed-
form expressions for the outage probability and the average delivery rate as a function of
the SINR, SBS density, target content bitrate, storage size, content length and content
popularity. We then analyze the impact of key operating parameters on the system
performance. It is shown that a certain outage probability can be achieved either by
increasing the number of base stations or the total storage size.

In Chapter 4 (Multi-Tier Cellular Networks), we consider a multi-tier heteroge-
neous network where nodes in each tier are modeled as a homogeneous PPP. In particular,
we suppose a four-tier heterogeneous network consists of mobile terminals (users), cache-
enabled small cells, macro cells and central routers. The network is subject to delays
in downlink, backhaul and caches. Assuming that small base stations are able to cache
contents in advance, we then characterize average delay of users connecting to macro and
small base stations. In particular, in order to model the spatio-temporal access patterns of
users, we consider fixed content popularity, distance-dependent and load-dependent con-
tent popularities. Having perfect knowledge of these type of content popularities, we then
employ three different caching strategies which essentially rely on content-popularity and
randomization. In the final part of this chapter, we shall validate our results via numerical
simulations and draw several conclusions for such a heterogeneous network.

In Chapter 5 (Clustered Cellular Networks), we consider a multi-tier network
which consists of mobile user terminals, clustered cache-enabled base stations, macro cells
and central routers. The deployment of small cells follows two different clustering pro-
cesses, namely 1) coverage-aided and 2) capacity-aided deployments. In the first topology,
small base stations are modeled by a Poisson hole process which in turn allows them to
be in the coverage hole of macro cells. In the second topology, cache-enabled small base
stations are modeled by a Matérn cluster process, thus are installed in hot-spots of the
area with the aim of improving capacity in dense user scenarios. In both topologies, we
characterize average delivery rate of users connecting to macro and clustered small cells.
This average delivery rate metric captures physical layer parameters such as signal-to-
interference ratio (SIR) as well as storage size, target bitrate and limited backhaul. Even
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though the expressions of average delivery rate rely on approximations (since these point
processes are reasonably hard to handle and dependence occurs within each process), we
shall show by numerical simulations that several key insights can be still gathered. A hier-
archical model is also presented in order to show potential manipulations on this clustered
networks.

In the second part of the thesis, namely in Part II, we take a more practical approach
to investigate the gains of caching. In particular:

In Chapter 6 (Proactive Caching), we explore the novel paradigm of proactive
caching in SCNs that leverages the latest developments in storage, context-awareness, and
social networking. In particular, we examine two case studies which exploit the spatial
and social structure of the network, where proactive caching plays a crucial role. Firstly, in
order to alleviate backhaul congestion, we propose a mechanism whereby contents/files are
proactively cached during off-peak demands based on content popularity and correlations
among users and content access patterns. Secondly, leveraging social networks and D2D
communications, we propose a procedure that exploits the social structure of the network
by predicting the set of influential users to (proactively) cache strategic contents and
disseminate them to their social ties via D2D communications. With this approach, we
show that important gains can be obtained, with backhaul offloadings and higher ratios
of satisfied users reaching up to 22% and 26%, respectively.

In Chapter 7 (Transfer Learning), we propose a novel transfer learning-based
caching procedure carried out at each small cell base station. This is done by exploiting
the rich contextual information (i.e., users’ content viewing history, social ties, etc.) ex-
tracted from D2D interactions, referred to as source domain. This prior information is
incorporated in the so-called target domain where the goal is to optimally cache strategic
contents at the small cells as a function of storage, estimated content popularity, traffic
load and backhaul capacity. It is shown that the proposed approach overcomes the no-
torious data sparsity and cold-start problems, yielding significant gains in terms of users’
quality-of-experience (QoE) and backhaul offloading, with gains reaching up to 22% in a
setting consisting of four small cell base stations.

In Chapter 8 (Big Data for Caching), As stated earlier, mobile cellular networks
are becoming increasingly complex to manage while classical deployment/optimization
techniques and current solutions (i.e., cell densification, acquiring more spectrum, etc.)
are cost-ineffective and thus seen as stopgaps. This calls for development of novel ap-
proaches that leverage recent advances in storage/memory, context-awareness, edge/cloud
computing, and falls into framework of big data. However, the big data by itself is yet
another complex phenomenon to handle and comes with its notorious 4V: velocity, vo-
racity, volume and variety. In this chapter, we address these issues in optimization of 5G
wireless networks via the notion of proactive caching at the base stations. In particular,
we investigate the gains of proactive caching in terms of backhaul offloadings and request
satisfactions, while tackling the large-amount of available data for content popularity es-
timation. In order to estimate the content popularity, we first collect users’ mobile traffic
data from a Turkish telecom operator from several base stations in hours of time interval.
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Then, an analysis is carried out locally on a big data platform and the gains of proactive
caching at the base stations are investigated via numerical simulations. It turns out that
several gains are possible depending on the level of available information and storage size.
For instance, with 10% of content ratings and 15.4 Gbyte of storage size (87% of total
catalog size), proactive caching achieves 100% of request satisfaction and offloads 98% of
the backhaul when considering 16 base stations.

Finally, Part III includes our conclusions and future works related to work presented
in this thesis. We note that each chapter above contains its own mathematical notation.

2.3 Publications

List of publications during the course of this PhD are listed below. The results/details
which are either fully or partially provided in this manuscript are marked with ∗.
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[33] B. Perabathini, E. Baştuğ, M. Kountouris, M. Debbah, and A. Conte, ”Caching on
the Edge: a Green Perspective for 5G Networks”, IEEE International Conference
on Communications (ICC’15), London, UK, June 2015.
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Chapter 3

Single-Tier Cellular Networks

3.1 Overview

The main contribution of this chapter is to formulate the caching problem in a scenario
where stochastically distributed SBSs are equipped with storage units but have the limited
backhaul capacity. In particular, we build on a tractable system model and define its
performance metrics (outage probability and average delivery rate) as functions of SINR,
number of SBSs, target content bitrate, storage size, content length and content popularity
distribution. By coupling the caching problem with physical layer (PHY) in this way and
relying on recent results from [191], we show that a certain outage probability can be
achieved either by 1) increasing number of SBSs while the total storage size budged is
fixed, or 2) increasing the total storage size while the number of SBSs is fixed. To the
best of our knowledge, our work differs from the previous works in terms of studying
deployment aspects of cache-enabled SBSs. Similar line of work in terms of analysis with
stochastic geometry tools can be found in [53, 121]. However, the system model and
performance metrics are different than what is studied here.

The rest of this chapter is structured as follows. We describe our system model in
Section 3.2. The performance metrics and main results are given in Section 3.3. In the
same section, much simpler expressions are obtained by making specific assumptions on
the system model. We validate these results via numerical simulations in Section 3.4 and
discuss the impact of parameters on the performance metrics. Then, a tradeoff between
the number of deployed SBSs and total storage size is given in Section 3.5. Finally, our
conclusions and future perspectives are given in Section 3.6.

3.2 System Model

The cellular network under consideration consists of SBSs, whose locations are modeled
according to a PPP Φ with density λ. The broadband connection to these SBSs is provided
by a central scheduler (CS) via wired backhaul links. We assume that the broadband
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connection is finite and fixed, thus the backhaul link capacity of each SBS is a decreasing
function of λ. This in practice means that deploying more SBSs in a certain area yields
sharing the total broadband capacity among backhaul links. We will define this function
more precisely in the next sections.

We suppose that every SBS has a storage unit with capacity S nats (1 bit = ln(2) =
0.693 nats), thus they cache users’ most popular contents given in a catalog. The size
of each content in the catalog has a length of L nats and bitrate requirement of T nat-
s/sec/Hz. We note that the assumption on content length is for ease of analysis. Alterna-
tively, the contents in the catalog can be divided into chunks with the same length. The
content popularity distribution of this catalog is a right continuous and monotonically
decreasing probability distribution function (PDF), denoted as fpop(f, γ). The parameter
f here corresponds to a point in the support of a content and γ is the shape parameter
of the distribution. We assume that this distribution is identical among all users.

Every user equipped with a mobile user terminal is associated with the nearest SBS,
where its location falls into a point in a Poisson-Voronoi tessellation on the plane. In
this model, we only consider the downlink transmission and overhead due to the content
requests of users via uplink is neglected. In the downlink transmission, a tagged SBS
transmits with the constant transmit power 1/µ Watts, and the standard unbounded
power-law pathloss propagation model with exponent α > 2 is used for the environment.
The tagged SBS and tagged user experience Rayleigh fading with mean 1. Hence, the
received power at the tagged user, located r-meters far away from its tagged SBS, is given
by hr−α. The random variable h here follows an Exponential distribution with mean 1/µ,
represented as h ∼ Exponential(µ).

Once users are associated with their closest SBSs, we assume that they request some
contents (or chunks) randomly according to the content popularity distribution fpop(f, γ).
When requests reach to the SBSs via uplink, the users are served immediately, either
getting the content from the Internet via backhaul or being served from the local cache,
depending on the availability of the content therein. If a requested content is available
in the local cache of the SBS, a cache hit event occurs, otherwise a cache miss event is
said to be occurred. According to what we have explained so far, a sketch of the network
model is given in Figure 3.1.

In general, the performance of our system depends on several factors. To meet the QoE
requirements, the downlink rate provided to the requested user has to be equal or higher
than the content bitrate T , so that the user does not observe any interruption during
its experience. Although this requirement can be achieved in the downlink, yet another
bottleneck can be the rate of the backhaul in case of cache misses. In the following, we
define our performance metrics which take into account the aforementioned situations.
We then present our main results in the same section.
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Figure 3.1: An illustration of the considered network model. The top right side of the
figure shows a snapshot of PPP per unit area where the SBSs are randomly located.
A closer look to communication structure of a cache-enabled SBS is shown in the main
figure.

3.3 Performance Metrics and Main Results

Performance metrics of interest in our system model are the outage probability and average
delivery rate. We start by defining these metrics for the downlink. From now on, without
loss of generality, we refer to the user o as typical user, which is located at the origin on
the plane.

We know that the downlink rate depends on the SINR. The SINR of user o which is
located at a random distance r far away from its SBS bo is given by:

SINR , hr−α

σ2+Ir
, (3.1)

where

Ir ,
∑

i∈Φ/bo
giR

−α
i , (3.2)

is the total interference experienced from all other SBSs except the connected SBS bo.
Assume that the success probability is the probability of the downlink rate exceeding the
content bitrate T and the probability of requested content being in the local cache. Then,
the outage probability can be given as the complementary of the success probability as
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follows:

pout(λ, T, α, S, L, γ) , 1− P
[
ln(1 + SINR) > T, fo ∈ ∆bo

]
︸ ︷︷ ︸

success probability

, (3.3)

where fo is the requested content by the typical user, and ∆bo is the local cache of serv-
ing SBS bo. Indeed, such a definition of the outage probability comes from a simple
observation. Ideally, if a requested content is in the cache of the serving SBS (thus the
limited backhaul is not used) and if the downlink rate is higher than the content bitrate
T (thus the user does not observe any interruption during the playback of the content),
we then expect the outage probability to be close to zero. Given this explanation and
the assumptions made in the previous section, we state the following theorem for outage
probability.

Theorem 1 (Outage probability). The typical user has an outage probability from its
tagged base station which can be expressed as:

pout(λ, T, α, S, L, γ) = 1− πλ
∫ ∞

0

∫ S/L

0

e−πλvβ(T,α)−µ(eT−1)σ2vα/2fpop(f, γ)dfdv, (3.4)

where β(T, α) is given by:

β(T, α) =
2
(
µ(eT − 1)

)
α

Eg
[
g

2
α

(
Γ

(
− 2

α
, µ
(
eT − 1

)
g

)
− Γ

(
− 2

α

))]
, (3.5)

where Γ(a, x) =
∫∞
x
ta−1e−tdt is the upper incomplete Gamma function and Γ(x) =∫∞

0
tx−1e−tdt is the Gamma function.

Proof. The proof is provided in Appendix A.1.

Yet another useful metric in our system model is the delivery rate, which we define as
follows:

τ ,


T, if ln(1 + SINR) > T and fo ∈ ∆bo ,

C(λ), if ln(1 + SINR) > T and fo 6∈ ∆bo ,

0, otherwise,

nats/sec/Hz (3.6)

where C(λ) is the backhaul capacity provided to the SBS for single frequency in the
downlink.1 The definition above can be explained as follows. If the downlink rate is higher
than the threshold T (namely the bitrate of the requested content) and the requested
content is available in the local cache, the rate T is dedicated to the user by the tagged
SBS, which in turn is sufficient for QoE. On the other hand, if the downlink rate is higher
than T but the requested content does not exist in the local cache of the tagged SBS, the
delivery rate will be limited by the backhaul link capacity C(λ), for which we assume that
C(λ) < T . Given this definition for the delivery rate, we state the following theorem.

1Without loss of generality, more realistic values of delivery rate can be obtained by making a proper
SINR gap approximation and considering the total wireless bandwidth instead of 1 Hz.
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Theorem 2 (Average delivery rate). The typical user has an average delivery rate from
its tagged base station which can be expressed as:

τ̄(λ, T, α, S, L, γ) = πλ

∫ ∞
0

e−πλvβ(T,α)−µ(eT−1)σ2vα/2dv×(
C(λ) + (T − C(λ))

∫ S/L

0

fpop(f, γ)df

)
, (3.7)

where β(T, α) has the same definition as in Theorem 1.

Proof. The proof is deferred to Appendix A.2.

What we provided above are the general results. The exact values of outage probability
and average delivery rate can be obtained by specifying the distribution of the interference,
the backhaul link capacity C(λ) and the content popularity distribution fpop(f, γ). If this
treatment does not yield closed form expressions, numerical integration can be done as
a last resort for evaluating the functions. In the next section, as an example, we derive
special cases of these results after some specific assumptions, which in turn yield much
simpler expressions.

3.3.1 Special Cases

Assumption 1. The following assumptions are given for the the system model:

1. The noise power σ2 is higher than 0, and the pathloss component α is 4.

2. Interference is Rayleigh fading, which in turn gi ∼ Exponential(µ).

3. The capacity of backhaul links is given by:

C (λ) ,
C1

λ
+ C2, (3.8)

where C1 > 0 and C2 ≥ 0 are some arbitrary coefficients such that C(λ) < T holds.

4. The content popularity distribution of users is characterized by a power law [192]
such as:

fpop (f, γ) ,

{
(γ − 1) f−γ, f ≥ 1,

0, f < 1,
(3.9)

where γ > 1 is the shape parameter of the distribution.

35



3.3. Performance Metrics and Main Results

The assumption C(λ) < T comes from the observation that the high-speed fiber-optic
backhaul links might be very costly in densely deployed SBSs scenarios. Therefore, we
assume that C(λ) is lower than the bitrate of content. On the other hand, we charac-
terize the content popularity distribution with a power law. Indeed, this comes from the
observation that many real world phenomena can be characterized by power laws (i.e.
distribution of contents in web proxies, distribution of word counts in natural languages)
[192]. According to our system model and the specific assumptions made in Assumption
1, we state the following results.

Proposition 1 (Outage probability). The typical user has an outage probability from its
tagged base station which can be expressed as:

pout(λ, T, 4, S, L, γ) = 1− π
3
2λ√
eT−1
SNR

exp

(
(λπ(1 + ρ(T, 4)))2

4(eT − 1)/SNR

)
×

Q

(
λπ(1 + ρ(T, 4))√
2(eT − 1)/SNR

)(
1−

(
L

L+ S

)γ−1
)
, (3.10)

where ρ(T, 4) =
√
eT − 1

(
π
2
− arctan

(
1√
eT−1

))
and the standard Gaussian tail proba-

bility is given as Q (x) = 1√
2π

∫∞
x
e−y

2/2dy.

Proof. The proof is given in Appendix A.3.

Proposition 2 (Average delivery rate). The typical user has an average delivery rate
from its tagged base station which can be expressed as:

τ̄(λ, T, 4, S, L, γ) =
π

3
2λ√
eT−1
SNR

exp

(
(λπ(1 + ρ(T, 4)))2

4(eT − 1)/SNR

)
×

Q

(
λπ(1 + ρ(T, 4))√
2(eT − 1)/SNR

)(
T +

(
C1

λ
+ C2 − T

)(
L

L+ S

)γ−1
)
, (3.11)

where ρ(T, 4) and Q (x) has the same definition as in Proposition 1.

Proof. The proof is given in Appendix A.4.

The expressions obtained for special cases are cumbersome but fairly easy to compute
and does not require any integration. Note that Q (x) function given in the expressions is
a well-known function and can be computed by using lookup tables or standard numerical
packages.
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3.4 Validation of the Proposed Model

So far we have provided the results for outage probability and average delivery rate. In
this section, we validate these results via Monte Carlo simulations. The numerical results
shown here are obtained by averaging out over 1000 realizations. In each realization, the
SBSs are distributed according to a PPP. The content requests, signal and interfering
powers of the typical user are drawn randomly according to the corresponding probability
distributions. The outage probability and average delivery rate are then calculated by
considering SINR and cache hit statistics. We note that all simulation curves match
the theoretical ones. However, a slight mismatch is observed due to the fact that more
precise discretization of continuous variables is avoided for affordable simulation times.
As alluded to previously, the target content bit rate as well as average delivery rate are
in units of nats/sec/Hz. On the other hand, the storage size and content lengths are in
units of nats.

3.4.1 Impact of storage size

The storage size of SBSs is one critical parameter in our system model. The effect of the
storage size on the outage probability and the average delivery rate is plotted in Figures
3.2 and 3.3, respectively. Each curve represents a different value of target content bit
rate. We observe that the outage probability reduces whereas the average delivery rate
increases, as we increase the storage size. Such behaviour, observed both in theoretical
and simulation curves, confirms our initial intuition.

3.4.2 Impact of the number of base stations

The evolution of outage probability with respect to the number of base stations is depicted
in Figure 3.4. As the base station density increases, the outage probability decreases. This
decrement in outage probability can be improved further by increasing the storage size of
SBSs.

3.4.3 Impact of target content bitrate

Yet another important parameter in our setup is the target content bitrate T . Figure 3.5
shows its impact on the outage probability for different values of storage size. Clearly,
increasing the target content bitrate results in higher outage probability. However, this
performance reduction can be compensated by increasing the storage size of SBSs. The
impact of storage size reduces, as T increases.
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Figure 3.2: The evolution of outage probability with respect to the storage size. SNR = 10
dB, λ = 0.2, γ = 2, L = 1 nats, α = 4, C1 = 0.0005, C2 = 0.
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Figure 3.3: The evolution of average delivery rate with respect to the storage size. SNR =
10 dB, λ = 0.2, γ = 2, L = 1 nats, α = 4, C1 = 0.0005, C2 = 0.

38



3.4. Validation of the Proposed Model

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

Base station density λ

O
u
ta

ge
p
ro

b
ab

il
it

y

S = 1 (The.)
S = 1 (Sim.)
S = 2 (The.)
S = 2 (Sim.)
S = 10 (The.)
S = 10 (Sim.)

Figure 3.4: The evolution of outage probability with respect to the base station density.
SNR = 10 dB, T = 0.2, γ = 2, L = 1 nats, α = 4, C1 = 0.0005, C2 = 0.
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Figure 3.5: The evolution of outage probability with respect to the target file bitrate.
SNR = 10 dB, λ = 0.2, γ = 2, L = 1 nats, α = 4, C1 = 0.0005, C2 = 0.
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3.4.4 Impact of content popularity shape

Another crucial parameter in our setup is the shape of the content popularity distribution,
parameterized by γ. The impact of the parameter γ on the outage probability, for different
storage sizes, is given in Figure 3.6. Generally, a higher value of γ means that only a small
portion of contents is highly popular compared to the rest of the contents. On the contrary,
lower values of γ correspond to a more uniform behavior on the popularity distribution.
Therefore, as γ increases, the outage probability reduces due to reduced requirement in
terms of storage size. However, in very low and high values of γ, the impact on the outage
probability is not high compared to the intermediate values.
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Figure 3.6: The evolution of outage probability with respect to the popularity shape
parameter γ. SNR = 10 dB, λ = 0.2, γ = 2, L = 1 nats, α = 4, C1 = 0.0005, C2 = 0.

3.5 David vs. Goliath: More SBSs with less storage

or less SBSs with more storage?

In the previous section, we have validated our results via numerical simulations and dis-
cussed the impact of several parameters on the outage probability and average delivery
rate. On top of those, we are now interested in finding a tradeoff between the SBS density
and the total storage size for a fixed set of parameters. We start by making an analogy
with well-known David and Goliath story to examine the tradeoff between the SBS density
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and total storage size.2 More precisely, we aim to answer the following question: Should
we increase storage size of current SBSs (David) or deploy more SBSs with less storage
(Goliath) in order to achieve a certain success probability? The answer is indeed useful
for the realization of such a scenario. Putting more SBSs in a given area may be not
desirable due to increased deployment and operation costs (Evil). Therefore, increasing
the storage size of already deployed SBSs may incur less cost (Good). To characterize
this tradeoff, we first define the optimal region as follows:

Definition 1 (Optimal region). An outage probability p† is said to be achievable if there
exist some parameters λ, T, α, S, L, γ satisfying the following condition:

pout(λ, T, α, S, L, γ) ≤ p†.

The set of all achievable p† forms the optimal region.

The optimal region can be tightened by restricting parameters λ, T, α, S, L, γ to some
intervals. A detailed analysis on this is left for future work. Hereafter, we restrict ourselves
to find the optimal SBS density for a fixed set of parameters. In such a case, optimal
SBS density can be readily obtained by plugging these fixed parameters into pout and
solving the equation either analytically or numerically (i.e. bisection method [194]). In
the following, we obtain a tradeoff curve between the SBSs density and total storage size,
by solving these equations systematically in the form of optimization problem.

Definition 2 (SBS density vs. total storage size tradeoff). Define the average total
storage as Stotal = λS, and fix T , α, L and γ to some values in the optimal region given
in Definition 1. Denote also λ? as the optimal SBS density for a given Stotal. Then, λ? is
obtained by solving the following optimization problem:

minimize
λ

λ (3.12)

subject to pout(λ, T, α, Stotal/λ, L, γ) ≤ p†. (3.12a)

The set of all achievable pairs (λ?, Stotal) characterize a tradeoff between the SBS density
and total storage size.

Figures 3.7 and 3.8 show two different configurations of the tradeoff. In these plots, to
achieve a certain outage probability (i.e. p† = 0.3), we see that it is sufficient to decrease
the number of SBSs by increasing the total storage size. Alternatively, the total storage
size can be decreased by increasing the number of SBSs. Moreover, for different values of
parameter of interest (i.e. T ∈ {0.1, 0.2} or L ∈ {1, 2}), there is also a scaling and shifting
in this tradeoff. Regardless of this scaling and shifting, we see that David wins victory
against Goliath.

2David vs. Goliath refers to the underlying resource sharing problem which arises in a variety of
scenarios including massive MIMO vs. Small Cells [193].
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Figure 3.7: The trade-off between SBSs density and total storage size for different file
target bitrates. SNR = 10 dB, α = 4, L = 1 nats, γ = 3 and p† = 0.3.
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3.6 Closing Remarks

We have studied the caching problem in a scenario where SBSs are stochastically dis-
tributed and have finite-rate backhaul links. We derived expressions for the outage prob-
ability and average delivery rate, and validated these results via numerical simulations.
The results showed that significant gains in terms of outage probability and average de-
livery rate are possible by having cache-enabled SBSs. We showed that telecom operators
can either deploy more base stations or increase the storage size of existing deployment
in order to achieve a certain QoE level.
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Chapter 4

Multi-Tier Cellular Networks

4.1 Overview

In the previous chapter, we have investigated the gains of caching for a single-tier net-
work. In this chapter, we move to a multi-tier heterogeneous network where base stations
in each tier are deployed according to a homogeneous PPP. More precisely, we have a
four-tier heterogeneous network consists of mobile terminals (users), cache-enabled small
cells, macro cells and central routers. The heterogeneous network experiences delays on
the downlink, backhaul and caches. Supposing that small cells are able to cache popular
contents proactively, we derive expressions for the average delay of typical users when
connected to macro and small cells. Moreover, in order to capture the spatio-temporal
content access patterns of users, we suppose fixed content popularity, distance-dependent
and load-dependent content popularities. Assuming that the content popularity distri-
bution is perfectly known at the small base stations, we explore three different caching
policies based on content-popularity and randomization. In the final part of this chapter,
we validate our results via Monte-Carlo simulations and draw our conclusions.

The rest of this chapter is organized as follows. Section 4.2 details the system model
under consideration. The performance analysis based on delay and cost is given in Section
4.3. Numerical results for validation are presented in Section 4.4. We finally conclude in
Section 4.5.

4.2 System Model

Topology : We consider a multi-tier heterogeneous network in the two-dimensional Eu-
clidean plane R2 where nodes in each tier k are modeled as a homogeneous PPP Φk =
{r(k)

i }i∈N with intensity λk, such that λ1 > ...λK and r
(k)
i ∈ R2 is referred to as the location

of the i-th node at the k-th tier. As a matter of fact, consider a four-tier heterogeneous
network consists of mobile terminals (users), small cells, macro cells and central routers
with densities λut > λsc > λmc > λcr respectively. A typical mobile user is located at the
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Figure 4.1: An illustration of the considered system model. The snapshots of i) central
routers, ii) macro cells, iii) small cells and iv) mobile user terminals are provided on the
right side of figure.

Cartesian origin (0, 0) for deriving the performance metrics of the heterogeneous network,
whereas the same results for any mobile user hold due to the Slivnyak-Mecke theorem and
the stationary and isotropy properties of PPP [195].

Signal Model : We shall consider that the macro and small cells are interfering with
each other in the same frequency band. The transmit power is Pmc for each macro cell
and Psc for each small cell, where we assume that Pmc > Psc. For notational convenience,
let us denote a base station (transmitter) by its position. The received power experienced
at a typical user due to a transmitter x is given by Pxhx`(x), where Px is the transmit
power (Pmc or Psc), hx corresponds to the fading power coefficient (square of the fading
amplitude) of the channel between transmitter x and typical user, and `(x) = ‖x‖−α is
the singular path-loss function with α > 2 [196]. The channel fading power coefficients are
independent and identically distributed (i.i.d.) Exponential random variables (Rayleigh
fading) with E[hx] = 1.

Since we assume that the network is interference-limited (i.e., the interference power is
dominating the noise power), we simply consider SIR. In case of a typical user connected
to a macro cell located at x, the SIR is given as

SIRmc(x) =
Pmchx`(x)

Imm + Ism

(4.1)

where Imm =
∑

y∈Φmc\{x}
Pmchy`(y) is the interference experienced from all macro cells except

the signalling macro cell at x, and Ism =
∑
y∈Φsc

Pschy`(y) is the cumulative interference

experienced from small cells. In case of a typical user connected to a small cell located at
x, the SIR is given as

SIRsc(x) =
Pschx`(x)

Iss + Ims

(4.2)
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where Iss =
∑

y∈Φsc\{x}
Pschy`(y) is the interference experienced from all macro cells except

the signalling small cell, and Ims =
∑

y∈Φmc

Pmchy`(y) is the cumulative interference from

macro cells. The target SIR in our system model is denoted as γ.

