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Abstract

Piecewise affine (PWA) feedback control laws have received significant attention

due to their relevance for the control of constrained systems, hybrid systems ;

equally for the approximation of nonlinear control. However, they are often as-

sociated with serious implementation issues. Motivated by the challenges on this

class of particular controllers, this thesis is mostly related to their analysis and

design.

The first part of this thesis aims to compute the robustness and fragility margins

for a given PWA control law and a linear discrete-time system. More precisely, the

robustness margin is defined as the set of linear time-varying systems such that

the given PWA control law keeps the trajectories inside a given feasible set. On a

different perspective, the fragility margin contains all the admissible variations of

the control law coefficients such that the positive invariance of the given feasible

set is still guaranteed. It will be shown that if the given feasible set is a polytope,

then so are these robustness/fragility margins.

The second part of this thesis focuses on inverse optimality problem for the

class of PWA controllers. Namely, the goal is to construct an optimization problem

whose optimal solution is equivalent to the given PWA function. The methodology

is based on convex lifting : an auxiliary 1−dimensional variable which enhances

the convexity characterization into recovered optimization problem. Accordingly,

if the given PWA function is continuous, the optimal solution to this reconstructed

optimization problem will be shown to be unique. Otherwise, if the continuity of

this given PWA function is not fulfilled, this function will be shown to be one

optimal solution to the recovered problem.

In view of applications in linear model predictive control (MPC), it will be

shown that any continuous PWA control law can be obtained by a linear MPC

problem with the prediction horizon at most equal to 2 prediction steps. Aside

from the theoretical meaning, this result can also be of help to facilitate imple-

mentation of PWA control laws by avoiding storing state space partition.

Another utility of convex liftings will be shown in the last part of this thesis to

be a control Lyapunov function. Accordingly, this convex lifting will be deployed

in the so-called robust control design based on convex liftings for linear system

affected by bounded additive disturbances and polytopic uncertainties. Both im-
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Abstract vi

plicit and explicit controllers can be obtained. This method can also guarantee the

recursive feasibility and robust stability. However, this control Lyapunov function

is only defined over the maximal λ−contractive set for a given 0 ≤ λ < 1 which

is known to be smaller than the maximal controllable set. Therefore, an exten-

sion of the above method to the N−steps controllable set will be presented. This

method is based on a cascade of convex liftings where an auxiliary variable will

be used to emulate a Lyapunov function. Namely, this variable will be shown to

be non-negative, to strictly decrease for N first steps and to stay at 0 afterwards.

Accordingly, robust stability is sought.
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Les lois de commande affines par morceaux ont attiré une grande attention de la

communauté Automatique grâce à leur pertinence pour la commande de systèmes

sous contraints ou hybrides ; mais également pour l’approximation de lois de com-

mande nonlinéaires. Pourtant, leur mise en oeuvre est soumise à quelques diffi-

cultés. Motivé par les défis liés à cette classe de commandes, cette thèse porte sur

leur analyse, mise en oeuvre et synthèse.

La première partie de cette thèse a pour but le calcul de la marge de robustesse et

de la marge de fragilité pour une loi de commande affine par morceaux prédéfinie

et un système linéaire discret. Plus précisément, la marge de robustesse est définie

comme l’ensemble des systèmes linéaires à paramètres variants que la loi PWA

donnée peut commander en boucle fermée pour maintenir les trajectoires dans

la région faisable. D’ailleurs, la marge de fragilité comprend toutes les variations

des coefficients de la commande donnée telle que l’invariance de la région faisable

soit encore garantie. Il est montré que si la région faisable donnée est un polytope,

ces marges sont aussi des polytopes.

La deuxième partie de ce manuscrit est consacrée au problème de l’optimalité

inverse pour la classe des fonctions affines par morceaux. C’est-à-dire, l’objective

est de définir un problème d’optimisation pour lequel la solution optimale est

équivalente à la fonction affine par morceaux donnée. La méthodologie est fondée

sur le convex lifting, i.e., un variable auxiliaire, scalaire, qui permet de définir un

ensemble convex à partir de la partition de paramètres de la fonction affine par

morceaux donnée. Il est montré que si la fonction affine par morceaux donnée est

continue, la solution optimale de ce problème redéfini sera unique. Par contre, si la

continuité n’est pas satisfaite, cette fonction affine par morceaux sera une solution

optimale parmi les autres du problème redéfini.

En ce qui concerne l’application dans la commande prédictive, il sera montré

que n’importe quelle loi de commande affine par morceaux continue peut être ob-

tenue par un autre problème de commande prédictive avec l’horizon de prédiction

au plus égal à 2. A côté de cet aspect théorique, ce résultat sera utile pour faci-

liter la mise en oeuvre des lois de commandes affines par morceaux en évitant

l’enregistrement de la partition de l’espace d’état.

Dans la dernière partie de ce manuscrit, une famille de convex liftings servira

comme des fonctions de Lyapunov. En conséquence, ces ”convex liftings” se-

ront déployés pour synthétiser des lois de commande robustes pour des systèmes

linéaires incertains, également en présence de perturbations additives bornées. Des

lois implicites et explicites seront obtenues en même temps. Cette méthode per-

met de guarantir la faisabilité récursive et la stabilité robuste. Cependant, cette

fonction de Lyapunov est limitée à l’ensemble λ−contractive maximal avec une

constante scalaire 0 ≤ λ < 1, qui est plus petit que l’ensemble controllable maxi-

mal. Pour cette raison, une extension de cette méthode pour l’ensemble control-

lable de N−pas, sera présentée. Cette méthode est fondée sur des convex liftings
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en cascade où une variable auxiliaire sera utilisée pour servir comme une fonc-

tion de Lyapunov. Plus précisément, cette variable est non-négative, strictement

décroissante pour les N premiers pas et égale toujours à 0 après. Par conséquent,

la stabilité robuste est guarantie.