Connectivity and Backhaul : The mobile user terminals are associated with the closest
base station, either macro or small cell. As alluded to earlier, each macro or small cell
is also connected to its nearest central router. The associated policy will be detailed
later on. Each central router has a sufficiently high broadband Internet connection. The
wired backhaul is used to provide this broadband connection to macro and small cells via
backaul links, such that users’ demand can be satisfied. Supposing that a content request
of a user is done, the base station is then in charge of starting the delivery immediately.

4.2.1 Caching

When a user has a request, we suppose that the content request is drawn from the distribu-
tion fpop which is in decreasing order of content popularities. More formally, the content
popularity distribution of a user is a right continuous and monotonically decreasing PDF,
given by [192]

fpop (f, η) =

{
(η − 1) f−η, f ≥ 1,

0, f < 1,
(4.3)

where f indicates a point in the support of the corresponding content, and η > 1
parametrizes the steepness of the popularity distribution curve.

In fact, higher values of η results in steeper distribution, which in turn means that
certain contents are highly popular than the rest of contents in fpop (f, η). Conversely,
lower values of η yield a more uniform distribution, which in turns say that almost all
contents have similar popularities. The content popularity of a user might be evolving
over time and space, influenced by the choice of other users and partially known at the
base stations. This is somewhat equivalent to say that the parameter η can take different
values depending on the scenario. In our case, each base station perfectly observes the
content popularities according to three different considerations as follows:

- Fixed : The content popularity is identical among all users, with fixed steepness
factor of η = η0. Therefore, all small cells observe the same distribution given by
fpop (f, η0).

- Distance-dependent : The users have different content popularity distributions, each
of them having a distance-dependent steepness factor η = r, where r is the (random)
distance between a user and its signalling small cell. Therefore, we assume that each
small cell on average observes a content popularity distribution given by fpop (f, r̄),
where r̄ is the average distance between the small cell and its users.

- Load-dependent : The content popularity of users is load-dependent on average, each
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of small cell having parameter η = λut/λsc. Therefore, all small cells observe the
content popularity distribution given by fpop (f, λut/λsc).

Note that the choice of such a continuous content distribution is in fact for ease
of analysis. When practice matters or analytical tractability is not a priority, Zipf-like
discrete power laws can also be considered for modeling [192]. Indeed, content access
statistics in cache-enabled web proxies [197], or more relevantly in base stations [198] are
characterized by such discrete power laws (or arguably distributions).

For (some of) caching policies which will be described below, we shall assume that the
content popularity distribution fpop (f, η) is perfectly known at the base stations. Practi-
cally, in order to have partial knowledge of fpop (f, η) for the caching policies, statistical
estimation methods can be employed either at base stations in a distributed manner or
alternatively at central routers, by using statistical tools from machine learning (i.e., col-
laborative filtering [38] and transfer learning [34]).

Given fpop (f, η), the contents in the interval [1, f0) are cacheable contents and called
as catalogue, whereas the remaining part [f0,∞] is considered as non-cacheable contents
(i.e., sensor data, voice streaming and online gaming). An interval [f, f + ∆f) in the
support of fpop (f, η) is dedicated to represent the probability of f -th content.

So far, size of a content can start from very few kilo bytes and might go up to hun-
dreds of gigabytes. We restrict ourselves to chunks as contents where we assume that each
content/chunk has a fixed length of L bits (for example as in [199]). Indeed, storing/dis-
tributing constant-sized chunks of files rather their complete version is one of the key
principle of content centric networks [200], as opposite to traditional way of dealing with
files on the Internet. Therefore, even though we use ”content” due to naming convention,
the chunks will be considered from now on, which in turn makes sense to call fpop (f, η)
as chunk popularity distribution. This choice makes also analysis simpler as sufficiently
small chunks can be transmitted in one time slot in downlink, yielding to avoid time de-
pendence analysis and mixed-time situations in which large-length content delivery and
downlink fluctuations would appear in the different time scales.

Each small cell base station has a storage capacity of S, thus caches contents according
to a given caching policy. Having such a demand behaviour described above and caching
capabilities at the small cells, we then consider the following offline caching policies:

- StdPop [37]: The most popular contents from the catalogue are stored in the cache of
small cells and requires Sp ≥ 0 amount of storage. We additionally assume that the
track of content popularity in a small cell base station requires S0 amount of storage,
defined as a function of number of contents in the catalogue and type of algorithm
employed for content popularity estimation, thereby it holds that S = Sp + S0 ≥ 0.

- UniRand [132]: The S amount of contents are cached uniformly at random. Note
that this policy is not aware of the content catalogue, therefore does not require any
memory to track the content popularity profile.
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- MixPop: The Sp amount of storage is used to cache the most popular contents
deterministically. The storage overhead is S0 ≥ 0 and again defined as a function of
number of contents and employed algorithm. On top of this popularity-based policy,
we also assume that Su ≥ 0 amount of storage is used to cache contents uniformly
at random, thus S = Sp + S0 + Su ≥ 0.

In fact, if the catalogue size is sufficiently small, the storage overhead in StdPop and
MixPop, due to the track of content popularity can be neglected. However, such an
overhead might dominate the total storage space when a large catalogue with low-sized
chunks are considered. One can also observe that the StdPop and UniRand policies are
special cases of MixPop policy and are given here for the sake of exposition.

The performance of any statistic-aware online cache removal policy (i.e., least-recently
used (LRU) and least-frequently used (LFU)) would be upper bounded by its offline
successor which has perfect content statistics, as such an online approach would require
iterative estimation of content popularity in a finite time window, yielding to degrade
the overall performance. Such online policies can also be incorporated to our system
model after some specific assumptions (see Independent Reference Model [201] for an
approximation of LRU policy).

4.2.2 Delay and Quality of Service

QoS is closely related to the delay experienced by users. We consider three different
sources of delay which are detailed separately as follows.

Delay in downlink : When macro and small cell base stations have to deliver the con-
tents to their intended mobile users, it is evident that the transmissions throughout the
wireless medium of the downlink incur delays mainly due to the interference from con-
current transmissions and channel fading. Consider now a simple retransmission protocol
where a packet of requested content is repeatedly transmitted until the success of delivery,
up to a pre-defined number of retransmission attempts M . Indeed, inferring whether a
delivery is successful or not at the base station essentially relies on the SINR (or SIR
in our case) being higher than the predefined threshold γ and feedback. If a packet is
delivered successfully, we shall assume that the base station (macro or small cell) receives
a one-bit acknowledgement message from the mobile user with negligible delay and error.
Otherwise, if the delivery fails, the base station receives a one-bit negative acknowledge-
ment message in the same vein. These attempts take T0 amount of time. An outage event
occurs if the packet is not delivered after M attempts. For the rest of the chapter, we
denote the downlink delay experienced by the typical macro and small cell users as Ddm

and Dds respectively.

Delay in backhaul : The delay caused in a wired backhaul link is modeled by an Ex-
ponentially distributed random variable with mean being proportional to the product of
the average link distance (from typical base station to its nearest central router) and the
average number of base stations connected to a single central router. In particular, rep-
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resenting the delay in macro and small cell backhaul links as Dbm ∼ Exponential(µ̄bm)
and Dbs ∼ Exponential(µ̄bs) respectively, we (in general) suppose that Dbs stochastically
dominates Dbm.1 In stochastic sense, this shows that small cell backhaul links are subject
to higher delays compared to those of macro cells.

Delay in caches : Serving a user by reading its content from local cache is subject to
delay as the storage medium is prone to errors, whereas such a delay may also vary de-
pending on the storage types and underlying mechanisms (i.e., hard disk, solid-state disk
(SSD)). In this regard, we model this phenomenon as Dca ∼ Exponential(µ̄ca), an Ex-
ponentially distributed random variable with mean µ̄ca being proportional to the storage
type. We also assume that the delay of small cell backhaul links stochastically dominates
the delay of reading a content from local caches, meaning that the speed of content reads
from caches is stochastically higher than the speed of small cell backhaul links.

4.3 Performance Analysis

We in the following introduce two lemmas [202, 203] which will be used in the delay and
cost analysis.

Lemma 3. The PDF of the length of a link of any node in Φk−1 to the nearest node in
Φk is given by

fk(r) = 2λkπrexp(−πλkr2). (4.4)

If c(r) is a cost function of link length r, then, the expected cost c̄ and total expected cost
C̄ are given by

c̄ = EΦk

[
c(r)

]
=

∫ ∞
0

c(r)fk(r)dr (4.5)

C̄ = EΦk−1,Φk

[∑
Φk−1

c(r)
]

= λk−1

∫ ∞
0

c(r)fk(r)dr. (4.6)

When the cost function c(r) has the form of arb, the expected cost c̄ and total expected
cost C̄ are expressed as

c̄ = a
Γ
(
b
2

+ 1
)

(πλk)b/2
(4.7)

C̄ = λk−1a
Γ
(
b
2

+ 1
)

(πλk)b/2
. (4.8)

where Γ(x) =
∫∞

0
tx−1e−tdt is the Gamma function.

Lemma 4. Assuming that the nodes in Φk are linked to their nearest nodes in Φk+1, then,
the average number of linked nodes from Φk to each node in Φk+1 is given by

λk/λk+1 (4.9)

1Given two random variables A and B, we say that A stochastically dominates B if P(A > x) ≥ P(B >
x) for all a, or alternatively, FA(x) ≤ FB(x) for cumulative distribution functions FA(x) and FB(x).
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The next lemma and corollary will also be used throughout the chapter.

Lemma 5. Assume that the noise is negligible (meaning that the communication is
interference-limited) and the backhaul is ignored at the macro cells. The probability of
successful transmission from the closest macro cell to the typical user is given by

Pm =
1

1 + ρ(γ, α) + (Psc/Pmc)2/α(λsc/λmc)γ2/αA(α)
(4.10)

where ρ(γ, α) = γ2/α
∫∞
γ−2/α

1
1+uα/2

du and A(α) = 2π/α
sin(2π/α)

. Similarly, the probability of
successful transmission from the closest small cell to the typical user is given by

Ps =
1

1 + ρ(γ, α) + (Pmc/Psc)2/α(λmc/λsc)γ2/αA(α)
. (4.11)

Proof. See Appendix B.1.

Corollary 1. Consider that the regime is interference-limited and the backhaul effects
are ignored. Then, the probability of successful transmission from the closest macro cell
located at a distance r is given by

pm(r) = exp
(
πr2
[
λmcρ(γ, α) + (Psc/Pmc)

2/αλscγ
2/αA(α)

])
. (4.12)

Similarly, the probability of successful transmission from the closest small cell located at
a distance r is given by

ps(r) = exp
(
πr2
[
λscρ(γ, α) + (Pmc/Psc)

2/αλmcγ
2/αA(α)

])
(4.13)

Proof. The proof is easily obtained by following the same steps in proof of Lemma 5
except averaging over the spatial distribution.

4.3.1 Delay Analysis

Considering the aforementioned delay sources (namely downlink, caching and backhaul),
the delay experienced by the typical macro and small cell users are respectively defined
as

Dm = Ddm +Dbm, (4.14)

Ds = Dds + 1{fs∈∆0}Dca +
(
1− 1{fs∈∆0}

)
Dbs (4.15)

where fs is the content requested by the typical small cell user and ∆0 is the cache of its
connected small cell. The indicator function 1{...} returns 1 if the statement holds, 0 other-
wise. Before proceeding to the next step, let us define functionsB1(T0,M, γ, α, Px, Py, λx, λy),
B2(Sp, η) and B3(Su, Sp, f0, η) given on the top of the next page.

We now state the following results which are related to average delay experienced by
typical macro and small cell users.
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B1(T0,M, γ, α, Px, Py, λx, λy) = T0

M−1∑
i=0

(−1)i
(
M

i+ 1

)
1

1 + i
[
ρ(γ, α) + (Px/Py)2/α(λx/λy)γ2/αA(α)

]
(4.16)

B2(Sp, η) = 1−
(
1 + Sp

)1−η
(4.17)

B3(Su, Sp, f0, η) =
Su

f0 − Sp

(
1−

(
1 + f0

)1−η
+
(
1 + Sp

)1−η)
(4.18)

Theorem 6. The average delay for a typical user connected to a macro cell is given by

D̄m = B1(T0,M, γ, α, Psc, Pmc, λsc, λmc) +
1

2
βλmcλ

−3/2
cs (4.19)

where B1(T0,M, γ, α, Psc, Pmc, λsc, λmc) is given in (4.16).

Proof. See Appendix B.2.

Corollary 2. The average delay for a typical user connected to a small cell (with no
caching capabilities) is given by

D̄m = B1(T0,M, γ, α, Pmc, Psc, λmc, λsc) +
1

2
βλscλ

−3/2
cs (4.20)

where B1(T0,M, γ, α, Pmc, Psc, λmc, λsc) is given in (4.16).

Proof. The result is a direct application of Theorem 6, thus is immediately proved by by
following similar steps given in Appendix B.2.

Theorem 7. When MixPop caching policy is employed at the small cells, the average delay
for a typical user connected to a small cell under fixed content popularity distribution is
given by

D̄
(mix)
fix = B1(T0,M, γ, α, Pmc, Psc, λmc, λsc) +

1

2
βλscλ

−3/2
cs +(

µ̄ca −
1

2
βλscλ

−3/2
cs

)(
B2(Sp, η0) +B3(Su, Sp, f0, η0)

)
(4.21)

where B2(Sp, η0) and B3(Su, Sp, f0, η0) are given in (4.17) and (4.18) respectively.

In case of distance-dependent content popularity, the average delay is given by

D̄
(mix)
dist = B1(T0,M, γ, α, Pmc, Psc, λmc, λsc) +

1

2
βλscλ

−3/2
cs +(

µ̄ca −
1

2
βλscλ

−3/2
cs

)(
B2(Sp,

1

2
√
λsc

)+

B3(Su, Sp, f0,
1

2
√
λsc

)
)
. (4.22)
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In case of load-dependent content popularity, the average delay is given by

D̄
(mix)
load = B1(T0,M, γ, α, Pmc, Psc, λmc, λsc) +

1

2
βλscλ

−3/2
cs +(

µ̄ca −
1

2
βλscλ

−3/2
cs

)(
B2(Sp,

λut

λsc

)+

B3(Su, Sp, f0,
λut

λsc

)
)
. (4.23)

Proof. See Appendix B.3.

We have so far stated the results for MixPop caching policy. By slightly modifying
the steps in proof of Theorem 7, the following corollaries can be obtained for StdPop and
UniRand caching policies respectively.

Corollary 3. When StdPop caching policy is employed at the small cells, the average
delay for a typical user connected to a small cell under fixed content popularity distribution
is given by

D̄
(std)
fix = B1(T0,M, γ, α, Pmc, Psc, λmc, λsc)+

1

2
βλscλ

−3/2
cs +

(
µ̄ca −

1

2
βλscλ

−3/2
cs

)
B2(Sp, η0). (4.24)

In case of distance-dependent content popularity, the average delay is given by

D̄
(std)
dist = B1(T0,M, γ, α, Pmc, Psc, λmc, λsc)+

1

2
βλscλ

−3/2
cs +

(
µ̄ca −

1

2
βλscλ

−3/2
cs

)
B2(Sp,

1

2
√
λsc

). (4.25)

In case of load-dependent content popularity, the average delay is given by

D̄
(std)
load = B1(T0,M, γ, α, Pmc, Psc, λmc, λsc)+

1

2
βλscλ

−3/2
cs +

(
µ̄ca −

1

2
βλscλ

−3/2
cs

)
B2(Sp,

λut

λsc

). (4.26)

Proof. Observe that StdPop is a special case of MixPop. Therefore, the proof is done by
following the steps in proof of Theorem 7 but only taking into account the first term on
the right hand side (RHS) of (B.24), (B.29) and (B.32).

Corollary 4. When UniRand caching policy is employed at the small cells, the average
delay for a typical user connected to a small cell under fixed content popularity distribution
is given by

D̄
(uni)
fix = B1(T0,M, γ, α, Pmc, Psc, λmc, λsc)+

1

2
βλscλ

−3/2
cs +

(
µ̄ca −

1

2
βλscλ

−3/2
cs

)
B3(Su, Sp, f0,

λut

λsc

). (4.27)
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In case of distance-dependent content popularity, the average delay is given by

D̄
(uni)
dist = B1(T0,M, γ, α, Pmc, Psc, λmc, λsc)+

1

2
βλscλ

−3/2
cs +

(
µ̄ca −

1

2
βλscλ

−3/2
cs

)
B3(Su, Sp, f0,

λut

λsc

). (4.28)

In case of load-dependent content popularity, the average delay is given by

D̄
(uni)
load = B1(T0,M, γ, α, Pmc, Psc, λmc, λsc)+

1

2
βλscλ

−3/2
cs +

(
µ̄ca −

1

2
βλscλ

−3/2
cs

)
B3(Su, Sp, f0,

λut

λsc

). (4.29)

Proof. As UniRand is a special case of MixPop, the results are immediate from proof
of Theorem 7 by only considering the second term on the RHS of (B.24), (B.29) and
(B.32).

Note that the results above are based on the assumption that typical users are con-
nected to their nearest base stations. Now, in order to move from average delay of typical
users to total average delay in network, we use the following distance-based association
policy.

Definition 3 (Association Policy). Let rsc and rmc be the distance from the nearest small
and macro cell respectively. A user is associated to the nearest small cell if rsc < κrmc

with κ ∈ R+, and the nearest macro cell otherwise.

Based on this association policy, the association probabilities are given as follows.

Proposition 3 (Association Probability). A typical user is connected to a small cell with
association probability given by

pa =
κ2λsc

λmc + κ2λsc

, (4.30)

and is connected to a macro cell with association probability 1− pa.

Proof. See Appendix B.4.

Therefore, after these association probabilities, the total average network delay can be
stated as follows.

Proposition 4 (Total Average Network Delay). Suppose that TDMA is employed among
users and the small cells operate under MixPop caching policy with fixed content popularity
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distribution. The total average network delay is then given by

D̄(tot) =
p2

aλ
2
ut

λsc

B1(T0,M, γ, α, Pmc, Psc, λmc, λsc)+

(1− pa)2λ2
ut

λmc

B1(T0,M, γ, α, Psc, Pmc, λsc, λmc)+

1

2
βpaλutλscλ

−3/2
cs +

1

2
β(1− pa)λutλmcλ

−3/2
cs +

paλut

(
µ̄ca −

1

2
βλscλ

−3/2
cs

)(
B2(Sp, η0) +B3(Su, Sp, f0, η0)

)
. (4.31)

Proof. See Appendix B.5.

Remark 1. The total average network delay for the other caching policies and content
popularities can be derived straightforwardly by using the results in Theorems 6, 7 and
Corollaries 3, 4.

4.3.2 Cost Analysis

In a similar fashion to [203,204], we define our total network cost by taking into account
the deployment and operational costs, such as

C = c1λcs + c2λmc + c3λsc + L̄mc + L̄sc︸ ︷︷ ︸
(i)

+ϕD̄(tot)︸ ︷︷ ︸
(ii)

(4.32)

where the term (i) captures deployment and load-independent operational costs, and (ii)
takes into account the load-dependent operational costs. The coefficients c1, c2 and c3

reflects the unit cost of central routers, macro cells and small cells respectively. The
parameters L̄mc and L̄sc are the average costs of constructing/deploying backhaul links
from the nearest central routers to macro and small cells respectively. The load-dependent
cost is captured by the total average network delay D̄(tot) times the unit cost ϕ. Based
on this definition, the total average network cost is stated as follows.

Proposition 5 (Total Average Network Cost). When the cost of link construction between
a base station (macro or small cell) and its nearest central router has the form of L(r) =
arb, the total average cost of the network is given by

C̄(tot) = c1λcs + c2λmc + c3λsc + λmcamc

Γ
(
bmc

2
+ 1
)(

πλcs

)bmc/2
+ λscasc

Γ
(
bsc
2

+ 1
)(

πλcs

)bsc/2 + ϕD̄(tot) (4.33)

where amc and bmc are the coefficients for macro cells, and asc and bsc are for the small
cells.

Proof. See Appendix B.6.

In the above, we have provided the expressions for total average network delay and
total network cost. The optimization of these metrics with respect to system design
parameters are left for future work.
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4.4 Numerical Results

In this section, we conduct a numerical study to validate our results in the previous section.
The list of simulation parameters are given in Table 4.1 and will be used throughout
this section unless otherwise stated. In the following, we discuss impact of key design
parameters on the average delay, namely 1) macro cell density, 2) small cell density, 3)
target SIR, and 4) storage size.

Table 4.1: Simulation Parameters for Multi-Tier Network.

Parameters Values

λcr 1.4× 10−6 unit/m2

λmc 2.8× 10−6 unit/m2

λsc 3.6× 10−6 unit/m2

λut 7.2× 10−6 unit/m2

Pmc 20 Watts

Psc 2 Watts

α 4

γ 3 dB

M 4

T0 0.1 ms

µca 0.01 ms

f0 500 GByte

η0 1.45

S, Sp, S0 and Su 100, 9.5, 0.5 and 90 GByte

Impact of macro cell density λmc: The change of average delay with respect to the
macro cell density is given in Fig. 4.2a. Therein, as the number of macro cells increases,
we observe an increment in average delay. This is mainly due to the backhaul as the delay
in backhaul is proportional to the distance and average number of connected macro cells.
In this setup, even though the average distance from a macro cell to its central central
router decreases (thus less delay in the backhaul), the increasing number of base stations
contributes more to the average delay, thus yielding such a behaviour. On the other
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hand, the average delay in small cells remains static in this setup. However, we note that
the average delay experienced by a typical small cell user is reduced by adding caching
capabilities at the base stations. For instance, when content popularity is load-dependent
and caching policy is MixPop, the average delay is reasonably less than other candidates
(including typical user with no caching at small cells).

Impact of small cell density λsc: The change of average delay with respect to the
small cell density is depicted in Fig. 4.2b. As similar to the previous figure for macro cell
density, we see that the average delay increases for all kind of small cell users. However,
in this numerical setup, the rate of increment in delay with no-caching capabilities at the
small cells is higher than the delay experienced by typical users with cache-enabled small
cells. Compared to the fixed and load-dependent content popularities, typical user under
load-dependent content popularity experiences less delays when the number of small cells
increases.

Impact of target SIR γ: In our setup, yet another important design parameter is the
target SIR. In this regard, the variation of average delay with respect to the target SIR is
illustrated in Fig. 4.2c. As observed in the figure, the average delay increases by imposing
higher target SIR values. This change is only visible in low values of target SIR whereas
variation of delay in higher values of target SIR is negligible. This might stem from the fact
that downlink delay is not a dominating factor in our scenario compared to the backhaul
delay. A typical user connected to the small cell with no caching capabilities experiences
the highest delay, whereas the minimum delay is achieved by using MixPop policy under
load-dependent content popularity. The delay of typical macro cell user remains between
small cell user with no-caching and caching capabilities at the base stations.

Impact of storage size S: Yet another crucial design parameter in our setup is the
storage size. The impact of storage size on the average delay is shown in Fig. 4.2d. Indeed,
as observed from the figure, dramatical decrease in delay is observed by increasing the
storage size of small base stations. As similar to previous observations, the most sensitive
content popularity for the average delay is the load-dependent content popularity.

4.5 Closing Remarks

In this chapter, we have characterized the average delay of small and macro cells users
under backhaul constraints and caching capabilities at the small base stations. Several
content popularity distributions and caching policies have been considered. The main
conclusion from this chapter is that caching at the small base stations allows telecom
operators to balance average access delay to the contents, especially if heterogeneous
network densification under limited backhaul is considered for the deployments.
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Figure 4.2: Evolution of average delay with respect to the a) macro cell density, b) small
cell density, c) target SIR and d) storage size.
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Chapter 5

Clustered Cellular Networks

5.1 Overview

In the previous chapter, we have considered a multi-tier network where SBS are distributed
according to a PPP. In order to move forward to a more realistic deployment, in this
chapter, we focus on clustering of cache-enabled small base stations. In particular, the
heterogeneous network consists of mobile users, clustered cache-enabled small cells, macro
cells and central routers. For small cells, we shall consider two different topologies, namely
1) coverage and 2) capacity-aided deployments. The coverage-aided deployment is based
on a Poisson hole process and capacity-aided deployment is modeled by a Matérn cluster
process. Due to the non-tractability nature of point processes, we restrict ourselves to
approximations and validate these results via numerical simulations. A hierarchical model
based on random trees and a geographical caching problem are also described, whereas
further investigations are left for future work.

The rest of this chapter is organized as follows. Section 5.2 provides the details of
system model including cache-enabled clustered small cells. Section 5.3 conducts a per-
formance analysis based on delivery rate metric. Numerical results are presented in Section
5.3.1 and validate our approximations for average delivery rate. Section 5.4 focuses on
formulation of geographical caching methods which makes use of a hierarchical model.
Finally, conclusions are given in Section 5.5.

5.2 System Model

The system model consists of macro cells, cache-enabled clustered small cells, central
routers and mobile users. We focus on two different topologies which are similar to the
one studied in [205].
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5.2. System Model

5.2.1 Coverage-Aided Topology

We model a heterogeneous cellular network which consists of macro and cache-enabled
small cell base stations. The macro cells are modeled by an independent homogeneous
PPP of intensity λmc, denoted by Φmc = {yi}i∈N where yi denotes the location of the
i-th macro cell base station. Additionally, the potential small cells are given by another
independent homogeneous PPP of intensity λsc′ , denoted by Φsc′ = {x′i}i∈N where x′i
represents the location of the i-th small cell base station. We suppose that each macro
cell has an exclusion region which is made of a disk with radius Rc centered at the position
of macro cell. Assuming that the aim of small cells is to fill the coverage holes of macro cells
to provide a better service to users, these small cells are deployed outside of the exclusion
regions of macro cells. Therefore, the deployed small cells form clusters according to a
Poisson hole process (a Cox process) as follows [206].