Résumé

Cette thèse s’intéresse à l’analyse, à la mise en oeuvre et à la synthèse des lois

de commandes affines par morceaux. Tout d’abord, la marge de robustesse et la

marge de fragilité de la loi de commande donnée sont définies. La marge de ro-

bustesse permet de définir un ensemble de modèles autour du modèle nominal

guarantissant l’invariance de la région faisable et la marge de fragilité permet de

définir un ensemble d’erreurs de quantification de la loi de commande lors de la

mise en oeuvre permettant de guarantir également l’invariance de la région fai-

sable.

Afin de réduire la mémoire nécessaire pour la mise en oeuvre des lois de com-

mande explicites (affines par morceaux), la deuxième partie de cette thèse s’intéresse

à la construction d’un problème d’optimisation équivalent permettant d’obtenir la

même loi de commande donnée mais avec une representation plus compacte. Ce

problème d’optimalité inverse est résolu grâce à l’utilisation des convex liftings.

Finalement, il est connu que la commande prédictive est conservative et que

la solution optimale devient plus complexe quand l’horizon de prédiction croı̂t.

Par conséquent, c’est nécessaire de proposer une méthode simple de synthèse des

commandes robustes capable de faire face à des incertitudes polytopiques et à

perturbations additives bornées.

Tous les problèmes mentionnés au-dessus seront adressés dans cette thèse. La

contribution de ces travaux est esquissé au dessous :

— une analyse de robustesse et de fragilité pour une loi de commande affine

par morceaux et un système linéaire ;

— solution du problème d’optimalité inverse fondée sur le convex lifting ;

— synthèse de commandes robustes pour des systèmes linéaires affectés par

des incertitudes polytopiques et des perturbations additives bornées.

Chacune est présentée en détail par la suite.

ix
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Marges de robustesse et de fragilité explicites pour

commandes affines par morceaux

A partir de l’analyse, ce chapitre considère le calcul des marges de robustesse et

de fragilité pour une commande affine par morceaux donnée et un système linéaire

discret. L’idée est fondée sur le principe de l’invariance positive. Autrement dit,

étant donnée une commande affine par morceaux, définie sur une région feasable

X :
fpwa(x) = Hix+Gi pour x ∈ Xi, (1)

et un système linéaire variant

xk+1 = A(k)xk +B(k)uk

où

[A(k) B(k)] ∈ Ψ = conv {[A1 B1] , . . . , [AL BL]} , (2)

le problème de robustesse a pour but de trouver l’ensemble des systèmes linéaires

Ψrob ⊆ Ψ tel que :

(A(k) + B(k)Hi)x+B(k)Gi ∈ X ∀x ∈ Xi et ∀ [A(k) B(k)] ∈ Ψrob.

Il est montré que Ψrob est un polytope. Son calcul peut être effectué par deux

approches diférentes ; i.e. la représentation par les sommets et la représentation

par les demi-espaces.

De même, le problème de fragilité vise à calculer l’ensemble des variations

des coefficients de la commande affine par morceaux donnée tel que la positive

invariance de X soit encore assurée. A différence du problème de robustesse, le

problème de fragilité considère un système linéaire invariant :

xk+1 = Axk +Buk (3)

et une commande affine par morceaux donnée comme (1). La commande mise en

oeuvre est écrite dans la forme ci-dessous ;

fpwa(x) = (Hi + δHi
)x+ (Gi + δGi

) pour x ∈ Xi. (4)

D’après la définition, le problème de fragilité est équivalent à trouver l’ensemble

de (δHi
, δGi

), décrit par ∆u
i tel que :

(A+B(Hi + δHi
))x+B(Gi + δGi

) ∈ X , ∀x ∈ Xi et ∀ (δHi
, δGi

) ∈ ∆u
i .

Il est montré que ∆u
i décrit un polyèdre. Son calcul explicite est utile dans la mise

en oeuvre des commandes explicites sous une représentation des coefficients avec

précision finie.
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Fondée sur la même philosophie, ce problème peut s’étendre calcul de l’en-

semble de perturbations additives pour un système linéaire invariant :

xk+1 = Axk +Buk + wk, (5)

en boucle fermée avec la commande affine par morceaux (1) lors que l’invariance

positive de X est conservée.

Finalement, les erreurs admissibles pour la description des régions dans la parti-

tion de l’espace d’état seront adressées. Ce problème est considéré indépendamment

des problèmes de fragilité des coefficients de la loi explicite ; c’est-à-dire, en

considérant que les coefficients de la loi de commande donnée n’ont pas d’er-

reurs numériques. Considérer à la fois les erreurs sur la description des régions

et des coefficients de la commande, fait perdre la linéarité de la formulation et le

calcul des marges.

Optimalité inverse fondée sur le convex lifting

Il est connu que un problème linéaire/quadratique paramétré est écrit sous la

forme suivante :

u
∗(x) = argmin

u

J(u, x) s.t. Gu ≤ Ex+W,

où u ∈ R
du représente le variable de décision et x ∈ R

dx signifie le paramètre.

De plus, la fonction de coût prend la forme suivante :

J(u, x) = u
THu+ (xTD + C)u,

où H = HT est semidéfinie positive. Si H = 0 et D = 0, ce problème d’optimi-

sation devient un problème de programmation linéaire paramétré.

La solution optimale du problème ci-dessus est une fonction affine par mor-

ceaux définie sur une partition polyhédrale {Xi}i∈IN i.e.

u
∗(x) = Fix+Gi pour x ∈ Xi.

Le problème d’optimalité inverse pour la famille des fonctions affines par mor-

ceaux, appelé différemment par le problème de programmation linéaire ou qua-

dratique paramétré inverse, a pour but de construire un problème d’optimisa-

tion dont la solution optimale est équivalente à la fonction affine par morceaux

donnée ; c’est-à-dire chercher des matrices Hx, Hu, Hz, K et une fonction de coût

J(x, z,u) tel que u∗(x) soit un sous-composant de la solution optimale du problème

d’optimisation suivant :

min
[zT uT ]T

J(x, z,u) s.t. Hzz +Huu+Hxx ≤ K,
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où z décrit une variable auxiliaire. Il est montré que la solution de tel problème

d’optimalité inverse est fondée sur le concept de convex lifting. En conséquence,

il sera montré que z ∈ R est suffisant pour définir ce problème inverse.

Par ailleurs, pour les fonctions affines par morceaux continues, il sera montré

que la solution optimale de ce problème d’optimalité inverse est unique. Par contre,

pour la famille des fonctions affines par morceaux discontinues, l’unicité de la so-

lution optimale du problèm d’optimisation reconstruit sera perdue. Plus précisément,

il sera montré que la fonction affine par morceaux donnée est une parmi ses autre

solutions optimales.

Synthèse de commande prédictive

Ce chapitre commence par une application de l’optimalité inverse dans la com-

mande prédictive linéaire. Un résultat important pour la commande prédictive

linéaire sera exposé : n’importe quelle commande affine par morceaux peut être

obtenue par un problème de commande prédictive linéaire avec l’horizon au plus

égale à 2.

A côté de l’aspect théorique, ce résultat est aussi utile pour faciliter la mise

en oeuvre des lois de commande affines par morceaux, en particulier obtenues

par la programmation quadratique paramétrée et permet d’éviter le stockage des

partitions de l’espace d’état. Cela permet la mise en oeuvre des lois de commande

affines par morceaux dans des calculateurs moins chers.

La deuxième partie de ce chapitre présente une méthode de synthèse des com-

mandes robustes fondée sur des convex liftings qui sont définie sur l’ensemble

maximal λ−contractive comme une estimation du domain d’attraction pour un

λ ∈ [0, 1) donné. Tels convex liftings servent comme des fonctions de Lyapunov

et seront utilisés plus tard pour synthétiser des lois de commande robustes pour

des systèmes linéaires affectés par des incertitudes polytopiques et perturbations

additives bornées. Ces lois de commande peuvent être obtenues sous les formes

implicite et explicite. Il sera montré que la méthode proposée peut guarantir la

feasabilité récursive et la stabilité robuste. Pour la synthèse implicite, la formu-

lation est simple et facile à mettre en oeuvre ; plus précisément, à chaque temp

d’échantillonage, elle demande la résolution d’un problème de programmation

linéaire. Une limitation de cette méthode est de calculer tout d’abord l’ensemble

maximal λ−contractive, puisqu’il exige une procédure répétitive et peut deman-

der du temps de calcul considérable. Heureusement, ce calcul est fait hors ligne.

Cependant, cet ensemble maximal λ−contractive est plus petit que l’ensemble

maximal controllable.

Comme une généralisation de la synthèse ci-dessus, la troisième partie de ce

chapitre présente une nouvelle synthèse des commandes sur l’ensemble de N−pas
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controllable. Cette méthode est fondée sur des convex liftings en cascade. Elle

utilise une nouvelle variable auxiliaire qui sert comme une fonction de Lyapunov ;

i.e. elle est non-négative, décroı̂t strictement jusqu’au pas N +1 et reste à 0 par la

suite.
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Notation

For a conventional use, throughout this manuscript,

— R denotes the set of real numbers,

— R+ denotes the set of non-negative real numbers,

— R>0 denotes the set of strictly positive real numbers,

— N denotes the set of non-negative integers,

— N>0 denotes the set of positive integers.

Given N ∈ N>0, by IN , we denote the set of indices as follows:

IN = {i ∈ N>0 | i ≤ N} .

Given two points x, y ∈ R
d, we use 〈x, y〉 to denote the inner product of these

two points i.e. 〈x, y〉 = xTy = yTx. By ρ(x, y), we denote the Euclidean distance

between these two points. Also we write ρX(x) to denote the distance between a

point x ∈ R
d and a set X ⊂ R

d. It can be mathematically defined as follows:

ρX(x) = inf
y∈X

ρ(x, y).

Given a function f : X ⊂ R
m → R

n, by f(X) we denote the set defined as

follows:

f(X) := {y ∈ R
n | ∃x ∈ X s.t. y = f(x)} .

Also, if f(x) = Ax for x ∈ X and a matrix of appropriate dimension A, then we

write AX = f(X).

Given two sets S1, S2 ⊆ R
d, we write S1\S2 to denote the set of points which

belong to S1 but don’t belong to S2; i.e.

S1\S2 :=
{
x ∈ R

d | x ∈ S1, x /∈ S2

}
.

Given two points x, y ∈ R
d, and λ ∈ R, then λx + (1− λ)y is called an affine

combination of two points x, y. Also, the set of all affine combinations of x, y is

the line:

L(x, y) := {λx+ (1− λ)y | λ ∈ R} .

xxi
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Similarly, aff(X ) called the affine hull of X , denotes the set of all affine combina-

tions of elements in X , i.e.,

aff(X ) =
{

k∑

i=1

λixi | k ∈ N>0, xi ∈ X , λi ∈ R,

k∑

i=1

λi = 1

}
.

dim(X ) denotes the dimension of aff(X ).
Particularly, a convex combination of two points x, y ∈ R

d is described by

λx+ (1− λ)y, for a given λ ∈ [0, 1] .

Moreover, the convex hull of a set X ⊂ R
d denoted by conv(X ), represents the

set of all convex combinations of all finite subsets of X . In other words,

conv(X ) :=
{

n∑

i=1

λixi | λi ∈ R+, xi ∈ X , ∀i ∈ In,
n∑

i=1

λi = 1, n ∈ N>0

}
,

meaning the smallest convex set which contains X .
— int(X ) denotes the interior of X .
— bd(X ) denotes the set of points which lie on the boundary of a closed set

X .
— cl(X ) denotes the closure of X .
— Card(X ) denotes the cardinal number of X .
— ext(X ) denotes the set of extreme points of a convex set X .

Given P1, P2 ⊂ R
d, P1 ⊕ P2 denotes the Minkowski sum of P1, P2 and is defined

as follows:

P1 ⊕ P2 :=
{
y1 + y2 ∈ R

d | y1 ∈ P1, y2 ∈ P2

}
.

1 (0) denotes a vector of appropriate dimension with the elements equal to 1
(0). Also, 1n (0n) implies that 1 (0) ∈ R

n. I denotes an identity matrix. Further,

In means that I ∈ R
n×n.