Definition 4 (Clustering process of coverage-aided small cells). Let Φmc be a homogeneous
PPP of intensity λmc for macro cells and Φsc′ be an independent and homogeneous PPP
of intensity λsc′ for potential small cells, with λsc′ > λmc. For each y ∈ Φmc, remove all
the points in

Φsc′ ∩ B(y,Rc) (5.1)

where B(y,Rc) is the ball of radius Rc centered at y. Then, the remaining points of Φsc′

form clusters, known as the Poisson hole process Φsc and represents the deployed small
cells. Moreover, this process has the intensity of

λsc = λsc′exp(−λmcπR
2
c). (5.2)

On the other hand, central routers are distributed in the plane according to an in-
dependent homogeneous PPP of intensity λcr, denoted by Φcr = {ui}i∈N. These routers
are in charge of providing broadband Internet connection to macro and small cells via
backhaul links. Mobile user terminals are also positioned in the whole plane according
to an independent homogeneous PPP of intensity λut, denoted by Φut = {zi}i∈N. The
visualization of the system model, together with the coverage-aided deployment of base
stations and realizations/snapshots of point processes are given in Fig. 5.1.

5.2.2 Capacity-Aided Topology

Let us consider a two-tier heterogeneous cellular network consists of macro and cache-
enabled small cell base stations. The macro cells are distributed on the two-dimensional
Euclidean plane according to an independent homogeneous PPP of intensity λmc, denoted
by Φmc = {yi}i∈N where yi denotes the position of the i-th macro cell base station. On
the other hand, the small cells are placed in hot-spots to sustain the demand of highly
concentrated users, according to an independent Matérn cluster process Φsc = {xi}i∈N
whose parent PPP Φsc′ has intensity λsc′ . The process is given as follows [206].
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Figure 5.1: An illustration of the coverage-aided deployment.

Definition 5 (Clustering process of capacity-aided small cells). Let Φsc′ be a parent pro-
cess modeled by a homogeneous PPP of intensity λsc′. Then, the clustering process of
small cells is given by

Φsc =
⋃

x′∈Φsc′

Nx′ (5.3)

where Nx′ is a Poisson number of i.i.d. points with mean c̄, distributed uniformly in the
ball B(x′, Rc). Then, the process Φsc is called Matérn cluster process Φsc and has intensity
of

λsc = λsc′ c̄. (5.4)

For the users, we suppose that mobile users (both macro and small cell users) are
distributed on the two-dimensional Euclidean plane, however small cell users are highly
concentrated on hot-spot regions served by small cells. From this motivation, we assume
that all mobile users are distributed according to a Cox process Φut = {zi}i∈N [206]. In
particular, the population centers of radius Rc are drawn from the parent PPP Φsc′ , where
small cell users in these clusters are distributed uniformly at random and are covered by
small cells realized from the Matern cluster process Φsc. By doing so, these mobile users
are (on average) covered by their small cells deployed in these hot-spot areas.

Recalling c̄ as the average number of small cells per cluster, the density of active small
cell users per cluster is then λut−s = c̄

πR2
c
. The macro cell users distributed in the rest of

the network follow a PPP with density λut−m and are served by their own macro cells. In
order to ease the calculations, we consider that each macro serves only one macro user on
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5.2. System Model

average and same holds for each macro cell and its user. With this consideration in mind,
the densities of macro and small call users are equal to that of the macro and small cells,
respectively. Under this setting, the macro and small cell users form a Cox process with
density λut = λmc + λsc, clustered in hot-spots and uniformly distributed in the rest.

On the other hand, we consider that central routers are modeled by an independent
homogeneous PPP of intensity λcr, denoted by Φcr = {ui}i∈N, aiming to provide broadband
Internet connection to macro and small cells via backhaul links. The visualization of the
system model, together with the capacity-aided deployment of base stations and snapshots
of point processes are given in Fig. 5.2. The next subsections detail signal, connectivity,
backhaul and caching model of these coverage and capacity-aided deployments.
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Figure 5.2: An illustration of the capacity-aided deployment.

5.2.3 Signal Model, Connectivity and Backhaul

The transmissions of macro and small cells occur in the same frequency with frequency
reuse factor 1. The transmit power is Pmc for each macro cell and Psc for each small cell.
Macro cells, all users and small cells have single antennas. Having a macro cell positioned
at y and receiver at z (or simply call as transmitter y and user z), the channel coefficient is
denoted by hy,z ∈ C. In case of small cell as a transmitter, the channel coefficient between
transmitter y and user z is given by gy,z ∈ C. All the channel power coefficients are i.i.d.
Exponential random variables (Rayleigh fading) with E[|hy,z|2] = 1 and E[|gx,z|2] = 1.
Supposing that the downlink rate of the typical user is a function of received SIR, the
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5.2. System Model

target rate of signalling macro and small cell are given by τmc and τsc respectively. The
details will be given later on.

Each user is either associated to the nearest macro cell or nearest small cell. The
backhaul connection of each base station is provided from its nearest central router. A
content request by a mobile user is done via uplink. Having content requests of connected
users, the base stations start delivery immediately via the downlink.

Supposing that each central router has a sufficiently high-capacity broadband Internet
connection, macro and small cells are connected to their nearest central routers via error-
free wired backhaul links. In particular, each central router provides broadband internet
connection to its connected base stations via backhaul links and has a total capacity of
Ccr. This total capacity Ccr is an Exponentially distributed random variable with mean
µ.

5.2.4 Caching

We shall assume that the global content popularity distribution of users follow a power
law defined as [192]

fpop (f, η) =

{
(η − 1) f−η, f ≥ 1,

0, f < 1,
(5.5)

where f indicates a point in the support of the corresponding content and the parameter
η models the steepness of the distribution. Such laws are observed in many real-world
phenomena (see [192] for example) and its discrete version (i.e., Zipf) is commonly used in
the caching literature [53, 132]. Higher values of η yields a stepper distribution, meaning
that a few amount of contents in the catalogue is highly popular than the rest, whereas
low values of η corresponds to a more uniform behaviour of content popularities.

In practice, the global content popularity distribution might evolve over the space and
time, is influenced by the users’ local and global preferences and partially known at the
small cells. In this work, we assume that this global popularity distribution is static and
perfectly known at the small cells. In fpop (f, η), the contents in the interval [1, F ) are
cacheable and called as catalogue, whereas the remaining part [F,∞] is called as non-
cacheable contents (i.e., voice traffic, online gaming and sensor information). An interval
[f, f + ∆f) in the support of fpop (f, η) is considered as the probability of f -th content.

We assume that each content in the catalogue has a fixed length (see [199] for instance)
and called as chunk. Each chunk can belong to a part of cacheable video file, audio or
picture and so on. In fact, storing/distributing fixed-length chunks is one of the key
principle in content centric networks [200] as opposed to classical way of storing contents
on the Internet. Therefore, even though we use the term ”content” in the paper, the
function fpop (f, η) is actually a chunk popularity distribution. Each small cell has a
storage capacity of Fsc contents/chunks, with 1 ≤ Fsc ≤ F .
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5.2. System Model

5.2.5 Hierarchical Model

The coverage and capacity-aided deployments of small cells together with macro cells,
users and central routers can be modeled as random stationary graphs (hierarchical trees
in particular) [202]. In particular, a random hierarchical tree whose root node is a central
router located at u is given by Ψ = {(u,vu)}, where vu is a mark vector containing all
random variables associated with the central router. In particular, the mark vector vu
contains information of macro and small cells (with their users) which are associated to
the central router at u (see [53] for a similar treatment), such as:

• Nmc: The number of macro cells connected to the central router located at u.

• rmc ∈ C1×Nmc : The relative position vector of those macro cells connected to the
central router at u. Therein, each element ru,y represents the distance from central
router at u to macro cell at y. These positions are conditioned on Nmc.

• Nmu: The number of users connected to a macro cell located at y ∈ {rmc}.

• rmu ∈ C1×Nmu : The relative positions of those macro cell users which are conditioned
on Nmu. Each element ry,z represents distance from macro cell at y to its user z.

• dy,z ∈ [0, 1]1×F+1: The content demand from macro cell user located at z ∈ rz to
macro cell at y ∈ {rmc}. We consider that each user demands only one content
and is drawn from fpop (f, η). Observe that the catalogue has F number of contents
and the last entry in dy,z is dedicated to the non-cacheable content demand. Now,
since each macro cell user is connected to only one cell, the total content demands
observed at the macro cell y is given by dy =

∑
z∈{rmu} dy,z. Here, each element dy,f

represents the cumulative number of observed demands at macro cell y for content
f .

• hy,z: The channel power coefficient representing the channel propagation between
the macro cell y ∈ {rmc} and user z ∈ {rmu}.

And also:

• Nsc: The number of small cells connected to the central router located at u.

• rsc ∈ C1×Nsc : The relative positions of those small cells connected to the central
router at u. Here, each element ru,x represents the distance from central router at
u to small cell at y. These positions are conditioned on Nsc.

• sx ∈ [0, 1]1×F : The caching vector of the small cell located at x ∈ {rsc}.

• Nsu: The number of users connected to a small cell located at x ∈ {rsc}.

• rsu ∈ C1×Nsu : The relative positions of users connected to the small cell at x ∈ {rsc}.
They are conditioned on Nsu. Each element ry,z represents distance from small cell
at x to its user at z.
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• dx,z ∈ [0, 1]1×F+1: The content demand vector of the small cell user located at x ∈
{rsu}. Similar to macro cell user case, we consider that each user can requests only
one content and is sampled from fpop (f, η). Since each small cell user is associated
to only one cell, the total content demands observed at a small cell x is given by
dx =

∑
z∈{rsu} dx,z. Therein, each element dx,f represents the cumulative number of

observed demands at small cell y for content f .

• gx,z: The channel coefficient that describes the channel propagation between the
small cell x ∈ {rsc} and its connected user z ∈ {rsu}.

5.3 Performance Analysis

In order to conduct the performance analysis of both coverage and capacity-aided deploy-
ments, we first start by defining SIR.

Definition 6 (Signal to noise ratio). The SIR of a typical user connected to a macro cell
(namely typical macro cell user) located at random position y is defined as

SIRmu ,
Pmchy`(y)

Imm + Ism

(5.6)

where `(y) = ‖y‖−α is the path loss function (unless otherwise stated) with exponent α,
Imm =

∑
yi∈Φmc\{y}

Pmchyi`(yi) is the cumulative interference from other macro cells except

the signalling cell at y, and Ism =
∑

xi∈Φsc

Pscgxi`(xi) is the total interference from clustered

small cells. Similarly, the SIR of a typical user connected to a small cell (namely typical
small cell user) located at random position x is given by

SIRsu ,
Pmcgx`(x)

Iss + Ims

(5.7)

where Iss =
∑

xi∈Φsc\{x}
Pscgxi`(xi) is the cumulative interference from other clustered small

cells except the signalling cell at x, and Ism =
∑

yi∈Φsc

Pmchyi`(y) is the total interference

from macro cells.

The amount of backhaul rate allocated to typical users are defined by the following
policy.

Definition 7 (Backhaul Rate Splitting Policy). Following the hierarchical model, suppose
that a typical user located at z ∈ rz (typical macro cell user) is connected to the macro cell
at y ∈ {rmc}, and this macro cell is connected to the nearest central router at u. Then,
the rate of backhaul link to the macro cell at y is given as

R′mu ,
γCcr

E
[
NmcNmu

] , (5.8)
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where γ ∈ [0, 1] is a fraction of capacity allocated to the macro cells. In case of small cell,
in a similar vein, a typical user located at z ∈ sz is connected to the small cell at x ∈ {rsc}
whose central router is at u. Then, the rate of backhaul link to the small cell is given as

R′su ,
(1− γ)Ccr

E
[
NscNsu

] . (5.9)

By using the definitions of SIR and backhaul rates of typical users, we then define our
main performance metric, namely delivery rate, as follows.

Definition 8 (Delivery Rate). The delivery rate of a typical user connected to a macro
cell is defined as

Rmu ,

{
τmc, if log(1 + SIRmu) > τmc and R′mu > τmc,

0, otherwise.
(5.10)

Similarly, the delivery rate of a typical user connected to a small cell is defined as

Rsu ,


τsc, if log(1 + SIRsu) > τsc and R′su > τsc,

τsc, if log(1 + SIRsu) > τsc and fz ∈ ∆x,

0, otherwise,

(5.11)

where fz represents the content requested by the typical small cell user and ∆x is the cache
of the small cell.

Before stating our results for the average delivery rate, the following two lemmas are
compiled from [202,203] and will be used to derive expressions for average delivery rate.

Lemma 8. Considering that Φk−1 and Φk are two independent PPPs, the PDF of the
distance of a link of any node in Φk−1 to the nearest node in Φk is given by

fk(r) = 2λkπrexp(−πλkr2). (5.12)

If c(r) is a cost function of link distance r, then, the expected cost c̄ and total expected
cost C̄ are expressed as

c̄ = EΦk

[
c(r)

]
=

∫ ∞
0

c(r)fk(r)dr (5.13)

C̄ = EΦk−1,Φk

[∑
Φk−1

c(r)
]

= λk−1

∫ ∞
0

c(r)fk(r)dr. (5.14)

When the cost function c(r) is expressed in the the form of arb, the expected cost c̄ and
total expected cost C̄ are given by

c̄ = a
Γ
(
b
2

+ 1
)

(πλk)b/2
(5.15)

C̄ = λk−1a
Γ
(
b
2

+ 1
)

(πλk)b/2
. (5.16)

where Γ(x) =
∫∞

0
tx−1e−tdt is the Gamma function.

66



5.3. Performance Analysis

B
(cov)
1 =

∫ Rc

0

e
− (eτmc−1)

Pmcr
−α
mc LImm

(eτmc − 1

Pmcr−αmc

)
LIsm

(eτmc − 1

Pmcr−αmc

)k
ν

(rmc

ν

)k−1
e−(rmc/ν)kdrmc

(5.20)

LImm(s) = exp
(−sπλmcPmc(2/α)

1− 2/α
r2−α

mc F
(
1, 1− 2/α; 2− 2/α;−sPmcr

−α
mc

))
(5.21)

LIsm(s) = exp
{
− λsc′

((sPsc)
2/απ2(2/α)

sin(π 2
α

)
− πR2

cAmc(s, Rc)
)}

(5.22)

Amc(s, Rc) =
1

πR2
c

∫ 2π

0

∫ rmccosϕ+
√
R2

c−r2mcsin2ϕ

0

rdrdϕ

1 + s−1P−1
sc r

α
(5.23)

B
(cov)
2 = 1− exp

(
−
τmcλcr

(
λmc + λsc′exp(−λmcπR

2
c)
)

µγλ2
mcλut

)
(5.24)

Lemma 9. Considering that Φk and Φk+1 are two independent PPPs and the nodes in
Φk are linked to their nearest nodes in Φk+1, the average number of linked nodes from Φk

to each node in Φk+1 is then expressed as

λk/λk+1 (5.17)

We are now ready to give the expressions for average delivery rate of typical macro
and small cell users.

Theorem 10 (Average Delivery Rate of Typical Macro Cell User). The average delivery
rate of a typical user connected to the nearest macro cell cell in coverage-aided deployment
is approximately given by

R̄(cov)
mu ≈ τmcB

(cov)
1 B

(cov)
2 (5.18)

where B
(cov)
1 and B

(cov)
2 are given in (5.20) and (5.24) respectively. Therein, Laplace

transforms and other related function definitions are given below B
(cov)
1 , and F (x, y; z;w)

is the hypergeometric function [207].

In case of capacity-aided deployment, the average delivery rate of this user is approx-
imately given by

R̄(cap)
mu ≈ τmcB

(cap)
1 B

(cap)
2 (5.19)

where B
(cap)
1 and B

(cap)
2 are given in (5.25) and (5.30) respectively.

Proof. See Appendix C.1.
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B
(cap)
1 =

∫ Rc

0

e
− (eτmc−1)

Pmcr
−α
mc LImm

(eτmc − 1

Pmcr−αmc

)
LIsm

(eτmc − 1

Pmcr−αmc

)k
ν

(rmc

ν

)k−1
e−(rmc/ν)kdrmc (5.25)

LImm(s) = exp
(−sπλmcPmc(2/α)

1− 2/α
r2−α

mc F
(
1, 1− 2/α; 2− 2/α;−sPmcr

−α
mc

))
(5.26)

LIsm(s) = exp
(
− λsc′

∫
R2

(
1− exp(−c̄ν(s, y))

)
dy
)

(5.27)

ν(s, y) =

∫
R2

f(x)

1 + (sPsc`(x− y))−1
dx (5.28)

f(x) =

{
1

πR2
c
, if ‖x‖ < Rc,

0, otherwise.
(5.29)

B
(cap)
2 = 1− exp

(
− τmcλcr

µγλut−m

)
(5.30)

Theorem 11 (Average Delivery Rate of Typical Small Cell User). The average delivery
rate of the typical user connected to the nearest small cell in coverage-aided deployment
is approximately given by

R̄(cov)
su ≈ τscC

(cov)
1 C

(cov)
2 + τscC

(cov)
1 C

(cov)
3 − τscC

(cov)
1 C

(cov)
2 C

(cov)
3 (5.31)

where C
(cov)
1 , C

(cov)
2 and C

(cov)
3 are given in (5.33), (5.37) and (5.38) respectively. Therein,

Laplace transforms and other related function definitions are given below C
(cov)
1 , and

F (x, y; z;w) is the hypergeometric function [207].

In case of capacity-aided deployment, the average delivery rate of this user is approx-
imately given by

R̄(cap)
su ≈ τscC

(cap)
1 C

(cap)
2 + τscC

(cap)
1 C

(cov)
3 − τscC

(cap)
1 C

(cap)
2 C

(cap)
3 (5.32)

where C
(cap)
1 , C

(cap)
2 and C

(cap)
3 are given in (5.39), (5.43) and (5.44) respectively.

Proof. See Appendix C.2.

5.3.1 Validation of the Proposed Model

In this subsection, we validate our expressions for average delivery rate via Monte-Carlo
simulations. The list of simulation parameters for coverage and capacity-aided deploy-
ments are given in Tables 5.1 and 5.2 respectively. These parameter values shall be used
throughout this section unless otherwise stated. In the following, we investigate the impact
of important parameters on the delivery rate, namely 1) target bitrate, 2) rate splitting
ratio, 3) storage size.
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LIms(s) = exp
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− λmc

((sPmc)
2/απ2(2/α)

sin(π 2
α

)
− πR2

cAsc(s, Rc)
)}

(5.35)

Asc(s, Rc) =
1

πR2
c

∫ 2π

0

∫ rsccosϕ+
√
R2

c−r2scsin2ϕ

0

rdrdϕ

1 + s−1P−1
mc r

α
(5.36)

C
(cov)
2 = 1− exp

(
− τscλcr(λmr + λsc)

µγλ2
scλut

)
(5.37)

C
(cov)
3 = 1−

(
1 + Fsc

)1−η
(5.38)

C
(cap)
1 =

∫ Rc
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e
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Pscr
−α
sc LIss
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)
LIms
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)k
ν
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ν

)k−1
e−(rsc/ν)kdrsc (5.39)

LIss(s) = exp
(
− λsc′

∫
R2

(
1− exp(−c̄ν(s, x))

)
dx
)∫

R2

(
exp(−c̄ν(s, x))

)
f(x)dx (5.40)

ν(s, x) =

∫
R2

f(y)

1 + (sPsc
˜̀(y − x))−1

dy (5.41)

LIms(s) = exp
(
− λmc

(sPmc)
2/απ2(2/α)

sin(π 2
α

)

)
(5.42)

C
(cap)
2 = 1− exp

(
− τmcλcr

µγλut−s

)
(5.43)

C
(cap)
3 = 1−

(
1 + Fsc

)1−η
(5.44)
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Table 5.1: Simulation Parameters for Coverage-aided Deployment.

Parameters Values

λcr, λmc, λsc′ , λut 1.0× 10−5, 1.5× 10−5, 5.5× 10−5 and 12.8× 10−5 unit/m2

Pmc, Psc 16 and 3 Watt

τmc, τsc 4 bits/s/Hz

α 4

Rc 80 meters

µ, γ 30 bits/s/Hz, 0.6

f0, Fsc, η 500 Gbye, 4 GByte and 1.45

Table 5.2: Simulation Parameters for Capacity-aided Deployment.

Parameters Values

λcr, λmc, λsc′ , λut−m 1.0× 10−5, 1.5× 10−5, 1.5× 10−5, 3.0× 10−5unit/m2

ĉ 3 units

Pmc, Psc 16, 3 Watt

τmc, τsc 4 bits/s/Hz

α 4

Rc 80 meters

µ, γ 30 bits/s/Hz, 0.6

f0, Fsc, η 500 Gbye, 4 GByte and 1.45

Impact of target bitrate τ : The target bitrate τ (namely τmc or τsc depending
on the cell type) is a crucial parameter for QoS. The impact of this parameter on the
average delivery rate is given in Figures 5.3a and 5.4b for coverage and capacity-aided
deployments respectively. In these figures, one can see that theoretical and simulation
curves are following similar trends. In fact, the theoretical curves based on approximations
are pretty loose in low bitrates. However, in high bitrate values, approximation and
simulation curves match reasonably well. Note that the target bitrate is dictated both
for downlink and backhaul links in our system model. Therefore, a concave behaviour of
average delivery rate appears in these plots, which in turn induces target bitrate to be
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set carefully for maximum average delivery rate. In this parameter setting, the average
delivery rate of typical macro cell user is generally outperforming rate of typical small
cell user with/without caching capabilities at small cells. However, the decreasing trend
of average delivery rate for macro cell user is higher than the small cell user case, thus,
yielding small cell users to perform better in higher target bitrates. The typical small cell
user with no caching capabilities has the lowest performance.

Impact of rate splitting ratio γ: In fact, higher value of backhaul rate splitting
ratio in central routers corresponds to a higher backhaul capacity dedication for macro
cells. To show this, the change of average delivery rate with respect to the backhaul
rate splitting ratio is given in Figures 5.3b and 5.4b for coverage and capacity-aided
deployments respectively. Indeed, as seen from figures, a dramatical increase in average
delivery rate occurs which in turn confirms our intuitions. The rate of decrement for the
typical small cell user is relatively slow compared to the typical macro cell user. In order
to find a balance between average delivery rate of typical macro and small cell users, for
fairness, the plots show that one has to set the rate splitting ratio carefully. In all of
these cases, we observe that having caching capabilities at small cells improves system
performance in terms of average delivery rate. In other words, a heterogeneous network
consists of macro cells and cache-enabled allows higher average delivery rates while having
fairness between users at different tiers.

Impact of storage size Fsc: The variation of average delivery rate with respect to the
storage size is given in Figures 5.3c and 5.4c for coverage and capacity-aided deployments
respectively. In this parameter settings, increasing storage size of small cells both in
coverage and capacity-aided deployments yields higher average delivery rates. On the
other hand, the increment of storage size in coverage-aided deployment is more visible
compared to capacity-aided deployment and allows typical small cell users to achieve
higher rates than typical macro cell users. Given the fact that caching is monotonically
improving overall system performance of small cell users, high values of storage size does
not seem necessary if one considers a linear cost for storage size, even though more storage
is desirable for improving average delivery rate.
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Figure 5.3: Evolution of average delivery rate in coverage-aided deployment.
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Figure 5.4: Evolution of average delivery rate in capacity-aided deployment.

5.4 Geographical Caching Methods

This section covers geographical caching methods from a global cost perspective. We
define required structures and pose our optimization problem. Investigations on optimal
cache allocation in our scenario is left for future work.

We start by constructing cost function which captures the cost of deployment as well
as cost of operating macro cell users and small cell users from caches or backhaul. Recall
the hierarchical model in Section 5.2.5 and assume that an interference-avoidance scheme
is employed among cells (thus we consider SNR). Then, we suppose that the following
general form for the cost function, that is

C =
∑
u∈Φcr

C(u,vu) (5.45)

where C(u,vu) is given by

ccr + cmcNmc + cscNsc︸ ︷︷ ︸
(i)

+Cmc + Csc︸ ︷︷ ︸
(ii)

. (5.46)

Therein, the term (i) accounts for deployment costs with ccr representing the unit cost of
deploying central router, cmc and csc are the unit costs of deploying macro and small cells
with their backhaul links respectively. The term (ii) is for operational costs of macro and
small cells. We now focus on the terms Cmc and Csc respectively.

For macro cells, assuming that the unit cost of downlink transmission is inversely
proportional to the received SNR of users (for a given fixed transmit power), we define a
vector wy ∈ R1×Nmu which represents the unit cost of wireless transmission for each macro

cell at y. Therein, each element is defined as wy,z = σ2

hy,z‖ry,z‖−α where σ2 is the noise power.

On the other hand, the unit backhaul cost for macro cell is denoted by by ∈ R1×Nmu where
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each element bu,y is proportional to the distance such as bu,y = amc×(ru,y)
bmc with arbitrary

design coefficients amc and bmc. Therefore, combining the unit cost of downlink usage wy,
unit backhaul cost by and the observed demand dy, we have the following total cost for
macro cells, that is

Cmc =
∑

y∈{rmc}

(
wyd

T
y + byd

T
y

)
. (5.47)

Now, we construct the cost function for small cells, which captures the cost of serving
all small cell users in addition to the cost of taking caching decisions at the small cells.
Depending on which content is stored and which one is going to be demanded, four
different cases might be integrated into the cost function as follows:

1. Part of the content in the catalogue is cached and is going to be demanded: The
content has to be prefetched via the backhaul only one time, thus the induced cost
is expressed by

sxe
T
x (5.48)

where sx is the cache indicator (allocation) vector for small cell x ∈ {rsc} and
ex ∈ {0, 1}1×F is the prefetching cost vector for the same small cell. The entries of
ex are evaluated as follows

ex,f =

 asc × (ru,x)
bsc if dx,f > 0

0 otherwise
(5.49)

where asc and bsc are the arbitrary design coefficients.

2. Part of the content in the catalogue is cached but is not going to be demanded:
Prefetching the content induces unnecessary usage of backhaul, thus the cost is given
by

sxē
T
x (5.50)

where ēx is the complementary of ex with the entries defined such as

ēx,f =

 0 if dx,f > 0

asc × (ru,x)
bsc otherwise.

(5.51)

3. Part of the content is not cached but is going to be demanded: The content
demand is going to be satisfied each time via the backhaul due to its non-availability
in the cache, that is to say

(1− s̄x)ẽ
T
x , (5.52)
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where 1 is the all one vector with F elements. The vector g̃x is the cost of serving
the contents from backhaul with entries defined as

ẽx,f =

 asc × (ru,x)
bsc × dx,f if dx,f > 0

0 otherwise.
(5.53)

4. Part of the content in the catalog is not cached and is not going to be demanded:
The cost of using backhaul in this case is zero.

Now, again assuming that the unit cost of downlink transmission is proportional to the
received SNR of small cell users (similar to macro cell case), we denote this cost as wx

where each entry wx,z = σ2

gx,z‖rx,z‖−α . Combining cost of backhaul usage and wireless

transmission, we have

Csc =
∑

x∈{rsc}

(
sxe

T
x + sxē

T
x + (1− sx)ẽ

T
x + wxd

T
x

)
. (5.54)

Therefore, having defined Cmc and Csc, the expression C(u,vu) is given by

C(u,vu) = ccr + cmcNmc + cscNsc +
∑

y∈{rmc}

(
wyd

T
y + byd

T
y

)
+
∑

x∈{rsc}

(
sxe

T
x + sxē

T
x + (1− sx)ẽ

T
x + wxd

T
x

)
. (5.55)

Finally, the optimal cache allocation which minimizes average total cost is formulated as

minimize
∀sx

E
[ ∑
u∈Φcr

C(u,vu)
]

subject to ||sx||1 ≤ Fsc.

(5.56)

where Fsc is the storage size of small cell x. The problem above is mixed-integer problem
as each entry of sx takes binary values (namely 0 or 1). We use three different distributed
caching policies to solve the problem for each given realization of the topology (namely
random hierarchical trees), fading and users’ demand. In particular:

- AppCache: Each small cell solves the convex relaxation of the problem under the
knowledge of demand drawn from content popularity distribution. In other words,
a small cell at x fills sx for given dx and storage size Fsc by solving relaxed problem
in which the entries of sx take values in the interval [0 − 1] and apply rounding.
In general, as long as the cache allocation problem is formulated (either convex or
non-convex), various approximation methods can be applied for the solution.

- PopCache: Each small cell caches the most popular contents under the knowledge
of its local demand and storage size. Therefore, the vector sx is filled according to
the knowledge of dx and storage constraint Fsc. Similar policies can be found in
[37].

74



5.5. Closing Remarks

- UniCache: Contents are cached uniformly at random until the storage size Fsc is
fulfilled. This policy does not require the knowledge of users’ demand. Similar
policies can be found in [132].

Given these caching policies, following two storage deployment policies can be applied:

- Scaled : Storage size of each small cell is fixed to a constant value, thus the total
storage size in the deployment increases with the number of deployed small cells.

- Fixed : For a given fixed total storage budget Ftot in each hierarchical random tree
{(u,vx)}, the storage size of each small cell is inversely proportional to the total
number of deployed small cells, meaning that Fsc = Ftot

Nsc
.

5.5 Closing Remarks

In this chapter, we have modeled a heterogeneous network which consists of macro cells
and clustered small base stations. The clustering processes of small cells allowed us to
model the deployments of these small cells in a more realistic manner. Approximations of
average delivery have been provided and validated via numerical results. Given the fact
that adding more storage to the small cell is more desirable from average delivery rate
point of view, we have showed that the critical system parameters needs to be adjusted
carefully. In other words, target bitrate, backhaul rate splitting rate and storage size can
be chosen in a level so that fairness between small/macro users and deployment cost in
this heterogeneous network can be sustained.
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Chapter 6

Proactive Caching

6.1 Overview

The fact that the huge amount of users’ information is often available and the human
behaviour has a certain predictability [6], users’ future events can be inferred. Therefore,
in this chapter, we explore such a proactive caching framework by leveraging context-
awareness and storage capabilities at the edge of the network in order to sustain peak
data demands and offload the backhaul. More precisely, estimating users’ future demands
and content popularity can be used to proactively store the content before the actual re-
quests take place. In addition, whenever a D2D communication is available, the proactive
caching approach exploits users’ social relationships (and their influence within the social
community), as well as users’ storage for content dissemination and physical proximity.

Rest of this chapter is organized as follows. Our system model and corresponding
problem formulation is presented in Section 6.2. The details of proactive caching at the
SBSs and UTs are given in Sections 6.3 and 6.4 respectively and discussions of numerical
results are carried out in the same sections. Finally, Section 6.5 draws some conclusions.

6.2 System Model

Let us consider a scenario that consists of M SBSs M = {1, ...,M} and N UTs N =
{1, ..., N}. The broadband connection of every SBS m ∈ M is provided by a CS via a
limited backhaul link with capacity cm.1 We suppose that the capacity of the wireless
small cell link between SBS m and UT n is given by cm,n. Depending on the content
availability and users’ proximity, the SBSs can establish D2D communications between
users n and n′, whereas the corresponding D2D link capacity is denoted by c̈n,n′ . This
scenario is illustrated in Fig. 6.1. Suppose that user n requests a content from a library of

1This controller is typically a network entity located at the evolved packet core (EPC) or at the
network edge (small cell gateway).
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Figure 6.1: A sketch of the scenario given in the system model. A central scheduler is in
charge of providing broadband connection to M SBSs via backhaul links. Depending on
the users’ contents availability in the caches of SBS and UTs, the SBSs serve their user
either via wireless small cell links or D2D communications.

F contents, represented by F = {1, ..., F}, according to probabilities Pn = {pn,1, ..., pn,F}.
In this library, the length of contents are L = {l1, ..., lF} and the bitrate are given by
set of B = {b1, ..., bF}. Now, suppose that R number of content requests are drawn by
users randomly during T time slots. Then, we say that a request r ∈ R = {1, ..., R} is
satisfied if the rate of delivery is equal or greater than the bitrate of the requested content
as follows:

lr
t′r − tr

≥ br, (6.1)

where lr ∈ L represent the length of the requested content, tr (t′r) is the start (end) time
of the delivery, and br ∈ B is the bitrate of the content fr ∈ F . Given this definition, the
satisfaction ratio can be expressed as:

η(R) =
1

R

∑
r∈R

1

{
lr

t′r − tr
≥ br

}
, (6.2)

where 1 {...} is the indicator function which yields 1 when the condition holds and 0
otherwise.

Our target as the network operator is to keep the satisfaction ratio above a threshold,
while minimizing the usage of the backhaul. As stated before, this can be done via
proactive caching in SBSs and UTs, in which we detail these two case studies separately
in the following sections.
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6.3 Proactive Caching at Base Stations

Results have shown that the backhaul constitutes one of the most important challenges for
SCN deployments and this is going to increase dramatically due to the densely deployed
SBSs. From this observation, suppose that the total capacity of the backhaul is lower
than the available wireless link capacity between SBSs and UTs, such as

∑
m∈M cm �∑

m∈M
∑

n∈N cm,n. Since in this case we suppose that the backhaul is the bottleneck, one
reasonable option is to avoid its usage by storing the users’ contents proactively at the
SBSs, during peak-off hours. In other words, if the users’ contents can be stored at SBSs
before the users’ actual contents arrives, the backhaul will not be used for a certain level,
depending on on how smartly the content is placed.

Let us consider that the rate of the backhaul link during the content delivery for
request r at time t is λr(t). Then, the backhaul load under given these definitions can be
expressed as follows:

ρ(R) =
1

R

∑
r∈R

1

lr

t=t′r∑
t=tr

λr(t). (6.3)

Additionally, suppose that the storage capacity of SBS m is given by sm and the
amount of its consumption at time t is denoted by κm(t). Hence, the backhaul minimiza-
tion problem subject to the link capacities, storage and QoS constraints can be formulated
as follows:

minimize
t′r,r∈R

ρ(R) (6.4)

subject to λr(t) ≤ cm, ∀m ∈M,

κm(t) ≤ sm, ∀m ∈M,

η(R) ≥ ηmin, ∀r ∈ R,

where ηmin is the target satisfaction ratio. Since dealing with (6.4) is computationally
intractable, a heuristic approach similar to the one in [39] can be performed by storing
users’ popular content in the cache of SBSs. Before such a caching procedure is applied,
we suppose that each SBS m has to track, learn and build its user’ content profile to infer
their future demands. Assume that Pm is the discrete content probabilities of users in SBS
m in which we refer as popularity matrix, each row representing the users and columns
are content popularities/ratings. Indeed, a perfectly known Pm could easily allow us to
store the content according to this caching procedure. Unfortunately, this situation in
practice is not the case, in which the matrix is not perfectly known, large and indeed
sparse. Given these observations and inspired from the Netflix paradigm [208], supervised
machine learning tools can be used to exploit users-content correlations. Inferring the
probability that user n requests content f (namely estimating the popularity matrix),
and storing the predicted content accordingly can clearly offload the backhaul.

The proposed proactive caching procedure is composed of training and placement
steps. The first step is the training step in which each SBS m builds a model for the
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popularity matrix Pm based on the available information. The estimation of Pm boils
down to solving a least square minimization problem as follows:

min
{bn,bf}

∑
n,f

(
rnf − r̂nf

)2

+ λ
(∑

n

b2
n +

∑
f

b2
f

)
, (6.5)

where the sum is over the (n, f) user/content pairs in the training set, containing how
user n rated content f (i.e., rnf ). The total number of users in the training set is N and
F is the total number of contents, thus, the minimization is done over all the N + F
parameters. In this formulation, r̂nf = r̄ + bn + bf is the baseline estimator where bf is
the relative quality of each content f compared to the average r̄. The bias of each user
n relative to bn is given by r̄. Additionally, the parameter λ is used for balancing the
regularization and fitting the training data.

In the numerical setup, we use the regularized singular value decomposition (SVD) due
to its numerical accuracy (see [209] for comprehensive study of CF methods). Roughly
speaking, since the entries of Pm are not fully known, the model construction is done via
gradient descent by using the least-squares property of the SVD. Thus, P̂m is constructed
as the low rank version of Pm.

So far, we have described the first step. In the last step (namely, the placement step
of the caching procedure), the content is cached proactively by storing the most popular
content based on the estimation of P̂m, until the storage capacity is fulfilled. In the
following, we show the gains of proactive caching in a numerical setup and discuss the
impact of various parameters of interest. A sketch of the proactive caching procedure at
the base stations is summarized in Fig. 6.2.

6.3.1 Numerical Results and Discussions

The list of parameters used in the numerical study is provided in Table 6.1. In order to
see the impact of the parameters of interest, the length and bitrate of the content, wireless
small cell links and storage capacities are set to the identical values. We consider three
regimes of interest: (i) low load, (ii) medium load, and (iii) high load.

In the numerical study, R number of requests are drawn over a time duration T , given
the fact that the arrival times of these requests are sampled uniformly at random. The
users’ content requests are drawn from the ZipF(α) distribution. Given that knowledge,
at t = 0, the perfect popularity matrix Pm is constructed for each SBS m. Removing 20%
of the entries of this matrix uniformly at random, the remaining entries are used for the
model construction in CF. The prediction of missing entries are then carried out by the
regularized SVD [210]. Once the popularity matrix is estimated, the proactive caching
is applied by greedily storing the most popular content subject to the storage size of the
SBS. In the numerical setup, afer completing the training and placement steps of the
proactive procedure at t = 0, the users’ are served depending on their request arrival time
until all content delivery processes finish. We use random caching as a baseline referred
to as reactive.
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are found in the cache)

Figure 6.2: A practical procedure for proactive caching at the base stations.

In order to compare the benefits of caching both for proactive and reactive cases,
three parameters of interest are detailed: (i) number of requests R, (ii) total cache size
S, and (iii) ZipF distribution parameter α. The gains in the plots are normalized for ease
of understanding. The evolution of the satisfaction ratios and the backhaul loads with
respect to the variation of these parameters are given in Fig. 6.3.

In the figures, we see that the satisfaction ratio decreases as the number of users’
content requests increases. The reason is somewhat obvious as the capacity constraints
starts to be limiting factor for the delivery of high amount of requests. Concerning the
backhaul load in very small number of requests, the reactive approach is generating less
load compared to the proactive case which can be explained by cold start phenomenon
of the CF used in the proactive case. However, as the number of request increases, the
amount of information given to the CF for training step increases. Therefore, in the end,
the proactive approach with sufficient amount of information outperforms the reactive
approach with an almost constant gain.
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Table 6.1: The numerical setup parameters for proactive caching at the SBSs.

Parameter Description Value

T Time slots 1024 seconds

M Number of SBSs 4

N Number of UTs 32

F Number of contents 128

lf Length of content f 1 Mbit

bf Bitrate of content f 1 Mbit/s∑
m cm Total backhaul link capacity 2 Mbit/s∑

m

∑
n cm,n Total wireless small cell link capacity 64 Mbit/s

R Number of requests 0 ∼ 2048

S Total cache size 0 ∼ lf × F

α ZipF parameter 0 ∼ 2

One important parameter of interest in our scenario is the total storage size of SBSs.
As we increase the storage, the SBSs gain more capability to store the content from the
catalog, yielding the satisfaction ratio up to 1 and backhal load up to 0 in the extreme
values of the storage size. Looking at more practical situations in which the storage size is
somewhere between 0 and 1, we see that the proactive approach outperforms the reactive
case in terms of the satisfaction ratio as well as the backhaul load.

The content popularity parameter α indeed has an impact on the performance metrics.
In the low values of α where the distribution follows a uniform behaviour, the proactive
approach outperforms the reactive case with a relatively low difference. However, as the
α increases, a few amount of content become highly popular than the rest of the content
in the catalog. Thus, the difference between the gain of proactive and reactive approaches
become quite visible in terms of the satisfaction ratio and the backhaul load.

6.4 Proactive Caching at User Terminals

Yet another mean of offloading the traffic at SBSs (thus, offloading the backhaul as a
consequence) can be achieved by caching users’ contents at the UTs and exploiting D2D
communications for content dissemination. For this purpose, the interplay between users’
social ties and physical proximity can be taken into account for proactive caching decision.

84



6.4. Proactive Caching at User Terminals

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
S
at

is
fa

ct
io

n
ra

ti
o

(η
)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Number of requests (R)

B
ac

k
h
au

l
lo

ad
(ρ

)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Total cache size (S)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

ZipF distribution parameter (α)

Low load Medium load High load

S 0.4 0.2 0.1

α 0.3 0.2 0.1

Low load Medium load High load

R 0.5 0.8 0.98

α 0.3 0.2 0.1

Low load Medium load High load

R 0.5 0.8 0.98

S 0.4 0.2 0.1

Proactive (Low load) Proactive (Medium load) Proactive (High load)

Reactive (Low load) Reactive (Medium load) Reactive (High load)

Figure 6.3: Backhaul Offloading via Proactive Caching: Dynamics of the satisfied requests
and backhaul load with respect to the number of requests, total cache size and ZipF
parameter.

In particular, when a content request arrives to the network, the SBS can take benefit of
the influential users who have the content, requesting them to join the content delivery
via D2D opportunities. If such a opportunity does not exist and the requested content is
not available, as a last resort, the content can be delivered by the SBS but with the cost
of using the backhaul.

Let us consider that the storage capacity of UT n is s̈n and its usage at time t is
given by κ̈(t). Also suppose that λ̇r(t) is the total rate of the SBSs during the content
delivery of request r at time t and the D2D link rate is λ̈r(t). Then, small cell load can
be expressed as follows:

ρ̈(R) =
1

R

∑
r∈R

t=t′r∑
t=tr

λ̇r(t)

λ̇r(t) + λ̈r(t)
. (6.6)

Given that definition and using a formulation similar to (6.4), the D2D caching opti-

85



6.4. Proactive Caching at User Terminals

mization problem can be written as:

minimize
t′r,r∈R

ρ̈(R) (6.7)

subject to λ̇r(t) ≤ cm,n, ∀m ∈M,∀n ∈ N ,
λ̈r(t) ≤ c̈n,n′ , ∀(n, n′) ∈ N ,
κ̈n(t) ≤ s̈n, ∀n ∈ N ,
η(R) ≥ ηmin ∀r ∈ R.

According to our scenario, the first step for solving (6.7) is to infer the set of influential
users. This, as mentioned before, is done via the notion of centrality metric [211]. In
general, the centrality measures is used to quantify the social influence of a node in the
network and also related to how the node is well connected. A node with higher value of
this measure in turns means that such a node is more central (thus influential) than the
nodes who have lower values of this measure. Several definition of centrality metrics exist
on literature [211], whereas we only focus on the eigenvector centrality for exposition. Let
G = (N , E) be the social graph which consists of N nodes/users, where N represents the
set of nodes and E is set of the links between them. We know that, the graph G can be
represented by its adjacency (or D2D connectivity) matrix AN×N , where the entry an,n′ ,
n, n′ = 1, ..., N is 1 if link (or edge) c̈n,n′ exists, or 0 otherwise. For this matrix, let the
eigenvalues to be represented by λ1 ≥ ... ≥ λN in decreasing order, and the corresponding
eigenvectors of these eigenvalues be given by v1, ...vN . The eigenvector-centrality in this
case is basically the eigenvector v1 that has the largest eigenvalue λ1. Knowing K-most
influential users of the social network via notion of centrality, a clustering method (i.e.,
K-means [212]) can be then formed around the users for community formation.

Once the set of influential users is identified and their communities are formed, the
next step is to analyze the content dissemination within each social community. By
doing so, the critical content of each community can be stored in the cache of influential
users. To show this, suppose that there is a set number of available contents, denoted by
F = F0 +Fh, where Fh is the set of contents with viewing history and F0 represents the
set of contents without history. We further assume that each user is interested to only one
type of available contents F . Let πf be the probability that content f is chosen by a given
user, and as a prior [213], assume that the distribution follows a Beta distribution [213].
Then, the selection of user n given as the conjugate probability of the Beta distribution
has a Bernoulli distribution. This in turn shows that the resulting user-content partition is
analogous to that of the Chinese restaurant process (CRP) [213]. The CRP is a metaphor
in which the objects are customers in a restaurant, and the classes are represented by
the tables which the customers sit. More precisely, in CRP, there exists a restaurant
with a large number of tables, each with infinite number of sets, and customers arrive
sequentially each of them choosing a table at random.

In the CRP with concentration parameter β, each customer decides to occupy a table
with a probability proportional to the number of occupiers of that table, and chooses
the next available table with proportional to the parameter β. Being more specific, the
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first customer selects the first table with probability β
β

= 1. The second customer selects

the first table with probability 1
1+β

, and the second table with probability β
1+β

. Once
the second customer selects the table, in the next, the third customer selects the first
table with probability 1

2+β
, the second table with probability 1

2+β
and the third table with

probability β
2+β

. This selection process continues until all customers have seats, yielding
a distribution over allocation of customers to tables. In this process, the decision of
subsequent customers are affected by the feedback of previous customers, where customers
learn the previous selections to update their beliefs and probabilities in which they select
the tables.

From this point, the behaviour of the content dissemination in the social network is
similar to the table selection in an CRP. Looking to the social network as a Chinese
restaurant, the contents as the large number of tables and the users as the customers,
we can model the content dissemination process by an CRP. This means that, within
each social community, users intend to request the sought-after content sequentially, and
once a content is downloaded, a hit is recorded (i.e., history). This, in turn, changes the
probability that this content will be requested by others within the same social community,
where popular contents will be requested more frequently and new contents less frequently.
Suppose a random binary matrix ZN×F , indicating the selection of contents by users,
where znf = 1 if user n chooses content f and 0 otherwise. Then, we can show that [213]:

P (Z) =
βF
′
Γ(β)

Γ(β +N)

F ′∏
f=1

(mf − 1)! (6.8)

where Γ(.) is the Gamma function [214], mf is the number of users already assigned
to content f (i.e., viewing history) and F ′ is the number of partitions with mf > 0.
Therefore, for a given P (Z), the popular contents of each community can be stored inside
the cache of influential users. A sketch of the proactive caching procedure at the user
terminals is summarized in Fig. 6.4.

6.4.1 Numerical Results and Discussions

In the numerical setup, for similar purposes as in the previous section, the wireless link
capacities are assumed to be equal among the users. The total D2D link capacity of each
user is shared among the number of social links. The list of parameters are given in Table
6.2.

Starting from t = 0, request arrival times are drawn uniformly at random until the
time T . The social network is constructed by using the preferential attachment model
[215]. As states before, the eigenvector centrality is used to quantize the influential users in
the social network, then, K-most influential are formed into K communities via K-means
clustering [212]. In each community, the content popularity distribution is sampled from
the CRP(β). Given the content popularity, the proactive caching is done by storing the
popular files greedily inside the influential users until no storage space remains. Similar
to the case study in previous section, random caching is used as a baseline.
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D2D link

social network
overlay

small cell
base station

1) infer in�uential users based
on centrality measures

2) form communities/clusters

4) store popular contents
at in�uential users’ devices

5) join to content delivery via D2D 
(if the requested content  is found nearby)

3) estimate content popularities 
within each community

cache-enabled 
D2D communications

Figure 6.4: A practical procedure for proactive caching at the user terminals.

Parameters of interests in this case are: (i) number of requests R, (ii) total D2D cache
size S, and (iii) CRP concentration parameter β. The results are normalized for ease of
understanding. The impact of parameter of interests on the satisfaction ratio and small
cell load are given in Fig. 6.5.

In the figure, increasing the number of requests, we see that the satisfaction ratio
decreases rapidly and the small cell load decreases at a low pace. The gains of proactive
caching approach are higher than the reactive approach in all regimes.

When an increment of D2D size is the case, we observe an increment in the satisfaction
ratio and decrement in the small cell load. Even though both proactive and reactive cases
have the gains, the proactive approach has more desirable performance compared to the
reactive approach.

The concentration parameter β has also an impact on the performance. When β
increases (i.e., the number of distinct contents grows), the satisfaction ratio and the small
cell loads tends to be almost constant in the reactive approach. On the other hand, as
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Table 6.2: The numerical setup parameters for proactive caching at the UTs.

Parameter Description Value

T Time slots 1024 seconds

M Number of SBSs 4

K Number of communities 3

N Number of UTs 32

F Number of contents 128

lf Length of content f 1 Mbit

bf Bitrate of content f 1 Mbit/s∑
m

∑
n cm,n Total SBSs link capacity 32 Mbit/s∑

n

∑
n′,n′ 6=n c̈n,n′ Total D2D link capacity 64 Mbit/s

R Number of requests 0 ∼ 9464

S Total D2D cache size 0 ∼ lf × F

β CRP concentration parameter 0 ∼ 100

β increases, the satisfaction ratio in the proactive approach decreases and the small cell
increases. The performance gap between the proactive and reactive approaches gets closer
and closer as β increases. This is due to the facts that the contents catalog size is growing
while UTs having a limited cache size.

6.5 Closing Remarks

In this chapter, we have proposed a novel proactive network paradigm based on caching at
the edge of the network. Using tools from machine learning, we exploited users’ predictable
behaviour and their social relationships for caching at the edge of the network. Our
approach showed that peak mobile traffic demands can be significantly minimized, yielding
backhaul offloadings and resource savings.
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Figure 6.5: Social-Aware Caching via D2D: Dynamics of the satisfied requests and small
cell load with respect to the number of requests, total cache size and CRP concentration
parameter β.
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Chapter 7

Transfer Learning

7.1 Overview

In the previous chapter, by exploiting spatio-social caching coupled with D2D commu-
nication, we proposed a novel proactive networking paradigm in which SBSs and UTs
proactively cache contents at the network edge. As a result, the overall performance of
the network in terms of users’ satisfaction and backhaul offloading was improved. Therein,
the proactive caching problem assumed non-perfect knowledge of the content popularity
matrix, and supervised machine learning and CF techniques were used to estimate the
popularity matrix leveraging user-content correlations. Nevertheless, the content popu-
larity matrix remains typically large and sparse with very few users ratings, rendering CF
learning methods inefficient mainly due to data sparseness and cold-start problems [209].

In this chapter, given the fact that data sparsity and cold-start problems degrade the
performance of proactive caching, we leverage the framework of transfer learning (TL)
and recent advances in machine learning [177]. TL is motivated by the fact that in many
real-world applications, it is hard or even impossible to collect and label training data to
build suitable prediction models. Exploiting available data from other rich information
sources such as D2D interactions (called as source domain), allows TL to substantially
improve the prediction task in the so-called target domain. TL has been applied to
various data mining problems such as classification and regression [177]. TL methods can
be mainly grouped into inductive, transductive and unsupervised TL methods depending
on the availability of labels in the source and target domains. All these approaches boil
down to answering the following fundamental questions: 1) what information to transfer?
2) how to transfer it? and 3) when to transfer it? While ”what to transfer” deals with
which part of the knowledge should be transferred between domains and tasks, ”when
to transfer” focuses on the timing of the operations in order to avoid negative transfer,
especially when the source and target domains are uncorrelated. On the other hand, ”how
to transfer” deals with what kind of information should be transferred between domains
and tasks.
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The main contribution of this chapter is to propose a TL-based content caching mech-
anism to maximize the backhaul offloading gains as a function of storage constraints and
users’ content popularity matrix. This is done by learning and transferring hidden latent
features extracted from the source domain to the target domain. In the source domain,
we take into account users’ D2D interactions while accessing/sharing statistics of contents
within their social community as prior information in the knowledge transfer. It is shown
that the content popularity matrix estimation in the target domain can be significantly
improved instead of learning from scratch with unknown users’ ratings. To the best of
our knowledge, this is perhaps the first contribution of unsupervised transfer learning in
cache-enabled small cells.

The rest of the chapter is organized as follows. The network model under consideration
is provided in Section 7.2, accompanied with the caching problem formulation in both
source and target domains. Section 7.3 presents the classical CF-based caching and that
of the proposed transfer learning. The numerical results capturing the impact of various
parameters on the users’ satisfaction and backhaul offloading gains are given in Section
7.4. We finally conclude in Section 7.5.

7.2 Network Model

Let us assume an information system denoted by S(S) in the source domain and an infor-
mation system denoted by S(T ) in the target domain. A sketch of the network model is
shown in Fig. 7.1.

7.2.1 Target Domain

Let us consider a network deployment consisting of Mtar SBSs from the set Mtar =
{1, . . . ,Mtar} and Ntar UTs from the set Ntar = {1, . . . , Ntar}. Each SBS m is connected
to the core network via a limited backhaul link with capacity 0 < Cm < ∞ and each
SBS has a total wireless link capacity C ′m for serving its UTs in the downlink. We further
assume that E[Cm] < E[C ′m]. UTs request contents from a library Ftar = {1, . . . , Ftar},
where each content f has a size of L(f) and a bitrate requirement of B(f). Moreover,
we suppose that users’ content requests follow a Zipf-like distribution PFtar(f),∀f ∈ Ftar
defined as [197]:

PFtar(f) =
Ω

fα
(7.1)

where Ω =
(∑Ftar

i=1
1
iα

)−1

and α characterizes the steepness of the distribution, reflecting

different content popularities. Having such a content popularity in the ordered case, the
content popularity matrix for the m-th SBS at time t is given by Pm(t) ∈ RNtar×Ftar where
each entry Pm

n,f (t) represent the probability that the n-th user requests the f -th content.