Given two vectors x = [xi] ∈ R
d, y = [yi] ∈ R

d, the relation x ≤ y implies

that xi ≤ yi, ∀i ∈ Id. Otherwise a positive (semi)definite matrix A ∈ R
n×n is

denoted by A(≥) > 0.

Given x = [xi] ∈ R
d, by ‖x‖p, we denote the p−norm of vector x. Namely,

some special norms usually employed in this thesis are defined below

— p = 1, ‖x‖1 =
∑d

i=1 |xi|,
— p = 2, ‖x‖2 =

√
xTx,

— p =∞, ‖x‖∞ = max
i∈Id
|xi|.
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For a given matrix A ∈ R
m×n, then vec(A) denotes the vector composed of the

columns of matrix A, i.e.

vec(A) =
[
AT (·, 1) . . . AT (·, n)

]T ∈ R
mn,

where A(·, i) denotes the ith column of matrix A. Also, A(j, ·) denotes the jth row

of matrix A.
Also, given two matrices A = [aij] ∈ R

m×n, B ∈ R
p×q, their Kronecker tensor

product is denoted by A⊗ B and is defined as follows:

A⊗ B :=



a11B . . . a1nB

...
. . .

...

am1B . . . amnB


 .

Given a set of finite points S = {s1, . . . , sn} ⊂ R
d, then [S] is used to denote a

matrix whose columns correspond to the elements of S in an arbitrary order; i.e.

[S] = [s1 . . . sn] ∈ R
d×n.

The unit simplex denoted by SL ⊂ R
L, is defined as follows:

SL :=
{
x ∈ R

L | x ≥ 0, 1TLx = 1
}
. (6)

If P denotes a full-dimensional polyhedron in R
d, then throughout this manuscript

V(P ) denotes the set of its vertices, R(P ) denotes the set of its extreme rays,

F(P ) denotes the set of its facets.

If S ⊂ R
d denotes a full-dimensional set and S denotes a subspace of Rd, we

use Proj S S to denote the orthogonal projection of S onto the subspace S.
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Chapter 1

Introduction

Mathematical optimization has a longstanding history and becomes nowadays an

important branch of mathematics. Its objective is to find a best element with re-

spect to some criteria by minimizing or maximizing them subject to a set of con-

straints. The development of mathematical optimization has created new vectors

of development for related researches, particularly in applied mathematical do-

mains: e.g. computer science, economy, management science... In control theory,

the first seeds of mathematical optimization are known to be planted by Pontrya-

gin and Richard Bellman. Over several decades, the so-called optimal control field

has bloomed with many sub-areas and becomes a very active research branch.

The most popular form of optimal control is called linear quadratic control i.e.

minimizing a quadratic cost function. In the continuous time domain, it can be

written in the following form:

min
u(t)

1

2
xT (Tf )P (Tf )x(Tf ) +

1

2

∫ Tf

T0

(xT (t)Qx(t) + uT (t)Ru(t))dt (1.1)

subject to a linear time invariant system

ẋ(t) = Ax(t) + Bu(t), (1.2)

and the initial condition x(T0) = x0. Note that (A,B) is assumed to be control-

lable and Q,R are positive semidefinite and positive definite matrices, respec-

tively. These matrices are also called weighting matrices. Tf denotes the final

time. Also, 1
2
xT (Tf )Px(Tf ) denotes the terminal cost function.

Particularly, the infinite horizon problem minimizes an infinite time cost func-

tion i.e.

J =
1

2

∫ ∞

T0

(xT (t)Qx(t) + uT (t)Ru(t))dt. (1.3)

This infinite horizon problem has the solution in the following form

u(t) = −Kx(t),

1
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where K is the solution to the algebraic Ricatti equation

K = R−1BTP

0 = −PA− ATP + PBR−1BTP −Q.

Similarly, in the discrete-time domain, a linear quadratic control problem can be

written in the following form:

min
uk

∞∑

k=0

(xT
kQxk + uT

kRuk)

with respect to a linear discrete-time invariant system

xk+1 = Axk +Buk.

Accordingly, its solution is also computed via the discrete version of the Ricatti

equation:

P = P TAP − ATPB(R +BTPB)−1BTPA+Q. (1.4)

It is shown in Chmielewski and Manousiouthakis [1996], Sznaier and Damborg

[1987] that a (constrained) infinite horizon quadratic optimal control problem is

equivalent to a (constrained) finite horizon one. More precisely, consider the con-

strained infinite-time quadratic optimal control problem:

min
x,u

∞∑

k=0

(xT
kQxk + uT

kRuk)

s.t. xk+1 = Axk +Buk, x0 = x0 ∈ X,

x = {xk}∞k=0, u = {uk}∞k=0,

xk ∈ X ⊂ R
dx , uk ∈ U ⊂ R

du , ∀k ∈ N,

(1.5)

where X,U are assumed to be compact and convex sets; and to contain the origin

in their interior. Then, there exists an N ∈ N>0 such that the optimal solution to

(1.5) solves the following problem:

min
xN ,uN

N−1∑

k=0

(xT
kQxk + uT

kRuk) + xT
NPxN

s.t. xk+1 = Axk +Buk, x0 = x0 ∈ X,

x
N = {xk}Nk=1, u

N = {uk}N−1
k=0 ,

xk ∈ X ⊂ R
dx , uk ∈ U ⊂ R

du , ∀ 0 ≤ k ≤ N,

(1.6)
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where P is the solution to the Ricatti equation (1.4).

Further, if X,U are polytopes, then it is shown in Bemporad et al. [2002], Feller

et al. [2013], Gutman and Cwikel [1987], Olaru and Dumur [2004], Pistikopou-

los et al. [2007], Seron et al. [2003], Tøndel et al. [2003] that optimal solution

to problem (1.6) possesses the piecewise affine structure, leading to a piecewise

affine closed loop system. It is worth emphasizing that this rising class of con-

trollers has received significant attention from the control community due to its

relevance for small dimensional systems. However, they still exist major prob-

lems in terms of implementation:

— the lack of a theoretical framework for implementation of PWA controllers

under finite precision arithmetic to guarantee closed-loop stability,

— the limitation of their implementation into low-cost platforms.

Motivated by the above problems, this thesis focuses in the first part on the so-

called robustness and fragility analysis of given PWA control laws and linear

systems. Subsequently, to overcome the second problem, the so-called inverse

optimality problem for the class of these controllers will also be discussed.

Inverse optimality was raised and solved by Kalman in Kalman [1964] for lin-

ear continuous systems. Originally, it aims to find an optimization formulation

which recovers the given state feedback control law. More precisely, consider a

stabilizing state feedback u∗ = Kx and a continuous time-invariant (LTI) system

ẋ = Ax+Bu, (1.7)

where x, u stand for the state and control variables, respectively and [A B] is

assumed to be controllable. Inverse optimality aims to find a pair of weighting

matrices Q,R characterizing the cost function:

J∞(x, u) =
1

2

∫ +∞

0

(xTQx+ uTRu), (1.8)

such that the given stabilizing control law u∗ = Kx is the solution to minimizing

J∞(x, u) problem, namely

u∗ = Kx = argmin
u

J∞(x, u). (1.9)

Interested in this idea, many studies revisited inverse optimality for different sys-

tems and exploited it as a new approach for stabilizing and robust control de-

signs e.g. in Freeman and Kokotovic [1996], Kong et al. [2012], Krstic and Li

[1998], Krstic and Tsiotras [1999], Larin [2003], Løvaas et al. [2009], Nguyen

et al. [2014b], Ostertag [2011], Rowe and Maciejowski [2000].

Over several decades of development, inverse optimality may still be valuable

for control design in relationship with recently emerging classes of systems as hy-

brid systems, particularly piecewise affine systems. It is known that PWA systems
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have received significant studies due to the fact that this class of systems is relevant

to emulate nonlinear systems as well as to facilitate stabilizing control design and

stability analysis Angelis [2001]. However, our interest is limited to inverse opti-

mality problem for the class of PWA control laws and linear time-invariant system.

Obviously, inverse optimality problem for the class of PWA control laws becomes

more difficult in comparison to the classical one as a piecewise affine function

can be considered as a collection of several affine functions, usually known not

to be component-wise convex or concave. Aside from the main goal to facilitate

implementation of PWA controllers, solving this problem presents a new concept

called convex liftings which will be later of use to construct control Lyapunov

function, leading to new procedures to design stabilizing/robust control laws for

linear constrained systems.

Accordingly, our main contributions can be outlined as follows:

— robustness and fragility analysis for piecewise affine control laws and a

linear system;

— solving inverse parametric linear/quadratic programming problem via con-

vex liftings;

— robust control design for constrained linear system affected by bounded

additive disturbances and polytopic uncertainties.

Each of these parts will be detailed in the sequel.

1.1 Explicit robustness and fragility margins for PWA

controllers

Starting from the analysis, this chapter considers the computation of robustness

and fragility margins for piecewise affine controllers and a linear discrete-time

system. The idea is based on the positive invariance principle. More precisely,

given a PWA controller defined over a feasible set X

fpwa(x) = Hix+Gi for x ∈ Xi, (1.10)

and a linear time-varying system

xk+1 = A(k)xk +B(k)uk

where

[A(k) B(k)] ∈ Ψ = conv {[A1 B1] , . . . , [AL BL]} , (1.11)

the robustness problem aims to find the set of linear systems Ψrob ⊆ Ψ such that:

(A(k) + B(k)Hi)x+B(k)Gi ∈ X ∀x ∈ Xi and ∀ [A(k) B(k)] ∈ Ψrob.
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It will be shown that Ψrob is a polytope. Its computation can be carried out via

two different approaches, i.e. vertex representation and halfspace representation.

Similarly, the fragility problem aims to find the set of admissible variations for

given piecewise affine controller gains in order that the positive invariance of X is

still guaranteed. Unlike the robustness problem, the fragility problem considers a

linear time-invariant system:

xk+1 = Axk +Buk (1.12)

and a given piecewise affine controller as in (1.10). The implemented controller

can be written in the following form:

fpwa(x) = (Hi + δHi
)x+ (Gi + δGi

) for x ∈ Xi. (1.13)

According to the definition, the fragility problem amounts to finding the set of

(δHi
, δGi

) denoted by ∆u
i such that

(A+B(Hi + δHi
))x+B(Gi + δGi

) ∈ X , ∀x ∈ Xi and ∀ (δHi
, δGi

) ∈ ∆u
i .

It will be also shown that ∆u
i represents a polyhedron. Its explicit computation

can be of help in the implementation of explicit control laws under finite precision

arithmetic.

Based on the same methodology, the problem can also be extended to finding

the set of admissible additive disturbances for the linear time-invariant system:

xk+1 = Axk +Buk + wk, (1.14)

controlled by a piecewise affine controller (1.10) while preserving the positive

invariance of X .
Finally, the admissible errors for the description of the regions in the state space

partition will also be tackled. This problem is independently considered without

assuming that the control law gains admit numerical round-offs. Considering si-

multaneously errors on the description of regions and errors on their associated

control law gains leads to the loss of linearity in the formulation, as well as the

computation of these errors.

1.2 IPL/QP problems via convex liftings

It is well known that a parametric linear/quadratic programming (PL/QP) prob-

lem can be written in the following form:

u
∗(x) = argmin

u

J(u, x) s.t. Gu ≤ Ex+W,
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where u ∈ R
du denotes the decision variable and x ∈ R

dx stands for the parame-

ter. Also, the cost function has the following form:

J(u, x) = u
THu+ (xTD + C)u,

where H = HT is positive semidefinite. If H = 0 and D = 0, then this optimiza-

tion problem becomes parametric linear programming (PLP).

Optimal solution to the above problem is known to be a piecewise affine func-

tion defined over a polyhedral partition {Xi}i∈IN i.e.

u
∗(x) = Fix+Gi for x ∈ Xi.