In order to avoid any kind of bottleneck during the delivery of users’ content requests,
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Cache-enabled 
small base station

D2D-based
Social network

Source domain

Knowledge Transfer
Target domain

core network

limited
backhaul link

Figure 7.1: An illustration of the network model which consists of two information systems
S(S) and S(T ). Due to the lack of prior information in the target domain, the informa-
tion extracted from users’ social interactions and their ratings in the source domain is
transferred to the target domain.

we assume that each SBS has a finite storage capacity of Sm and caches selected contents
from the library Ftar. Thus, the amount of requests SBSs satisfy from their local caches is
of high importance to avoid peak demands and minimize the latency of content delivery.
Our goal is to offload the backhaul while satisfying users’ content requests, by pre-fetching
strategic contents from the core network (CN) at suitable times and cache them at the
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SBSs, subject to their storage constraints. To formalize this, suppose that D number of
requests from the set D = {1, ..., D} are made by users during T time-slots. Then, a
request d ∈ D within time window T is served immediately and is said to be satisfied, if
the rate of delivery is equal or greater than the content bitrate, such that:

L(fd)

τ ′(d)− τ(d)
≥ B(fd) (7.2)

where fd is the requested content, L(fd) and B(fd) are the size and bitrate of the content,
τ(d) is the arrival time of the request and τ ′(d) the end time delivery. Given these
definitions, the users’ average satisfaction ratio can be expressed as:

η(D) =
1

D

∑
d∈D

1

{
L(fd)

τ ′(d)− τ(d)
≥ B(fd)

}
(7.3)

where 1 {...} is the indicator function which returns 1 if the statement holds and 0 other-
wise. Suppose that the instantaneous backhaul rate for the content delivery of request d
at time t is given by Rd(t) ≤ Cm, ∀m ∈Mtar. Then, the average backhaul load is defined
as:

ρ(D) =
1

D

∑
d∈D

1

L(fd)

τ ′(fd)∑
t=τ(fd)

Rd(t). (7.4)

Now, denote X(t) ∈ {0, 1}Mtar×Ftar as the cache decision matrix of SBSs, where xm,f (t)
equals 1 if the f -th content is cached at them-th SBS at time t, and 0 otherwise. Therefore,
the backhaul offloading problem can be formally expressed as:

minimize
X(t),Pm(t)

ρ(D) (7.5)

subject to Lmin ≤ L(fd) ≤ Lmax, ∀d ∈ D,
Bmin ≤ B(fd) ≤ Bmax, ∀d ∈ D,
Rd(t) ≤ Cm, ∀t, ∀d ∈ D,∀m ∈Mtar,

R′d(t) ≤ C ′m, ∀t, ∀d ∈ D,∀m ∈Mtar,∑
f∈Ftar

L(f)xm,f (t) ≤ Sm, ∀t,∀m ∈Mtar,∑
n∈Ntar

∑
f∈Ftar

Pm
n,f (t) = 1, ∀t,∀m ∈Mtar,

xm,f (t) ∈ {0, 1}, ∀t, ∀f ∈ Ftar,∀m ∈Mtar,

ηmin ≤ η(D)

where R′d(t) is the instantaneous wireless link rate for request d and ηmin is the minimum
target satisfaction ratio respectively. In order to solve this problem, a joint optimization
of the cache decision X(t) and the content popularity matrix estimation Pm(t) is needed.
Moreover, solving (7.5) is very challenging due to:
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i) limited backhaul and wireless link capacity as well as the limited storage capacity
of SBSs,

ii) large number of users with unknown ratings and library size,

iii) SBSs need to track, learn and estimate users’ content popularity/rating matrix
Pm(t) for cache decision while dealing with data sparsity.

For simplicity, we drop now the index of the SBSs and assume that the content popularity
is stationary during T time slots, thus Pm(t) is denoted as Ptar. Moreover, for sake of
exposition, we restrict ourselves to caching policies in which the contents are stored during
the peak-off hours, thus X(t) remains fixed during the content delivery and represented
as X. In the following, we examine the source domain which we exploit when dealing
with the sparsity of Ptar in the target domain.

7.2.2 Source Domain

As advocated in [18], we leverage the existence of a D2D-based social network overlay made
of users’ interactions within their social communities, referred as the source domain in
the sequel. Specifically, this source domain contains the behaviour of users’ interactions
within their social communities, modeled as a CRP [213]. This constitutes the prior
information used in the transfer learning procedure.

In the CRP with parameter β, every customer selects an occupied table with a prob-
ability proportional to the number of occupants, and selects the next vacant table with
probability proportional to β. More precisely, the first customer selects the first table with
probability β

β
= 1. The second customer selects the first table with probability 1

1+β
, and

the second table with probability β
1+β

. After the second customer selects the second ta-

ble, the third customer chooses the first table with probability 1
2+β

, the second table with

probability 1
2+β

and the third table with probability β
2+β

. This stochastic Dirichlet process
continues until all customers select their seats, defining a distribution over allocation of
customers to tables.

In this regard, the content dissemination in the social network is analogous to the
table selection in a CRP. If we view this network as a CRP, the contents as the large
number of tables, and users as the customers, we can make an analogy between the content
dissemination and the CRP. First, suppose that there exist ND2D users in this network.
Let FD2D = F0 +Fh be the total number of contents in which Fh represents the number of
contents with viewing histories and F0 is the number of contents without history. Denote
also ZD2D ∈ {0, 1}ND2D×FD2D as a random binary matrix indicating which contents are
selected by each user, where zn,f = 1 if the n-th user selects the f -th content and 0
otherwise. Then, it can be shown that [213]:

P (ZD2D) =
βFhΓ(β)

Γ(β +ND2D)

Fh∏
f=1

(mf − 1)! (7.6)
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where Γ(.) is the Gamma function, mf is the number of users assigned to content f (i.e.,
viewing history) and Fh is the number of contents with viewing histories with mf > 0.

In the target domain, the caching problem boils down to estimating the content pop-
ularity matrix which is assumed to be largely unknown, yielding degraded performance
(i.e., very low cache hit ratios, slow convergence, etc.). Moreover, this degradation can
be more severe in cases where the number of users and library size is extremely large.
Therefore, in order to handle these issues and cache contents more efficiently, we pro-
pose a novel proactive caching procedure using transfer learning which exploits the rich
contextual information extracted from users’ social interactions. This caching procedure
is shown to yield more backhaul offloading gains compared to a number of baselines,
including random caching and the classical CF-based estimation methods [18].

7.3 Transfer Learning: Boosting Content Popularity

Matrix Estimation

First, we start by explaining the classical CF-based learning, then detail our proposed TL
solution.

7.3.1 Classical CF-based Learning

The classical CF-based estimation procedure is composed of a training and prediction
phase. In the training part, the goal is to estimate the content popularity matrix Ptar ∈
RNtar×Ftar , where each SBS constructs a model based on the already available information
(i.e., users’ content ratings). Let Ntar and Ftar represent the set of users and contents
associated with Ntar users and Ftar contents. In particular, Ptar with entries Ptar,ij is
the (sparse) content popularity matrix in the target domain. Rtar = {(i, j, r) : r =
Ptar,ij, Ptar,ij 6= 0} denotes the set of known user ratings. In the prediction phase, in order
to predict the unobserved ratings in Ntar, low-rank matrix factorization techniques are
used to estimate the unknown entries of Ptar. The objective here is to construct a k-rank
approximate popularity matrix Ptar ≈ NT

tarFtar, where the factor matrices Ntar ∈ Rk×Ntar

and Ftar ∈ Rk×Ftar are learned by minimizing the following cost function:

minimize
(i,j)∈Ptar

∑
(i,j)∈Ptar

(
nTi fj − Ptar,ij

)2

+ µ
(
||Ntar||2F + ||Ftar||2F

)
(7.7)

where the sum is over the (i,j) user/content pairs in the training set. In addition, ni and
fj represent the i-th and j-th columns of Ntar and Ftar respectively, and ||.||2F denotes the
Frobenius norm. In (7.7), the parameter µ provides a balance between regularization and
fitting training data. Unfortunately, users may rate very few contents, causing Ptar to be
extremely sparse, and thus (7.7) suffers from severe over-fitting issues and engenders poor
performance.
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7.3.2 TL-based Content Caching

To alleviate data sparsity, solving (7.7) can be done more efficiently by exploiting and
transferring the vast amount of available user-content ratings (i.e., prior information)
from a different-yet-related source domain. Formally speaking, let us denote the source
domain as S(S), and assume that this domain is associated with a set of ND2D users and
FD2D contents denoted by ND2D and FD2D respectively. Additionally, the user-content
popularity matrix in the source domain is given by matrix PD2D ∈ RND2D×FD2D and
likewise let RD2D = {(i, j, r) : r = PD2D,ij, PD2D,ij 6= 0} represent the set of observed
user ratings in the source domain. The underlying principle of the proposed approach is
to smartly ”borrow” carefully-chosen user social behavior information from S(S) to better
learn S(T ).

The transfer learning procedure from S(S) to S(T ) is composed of two interrelated
phases. In the first phase, a content correspondence is established in order to identify
similarly-rated contents in both source and target domains. In the second phase, an opti-
mization problem is formulated by combining the source and target domains for knowledge
transfer, to jointly learn the popularity matrix Ptar in the target domain. In this regard,
we suppose that both source and target domains correspond to one information system
s ∈ {S(S), S(T )}, that is made of Ns users and Fs contents given by Ns and Fs respectively.
In each system s, we observe Ps with entries Ps,ij. Let Rs = {(i, j, r) : r = Ps,ij, Ps,ij 6= 0}
represent the set of observed user ratings in each system and the set of shared contents is
given by F̃ . Moreover, let N ∗ = ND2D ∪Ntar and F∗ = FD2D ∪ Ftar be the union of the
collections of users and contents, respectively, where N∗ = |N ∗| and F ∗ = |F∗| represent
the total number of unique users and contents in the union of both systems.

In the proposed TL approach, we model the users N ∗ and contents F∗ by a user
factor matrix N ∈ Rk×N∗ and a content factor matrix F ∈ Rk×F ∗ , where the i-th and j-th
columns of these matrices are given by ni and fj, respectively. The aim is to approximate
the popularity matrix Ps ≈ NT

s Fs by jointly learning the factor matrices N and F. This
is formally done by minimizing the following cost function:

minimize
(i,j)∈Ps

∑
s

(
αs

∑
(i,j)∈Ps

(
nTi fj − Ps,ij

)2)
+ µ
(
||N||2F + ||F||2F

)
(7.8)

where the parameter αs is the weight of each system. By doing so, PD2D and Ptar are
jointly factorized, and thus the set of factor matrices FD2D and Ftar become interdepen-
dent as the features of a shared content are similar for knowledge sharing. A practical
TL-based caching procedure is sketched in Fig. 7.2.

7.4 Numerical Results and Discussion

The objective of this section is to validate the effectiveness of the proposed TL caching
procedure and draw key insights. In particular, we consider the following caching policies
for comparison:
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Cache-enabled 
small base station

Cache Most Popular
Contents

1) User/Content
Correspondence

2) Solve
Optimization Problem in (7.8)

Collect Content Ratings 
in Target and Source Domains

Peak hours (i.e. during days)

Peak-o� hours (i.e. during nights)

Corresponded
ratings

Observed
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Learned
content

popularity

Rtar RD2D
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Figure 7.2: An illustration of the proposed TL-based caching procedure.

1) Ground Truth: Given the perfect rating matrix Ptar, the most popular contents are
stored greedily.

2) Random caching [18]: Contents are cached uniformly at random.

3) Collaborative Filtering [209]: The content popularity matrix Ptar is estimated via
CF from a training set with 4% of ratings. Then, the most popular contents are
stored accordingly.

4) Transfer Learning : Ptar and PD2D matrices are jointly factorized via TL by using
a training set with 12% of ratings and perfect user-content correspondence. Then
the most popular contents are stored accordingly.

In the numerical setup, having contents cached according to these policies, the SBSs
serve their users according to a traffic arrival process. This process is drawn from a
Poisson process with intensity λ. The storage size of SBSs, content lengths, capacities
of non-interfering wireless and backhaul links are assumed to have same constant values
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Figure 7.3: Evolution of the aggregate backhaul load and users’ satisfaction ratio.

individually, in order to showcase the performance of the caching policies. The numerical
results of users’ satisfaction ratio and backhaul load are obtained by averaging out 1000
Monte-Carlo realizations. The simulation parameters are summarized in Table 7.1, unless
stated otherwise.

The dynamics of users’ satisfaction ratio and backhaul load with respect to the storage
size, demand shape in the source domain, traffic intensity and backhaul capacity are given
in Fig. 7.3. The results are normalized to show the various percentage gains, whereas the
actual values are shown in Table 7.1. In the following, we discuss in detail the impact of
these parameters.

Impact of the storage size (Sm)

The storage size is indeed one of the crucial parameter in cache-enabled SBSs, and it is
expected that higher storage sizes result in better performance in terms of satisfaction
ratio and backhaul offloading. According to this setup, we would like to note that the
biggest improvement in satisfaction ratio and decrement in the backhaul load is achieved
by the ground truth baseline where the content popularity is perfectly known. The random
approach on the other hand has the worst-case performance. The CF approach exhibits
similar performance as the random approach due to the cold-start problem, whereas the
satisfaction ratio and backhaul offloading gains of TL are close to the ground truth base-
line. In particular, it is shown that the TL policy outperforms its CF counterpart, with
satisfaction and backhaul offloading gains up to 22% and 5% respectively.
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Table 7.1: List of simulation parameters for TL-based approach.

Parameter Description Default-Varied Values

Mtar Number of SBSs 4

Ntar Number of UTs 32

Ftar Library size 32 contents

L Content length 1 MBit

B Bitrate requirement 1 MBit∑
C ′m Total wireless capacity 32 MBit/s

T Time slots 128 seconds

α Zipf parameter 2

β CRP concentration parameter 2 - [2 ∼ 100]∑
Sm Total storage size 6 - [0 ∼ 32] MBit∑
Cm Total backhaul capacity 1 - [1 ∼ 8] MBit/s

λ Traffic intensity 1 - [1 ∼ 3] demand/s

Impact of the demand shape in the source domain (β)

The demand shape in the source domain, characterized by the CRP concentration param-
eter β provides meaningful insights to our problem. In fact, as β increases, the demand
shape tends to be more uniform, requiring higher storage sizes at the SBSs to sustain the
same performance. In a storage limited case, we see that the satisfaction ratio decreases
and the backhaul load increases with the increment of β. Compared to the CF approach,
the gains of TL are around 6% for the satisfaction gains and 22% for the backhaul of-
floading. However, the gap between TL and CF becomes smaller as β increases.

Impact of the traffic intensity (λ)

As the average number of request arrivals per time slot increases, bottlenecks in the
network are expected to occur due to the limited resources of SBSs, resulting in less
satisfaction ratios. This is visible in the high arrival rate regime, whereas the relative
backhaul load remains constant. It can be shown that the ground truth caching with
perfect knowledge of content popularity outperforms the other policies while the random
approach has the worst performance. On the other hand, the performance of TL is
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in between these approaches and has up to 3% satisfaction gains and 18% of backhaul
offloading gain compared to the CF.

Impact of the backhaul capacity (Cm)

The total backhaul capacity is assumed to be sufficiently smaller than the capacity of
wireless links. The increment of this capacity clearly results in higher satisfaction ratios
in all cases. Note that any content not available in the caches of SBSs is delivered via the
backhaul. Therefore, increasing the backhaul capacity avoids the bottlenecks during the
delivery, thus yielding higher users’ satisfaction. On the other hand, the backhaul load
remains constant in this setting. It can be seen that TL approach has satisfaction ratio
gains of up to 6% and backhaul offloading of up to 5% compared to the CF approach.

Impact of source-target correspondence
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Figure 7.4: Evolution of the backhaul load with respect to the perfect correspondence
ratio.
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We have so far assumed that the user/content correspondence between the target and
source domains is perfect. This is a strong assumption and such an operation requires
a more careful treatment to avoid negative transfer. Here, we relax this assumption by
introducing a perfect correspondence ratio. This ratio represents the amount of perfect
user/content matching between both source and target domains. A ratio of 0 means that
100% of correspondence is done uniformly at random and 1 is equivalent to the perfect
case. It is shown in Fig. 7.4 that TL has a poor performance in the low values of this ratio,
with similar performance as the random caching due to the negative transfer. However, as
this ratio increases, the performance of TL improves, outperforming the CF with a ratio
of 0.58. This underscores the importance of such an operation for the positive transfer
and is left for future work.

7.5 Closing Remarks

We proposed a novel transfer learning-based caching procedure which was shown to yield
higher users’ satisfaction and backhaul offloading gains overcoming the data sparsity and
cold start problems. Numerical results confirmed that the overall performance can be
improved by transferring a judiciously-extracted knowledge from a source domain to a
target domain via TL.
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Chapter 8

Big Data for Caching

8.1 Overview

The unprecedented increase in data traffic demand driven by mobile video, online social
media and over-the-top (OTT) applications are compelling mobile operators to look for
innovative ways to manage their increasingly complex networks. This explosion of traf-
fic stemming from diverse domain (e.g., healthcare, machine-to-machine communication,
connected cars, user-generated content, smart metering, to mention a few) have different
characteristics (e.g., structured/non-structured) and is commonly referred to as Big Data
[216]. While big data comes with ”big blessings” there are formidable challenges in dealing
with large-scale data sets due to the sheer volume and dimensionality of the data. A fun-
damental challenge of big data analytics is to shift through large volumes of data in order
to discover hidden patterns for actionable decision making. Indeed, the era of collecting
and storing data in remote standalone servers where decision making is done offline has
dawned. Rather, telecom operators are exploring decentralized and flexible network ar-
chitectures whereby predictive resource management play a crucial role leveraging recent
advances in storage/memory, context-awareness and edge/cloud computing [18,217,218].
In the realm of wireless, big data brings to network planning a variety of new information
sets that can be inter-connected to achieve a better understanding of users and networks
(e.g., location, user velocity, social geodata, etc.). Moreover, public data from social net-
works such as Twitter and Facebook provides additional side information about the life of
the network, which can be further exploited. The associated benefits are a higher accuracy
of user location information or the ability to easily identify and predict user clustering,
for example for special events. Undoubtedly, the huge potential associated with big data
has sparked a flurry of research interest from industry, government and academics (see
[219] for a recent survey), and will continue to do so in the coming years.

In this chapter, we are intent to propose a proactive caching architecture for opti-
mization of 5G wireless networks where we exploit large amount of available data with
the help of big data analytics and machine learning tools. In other words, we investigate
the gains of proactive caching both in terms of backhaul offloadings and request satisfac-
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tions, where machine learning tools are used to model and predict the spatio-temporal
user behaviour for proactive cache decision. By caching strategic contents at the edge
of network, namely at the base stations, network resources are utilized more efficiently
and users’ experience is further improved. However, the estimation of content popularity
tied with spatio-temporal behaviour of users is a very complex problem due to the high
dimensional aspects of data, data sparsity and lack of measurements. In this regard, we
present a platform to parallelize the computation and execution of the content prediction
algorithms for cache decision at the base stations. As a real-world case study, a large
amount of data collected from a Turkish telecom operator, one of the largest mobile op-
erator in Turkey with 16.2 million of active subscribers, is examined for various caching
scenarios. Particularly, the traces of mobile users’ activities are collected from several base
stations in hours of time interval and are analysed inside the network under the privacy
concerns and regulations. The analysis is carried out on a big data platform and caching
at the base stations has been investigated for further improvements of users’ experience
and backhaul offloadings.

Our main contribution in this chapter is to make tighter connections of big data
phenomena with caching in 5G wireless networks, by proposing a proactive caching ar-
chitecture where statistical machine learning tools are exploited for content popularity
estimation. Combined with a large-scale real-world case study, this is perhaps the first
attempt on this direction and highlights a huge potential of big data for 5G wireless
networks.

The rest of chapter is organized as follows. Our network model for proactive caching
is detailed in Section 8.2. A practical case study of content popularity estimation on a
big data platform is presented in Section 8.3, including a characterization of users’ traffic
pattern. Subsequently, numerical results for cache-enabled base stations and relevant
discussions are carried out in Section 8.4. We finally conclude in Section 8.5.

8.2 Network Model

Suppose a network deployment of M SBSs from the setM = {1, . . . ,M} and N UTs from
the set N = {1, . . . , N}. Each SBS m has access to the broadband Internet connection
via a wired backhaul link with capacity Cm Mbyte/s, and is able to provide this broad-
band service to its users via a wireless link with total capacity of C ′m Mbyte/s. Due to
the motivation that the backhaul capacity is generally limited in densely deployed SBSs
scenarios [220], we further consider that Cm < C ′m. Also, assume that each user n ∈ N is
connected to only one SBS and is served via unicast sessions1. In particular, we assume
that UTs request contents (i.e., videos, files, news, etc.) from a library F = {1, . . . , F},
where each content f in this library has a size of L(f) Mbyte and bitrate requirement of

1The unicast service model can also be extended to the multicast case. See [59,101] for studies in this
direction.
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B(f) Mbyte/s, with

Lmin = min
f∈F
{L(f)} > 0 (8.1)

Lmax = max
f∈F
{L(f)} <∞ (8.2)

and

Bmin = min
f∈F
{B(f)} > 0 (8.3)

Bmax = max
f∈F
{B(f)} <∞. (8.4)

The users’ content requests in fact follow a Zipf-like distribution PF(f),∀f ∈ F given as
[197]:

PF(f) =
Ω

fα
(8.5)

where

Ω =
( F∑
i=1

1

iα

)−1

.

The parameter α in (8.5) describes the steepness of the distribution. This kind of power
laws is used to characterize many real-world phenomena, such as the distribution of files
in the web-proxies [197] and the traffic dynamics of cellular devices [198]. Higher values
of α corresponds to a steeper distribution, meaning that a small subset of contents are
highly popular than the rest of the catalog (namely users have very similar interests). On
the other hand, the lower values describe a more uniform behaviour with almost equal
popularity of contents (namely users have more distinct interests). The parameter α
can take different values depending on users’ behaviour and SBSs deployment strategies
(i.e., home, enterprise, urban and rural environments), and its practical value in our
experimental setup will be given in the subsequent sections.

Given such a global content popularity in the decreasing ordered case, the content
popularity matrix of the m-th SBS at time t is specifically described by Pm(t) ∈ RN×F

where each entry Pm
n,f (t) corresponds to the probability that the n-th user requests the f -

th content. In fact, the matrix Pm(t) is the local content popularity distribution observed
at the base station m at time t, whereas the Zipf distribution PF(f),∀f ∈ F is used
to characterize the global content popularity distribution of all contents in (decreasing)
sorted order.

In this scenario, we consider that each SBS has a finite storage capacity of Sm and
proactively caches selected contents from the library F during peak-off hours. By doing
so, the bottlenecks caused by the limited-backhaul are avoided during the delivery of
users’ content requests in peak hours. The amount of satisfied requests and backhaul
load are of paramount importance and are defined as follows. Suppose that D number
of contents are requested during the duration of T seconds, and are represented by the
set D = {1, ..., D}. Assume that the delivery of content is started immediately when the
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request d ∈ D arrives to the SBS. Then, the request d is called satisfied if the rate of
content delivery is equal or higher than the bitrate of the content in the end of service,
such as:

L(fd)

τ ′(fd)− τ(fd)
≥ B(fd) (8.6)

where fd describes the requested content, L(fd) and B(fd) are the size and bitrate of the
content, τ(fd) is the arrival time of the content request and τ ′(fd) the end time delivery.2

Defining the condition in (8.6) stems from the fact that, if the delivery rate is not equal
nor higher than the bitrate of the requested content, the interruption during the playback
(or download) occurs thus users would have less QoE3. Therefore, the situations where
this condition holds are more desirable for better QoE. In (8.6), note also that the end
time of delivery for request d, denoted by τ ′(d), highly depends on the load of the system,
capacities of the backhaul and wireless links as well as availability of contents at the base
stations. Given this definition of satisfied requests and related explanations, the users’
average request satisfaction ratio is then defined for the set of all requests, that is:

η(D) =
1

D

∑
d∈D

1

{
L(fd)

τ ′(fd)− τ(fd)
≥ B(fd)

}
(8.7)

where 1 {...} is the indicator function which takes 1 if the statement holds and 0 otherwise.
Now, denoting Rd(t) Mbyte/s as the instantaneous rate of backhaul for the request d at
time t, with Rd(t) ≤ Cm, ∀m ∈M, the average backhaul load is then expressed as:

ρ(D) =
1

D

∑
d∈D

1

L(fd)

τ ′(fd)∑
t=τ(fd)

Rd(t). (8.8)

Here, the outer sum is over the set of all requests whereas the inner sum gives the total
amount of information passed over the backhul for request d which is at most equal to the
length of requested file L(fd). The instantaneous rate of backhul for request d, denoted
by Rd(t), heavily depends on the load of the system, capacity of the backhaul link and
cached contents at the base stations.

In fact, by pre-fetching the contents at the SBSs, the access delays to the contents are
minimized especially during the peak hours, thus yielding higher satisfaction ratio and
less backhaul load. To elaborate this, now consider the cache decision matrix of SBSs as
X(t) ∈ {0, 1}M×F , where the entry xm,f (t) takes 1 if the f -th content is cached at the
m-th SBS at time t, and 0 otherwise. Then, the backhaul offloading problem under a

2One can also consider/exploit future information (i.e., start time of requests, end time of content
delivery) in the context of proactive resource allocation (see [221] for instance).

3In practice, a video content has typically a bitrate requirement ranging from 1.5 to 68 Mbit/s [222].
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specific request satisfaction constraint is formally given as follows:

minimize
X(t),Pm(t)

ρ(D) (8.9)

subject to Lmin ≤ L(fd) ≤ Lmax, ∀d ∈ D, (8.9a)

Bmin ≤ B(fd) ≤ Bmax, ∀d ∈ D, (8.9b)

Rd(t) ≤ Cm, ∀t,∀d ∈ D, ∀m ∈M, (8.9c)

R′d(t) ≤ C ′m, ∀t,∀d ∈ D, ∀m ∈M, (8.9d)∑
f∈F

L(f)xm,f (t) ≤ Sm, ∀t, ∀m ∈M, (8.9e)∑
n∈N

∑
f∈F

Pm
n,f (t) = 1, ∀t,∀m ∈M, (8.9f)

xm,f (t) ∈ {0, 1}, ∀t,∀f ∈ F ,∀m ∈M, (8.9g)

ηmin ≤ η(D), (8.9h)

whereR′d(t) Mbyte/s describes the instantaneous rate of wireless link for request d and ηmin

represents the minimum target satisfaction ratio. In particular, the constraints (8.9a) and
(8.9b) are to bound the length and bitrate of contents in the catalog for feasible solution,
the constraints (8.9c) and (8.9d) are the backhaul and wireless link capacity constraints,
(8.9e) holds for storage capacity for caching, (8.9f) is to ensure the content popularity
matrix as a probability measure, (8.9g) denotes the binary decision variables of caching,
and finally the expression in (8.9h) is the satisfaction ratio constraint for QoE.

In order to tackle this problem, the cache decision matrix X(t) and the content popu-
larity matrix estimation Pm(t) have to be optimized jointly. However, solving the problem
(8.9) is very challenging as:

i) the storage capacity of SBSs, the backhaul and wireless link capacities are limited.

ii) the catalog size and number of users with unknown ratings4 are very large in practice.

iii) the optimal uncoded5 cache decision for a given demand is non-tractable [39,85,102].

iv) the SBSs have to track, learn and estimate the sparse content popularity/rating
matrix SBSs Pm(t) while making the cache decision.

In order to overcome these issues, we restrict ourselves to the fact that cache decision is
made during peak-off hours, thus X(t) remains static during the content delivery in peak
hours and is represented by X. Additionally, the content popularity matrix is stationary
during T time slots and identical among the base stations, thus Pm(t) is represented by
P.

4The term ”rating” refers to the empirical value of content popularity/probability and is interchange-
able throughout the chapter.

5In the information theoretical sense, the caching decision can be categorized into ”coding” and ”un-
coded” groups (see [223] for example).
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After these considerations, we now suppose that the problem can be decomposed into
two parts in which the content popularity matrix P is first estimated, then is used in the
caching decision X accordingly. In fact, if sufficient amount of users’ ratings are available
at the SBSs, we can construct a k-rank approximate popularity matrix P ≈ NTF, by
jointly learning the factor matrices N ∈ Rk×N and F ∈ Rk×F that minimizes the following
cost function:

minimize
P

∑
(i,j)∈P

(
nTi fj − Pij

)2

+ µ
(
||N||2F + ||F||2F

)
(8.10)

where the summation is done over the user/content rating pairs (i,j) in the training set.
The vectors ni and fj here describe the i-th and j-th columns of N and F matrices re-
spectively, and ||.||2F represents the Frobenius norm. The parameter µ is used to provide
a balance between the regularization and fitting the training data. Therein, high corre-
spondence between the user factor matrix N and content factor matrix F leads to a better
estimate of P. In fact, the problem (8.10) is a regularized least square problem where
the matrix factorization is embedded in the formulation. Despite various approaches, the
matrix factorization methods are commonly used to solve this kind of problems and has
many applications such as in recommendation systems (i.e., Netflix video recommenda-
tion). In our case detailed in the following sections, we have used regularized sparse SVD
to solve the problem algorithmically which exploits the least square nature of the problem.
The overview of these approaches, sometimes called CF tools, can be found in [209,224].
When the estimation of content popularity matrix P is obtained, the caching decision X
can be made in this scenario accordingly.

In practice, the estimation of P in (8.10) can be done by collecting/analysing large
amount of available data on a big-data platform of the network operator, and strate-
gic/popular contents from this estimation can be stored at the cache-enabled base sta-
tions whose cache decisions are represented by X. By doing this, the backhaul offloading
problem in (8.9) is minimized and higher satisfactions are achieved. Our network model
including such an infrastructure is illustrated in Fig. 8.1. In the following, as a case study,
we detail our big data platform and present users’ traffic characteristics by analysing large
amount of data on this platform. The processed data will be used to estimate the content
popularity matrix P which is essentially required for the cache decision X and will be
detailed in the upcoming sections.

8.3 Big Data Platform

The big data platform used in this work runs in the operator’s core network. As men-
tioned before, the purpose of this platform is to store users’ traffic data and extract
useful information which are going to be used for content popularity estimation. In a
nutshell, the operator’s network consists of several districts with more than 10 regional
core areas throughout Turkey. The average total traffic over all regional areas consists of
approximately over 15 billion packets in uplink direction and over 20 billion packets in
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Figure 8.1: An illustration of the network model. A big data platform is in charge of
tracking/predicting users’ demand, whereas cache-enabled base stations store the strategic
contents predicted on the big data platform.

the downlink direction daily. This corresponds to approximately over 80 TByte of total
data flowing in uplink and downlink daily in a mobile operator’s core network. The data
usage behaviour results in exponential increase in data traffic of a mobile operator. For
example, in 2012, the approximate total data traffic was over 7 TByte in both uplink and
downlink daily traffic.

The streaming traces which will be detailed in the sequel, are obtained from one of the
operator’s core network region, includes the mobile traffic from many base stations, and
are captured by a server on a high speed link of 200 Mbit/sec at peak hours. In order to
capture Internet traffic data by the server in this platform, a procedure is initialized by
mirroring real-world Gn interface data.6 After mirroring stage of Gn interface, network
traffic is transferred into the server on the platform. For our analysis, we have collected
traffic of approximately 7 hours starting from 12 pm to 7 pm on Saturday 21’st of March
2015. This traffic is processed on the big data platform which is essentially based on
Hadoop.

8.3.1 Hadoop platform

Among the available platforms, Hadoop stands out as the most notable one as it is an open
source solution [225]. It is made up of a storage module, namely Hadoop Distributed File
System (HDFS) and a computation module, namely MapReduce. Whereas HDFS can
have centralized or distributed implementations, MapReduce inherently has a distributed
structure that enables it to execute jobs in parallel on multiple nodes.

6Gn is an interface between Serving GPRS Support Node (SGCN) and Gateway GPRS Support Node
(GGSN). Network packets sent from a user terminal to the packet data network (PDN), e.g. internet,
pass through SGCN and GGSN where GPRS Tunneling Protocol (GTP) constitutes the main protocol
in network packets flowing through Gn interface.
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As stated in previous subsection, the accuracy and precision of the proposed mech-
anism was tested in operator’s network. A data processing platform was implemented
through using Cloudera’s Distribution Including Apache Hadoop (CDH4) [226] version
on four nodes including one cluster name node, with computations powers corresponding
to each node with INTEL Xeon CPU E5-2670 running @2.6 GHz, 32 Core CPU, 132
GByte RAM, 20 TByte hard disk. This platform is used to extract the useful information
from raw data which is described as follows.

8.3.2 Data extraction process

First, the raw data is parsed using Wireshark command line utility tshark [227] in order
to extract the relevant fields of CELL-ID (or service area code (SAC) in our case, in order
to uniquely identify a service area within a location area7), LAC, Hypertext Transfer
Protocol (HTTP) request-uniform resource identifier (URI), tunnel endpoint identifier
(TEID)8 and TEID-DATA for data and control plane packets respectively, and FRAME
TIME indicating arrival time of packets. The HTTP Request-URI is a Uniform Resource
Identifier that identifies the resource upon which to apply the request. The control packets
contain the information elements that carry the information required for future data
packets. It contains cell identification ID (CELL-ID), LAC and TEID-DATA fields. The
data packets contain HTTP-URI and TEID fields.

In the next step, after obtaining those relevant fields from both control and data pack-
ets, the extracted data is transferred into HDFS for further analysis. In HDFS, there can
be done many data analytics performed over the collected data using Hive Query lan-
guage (QL) [228]. For example, in order to calculate the HTTP Request-URIs at specific
location, the HTTP-URI can be joined with CELL-ID-LAC fields over the same TEID
and TEID-DATA fields for data and control packets respectively. In our analysis, due to
the limitations on observable number of rows of HTTP-URI fields with a corresponding
CELL-ID-LAC fields after mapping, we have proceeded with HTTP Request-URIs and
TEID mappings.

From HDFS, a temporary table named traces-table-temp is constructed using Hive QL.
The traces-table-temp has HTTP Request-URI, FRAME TIME and TEID fields. After
constructing this table, the sizes of each HTTP Request-URI request is calculated using a
separate URI-size calculator program that uses HTTPClient API [229] in order to obtain
the final table called traces-table with fields of SIZE, HTTP Request-URIs, FRAME TIME
and TEID. This table has approximately over 420.000 of 4 millions HTTP Request-URI’s
with SIZE field returned as not zero or null due to unavailability of HTTP response for
some requests. Note that in a given session with a specific TEID, there can be multiple
HTTP Request-URIs. Each TEID belongs to specific user. Each user can also have

7The service area identified by SAC is an area of one or more base stations, and belongs to a location
area which is uniquely identified by location area code (LAC). Typically, tens or even hundreds of base
stations operates in a given location area.

8A TEID uniquely identifies a tunnel endpoint on the receiving end of the GTP tunnel. A local TEID
value is assigned at the receiving end of a GTP tunnel in order to send messages through the tunnel.
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multiple TEIDs with multiple HTTP Request-URIs. The steps of data extraction process
on the platform is summarized in Fig. 8.2. Note that the data extraction process is
specific to our scenario for proactive caching. However, similar studies in terms of usage
of big data platform and exploitation of big data analytics for telecom operators can be
found in [230–235].
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Figure 8.2: An overview of the data extraction process on the big data platform.

8.3.3 Traffic Characteristics

Based on information available in traces-table, the global content popularity distribution
(namely HTTP-URI popularity distribution) in a decreasing ranked order is plotted in
Fig. 8.3a. According to this available experimental data, we observe that the popularity
behaviour of contents follows a Zipf law with steepness parameter α = 1.36.9 Therein,
the Zipf curve is calculated in the least square sense from the collected traces and the
parameter α is then found by evaluating the slope of the curve. On the other hand,
cumulative size of ranked contents is given in Fig. 8.3b. The cumulative size up to 41-
th most-popular contents has 0.1 GByte of size, whereas a dramatical increase appears

9 The value of steepness parameter α can change depending on the scenario. For instance, the steepness
parameter of content popularities in YouTube catalog varies from 1.5 to 2.5 [236,237].
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(b) Cumulative size distribution.

Figure 8.3: Behaviour of content popularity distribution.

afterwards. This basically shows that most of the requested contents in our traces has
low content sizes and contents with larger sizes are relatively less requested.

We would like to note that a detailed characterization of the traffic for caching is left for
future work. Indeed, characterization of the traffic in web proxies which are placed in the
intermediate level of network [197], a specific video content catalog in a campus network
[238], mobile traffic of users in Mexico [239] can be found in the literature. Compared
to these works, we focus on the characterization traffic of mobile users collected from
base stations in a large regional area and exploit this information for proactive caching
(i.e., content popularity distribution, cumulative size distribution). Based on information
available in traces-table, we in the following simulate a scenario of cache-enabled base
stations.

8.4 Numerical Results and Discussions

The list of parameters for numerical setup is given in Table 8.1. For ease of analysis, the
storage, backhaul, and wireless link capacities of small cells are assumed to be identical
within each other.

In the simulations, all of D number of requests are taken from the processed data
(namely traces-table), spanning over a time duration of 6 hours 47 minutes. The arrival
times of each request (FRAME TIME), requested content (HTTP-URI) and content size
(SIZE) are taken from the same table. Then, these requests are associated to M base
stations pseudo-randomly. In order to solve the backhaul offloading problem in (8.9),
the content popularity matrix P and caching strategy X are evaluated separately. In
particular, the following two methods are used for constructing the content popularity
matrix P:
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Table 8.1: List of simulation parameters.

Parameter Description Value

T Time slots 6 hours 47 minutes

D Number of requests 422529

F Number of contents 16419

M Number of small cells 16

Lmin Min. size of a content 1 Byte

Lmax Max. size of a content 6.024 GByte

B(f) Bitrate of content f 4 Mbyte/s∑
mCm Total backhaul link capacity 3.8 Mbyte/s∑

m

∑
nC
′
m Total wireless link capacity 120 Mbyte/s

• Ground Truth: The content popularity matrix P is constructed from all available
information in traces-table instead of solving the problem in (8.10). Note that the
rows of P represent base stations and columns are contents. The rating density of
this matrix is 6.42%.

• Collaborative Filtering : For the estimation of content popularity matrix P, the
problem in (8.10) is attempted by first choosing 10% of ratings from traces-table
uniformly at random. Then, these ratings are used in the training stage of the algo-
rithm and missing entries/ratings of P are estimated. Particularly, the regularized
SVD from the CF methods [209,240] is used in the algorithmic part.

After constructing the content popularity matrix P based on these above methods, the
cache decision (modelled by the matrix X) is made by storing the most-popular contents
greedily at the SBSs until no storage space remains (see [39] for the details). Having these
contents cached proactively at the SBSs at t = 0, the requests are then served until all
of the contents are delivered. The performance metrics request satisfaction and backhaul
load are calculated accordingly.

The evolution of users’ request satisfaction with respect to the storage size is given
Fig. 8.4a. The storage size is given in terms of percentage where 100% of storage size
represents the sum of all size of contents in the catalog (17.7 GByte). From zero storage
(0%) to full storage (100%), we can seen that the users’ request satisfaction increases
monotonically and goes up to 100%, both in ground truth and collaborative filtering
approaches. However, there is a performance gap between the ground truth and CF until
87% of storage size, which is due to the estimation errors. For instance, with 40% of
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storage size, the ground truth achieves 92% of satisfaction whereas the CF has value of
69%.

The evolution of backhaul load/usage with respect to the storage size of SBSs is given
in Fig. 8.4b. As the storage size of SBSs increases, we see that both approaches reduces
backhaul usage (namely higher offloading gains). For example, with 87% of storage size
for caching, both approaches offload 98% of backhaul usage. The performance of ground
truth is evidently higher than the CF as all of the available information is taken into
consideration for caching. We also note that there is a dramatical decrease of backhaul
usage in both approaches after a specific storage size. In fact, most of the previous works
on caching assume a content catalog with identical content sizes. In our case, we are
dealing with real traces in the numerical setup where the size of contents differs from
content to content, as discussed in the previous section (see Fig. 8.3b). According to this
scenario, on the one hand, caching a highly popular content with very small size might not
reduce the backhaul usage dramatically. On the other hand, caching a popular content
with very high size can dramatically reduce the backhaul usage. Therefore, as the CF
approach used here is solely based on content popularity, it fails to capture these content
size aspects on the backhaul usage, which in turn results in higher storage requirements
to achieve the same performance as in the ground truth. This shows the importance of
size distribution of popular contents.
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Figure 8.4: Simulation results of proactive caching at the base stations.

We have so far compared the performance gains of these approaches with 10% of rating
density in CF. In fact, as the rating density of CF for training increases, we expect to
have less estimation error, thus resulting closer satisfaction gains to the ground truth.
To show this, the change of root-mean-square error (RMSE) with respect to the training
rating density is given in Fig. 8.5. Therein, we define the error as the root-mean-square
of difference between users’ content satisfaction of the ground truth and CF approaches
over all possible storage sizes. Clearly, as observed in Fig. 8.5, the performance of CF is
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improved by increasing the rating density, thus confirming our intuitions.
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Figure 8.5: Evolution of RMSE with respect to the training density.

8.5 Closing Remarks

In this chapter, we have studied a proactive caching approach for 5G wireless networks
by exploiting large amount of available data and employing machine learning tools. In
particular, an experimental setup for data collection/extraction process has been demon-
strated on a big data platform and machine learning tools (CF in particular) have been
applied to predict the content popularity distribution. Depending on the rating density
and storage size, the numerical results showed that several caching gains are possible in
terms of users’ request satisfactions and backhaul offloadings.
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Chapter 9

Conclusions and Outlook

In this thesis, we have focused on proactive caching paradigm by leveraging small cell
network deployments and caching capabilities at the edge of network, namely at small
cells and user terminals. In the first part, we have characterized the gains of caching for
different topologies, content popularity distributions and caching policies. The modeling
has been carried out by using recent tools from stochastic geometry, and our expressions
for average delivery rate and delay have been validated via numerical simulations. In
the second part of the thesis, we have approached to the problem from a practical point
of view, and conducted several studies for content popularity estimation and algorithmic
aspects. The tools from machine learning and enabling big data allowed us to show the
benefits of caching in practical scenarios, where we have drawn several conclusions based
on storage size, content rating density, behaviour of content popularity and caching policy.
Despite the fact that caching is gainful especially in limited-backhaul scenarios, there exist
still several challenges which needs to be investigated in the future.

In particular, in Part I of the thesis where we have focused on modeling and perfor-
mance analysis, we have the following future directions.

In Chapter 3 (Single-Tier Cellular Networks), the model and analysis can be
extended by considering

• Average delivery rate: The performance metric we have defined is based on fixed
rate transmission and does not exploit the full potential of instantaneous SINR to
achieve higher rates in downlink. Even though this is done for tractability and we
expect that new insights might be somewhat similar, additional effort for detailing
of this metric is of high interest, in order to have a more realistic view to the system.
Recent works in [52,58] take different performance metrics in this regard.

• Coupling with physical layer parameters : The coupling between physical layer pa-
rameters (i.e., SINR, target bitrate) and caching parameters (storage size, content
popularity shape) are separable in the sense that, one can decompose these com-
ponents and investigate the behaviour of them independently. Even though what
we have done is useful for providing a holistic view to the system, a better under-
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standing/coupling of caching problem with physical layer parameters is needed in
the context of stochastic geometry modeling. The works in [52, 58] have proposed
new models for that purpose.

• Operational caching regime: It seems evident from our investigations that adding
more storage units to the small base stations results in a better system performance
and the gains are not linear with respect to the storage size. Therefore, if one can
introduce cost of installing and operating storage units, one can also wish to char-
acterize in which regime caching can be useful/operational from cost point of view,
while considering storage size and content popularity behaviour. In other words,
putting very big storage units might be very costly and might only improve system
performance gradually. Therefore, a characterization of this regime in stochastic
geometry framework is needed.

• Imperfect content popularity : It is now clear that the gains of caching depends
on content popularity behaviour/shape, where in our scenario we have assumed
that the popularity distribution is known perfectly at the small base stations. An
interesting venue in this direction is to introduce an imperfect content popularity
model where the shape parameter or exact distribution is partially known. This
could reveal potential gains of caching in a more realistic setup, and in some cases,
one might not wish to cache contents if the uncertainty is above a threshold. The
recent efforts for learning unknown content popularity in the context of stochastic
geometry modeling can be found in [141,142].

• Demand locality : The system model we have considered is based on the assumption
that content popularity distribution fpop is identical among users and is known at
the base stations. If one can come up with a mathematical structure to capture local
demand of users and make connection of these local demands with global content
popularity distribution, a better understanding of caching problem for small cell
deployments would be pointed out. In other sense, some deployment areas with few
users’ content demands or demand with different characteristics might lead telecoms
operators to make choice on whether they should deploy storage units or not in such
areas. The recent work in [54] investigates such a demand locality aspect.

• Locally vs globally storing most popular contents: Very relevant to demand locality
as stated above, yet interesting question to answer is to whether store globally or
locally popular contents at the small base stations. As most of stochastic geometry
analysis in the literature is so far based on typical user assumption and exploitation
of motion-invariant properties of point processes, which is in fact due toe tractabil-
ity reasons, one may need to check out in details how to introduce such a structure
in order to capture these aspects of caching. In this regard, the recent work in
[132] compares the performance of globally storing popular contents with a random
caching policy, and shows a regime where storing popular contents is not dramat-
ically gainful. In any case, whether storing locally or globally popular contents
requires investigations.
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• Backhaul rate splitting strategies: The limited-backhaul we have considered so far
is based on the idea of splitting the total backhaul link capacity among small base
stations. This does not capture dynamic rate splitting strategies that rely on active
base stations and load of the system. An interesting path to extend this model is
to introduce a more comprehensive rate splitting strategy by considering dynamic
load aspects of demand and users. Even though we have introduced novel backhaul
delay/rate splitting strategies in Chapters 4 and 5, further investigations are still
needed for a better understanding of gains of caching under limited-backhaul.

• Heterogeneous networks : In fact, we have considered multi-tier heterogeneous net-
works in Chapters 4 and 5. However, generalization of the single tier model in
this chapter might be still extended to a more general setting with K-tiers, where
some base stations in some tiers might have open/closed access, caching/non-caching
capabilities and different path-loss exponents, transmit powers and target SINR re-
quirements. In fact, several relevant works have appeared recently in this direction
(see [58,141,142,162,166] for instance).

• D2D communications : Cache-enabled D2D communications on top of single or
multi-tier heterogeneous network can also bring additional insights to the network
designers. The inband/outband D2D communications supported with caching ca-
pabilities requires a better understanding of clustering of users, similarity of content
access patterns, proximity, cache availability and connectivity conditions to base sta-
tions. In this regard, the work in [53] contains a scenario of D2D communications
with users being clustered.

• Wireless backhaul : The backhaul we have considered so far relies on wired error-
free links. When wireless backhaul is introduced into the scenario, one can take
benefit of such a backhaul by prefeching/broadcasting/delivering contents in a more
flexible manner, thus some of capacity limitations might not hold depending on the
load/network conditions. This might lead to some scenarios where caching is not
very useful in terms of delivery rate.

• Green aspects : Area power consumption and energy efficiency of caching is of high
interest, as the unit energy consumed by the caches prefecthing/delivery is in general
assumed to be lower than the unit energy in the backhul prefecthing/delivery. Some
recent works (see [33, 161] for instance) have started to focus on these aspects by
using tools from stochastic geometry, however, more investigations are clearly needed
to gain more insights about the network deployment.

• Physical layer caching and multicast : In fact, one of the benefit of caching is to pro-
vide more multi-casting opportunities at the base stations, thus, providing higher
satisfactions at the mobile user terminals. Even though there exist some works in
this regard in the literature, the characterization of gains in the stochastic geom-
etry framework is still missing. In a relevant context, a scenario based on joint
transmissions of cache-enabled base stations is considered in [58].
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• More curves/tradeoffs : Characterization of caching gains with different parameter
settings is of high relevance, and more tradeoffs related to caching need to be dis-
covered.

In Chapter 4 (Multi-Tier Cellular Networks), the model and analysis can be
further improved by considering

• Heterogeneity in storage: We have so far considered that storage size of small base
stations are identical among each other. One may wish to relax this assumption
by introducing heterogeneity in the storage sizes and characterize average delays in
this system model. In fact, one can expect that the more heterogeneous storage
distribution in the network result in more degraded system performance. However,
exact answer to this question requires a clean-state thinking and more rigorous
claims with mathematical proofs.

• Heterogeneity in content lengths : Most of previous works related to caching are
based on the assumption that lengths of contents in the catalogue are identical.
This is in fact for ease of analysis and does not induce loss of generality. As simi-
lar to heterogeneity in storage sizes, the contents/chunks with different lengths can
be investigated in details and exact performance analysis of average delay can be
revealed as an extension. The content length heterogeneity combined with an el-
egant mathematical model might lead to have better insights about the network
performance.

• Effect of content chunking : Even though we have briefly mentioned about the chunks
in the system model, so far, the cost/impact of having relatively small chunks on the
performance of caching policies have not been considered in details. For example, if
the chunks are infinitely small, caching based on StdPop or MixPop policies might
not lead to a good performance due to more allocation of storage for chunk/content
popularity tracking. One in this situation can characterize this phenomena and see
the optimal chunking regime. Additionally, for a given chunk size, one can also
find a balance between storage size allocated to caching popular files and caching
uniformly at random in MixPop policy.

• Traffic arrival/departure process: All the analysis and calculations conducted in this
chapter were based on the snapshots/realizations of topology together with system
related random variables. The notion of time together with traffic arrival/departure
process can lead to interesting insights about the overall performance system and
caching policies. However, introducing time dynamics in the stochastic geometry
setup requires careful technical treatment, as for instance the interference becomes
temporally dependent. The traffic process together with some approximations and
mild assumptions might bring fruitful design insights to the network designers. Re-
cently, the works in [162, 163] consider a multiclass processor-sharing queue model
to investigate the caching gains in a heterogeneous network.

122



• Online caching policies : The average delay characterization of online caching policies
is yet another venue of work to investigate. In fact, together with time dynamics,
the performance of online caching policies in our setup may result in a better under-
standing of caching policies, as one has to track/learn content popularity online and
cache accordingly. The exploration v.s. exploitation trade-off of content popularity
in caching decisions seems interesting to characterize, and the cost of unnecessary
backhaul usage, especially in very limited backhaul scenarios is of interest. Recently,
the work in [166] considers such an online caching policy.

• Request overhead in uplink : The content requests done by users via uplink have
been neglected in this model. In fact, if the user is in outage in uplink, the content
request might not reach to the base station which in turn changes behaviour of
content popularity observed at the small cells and causes outages in delivery via
downlink. These aspects can be considered in the system model and performance
analysis in order to provide a holistic view to the problem.

• Association policies : Note that we have taken into account is the closest base station
association policy. On top of this policy, SIR/SINR based caching-aware association
policies together with multiple connectivity can lead to interesting results.

• Total average network delay and cost optimization: In the performance analysis, we
have provided the expressions for total average network delay and cost. However,
minimization of these metrics with respect to the storage size, number of small cells
and macro cells are left for future work. Interested readers may wish to perform
a global network optimization based on these metrics. Clearly, this would provide
answers to the optimal deployment of cache-enabled small cells.

• Wireless backhaul : In addition to the wired backhaul, consideration of wireless back-
haul in this model is also of high interest. Such an addition has been also coined
above (for single-tier case in Chapter 3), whereas here we have multi-tier network
with delay being as performance metric. This in fact might result in different ex-
pressions and tractability levels, expecting that new conclusions can be done.

• Mobility : Incorporation of mobility models into the scenario is yet another addi-
tion/extension for this system model, and can be done with the help of existing
mobility models in stochastic geometry literature. However, one has to be techni-
cally careful with consideration of mobility as downlink performance and evolution
of content popularity at the base stations are jointly influenced from movement of
users.

• More curves/tradeoffs : As similar to our remarks for the single-tier network, more
curves and trade-offs for this multi-tier network need to be investigated, especially
in different realistic parameter settings. This should help system designers to have
a quick decision/comparison for performance assessment of such heterogeneous net-
works.
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In Chapter 5 (Clustered Cellular Networks), the model and analysis can be
further detailed by focusing on

• Tighter approximations : Our approximations of average delivery rate work pretty
well in high target bitrates. However, even though the trends for theoretical and
simulation curves of average delivery rate are reasonably identical, the gap between
these curves in low target bitrate has to be improved. Due to intra-dependence
and inter-dependence between point processes, one might need to do the technical
treatment carefully and check out the assumptions/simplifications we have made in
the system model.

• Simpler expressions : We have so far obtained expressions of average delivery rate
in the form of integrals and Laplace transforms. Exact values of these expressions
can be evaluated pretty easily with modern software packages, and computations
are fairly faster compared to performance evaluations via system level simulations.
However, simpler and more elegant expressions with some reasonable assumptions
are always desirable, in order to gain quick design insights and use/adapt these
expressions for further mathematical models.

• Other clustering processes: In our model, Poisson hole process and Matérn cluster
process have been considered for modeling of clustered small cells in coverage and
capacity aided deployments respectively. An interesting direction in this regard is
to check out other point processes (i.e. Ginibre point process) which can capture
deployment of clustered cache-enabled small cells. The ultimate goal of looking to
these kind of processes is to get design insights for more realistic cache-enabled base
station deployments, while keeping analytical tractability.