Conversely, inverse optimality problem for the class of PWA functions, alterna-

tively called inverse parametric linear/quadratic programming (IPL/QP) problem,

aims at constructing an optimization problem provided its optimal solution is

equivalent to the given PWA function, namely finding matrices Hx, Hu, Hz, K
and cost function J(x, z,u) such that u∗(x) is a sub-component of the optimal

solution to the following optimization problem:

min
[zT uT ]T

J(x, z,u) s.t. Hzz +Huu+Hxx ≤ K,

where z represents an auxiliary variable. The solution to such an inverse optimal-

ity problem will be shown to rely on a so-called convex lifting concept. Accord-

ingly, it will be shown that z ∈ R is sufficient for this inverse problem.

Also, for the continuous PWA functions, it will be shown that the optimal so-

lution to this inverse optimality problem is unique. Otherwise, for the class of

discontinuous PWA functions, the uniqueness of optimal solution to this recov-

ered optimization problem will be lost. Accordingly, the given PWA function will

be shown to be one among the optimal solutions to this problem.

1.3 Model predictive control redesign

This chapter starts from application of inverse optimality problem in linear

model predictive control (MPC). An important result for linear MPC will be

stated, namely any continuous piecewise affine control law can be obtained by

a linear MPC with the prediction horizon at most equal to 2 prediction steps.

Apart from the theoretical aspect, this result is also meaningful to facilitate imple-

mentation of PWA control laws, particularly induced from parametric quadratic

programming problems and enables one to avoid storing the state space partition.

This allows piecewise affine control laws to be implemented into low-cost (less

demanding memory) platforms.



1.3. Model predictive control redesign 7

The second part of this chapter presents a so-called robust control design based

on convex liftings which is defined over the maximal λ−contractive set as a do-

main of attraction for a given 0 ≤ λ < 1. Such a so-called convex lifting serves as

a control Lyapunov function and is later of use to synthesize robust controller for

linear system affected by bounded additive disturbances and polytopic uncertain-

ties. Such a robust controller can be obtained in both implicit and explicit forms.

It will be shown that the proposed method can guarantee the recursive feasibility

and robust stability. For the implicit control design, the formulation is simple and

easy to implement i.e. it requires solving a linear programming problem at each

sampling time. The drawback of this formulation is to compute at first glance the

maximal λ−contractive set, since it requires a repetitive procedure and takes some

time to achieve. Fortunately, this computation is carried out offline. However, this

maximal λ−contractive set is known to be smaller than the maximal controllable

set.

As a generalization of the above design procedure, the third part of this chapter

puts forward a new design procedure over the N−steps controllable set. This

procedure relies on a so-called cascade of convex liftings. This method presents

a new auxiliary variable which can serve as a Lyapunov function, i.e. is non-

negative, strictly decreases until step N + 1 and stays later at 0.
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sis. More details about convex analysis and convex optimization can be found in

prominent references Boyd and Vandenberghe [2004], Rockafellar [1970].
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The first section will be dedicated to set-theoretic notions, mostly related to

convexity in finite dimensional spaces. These elements will be essential for the

description of sets in relationship with state space dynamics. This part is comple-

mented in Section 2.2 with notions of polyhedra and polytopes which are particu-

lar cases of most interest in linear dynamics and linear constraints.

In the second part of the chapter, we move towards classical tools and notions

in control theory with Lyapunov stability, specific notions for linear systems and

basics for Model Predictive Control.

2.1 Convex sets and convex functions

2.1.1 Compact sets

A set X is called a metric space if it is assigned a distance ρ : X × X → R

satisfying:

1. ρ(x, y) ≥ 0 for any x, y ∈ X; ρ(x, y) = 0 if and only if x = y,

2. ρ(x, y) = ρ(y, x),

3. ρ(x, y) + ρ(y, z) ≥ ρ(x, z) for any x, y, z ∈ X.

For a given x ∈ X and δ > 0, define the open ball
o

B(x, δ) and the closed ball

B(x, δ) as follows:

o

B(x, δ) = {y ∈ X | ρ(x, y) < δ}
B(x, δ) = {y ∈ X | ρ(x, y) ≤ δ} .

A set X ⊂ X is called open if for any x ∈ X , there exists δ > 0 such that the open

ball
o

B(x, δ) is a subset of X ; i.e.
o

B(x, δ) ⊂ X .
A sequence {xn}∞0 of points of a set X , is called convergent to x ∈ X if

lim
n→∞

ρ(xn, x) = 0.

A set X is called closed if the limit of every convergent sequence of points in

X belongs to X .
A set X is called compact if for any infinite sequence of points in X , there

exists a subsequence that converges to a point x ∈ X .
In the Euclidean space, the distance implies the Euclidean distance between

two points, defined as follows:

ρ(x, y) =
√
〈x− y, x− y〉.
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Also, a compact set in the Euclidean space can be understood as a bounded and

closed set.

Let’s consider simple examples to illustrate these notions. Interval (1, 2) is

an open set according to its definition. Otherwise, [1, 2] is a compact set due to

its boundedness and closedness. However, interval (1, 2] is not a compact set. In

fact, consider a sequence
{
xn = 1 + 1

n

}∞
1
. This sequence contains points in (1, 2]

but converges to 1 /∈ (1, 2] . Therefore, (1, 2] is not closed, thus not compact.

Similarly, interval (−∞, 1] is not a compact set, however (−∞, 1] ∪ {−∞} is a

compact set.

2.1.2 Support and Separation

Given a vector a ∈ R
d and α ∈ R, a hyperplaneH can be described as follows:

H :=
{
x ∈ R

d | 〈a, x〉 = α
}
.

Define also the following sets

H− :=
{
x ∈ R

d | 〈a, x〉 < α
}

H+ :=
{
x ∈ R

d | 〈a, x〉 > α
}
.

Such H−,H+ are called open halfspaces. Their closures cl(H−), cl(H+), mathe-

matically described by:

cl(H−) :=
{
x ∈ R

d | 〈a, x〉 ≤ α
}

cl(H+) :=
{
x ∈ R

d | 〈a, x〉 ≥ α
}
,

are called closed halfspaces.

Moreover, given a set S ⊂ R
d, such a hyperplane H cuts S if there exist two

points x1, x2 ∈ S such that 〈a, x1〉 > α and 〈a, x2〉 < α. Clearly, a hyperplane

cuts the whole space R
d into two halfspaces.

Consider now a closed set S ⊂ R
d, such a hyperplaneH is called a supporting

hyperplane of S at some point x ∈ S if x ∈ H ∩ S and either S ⊂ cl(H−)
or S ⊂ cl(H+). Suppose the former case happens, then cl(H−) is also called a

supporting halfspace of S at x.
Now, given two sets S1, S2 ⊂ R

d, we say that such a hyperplane H separates

S1, S2 if H cuts the whole space R
d into two closed halfspaces, one contains S1

and the other contains S2. Also, S1, S2 are called strictly separated by H if they

are separated and S1 ∩H = S2 ∩H = ∅.
Note that the closed halfspace cl(H+) has an equivalent description:

cl(H+) =
{
x ∈ R

d | 〈−a, x〉 ≤ −α
}
.
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Therefore, the description of a closed (open) halfspace Ha,α can be unified as

follows:

Ha,α =
{
x ∈ R

d | 〈a, x〉 ≤ α
}
,

where a is called outer normal vector. Henceforth, this description will be of use

when talking about a general closed halfspace.

2.1.3 Convex sets

A set X ⊆ R
d is called convex if for any pair of two points in X , the line

connecting these two points is a subset ofX . This condition can be mathematically

expressed as follows:

∀y, z ∈ X , λy + (1− λ)z ∈ X for all λ ∈ [0, 1] . (2.1)

An example of convex and nonconvex sets can be found in Figure 2.1.

X

y

z

(a) Convex set

X

y

z

(b) Nonconvex set

Figure 2.1: An illustrative example of convex and nonconvex sets.

Let X ⊂ R
d be a compact, convex set, a point x ∈ X is called extreme point if

it does not belong to the relative interior of any segment connecting two points in

X . In other words, if there exist y, z ∈ X such that x = λy + (1 − λ)z for some

0 < λ < 1, then x = y = z. To illustrate this point, consider a ball B ⊂ R
d,

centered at x0 with the radius r ∈ R>0. This ball can be described as follows:

B :=
{
x ∈ R

d | 〈x− x0, x− x0〉 ≤ r2
}
,

and known to be a convex set. Recall that bd(B) denotes the set of points on the

boundary of B, i.e.

bd(B) :=
{
x ∈ R

d | 〈x− x0, x− x0〉 = r2
}
.
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It can be observed that any point belongs to bd(B) is an extreme point of this ball.

The following properties are fundamental for convex sets.

— If X is a convex set, then cl(X ) and int(X ) are convex sets.

— The intersection of convex sets is a convex set. However, the union of

convex sets may not be a convex set.

— If A,B ⊂ R
d are convex, then A⊕ B, λA for any λ ∈ R are convex.

— Any affine transformation of a convex set A is convex.

Carathéodory’s theorem has important applications in many fields. It is recalled

below from Section 2.3 in Grünbaum [1967] or Theorem 1.1.4 in Schneider [2013].

Theorem 2.1.1 If X ⊂ R
d and x ∈ conv(X ), then x is expressible in the form

x =
d∑

i=0

αixi, for αi ≥ 0, xi ∈ X , ∀i ∈ Id ∪ {0} ,
d∑

i=0

αi = 1.

This theorem means that any point in conv(X ) can be expressed via a convex

combination of d+1 or fewer points in X . The following result is of fundamental

importance. This is stated in Section 2.2 of Grünbaum [1967].

Theorem 2.1.2 Each closed, convex subset of Rd is the intersection of all closed

halfspaces of Rd which contain this set. Each open convex subset of Rd is the

intersection of all open halfspaces of Rd which contain it.

Based on this result, the following consequence introduces a closer viewpoint in

the representation of a convex set. It is presented via Corollary 1.3.5 in Schneider

[2013].

Corollary 2.1.3 Every nonempty, closed, convex set is the intersection of its sup-

porting halfspaces.

Note that for a closed, convex set, there always exists at least one supporting

hyperplane at each point on its boundary.

Recall that ext(X ) is used to denote the set of extreme points of a given con-

vex set X . The following result extracted from Section 2.4 in Grünbaum [1967],

provides another important insight for a convex set.

Theorem 2.1.4 Let K be a compact, convex subset of Rd, then K = conv (ext(K)) .
Moreover, if K = conv(A) then ext(K) ⊆ A.

Otherwise, a subset X ⊂ R
d is called a cone if it is closed under positive scalar

multiplication; i.e. if x ∈ X , then λx ∈ X for any λ > 0. From this definition,

such a set is the union of rays emanating from the origin. Also, the origin may not
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be included. Further, a convex cone is a cone and convex set. The following result

is recalled from Theorem 2.5 in Rockafellar [1970]. It is a direct consequence of

the second property for convex sets, presented above.

Theorem 2.1.5 The intersection of an arbitrary collection of convex cones is a

convex cone.

Based on its definition and Corollary 2.1.3, a convex cone can be described as

follows:

Corollary 2.1.6 Let ai ∈ R
d, i ∈ I for an arbitrary index set I. Then a closed

convex cone K ⊂ R
d can be represented by:

K :=
{
x ∈ R

d | 〈ai, x〉 ≤ 0, for all i ∈ I
}
.

The convex cone in this corollary is a closed set. If the inequalities are replaced

with strict inequalites then this convex cone represents an open set. Also, the

right-hand side of each closed halfspace is 0, due to the fact that any supporting

hyperplane of a closed convex cone includes the origin.

For unbounded convex sets, it is necessary to recall the notion of a ray. Consider

a convex set K ⊆ R
d, r ∈ R

d is called a ray of K if there exists x ∈ K such that

x + λr ∈ K for every λ ≥ 0. Also, r is called an extreme ray of K if r is not

expressible via a convex combination of two distinct rays of K i.e. r1, r2 are two

rays of K s.t.

r = αr1 + (1− α)r2, for some α ∈ (0, 1) ⇒ r = r1 = r2.

The following result provides an important insight for the representation of poly-

hedra. This result is extracted from Section 2.5 in Grünbaum [1967].

Theorem 2.1.7 A convex set K ⊂ R
d is unbounded if and only if K contains a

ray.