• Spatio-temporal dynamics of content popularity : As small cells are clustered, one
natural extension of this work is to assume that content requests are also spatially
clustered, since users in some macro cells and small cell hot-spots may have differ-
ent interests than some other users connected to macro and small cells. Such an
extension together with temporal dynamics might lead to interesting observations.

• SINR and limited backhaul : The downlink in our scenario was only interference-
limited (namely no noise) and the backhaul capacity was scaled with number of
users and base stations. One interesting observation in this situation is to introduce
SINR metric into the scenario and consider cases where backhaul has ultra high-
speed connections. The tractability of expressions for average delivery right might be
challenging due to SINR, and also, caching might not be helpful to turn the memory
into bandwidth, since the only limiting factor could be the downlink. However, even
though this is the case, one can still look the performance of this scenario to see in
which regimes caching can be beneficial.

• MIMO, cache-aware precoding schemes and multicast : We have considered single
antennas at macro cells, mobile user terminals and small cells. A holistic view of
the network in stochastic geometry setup can be obtained by considering multiple
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antennas at the nodes, enabling multi-cast and designing caching-aware precoding
schemes. In this situation, more degree of freedom would be added to the network
so that several different caching regimes that allow good performance results can
be characterized. In fact, there exist works on this direction, as mentioned in the
introduction chapter. However stochastic geometry modeling of such scenarios are
still in their infancy, but can be also incorporated into cache-enabled networks after
some careful technical treatment.

• Scaling laws in hierarchical model : Checking out the behaviour of hierarchical tree
model in large parameter settings (i.e., as number of contents in the catalog goes to
infinity) can lead to interesting results and help to asses the system performance in
such infinite regimes. As mentioned in the introduction, there exist some caching
works on this direction, however, a stochastic geometry-based approach is missing.

• Geographical caching methods/policies : The hierarchical model we have introduced
in this chapter can lead to interesting optimization problems. We have defined
the mathematical structures and posed the problem. However, a more detailed
investigation supported with numerical analysis is needed. On the other hand,
geographical caching methods under clustered spatio-temporal access patterns might
be yet another scenario to investigate.

• Online caching policies : On top of geographical caching methods mentioned above,
online caching policies can also be introduced into the scenario so that more practical
insights can be obtained. This requires some simplifications as the interference
becomes temporally dependent. As stated before, the works in [166] considers such
an online policy.

• More plots/tradeoffs : Impact of different system parameters, such as base station
density, cluster size, transmit, target can be characterized on top of what we have
provided in this chapter.

For the second part, namely Part II, our future directions for content popularity learn-
ing and algorithmic aspects of caching can be summarized as follows.

In Chapter 6 (Proactive Caching), more insights can be obtained by looking into

• Social network metrics : We have considered eigen-vector centrality to measure the
influence of users among the social network. On top of this, other centrality measures
can be investigated numerically. Also, Shapley-based metrics might also be intro-
duced for the fairness among the users in the network, as users are caching/sharing
contents via D2D communications under limited transmission power constraints.

• Relationship between D2D and social networks : The social network we have studied
is based on the assumption that links/friends in the social networks are mapped
directly on the D2D network. This means that a user who has a friend in the social
network has also the same friend in his proximity, so that D2D communications can
be enabled. An interesting point to come up with a more detailed model for caching.
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• Collaborative filtering methods : Regularized-SVD has been choosen for estimation
of content popularity matrix. There exist large literature on collaborative filtering
methods where one can apply other techniques (user-based, item-based, probabilistic
models) to see the gains of caching for such methods.

• Content dissemination process : We have used CRP to model the content dissem-
ination process in the social network. Other kind of stochastic process, such as
Indian buffet process, can be considered. In this regard, the modeling of content
dissemination process in social network is of high interest.

• Complex network structures : We have considered caching at base stations and user
terminals. An interesting study would be adding caching capabilities not only at the
edge of network but in several levels of network, i.e., hierarchical networks, multi-
hop networks. A careful estimation of content access statistics is required for better
performance results.

In Chapter 7 (Transfer Learning):

• Analytical characterization of positive/negative transfer : The analytical characteri-
zation of transfer learning in our setup is yet another interesting venue to investigate.
The question of how much gain be obtained under a given parameter setting is of
interest, especially to reveal positive/negative transfer parametrically. In fact, the
recent works in [141, 142] propose new models for learning unknown content popu-
larities via knowledge transfer.

• Other source domains/real traces : We have considered social interactions extracted
from D2D as a source domain to improve the estimation in the target domain,
namely at the base stations. Yet another interesting future work is to assess the
performance of TL-based caching using real traces, collected from different sources.

In Chapter 8 (Big Data for Caching), several general directions for this practical
setup can be given, such as

• Detailed characterization of the demand : An interesting future direction of this work
is to conduct a more detailed characterization of the traffic which captures different
spatio-temporal content access patterns for caching.

• Novel machine learning algorithms : In order to estimate the content access patterns
for cache decision, the development of novel machine learning algorithms is yet
another interesting direction.

• Deterministic/randomized caching policies: Design of new deterministic/random-
ized cache decision algorithms are required and should not be purely based on con-
tent popularity and storing most popular contents, so that higher backhaul offload-
ing can be achieved while satisfying users’ requests.
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• Experimental test-bed in realtime: We have showed our results for content popular-
ity estimation on the big data platform and conduct numerical studies of caching
by using information gathered from real traces (i.e., content popularity, time, cell
type, etc.). The ultimate goal of this line of work is to develop an online/real-
time setup where content popularity estimation and caching at the base stations are
simultaneously done in practice.
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[36] E. Baştuğ, M. Bennis, M. Kountouris, and M. Debbah, “Cache-enabled small cell
networks: Modeling and tradeoffs,”EURASIP Journal on Wireless Communications
and Networking, no. 1, p. 41, February 2015.
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[111] J. Pääkkönen, C. Hollanti, and O. Tirkkonen, “Device-to-device data storage for
mobile cellular systems,” in IEEE Globecom Workshops (GC Wrokshops), 2013, pp.
671–676.

[112] A. Barreal, C. Hollanti, D. Karpuk, and H.-f. Lu, “Algebraic codes and a new
physical layer transmission protocol for wireless distributed storage systems,” arXiv
preprint arXiv: 1405.4375, 2014.

[113] C. Hollanti, D. Karpuk, A. Barreal, and H.-f. F. Lu, “Space-time storage codes for
wireless distributed storage systems,” arXiv preprint arXiv: 1404.6645, 2014.
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[184] E. Baştuğ, M. Kountouris, M. Bennis, and M. Debbah, “Deployment cost and delay
of caching in two-tiered networks,” (to be submitted to) a conference, 2016.
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Appendix A

Single-Tier Cellular Networks

A.1 Proof of Theorem 1

In order to prove Theorem 1, we modify some useful results from [191]. Conditioning on
the nearest base station at a distance r from the typical user, the outage probability can
be written as:

pout(λ, T, α, S, γ) = Er
[
1− P[ln(1 + SINR) > T, fo ∈ ∆bo | r]

]
.

Since expectation is a linear operator and these two events are independent, the above
expression can be decomposed as:

pout(λ, T, α, S, γ) = 1− Er
[
P [ln(1 + SINR) > T | r]

]
︸ ︷︷ ︸

(i)

Er
[
P [fo ∈ ∆bo | r]

]
︸ ︷︷ ︸

(ii)

. (A.1)

Proceeding term by term, we first write (i) as:

Er [P [ln(1 + SINR) > T | r]]

=

∫
r>0

P [ln(1 + SINR) > T | r] fr(r)dr (A.2)

(a)
=

∫
r>0

P [ln(1 + SINR) > T | r] e−πλr22πλrdr

(b)
=

∫
r>0

P
[
hr−α

σ2 + Ir
> eT − 1 | r

]
e−πλr

2

2πλrdr

(c)
=

∫
r>0

P
[
h > rα(eT − 1)(σ2 + Ir) | r

]
e−πλr

2

2πλrdr, (A.3)

where fr(r) = e−πλr
2
2πλr is the PDF of r for PPP [191], hence (a) follows from its

substitution. The expression in (b) is obtained by plugging the SINR formula and letting
it on the left hand side of the inequality, (c) is the result of some algebraic manipulations
for keeping fading variable h alone.
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A.1. Proof of Theorem 1

Conditioning on Ir and using the fact that h ∼ Exponential(µ), the probability of
random variable h exceeding rα(eT − 1)(σ2 + Ir) can be written as:

P
[
h > rα(eT − 1)(σ2 + Ir) | r

]
= EIr

[
P
[
h > rα(eT − 1)(σ2 + Ir) | r, Ir

]]
= EIr

[
exp

(
−µrα(eT − 1)(σ2 + Ir)

)
| r
]

= e−µr
α(eT−1)σ2LIr

(
µrα(eT − 1)

)
, (A.4)

where L(s) is the Laplace transform of random variable Ir evaluated at s conditioned on
the distance of the nearest base station from the origin. Substituting (A.4) into (A.3)
yields the following:

Er [P [ln(1 + SINR) > T | r]] =

∫
r>0

e−µr
α(eT−1)σ2LIr

(
µrα(eT − 1)

)
e−πλr

2

2πλrdr. (A.5)

Defining gi as a random variable of arbitrary but identical distribution for all i, and Ri

as the distance from the i-th base station to the tagged receiver, the Laplace transform
is written as:

LIr(s) = EIr
[
e−sIr

]
= EΦ,{gi}

exp

−s ∑
i∈Φ\{bo}

giR
−α
i


= EΦ,{gi}

 ∏
i∈Φ\{bo}

exp
(
−sgiR−αi

)
(a)
= EΦ

 ∏
i∈Φ\{bo}

E{gi}
[
exp

(
−sgiR−αi

)]
(b)
= EΦ

 ∏
i∈Φ\{bo}

Eg
[
exp

(
−sgR−αi

)]
= exp

(
−2πλ

∫ ∞
r

(
1− Eg

[
exp

(
−sgv−α

)])
vdv

)
,

where (a) comes from the independence of gi from the point process Φ, and (b) follows from
the i.i.d. assumption of gi. The last step comes from the probability generating functional
(PGFL) of the PPP, which basically says that for some function f(x), E

[∏
x∈Φ f(x)

]
=

exp
(
−λ
∫
R2 (1− f(x))dx)

)
. Since the nearest interfering base station is at least at a

distance r, the integration limits are from r to infinity. Denoting f(g) as the PDF of g,
then plugging in s = µrα(eT − 1) and switching the integration order yields

LIr
(
µrα(eT − 1)

)
= exp

(
−2πλ

∫ ∞
0

(∫ ∞
r

(
1− e−µrα(eT−1)v−αg

)
vdv

)
f(g)dg

)
.
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A.2. Proof of Theorem 2

By change of variables v−α → y, the Laplace transform can be rewritten as:

LIr
(
µrα(eT − 1)

)
= exp

(
λπr2 −

2πλ
(
µ(eT − 1)

) 2
α r2

α
×∫ ∞

0

g
2
α

[
Γ

(
− 2

α
, µ
(
eT − 1

)
g

)
− Γ

(
− 2

α

)]
f(g)dg

)
. (A.6)

Plugging (A.6) into (A.5), using the substitution r2 → v and after some algebraic manip-
ulations, the expression becomes

Er [P [ln(1 + SINR) > T | r]] = πλ

∫ ∞
0

e−πλvβ(T,α)−µ(eT−1)σ2vα/2dv, (A.7)

where β(T, α) is given as

β(T, α) =
2
(
µ(eT − 1)

)
α

Eg
[
g

2
α

(
Γ

(
− 2

α
, µ
(
eT − 1

)
g

)
− Γ

(
− 2

α

))]
.

So far, we have obtained (i) of (A.1). The term (ii) is straightforward to derive. In the
system model, as we assume that every small base station caches the same popular files
and they have the same storage size, the cache hit probability becomes independent of
the distance r. This yields:

Er [P [fo ∈ ∆bo | r]] =

∫ S/L

0

fpop(f, γ)df. (A.8)

Plugging both (A.7) and (A.8) into (A.1) and rearranging the terms, we conclude the
proof. �

A.2 Proof of Theorem 2

Average achievable delivery rate is τ̄ = E [τ ], where the average is taken over the PPP
and the fading distribution. It can be shown that

τ̄ = E [τ ]

(a)
= E

[
P [ln(1 + SINR) > T ]

(
TP [fo ∈ ∆bo ] + C (λ)P [fo 6∈ ∆bo ]

)]

(b)
= E

P [ln(1 + SINR) > T | r]︸ ︷︷ ︸
τ1

×
E

TP [fo ∈ ∆bo | r]︸ ︷︷ ︸
τ2

+ E

C (λ)P [fo 6∈ ∆bo | r]︸ ︷︷ ︸
τ3
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A.3. Proof of Proposition 1

= E [τ1] (E [τ2] + E [τ3]) , (A.9)

where (a) is obtained by plugging the delivery rate as defined in (3.6), and (b) follows
from independence of the events and linearity of the expectation operator.

Derivation of E[τ1] can be obtained from the proof of Theorem 1, by following the
steps from (A.2) to (A.7). On the other hand, the fact that the cache hit probability is
independent of r, Er[τ2] can be expressed as

Er[τ2] = T

∫ S/L

0

fpop(f, γ)df.

Using similar arguments, Er[τ3] is written as:

Er[τ3] = C(λ)

(
1−

∫ S/L

0

fpop(f, γ)df

)
.

Substituting these expressions into (A.9) concludes the proof. �

A.3 Proof of Proposition 1

Since Proposition 1 is a special case of Theorem 1, we follow the similar steps. We first
rewrite (A.1) as:

pout(λ, T, α, S, γ) = 1− Er
[
P [ln(1 + SINR) > T | r]

]
︸ ︷︷ ︸

(i)

Er
[
P [fo ∈ ∆bo | r]

]
︸ ︷︷ ︸

(ii)

. (A.10)

For the proceeding of (i), the proof of Theorem 1 can be followed starting from (A.2) to
(A.5). Then, the Laplace transform is written as

LIr(s) = EΦ

 ∏
i∈Φ\{bo}

Eg
[
exp

(
−sgR−αi

)]
(a)
= EΦ

 ∏
i∈Φ\{bo}

µ

µ+ sR−αi


= exp

(
−2πλ

∫ ∞
r

(
1− µ

µ+ sv−α

)
vdv

)
, (A.11)

where (a) comes from the new assumption that g ∼ Exponential(µ). Then, plugging
s = µrα

(
eT − 1

)
yields:

LIr
(
µrα

(
eT − 1

))
= exp

(
−2πλ

∫ ∞
r

eT − 1

eT − 1 + (v
r
)α
vdv

)
.
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A.3. Proof of Proposition 1

Using a change of variables u =
(

v
r(eT−1)α/2

)2

results in

LIr
(
µrα

(
eT − 1

))
= exp

(
−πr2λρ(T, α)

)
, (A.12)

where

ρ(T, α) = (eT − 1)2/α

∫ ∞
(eT−1)−2/α

1

1 + uα/2
du.

Substituting (A.12) into (A.5) with r2 → v gives

πλ

∫ ∞
0

e−πλv(1+ρ(T,α))−µ(eT−1)σ2vα/2dv. (A.13)

Since α = 4 in our special case, (A.13) simplifies to

πλ

∫ ∞
0

e−πλv(1+ρ(T,4))−µ(eT−1)σ2v2dv, (A.14)

where

ρ(T, 4) = (eT − 1)2/α

∫ ∞
(eT−1)−2/α

1

1 + u2
du

= (eT − 1)2/α
(π

2
− arctan

(
(eT − 1)−2/α

))
=
√
eT − 1

(
π

2
− arctan

(
1√

eT − 1

))
.

From this point, (A.14) can be further simplified since it has a form similar to:∫ ∞
0

e−axe−bx
2

dx =

√
π

b
exp

(
a2

4b

)
Q

(
a√
2b

)
,

where Q (x) = 1√
2π

∫∞
x
e−y

2/2dy is the standard Gaussian tail probability. Setting a =

πλ(1 + ρ(T, 4)) and b = µ(eT − 1)σ2 = (eT − 1)/SNR gives

π
3
2λ√
eT−1
SNR

exp

(
(λπ(1 + ρ(T, 4)))2

4(eT − 1)/SNR

)
Q

(
λπ(1 + ρ(T, 4))√
2(eT − 1)/SNR

)
. (A.15)

This is the final expression for (i) of (A.10). The term (ii) of (A.10) can be obtained
by using similar arguments given for (A.8) in the proof of Theorem 1, meaning that the
cache hit probability is independent of distance r. Thus:

Er [P [fo ∈ ∆bo | r]] =

∫ S/L

0

fpop (f, γ) df

(a)
=

∫ 1+S/L

1

(γ − 1) f−γdf

= 1−
(

L

L+ S

)γ−1

, (A.16)
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A.4. Proof of Proposition 2

where (a) follows from plugging definition of C(f, λ) given in Assumption 1 and changing
the integration limits accordingly. The last term is the result of the integral. Therefore,
we conclude the proof by plugging (A.15) and (A.16) into (A.10). �

A.4 Proof of Proposition 2

The proposition is a special case of Theorem 2, thus we have the similar steps. We start
by rewriting (A.9) as:

τ̄ = E

P [ln(1 + SINR) > T | r]︸ ︷︷ ︸
τ1

×
E

TP [fo ∈ ∆bo | r]︸ ︷︷ ︸
τ2

+ E

C (λ)P [fo 6∈ ∆bo | r]︸ ︷︷ ︸
τ3


= E [τ1] (E [τ2] + E [τ3]) . (A.17)

In this expression, the term E [τ1] can be obtained from the proof of Proposition 1. More
precisely, observe that E [τ1] is identical to (i) of (A.10). Thus, following the steps from
(A.11) to (A.15), we obtain

E [τ1] = E
[
P [ln(1 + SINR) > T | r]

]
=

π
3
2λ√
eT−1
SNR

exp

(
(λπ(1 + ρ(T, 4)))2

4(eT − 1)/SNR

)
Q

(
λπ(1 + ρ(T, 4))√
2(eT − 1)/SNR

)
. (A.18)

On the other hand, E [τ2] can be obtained by taking T out of the expectation and plugging
(A.16) into the formula, i.e.

E [τ2] = E [TP [fo ∈ ∆bo | r]]

= T

(
1−

(
L

L+ S

)γ−1
)
. (A.19)

Finally, E [τ3] is easy to derive as

E [τ3] = E [C (λ)P [fo 6∈ ∆bo | r]]

= C (λ)

(
L

L+ S

)γ−1

=

(
C1

λ
+ C2

)(
L

L+ S

)γ−1

, (A.20)

where definition of C(λ) follows from Assumption 1. Substituting (A.18), (A.19) and
(A.20) into (A.17) concludes the proof. �
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Appendix B

Multi-Tier Cellular Networks

B.1 Proof of Lemma 5

The proof follows the similar lines as in [191,241] and derived here for sake of completeness.
The fact that thermal noise is ignored (hence the transmission is interference-limited), we
have

Pm =

∫ ∞
0

P
(

SIRmc(x) > γ
∣∣∣‖x‖2 ∈ dr

)
fmc(r)dr (B.1)

(a)
=

∫ ∞
0

P
(Pmchx`(x)

Imm + Ism

> γ
)
fmc(r)dr (B.2)

(b)
=

∫ ∞
0

E
{

exp
(
− γrα

Pmc

(Imm + Ism)
)}
fmc(r)dr (B.3)

(c)
=

∫ ∞
0

exp
(
− πr2λmcρ(γ, α)

)
×

exp
(
− πr2(Psc/Pmc)

2/αλscγ
2/αA(α)

)
fmc(r)dr (B.4)

= exp
(
− πr2

[
λmcρ(γ, α) + (Psc/Pmc)

2/αλscγ
2/αA(α)

])
(B.5)

where ρ(γ, α) = γ2/α
∫∞
γ−2/α

1
1+uα/2

du and A(α) = 2π/α
sin(2π/α)

. The step (a) follows from

Slivnyak Theorem [195]; the step (b) is due to the Laplace Transform of fading power
coefficient hx, which is an Exponential random variable (Rayleigh fading) with E[hx] = 1.
The step (c) comes from the independence of Imm and Ism and the Laplace transform
of Imm and Ism [191, 242]. The final expression is obtained by considering the spatial
probability distribution function of macro cells, that is fmc(r) = 2λmcπrexp(−πλmcr

2),
and calculating the integral accordingly. The derived results so far hold for the typical
user connecting to the nearest macro cell. In case of connecting to the nearest small cell,
one can straightforwardly repeat the above steps to get

Ps = exp
(
− πr2

[
λscρ(γ, α) + (Pmc/Psc)

2/αλmcγ
2/αA(α)

])
. (B.6)
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B.2. Proof of Theorem 6

Having Pm from (B.5) and Ps from (B.6) concludes the proof. �

B.2 Proof of Theorem 6

The average delay for a typical user connecting to a macro cell is made of two independent
components as defined in (4.14), thus we have

D̄m = E[Dm] (B.7)

= E[Ddm] + E[Dbm]. (B.8)

For derivation of average downlink delay E[Ddm], we follow the same line of [243]. Observe
that the expected delay is at least T0 with probability 1. The first failure appears with
probability 1 − pm(r) and takes T0 additional time. Given the first failure, the second
failure appears with probability 1 − pm(r) and takes T0 additional time. By proceeding
in this way, one can write

E[Ddm | r] = T0 + T0

(
1− pm(r)

)
+ T0

(
1− pm(r))2+

· · ·+ T0(1− pm(r)
)M−1

(B.9)

= T0

1−
(
1− pm(r)

)M
pm(r)

. (B.10)

Then, the average downlink delay is computed by using law of total expectation such as

E[Ddm] = E
[
E[Ddm | r]

]
= T0

∫ ∞
0

2πλmcexp(−πr2λmc)
1−

(
1− pm(r)

)M
pm(r)

dr (B.11)

= T0

M−1∑
i=0

(−1)i
(
M

i+ 1

)
×

1

1 + i
[
ρ(γ, α) + (Psc/Pmc)2/α(λsc/λmc)γ2/αA(α)

] . (B.12)

Observe that the temporal correlation of interference is not considered here. Therefore,
the derived expression is a lower bound for the downlink delay whereas one can prove this
claim by observing that the success probability pm(r) is a decreasing function and make
use of Fortuin-Kasteleyn-Ginibre (FKG) inequality. The readers who are interested to
complete characterization of the delay can check out the tools developed in [244]. We now
focus on average backhaul delay, that is

E[Dbm] = µ̄bm (B.13)

(a)
= β

λmc

λcs

∫ ∞
0

2λcsπr
2e−πλcsr

2

dr (B.14)

=
1

2
βλmcλ

−3/2
cs (B.15)
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B.3. Proof of Theorem 7

where step (a) follows from making use of Lemmas 3-4. The parameter β here is a scaling
factor that relates the backhaul delay to the downlink delay, meaning that better backhaul
infrastructure and methods corresponds to a lower value of β thus less delay.

Writing down the downlink delay (B.12) in the form of B1 function such as
B1(T0,M, γ, α, Psc, Pmc, λsc, λmc) and plugging into (B.8) together with the backhaul delay
expression (B.15) give the desired result. �

B.3 Proof of Theorem 7

Recalling the definition of delay in (4.15), the average delay for typical small cell user is
expressed as

D̄s = E[Ds] (B.16)

= E
[
Dds + 1{fs∈∆0}Dca +

(
1− 1{fs∈∆0}

)
Dbs

]
(B.17)

= E
[
Dds

]
+ E

[
1{fs∈∆0}

]
E
[
Dca

]
+ E

[
Dbs

]
−

E
[
1{fs∈∆0}

]
E
[
Dbs] (B.18)

where the final express comes from the independence of the processes and linearity of
expectation operator. From now on, we proceed term by term.

Note that the expression for average downlink delay E[Ds] can be obtained by using
the definition of SIR for typical small cell user (see (4.2)) and invoking the steps in proof
of Theorem 6 up to (B.12). Thus we have

E[Ds] = T0

M−1∑
i=0

(−1)i
(
M

i+ 1

)
1

1 + i
[
ρ(γ, α) + (Pmc/Psc)2/αλmcγ2/αA(α)

] (B.19)

and can be written in the form of function B1 such as B1(T0,M, γ, α, Pmc, Psc, λmc, λsc).
On the other hand, the average caching delay E

[
Dca

]
simply follows from its definition,

that is

E
[
Dca

]
= µ̄ca. (B.20)

Additionally, the backhaul delay for typical macro cell user is given by

E
[
Dbs

]
= µ̄bs (B.21)

(a)
= β

λsc

λcr

∫ ∞
0

2λcsπr
2e−πλcsr

2

dr (B.22)

=
1

2
βλscλ

−3/2
cs (B.23)

where the step (a) is due to the Lemmas 3-4. We now focus on the term E
[
1{fs∈∆0}

]
which

can to be derived for fixed, distance-dependent and load-dependent content popularities
separately.
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B.3. Proof of Theorem 7

Fixed content popularity

The fact that small cells have knowledge of the fixed content popularity distribution
fpop (f, η0) and can store the most popular content up to Sp, the integration limit for
cache hit probability is from 1 to 1 + Sp. Additionally, the remaining catalogue is stored
uniformly at random with storage capacity of Su. Therefore, we have that

E
[
1{fs∈∆0}

]
=

∫ 1+Sp

1

fpop (f, η0) df +
Su

f0 − Sp

∫ f0

1+Sp

fpop (f, η0) df (B.24)

=

∫ 1+Sp

1

(η0 − 1) f−η0df +
Su

f0 − Sp

∫ f0

1+Sp

(η0 − 1) f 1−η0df (B.25)

= 1−
(
1 + Sp

)1−η︸ ︷︷ ︸
(i)

+
Su

f0 − Sp

(
1−

(
1 + f0

)1−η
+
(
1 + Sp

)1−η
)

︸ ︷︷ ︸
(ii)

. (B.26)

The term (i) in the final expression can be written in the form of function B2 with
B2(Sp, η0) and the term (ii) has form of B3 with B3(Su, Sp, f0, η0). Plugging (B.19),
(B.20), (B.23) and (B.26) into (B.18) gives the desired result in (4.23).

Distance-dependent content popularity

The average distance from a typical user to its connecting base station is given by

r̄ =

∫ ∞
0

r × 2λkrπexp(−πλkr2)dr (B.27)

=
1

2
√
λ
. (B.28)

Then, using similar arguments as in fixed-content popularity case, we have the following
cache hit probability, that is

E
[
1{fs∈∆0}

]
=

∫ 1+Sp

1

fpop (f, r̄) df +
Su

f0 − Sp

∫ f0

1+Sp

fpop (f, r̄) df (B.29)

=

∫ 1+Sp

1

(r̄ − 1) f−r̄df +
Su

f0 − Sp

∫ f0

1+Sp

(r̄ − 1) f 1−r̄df (B.30)

= B2(Sp, r̄) +B3(Su, Sp, f0, r̄). (B.31)

Plugging (B.19), (B.20), (B.23) and (B.31) into (B.18) gives the desired result in (4.22).
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B.4. Proof of Proposition 3

Load-dependent content popularity

Cache hit probability under load-dependent content popularity is straightforwardly de-
rived as

E
[
1{fs∈∆0}

]
=

∫ 1+Sp

1

fpop (f, λut/λsc) df +
Su

f0 − Sp

∫ f0

1+Sp

fpop (f, λut/λsc) df (B.32)

=

∫ 1+Sp

1

(
λut

λsc

− 1

)
f−

λut
λsc df +

Su

f0 − Sp

∫ f0

1+Sp

(
λut

λsc

− 1

)
f−

λut
λsc df (B.33)

= B2(Sp,
λut

λsc

) +B3(Su, Sp, f0,
λut

λsc

). (B.34)

Plugging (B.19), (B.20), (B.23) and (B.34) into (B.18) gives the desired result in (4.23).
We therefore conclude the proof. �

B.4 Proof of Proposition 3

Recalling Definition 3, suppose that the typical user is connected to the nearest small
cell thus rsc < κrmc holds. Therefore, conditioning on rmc and averaging over spatial
distribution of small cells, then averaging over macro cells yield the desired result, such
as

pa = E
[ ∫ κrmc

0

2πλscte
−πλsct2dt|rmc

]
(B.35)

=

∫ ∞
0

(1− e−πλscκ2r2mc)2πλmcrmce
−πλmcr2mcdrmc (B.36)

=
κ2λsc

λmc + κ2λsc

. (B.37)

The association probability to a macro cell is then 1− pa. �

B.5 Proof of Proposition 4

From Theorem 6, we know that the average delay of typical user connecting to the nearest
macro cell is given by

B1(T0,M, γ, α, Psc, Pmc, λsc, λmc) +
1

2
λutλmcλ

−3/2
cs . (B.38)

When the association policy given in Definition 3 is employed at the network, then, the
process of small cell users is approximated with a thinned PPP of density (1 − pa)λut

where (1 − pa) is the association probability given in Proposition 3. Adding TDMA in
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B.6. Proof of Proposition 5

their multiple access and using Lemma 4 for average number of nodes in hierarchical
model, the total average delay for macro cell users is given by

D̄(tot)
m =

(1− pa)2λ2
ut

λmc

B1(T0,M, γ, α, Psc, Pmc, λsc, λmc) +
1

2
β(1− pa)λutλmcλ

−3/2
cs . (B.39)

On the other hand, from Theorem 7, we have the average delay of typical small cell user.
Knowing that small cell users follow a thinned PPP with density paλut, the total average
delay for small cell users is obtained by repeating the same steps above, that is

D̄(tot)
s =

p2
aλ

2
ut

λsc

B1(T0,M, γ, α, Pmc, Psc, λmc, λsc)+

paλut

(
µ̄ca −

1

2
βλscλ

−3/2
cs

)(
B2(Sp, η0) +B3(Su, Sp, f0, η0)

)
+

1

2
βpaλutλscλ

−3/2
cs . (B.40)

Combining (B.39) and (B.40) gives the desired result. �

B.6 Proof of Proposition 5

Recall that the total network cost is defined in (4.32). Therein, by Proposition (4), we
have total average delay. Therefore, it remains to compute the average cost of constructing
the backhaul links for macro and small cells. In case of macro cells, this is given by

L̄mc = λmcE
[
amcr

bmc
]

(B.41)

= λmc

∫ ∞
0

amcr
bmc2πλcsre

−πλcsr2dr (B.42)

= λmcamc

Γ
(
bmc

2
+ 1
)(

πλcs

)bmc/2
(B.43)

where the final expression is obtained by invoking by Lemma 3. In case of small cell users,
we similarly have that

L̄sc = λscE
[
ascr

bsc
]

(B.44)

= λsc

∫ ∞
0

ascr
bsc2πλcsre

−πλcsr2dr (B.45)

= λscasc

Γ
(
bsc
2

+ 1
)(

πλcs

)bsc/2 . (B.46)

Substituting (B.41) and (B.44) into (4.32) concludes the proof. �
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Appendix C

Clustered Cellular Networks

C.1 Proof of Theorem 10

The rate of typical macro cell user is subject to random fluctuations of spatial distribution
of cells, fading, interference and capacity of central routers. We start by writing compact
form of rate given in (5.10) in Definition (8). Denoting event A1 as log(1 + SIRmu) > τmc,
event A2 as R′mu > τmc, we have

R̄mu = E
[
Rmu

]
(C.1)

(a)
= E

[
τmcP

[
A1

]
P
[
A2

]]
(C.2)

= τmcE
[
P
[
A1

]]
E
[
P
[
A2

]]
(C.3)

where (a) is obtained by plugging compact form of (5.10) into the expression and consid-
ering the independence of event A1 with respect to A2, and the last step comes from the
linear properties of expectation operator. In the above expressions, note that we avoid to
specify conditioning for notational clarity. We shall later consider this depending on the
context.

In what follows, we first re-express the terms E
[
P
[
A1

]]
and E

[
P
[
A2

]]
in a general

manner, then focus on expressions inside these terms and finalize our calculations. Some
of results below are obtained by using the proof techniques developed in [205].
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C.1. Proof of Theorem 10

We start by re-expressing the term E
[
P
[
A1

]]
, that is

E
[
P
[
A1

]]
= E

[
P
[
log(1 + SIRmu) > τmc

]]
(C.4)

(a)
=

∫ ∞
0

P
[
log(1 + SIRmu) > τmc

∣∣r]fmc(rmc)drmc (C.5)

(b)
=

∫ ∞
0

P
[
log(1 +

Pmchr0r
−α

Imm + Ism

) > τmc

∣∣∣rmc

]
fmc(rmc)drmc (C.6)

(c)
=

∫ ∞
0

P
[
h >

(eτmc − 1)(Imm + Ism)

Pmcr−α
∣∣rmc

]
fmc(rmc)drmc (C.7)

(d)
=

∫ ∞
0

EImm,Ism

[
P
[
h >

(eτmc − 1)(Imm + Ism)

Pmcr−αmc

∣∣∣rmc, Imm, Ism

]]
fmc(rmc)drmc

(e)
=

∫ ∞
0

exp
(
− (eτmc − 1)(Imm + Ism)

Pmcr−αmc

)
fmc(rmc)drmc (C.8)

=

∫ ∞
0

e
− (eτmc−1)

Pmcr
−α
mc LImm

(eτmc − 1

Pmcr−αmc

)
LIsm

(eτmc − 1

Pmcr−αmc

)
fmc(rmc)drmc (C.9)

where steps (a) and (b) are obtained by plugging the definition of SIR in (5.6) and consid-
ering averaging over the spatial distribution of nodes whose PDF is given by fmc(rmc). The
step (c) is obtained by rearranging the terms which yields the fading coefficient h alone,
(d) is due to the averaging over the interference terms Imm and Ism, and the step (e) is due
to the fact that h is an Exponentially distributed random variable with mean 1. The final
step is obtained by using the definition of Laplace transform with LImm = EImm [e−sImm ]
and LIsm = EIsm [e−sIsm ], where s = eτmc−1

Pmcr
−α
mc

. We shall calculate the Laplace transforms for

E
[
P
[
A1

]]
in the upcoming subsections both for coverage and capacity-aided deployments.

Now, let us consider the term E
[
P
[
A2

]]
, that is

E
[
P
[
A2

]]
= E

[
P
[
R′mu > τmc

]]
(C.10)

(a)
= P

[ γCcr

E
[
NmcNmu

] > τmc

]
(C.11)

= P
[
Ccr >

E
[
Nmc

]
E
[
Nmu

]
τmc

γ

]
(C.12)

where (a) follows from the definition of rate splitting policy in (5.8) and using the fact
that the term inside the outer expectation is constant with respect to the spatial random
fluctuations. However, the inner expectations are with respect to the spatial random
variables. In the above expression, the last step is obtained by rearranging the terms. For
the final expressions, we now focus on coverage and capacity-aided deployments separately.
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C.1. Proof of Theorem 10

C.1.1 Coverage-aided deployment

Remember that the typical user located at origin o is connected to the macro cell at y0,
assumed at distance rmc = ‖y0 − o‖. We now proceed by deriving Laplace transforms of
Imm and Ism, then focus on the backhaul part and final expressions.

1) Laplace transform of Imm: It can be written as follows

LImm(s) (C.13)

= E!y0
Φmc,h

[
exp
(
− s

∑
y∈Φmc

Pmchy`(y)
)]

(C.14)

= E!y0
Φmc

[ ∏
y∈Φmc

1

1 + sPmc`(y)

]
(C.15)

(a)
= exp

(
− λmc

∫
R2\B(o,rmc)

(
1− 1

1 + sPmch`(y)

)
dy
)

(C.16)

(b)
= exp

(−sπλmcPmc(2/α)

1− 2/α
r2−α

mc F
(
1, 1− 2/α; 2− 2/α;−sPmcr

−α
mc

))
(C.17)

where (a) comes from the PGFL of the PPP which states that E
[∏

x∈Φ f(x)
]

= exp
( ∫

R2(1−
f(x))Λ(dx)

)
for f : R2 → [0, 1] and the integration region is R2 \ B(o, rmc) as the closest

interferer as at least at a distance rmc, F (x, y; z;w) is the hypergeometric function [207].
The step (b) is obtained by the help of equation (3.194.5) in [207] and a change to polar
coordinates.

2) Laplace transform of Ism: Assume a PPP with λsc instead of Poisson hole process
for clustering process of small cells, and denote the interference of these small cells to
the typical user by Ĩsm. Since the small cells with Poisson hole process are at least at
Rc distance away from the macro cells, their interference Ism would be stochastically
dominated by the interference of this PPP denoted by Ĩsm

1, expect those within distance
Rmc from the signalling macro cell. Now, let us denote Hmc as the ball centered at the
position of the signalling macro cell with radius Rmc and HCmc = R2 \ Hmc. By using a

1Assuming two random variables A and B, we suppose that A stochastically dominates B if P(A >
x) ≥ P(B > x) for all a, or in other words, FA(x) ≤ FB(x) for cumulative distribution functions FA(x)
and FB(x).
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modified path loss function ˜̀(x) = `(x)1{x∈HCmc}

LIsm(s) ≈ LĨsm(s) (C.18)

= E!y0
Φsc,g

[
exp
(
− s

∑
x∈Φsc

Pscgx ˜̀(x)
)]

(C.19)

= exp
(
− λsc′

∫
R2

1− 1

1 + sPsc
˜̀(x)

dx
)

(C.20)

= exp
(
− λsc′

∫
HCmc

sPsc`(x)

1 + sPsc`(x)
dx
)

(C.21)

= exp
{
− λsc′

((sPsc)
2/απ2(2/α)

sin(π 2
α

)
− πR2

cAmc(s, Rc)
)}

(C.22)

where

Amc(s, Rc) =
1

πR2
c

∫
Hmc

(
1− 1

1 + sPsc`(x)

)
dx (C.23)

=
1

πR2
c

∫ 2π

0

∫ rmccosϕ+
√
R2

c−r2mcsin2ϕ

0

rdrdϕ

1 + s−1P−1
sc r

α
(C.24)

We have thus approximated the Laplace transform of Ism by taking the Laplace transform
of Ĩsm.

3) Backhaul part : Since macro cells and central rooters are distributed according to
two independent PPPs with densities λmc and λcr respectively, the average number of
macro cells connected to a nearest central router is evaluated by Lemma 9, that is

E[Nmc] =
λmc

λcr

. (C.25)

Now, observe that mobile users are distributed according to a PPP with density λcr. Since
these users are connected to macro or clustered small cells based on their nearest distance,
we have from Lemma 9 that

E[Nmu] = λmc
λut

λmc + λsc

(C.26)

=
λmcλut

λmc + λsc′exp(−λmcπR2
c)
. (C.27)

Observe also that the summation in the denominator of the final expression is due to
superposition of two independent PPPs. Even though the spatial distribution of clustered
small cells is not a PPP but a Poisson hole process (see Definition 4), the results still
hold as this clustered process is based on PPP and is motion-invariant. Also, observe that
as Rc → 0, the spatial distribution of small cells becomes a PPP with density λsc′ . On
the other hand, Rc → ∞ yields λsc → 0, thus no deployment of small cells. Based on
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these observations for E[Nmc] and E[Nmu], and using the fact that Ccr is Exponentially
distributed random variable with mean µ, we have

E
[
P
[
A2

]]
= P

[
Ccr >

E
[
Nmc

]
E
[
Nmu

]
τmc

γ

]
(C.28)

= 1− P
[
Ccr ≤

E
[
Nmc

]
E
[
Nmu

]
τmc

γ

]
(C.29)

= 1− exp
(
−
τmcλcr

(
λmc + λsc′exp(−λmcπR

2
c)
)

µγλ2
mcλut

)
. (C.30)

4) Final expression: For the evaluation of E
[
P
[
A1

]]
in (C.9), we consider that fmc(rmc)

follows a Weibull distribution such that fmc(rmc) = k
ν

(
rmc

ν

)k−1
e−(rmc/ν)k where k and ν are

shift and shape parameters respectively. Also the integration limit is from 0 to Rc. This
approximation stems from the fact that Rayleigh distribution (and node distributions) are
special cases of Weibull distribution (see [205] for a similar motivation). Plugging expres-
sions of Laplace transforms (namely (C.17) and (C.22)) into (C.9), and considering (C.30)

yield the final expression of (C.3). For the notational convenience, we denote E
[
P
[
A1

]]
and E

[
P
[
A2

]]
as B

(cov)
1 and B

(cov)
2 respectively. This concludes our approximation for

coverage-aided deployment.

C.1.2 Capacity-aided deployment

Following the similar structure as in the previous section, we start by Laplace transforms
of Imm and Ism, then focus on the backhaul part and final expressions.

1) Laplace transform of Imm: Since macro cells follow a PPP, we have the similar steps
as in previous section. That is to say

LImm(s) = exp
(−sπλmcPmc(2/α)

1− 2/α
r2−α

mc F
(
1, 1− 2/α; 2− 2/α;−sPmcr

−α
mc

))
. (C.31)

2) Laplace transform of Ism: For a Matérn cluster process, the Laplace transform of
the interference is expressed as (see [206], Corollary 4.13)

LIsm(s) = exp
(
− λsc′

∫
R2

(
1− exp(−c̄ν(s, y))

)
dy
)
, (C.32)

where ν(s, y) =
∫
R2

f(x)
1+(sPsc`(x−y))−1 dx. Therein, as we have Matérn cluster process, f(x) is

the node distribution around the parent point given as

f(x) =

{
1

πR2
c
, if ‖x‖ < Rc,

0, otherwise.
(C.33)
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3) Backhaul part : Since Φmc and Φcr are two independent PPPs, the average number
of macro cells connected to the nearest central router can be induced by Lemma 9, that is
E[Nmc] = λmc

λcr
. On the other hand, note that all mobile users modelled by a Cox process

with density λut = λut−m + λut−s. However, as macro cell users specifically follow a PPP
with density λut−m, the average number of users connected to the nearest macro cell is
simply E[Nmu] = λut−m

λmc
. Therefore, using similar arguments as in the backhaul part of

coverage-aided deployment (see the previous section), we have

E
[
P
[
A2

]]
= P

[
Ccr >

E
[
Nmc

][
Nmu

]
τmc

γ

]
(C.34)

= 1− P
[
Ccr ≤

E
[
Nmc

]
E
[
Nmu

]
τmc

γ

]
(C.35)

= 1− exp
(
− τmcλcr

µγλut−m

)
. (C.36)

4) Final expression: For the evaluation of E
[
P
[
A1

]]
in (C.9), we consider that

fmc(rmc) = k
ν

(
rmc

ν

)k−1
e−(rmc/ν)k where k and ν are shift and shape parameters respectively.

Also the integration limit is from 0 to Rc. Plugging expressions of Laplace transforms
(namely (C.31) and (C.32)) into (C.9), and considering (C.36) give the final expression of

(C.3). For the notational convenience, we denote E
[
P
[
A1

]]
and E

[
P
[
A2

]]
as B

(cap)
1 and

B
(cap)
2 respectively. This concludes our approximation for capacity-aided deployment.

We therefore conclude the proof of average delivery rate of typical macro cell user both
in coverage and capacity-aided deployments. �

C.2 Proof of Theorem 11

As similar to the rate of typical macro cell user, the rate of typical small cell user is
affected by random fluctuations of spatial distribution of cells, fading, interference and
capacity of central routers. Let us first denote event A1 as log(1 + SIRsu) > τsc, event A2

as R′su > τsc and event A3 as fz ∈ ∆x. Then, the average rate can be expressed by using
the rate given in (5.11) in Definition (8), such as

R̄su = E
[
Rsu

]
(C.37)

(a)
= E

[
τscP

[
A2

](
P[A2] + P[A3]− P[A2]P[A3]

)]
(C.38)

(b)
= τscE

[
P
[
A1

]]
E
[
P
[
A2

]]
+ τscE

[
P
[
A1

]]
E
[
P
[
A3

]]
− τscE

[
P
[
A1

]]
E
[
P
[
A2

]]
E
[
P
[
A3

]]
(C.39)

where (a) comes from the compact rate definition in (5.11), (b) is due to the linear prop-
erties of expectation operator and independence of event A1 with respect to A2 and A3
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and regrouping the terms. In the above expressions, observe that we skip to mention
conditioning for notational clarity. However, we shall later mention in case of need. In
this proof, we make use of some proof techniques developed in [205].

In the following, we first refine the expressions for E
[
P
[
A1

]]
and E

[
P
[
A2

]]
, then we

focus on crucial parts, then finalize our calculations.

We start by refining the term E
[
P
[
A1

]]
, that is

E
[
P
[
A1

]]
= E

[
P
[
log(1 + SIRsu) > τsc

]]
(C.40)

(a)
=

∫ ∞
0

P
[
log(1 + SIRsu) > τsc

∣∣rsc

]
fsc(rsc)drsc (C.41)

(b)
=

∫ ∞
0

P
[
log(1 +

Pscgr
−α

Iss + Ims

) > τsc

∣∣∣rsc

]
fsc(rsc)drsc (C.42)

(c)
=

∫ ∞
0

P
[
g >

(eτsc − 1)(Iss + Ims)

Pscr−α
∣∣rsc

]
fsc(rsc)drsc (C.43)

(d)
=

∫ ∞
0

EIss,Ims

[
P
[
g >

(eτsc − 1)(Iss + Ims)

Pscr−αsc

∣∣∣rsc, Iss, Ims

]]
fsc(rsc)drsc

(e)
=

∫ ∞
0

exp
(
− (eτsc − 1)(Iss + Ims)

Pscr−αsc

)
fsc(rsc)drsc (C.44)

=

∫ ∞
0

e
− (eτsc−1)

Pscr
−α
sc LIss

(eτsc − 1

Pscr−αsc

)
LIms

(eτsc − 1

Pscr−αsc

)
fsc(rsc)drsc (C.45)

where steps (a) and (b) follow from the definition of SIR in (5.7) and averaging over
the spatial distribution of cells for a given PDF of fsc(rsc). The step (c) is obtained by
rearranging the terms so that the fading coefficient h is left on the left hand side, the
step (d) is due to the averaging over the interference terms Iss and Ims, and the step
(e) is obtained by considering the fact that g is an Exponentially distributed random
variable with mean 1. The final step follows from the definition of Laplace transform with
LIss = EIss [e−sIss ] and LIms = EIms [e

−sIms ], where s = eτsc−1
Pscr

−α
sc

. Now, let us refine the term

E
[
P
[
A2

]]
, that is

E
[
P
[
A2

]]
= E

[
P
[
R′su > τsc

]]
(C.46)

(a)
= P

[ γCcr

E
[
Nsc

]
E
[
Nsu

] > τsc

]
(C.47)

= P
[
Ccr >

E
[
Nsc

]
E
[
Nsu

]
τmc

γ

]
(C.48)

where (a) is due to the the definition of rate splitting policy in (5.9) and using the fact
that the term inside the outer expectation is constant with respect to the spatial random
variations. However, the inner expectations are with respect to the spatial random vari-
ables. In the above expression, the last step is obtained by rearranging the terms. Finally,
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for the term E
[
P
[
A2

]]
(namely cache hit probability), we have that

E
[
P
[
fz ∈ ∆x

]]
=

∫ ∞
0

fpop (f, γ) df (C.49)

=

∫ 1+Fsc

1

fpop (f, γ) df (C.50)

= 1−
(
1 + Fsc

)1−η
(C.51)

After this general refinement, we now turn our attention to the final expressions for
coverage and capacity-aided deployments separately.

C.2.1 Coverage-aided deployment

Note that the typical user located at origin o is connected to the nearest small cell x0,
and assumed at distance rsc = ‖x0 − o‖. We start with Laplace transforms of Imm and
Ism, then focus on the backhaul part and final expressions.

Laplace transform of Iss: Let us assume that Ĩss is the interference due to the points
in Φss expect the nodes within the distance rsc from the typical small cell user. Therefore,
the interference Iss is stochastically dominated by the Ĩss, and we have

LIss(s) ≈ LĨss(s) (C.52)

= exp
(
− πλsc′

∫ ∞
r2sc

( 1

1 + s−1P−1
sc x

α/2

)
dx
)

(C.53)

= exp
(−sπλsc′Psc(2/α)

1− 2/α
r2−α

sc F
(
1, 1− 2/α; 2− 2/α;−sPscr

−α
sc

))
. (C.54)

Laplace transform of Ims: Supposing that Hsc is the ball centered at the position of
connected small cell with radius Rc and HCsc = R2 \ Hsc, the Laplace transform can be
expressed as

LIms(s) = exp
{
− λmc

((sPmc)
2/απ2(2/α)

sin(π 2
α

)
− πR2

cAsc(s, Rc)
)}
, (C.55)

where

Asc(s, Rc) =
1

πR2
c

∫ 2π

0

∫ rsccosϕ+
√
R2

c−r2scsin2ϕ

0

rdrdϕ

1 + s−1P−1
mc r

α
. (C.56)

Backhaul part : By Lemma 9 and independence of Φsc and Φcr, the average number of
small cells connected to a nearest central router is

E[Nsc] =
λsc

λcr

(C.57)

=
λsc′exp(−λmcπR

2
c)

λcr

. (C.58)
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Even though the process of small cells is not a PPP but Poisson hole process, note that the
results still hold due to motion-invariant properties of the process. Similarly, the average
number of users connected to a small cell is given by

E[Nmu] = λsc
λut

λmc + λsc

(C.59)

=
λsc′exp(−λmcπR

2
c)λut

λmc + λsc′exp(−λmcπR2
c)
. (C.60)

Based on the expressions for E[Nsc] and E[Nmu], and using the fact that Ccr is Exponen-
tially distributed random variable with mean µ, we have

E
[
P
[
A2

]]
= P

[
Ccr >

E
[
Nsc

]
E
[
Nsu

]
τsc

γ

]
(C.61)

= 1− P
[
Ccr ≤

E
[
Nsc

]
E
[
Nsu

]
τsc

γ

]
(C.62)

= 1− exp
(
− τscλcr(λmr + λsc)

µγλ2
scλut

)
(C.63)

= 1− exp
(
− τscλcr(λmr + λsc)

µγλ2
scλut

)
(C.64)

where λsc = λsc′exp(−λmcπR
2
c).

4) Final expression: For the evaluation of E
[
P
[
A1

]]
in (C.45), we consider that

fsc(rsc) = k
ν

(
rsc
ν

)k−1
e−(rsc/ν)k where k and ν are shift and shape parameters respectively

[205]. Also the integration limit is from 0 to Rc. Plugging expressions of Laplace trans-
forms (namely (C.65) and (C.66)) into (C.45), and considering both (C.70) and (C.51)

give the final expression of (C.39). For the notational convenience, we denote E
[
P
[
A1

]]
,

E
[
P
[
A2

]]
and E

[
P
[
A3

]]
as C

(cov)
1 , C

(cov)
2 and C

(cov)
3 respectively. This concludes our

approximation for coverage-aided deployment.

C.2.2 Capacity-aided deployment

Following the similar organization as in the previous section, we first focus on Laplace
transforms of Iss and Ims, then detail the backhaul part. The finall expressions shall follow
afterwards.

1) Laplace transform of Iss: Since the typical user is connected to the nearest small
cell is (rsc distance far away, there is no small cells in the ball centered at the origin with
radius rsc. Using a modified path loss function ˜̀(x) = `(x)1{‖x‖>rsc} and using results in
[245] (see Eq. (34)), the Laplace transform can be expressed as

LIss(s) = exp
(
− λsc′

∫
R2

(
1− exp(−c̄ν(s, x))

)
dx
)∫

R2

(
exp(−c̄ν(s, x))

)
f(x)dx (C.65)
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where ν(s, x) =
∫
R2

f(y)

1+(sPsc
˜̀(y−x))−1 dy.

2) Laplace transform of Ims: Since the interference is due to macro cells which is
formed by a PPP, we have

LIms(s) = exp
(
− λmc

(sPmc)
2/απ2(2/α)

sin(π 2
α

)

)
. (C.66)

3) Backhaul part : Due to independence of Φsc and Φcr, the average number of small
cells connected to a nearest central router is deduced by Lemma 9, that is to say

E[Nsc] =
λsc′ c̄

λcr

. (C.67)

Similarly, the average number of users connected to a small cell is given by E[Msu] = λut−s

λsc′ c̄
.

Under these observations and using similar arguments as in the backhaul part of coverage-
aided deployment (see the previous section), we have

E
[
P
[
A2

]]
= P

[
Ccr >

E
[
Nsc

][
Nsu

]
τsc

γ

]
(C.68)

= 1− P
[
Ccr ≤

E
[
Nsc

]
E
[
Nsu

]
τsc

γ

]
(C.69)

= 1− exp
(
− τmcλcr

µγλut−s

)
. (C.70)

4) Final expression: For the evaluation of E
[
P
[
A1

]]
in (C.45), we consider that

fsc(rsc) = k
ν

(
rsc
ν

)k−1
e−(rsc/ν)k where k and ν are shift and shape parameters respectively.

Also the integration limit is from 0 to Rc. Plugging expressions of Laplace transforms
(namely (C.65) and (C.66)) into (C.45), and considering both (C.70) and (C.51) give the

final expression of (C.39). For the notational convenience, we denote E
[
P
[
A1

]]
, E
[
P
[
A2

]]
and E

[
P
[
A3

]]
as C

(cap)
1 , C

(cap)
2 and C

(cap)
3 respectively. This concludes our approximation

for capacity-aided deployment.

We therefore conclude the proof of average delivery rate of typical small cell user both
in coverage and capacity-aided deployments. �
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