This inclusion is a premise of the so-called Minkowski-Weyl theorem for polyhe-

dra. This theorem will be recalled in Section 2.2.3.

Let K ⊂ R
d be a closed convex set. F ⊂ K is called a face of K if either

F = ∅, or F = K, or there exists a supporting hyperplane H of K such that

F = H ∩K. Also ∅, K are called improper faces of K. The following property

of faces is recalled from Section 2.4 in Grünbaum [1967].

Theorem 2.1.8 If F is a face of a closed convex set K, then ext(F ) = F∩ext(K).

This theorem means that the extreme points of a face of a closed convex set are

also among extreme points of this closed convex set itself.
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2.1.4 Convex functions

Given a function denoted by f : X ⊆ R
d → R, this function is called convex if

for any x, y ∈ X ,
f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), ∀λ ∈ [0, 1] .

Also, such a function f is called strictly convex if for any x, y ∈ X , x 6= y,

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y), ∀λ ∈ (0, 1) .

Convex functions have important properties. Some of them are recalled below.

— Let f : X ⊆ R
n → R, denote a real-valued function defined over a com-

pact set X , epi(f) denotes the epigraph of the function f, and is defined

as follows:

epi(f) =
{[

xT µ
]T ∈ R

n+1 | x ∈ X , µ ∈ R, µ ≥ f(x)
}
. (2.2)

Then the function f(x) is convex if and only if epi(f) ⊂ R
n+1 is a convex

set.

— Given two convex functions f1 : X ⊆ R
n → R and f2 : X ⊆ R

n → R,
it can be observed that f1 + f2 also represents a convex function defined

over X .
— If f1, . . . , fn represent real-valued, convex functions, defined over the same

domain, then

f = max {f1, . . . , fn}
is also a convex function. Also, the epigraph of f is the intersection of the

epigraphs of f1, . . . , fn.
The famous Jensen’s inequality is recalled below.

Theorem 2.1.9 If f : Rd → R is a convex function, then

f

(
n∑

i=1

λixi

)
≤

n∑

i=1

λif(xi),

for λi ≥ 0, xi ∈ R
d for all i ∈ In and

∑n

i=1 λi = 1.

2.2 Polyhedra and Polytopes

2.2.1 Polytopes

A compact, convex set S ⊂ R
d is called polytope if its set of extreme points

is finite. Accordingly, the set ext(S) will alternatively denote the vertices of S.
Henceforth, V(S) will be of use to denote the set of vertices of S. According to

this definition, a polytope naturally inherits the properties of a convex set.
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Theorem 2.2.1 If P ⊂ R
d is a polytope, any x ∈ P can be described via a convex

combination of V(P ); i.e.

x =
∑

v∈V(P )

α(v)v,

where for each v ∈ V(P ), α(v) ≥ 0, and
∑

v∈V(P ) α(v) = 1.

The above result is a direct consequence of Theorem 2.1.4. Note also that CardV(P ) <
+∞ due to its definition. This expression is alternatively said to be the vertex rep-

resentation or sometimes V−representation.

The computation of the set of vertices for a given polytope is called vertex

enumeration. This computation can be carried out by many different algorithms.

Most of numerical examples involving vertex representation in this thesis are ob-

tained with the algorithm in Avis and Fukuda [1992].

As resulted from Corollary 2.1.3, the so-called halfspace representation or

brieflyH−representation of a polytope is recalled via the following theorem. This

is quoted from Theorem 2.4.3 in Schneider [2013].

Theorem 2.2.2 Every polytope is the intersection of finitely many closed halfs-

paces.

This result implies that describing a polytope requires a finite number of closed

halfspaces. Particularly, these halfspaces are supporting halfspaces at the facets 1

of this polytope. In other words, a polytope P ⊂ R
d can be described as follows

P =
{
x ∈ R

d | Ax ≤ b
}
,

for some A ∈ R
m×d, b ∈ R

m. Further, each row of matrix A represents an outer

normal vector of polytope P. Also, the transformation from the vertex represen-

tation (V−representation) to the halfspace representation (H−representation) is

called facet enumeration. The vertex and facet enumeration problems are dual

and both studied in Avis and Fukuda [1992]. These algorithms are available in

CDD by Komei Fukuda in Fukuda [1997] and are also integrated in MPT (Multi-

parametric Toolbox) Herceg et al. [2013]. Note that the vertex enumeration prob-

lem via these proposed algorithms can be carried out in time O(ndv), where n
denotes the number of halfspaces, d denotes the dimension of this polytope, v
is its number of vertices. Dually, the facet enumeration problem proposed therein

can be carried out in time O(ndv) where v denotes the number of facets, n denotes

the number of given points in the Euclidean space of dimension d.

1. The definition of a facet of a polytope/polyhedron is presented in Section 2.2.4.
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An illustration is presented in Figure 2.2. This polytope is described via the

vertex and halfspace representations as follows:

P = conv

{[
−1
−1

]
,

[
−1
1

]
,

[
1
−1

]
,

[
1
1

]}
,

P =




x ∈ R

2 |




1 0
−1 0
0 1
0 −1


 x ≤




1
1
1
1








.

x
1

x
2

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

Figure 2.2: A polytope in R
2.

2.2.2 Polyhedral cones

A convex cone has been defined in Section 2.1.3. This section focuses on a

particular class of cones called polyhedral cones. Hereafter, closed, convex, poly-

hedral cones are exclusively considered. For simplicity, in the remainder of this

manuscript, a polyhedral cone implies a closed, convex, polyhedral cone. Accord-

ingly, a polyhedral cone C ⊂ R
d contains the origin, and can be described by the

intersection of a finite number of closed halfspaces as follows:

C :=
{
x ∈ R

d | Ax ≤ 0
}
,

where A ∈ R
m×d and 0 ∈ R

m.
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Dually, a polyhedral cone is also expressible via its finite set of extreme rays

(vectors). More clearly, there exists a finite set Y = {y1, . . . , yn} ⊂ R
d of rays

such that

C = cone(Y ), cone(Y ) =

{
n∑

i=1

λiyi | yi ∈ Y, λi ≥ 0, ∀i = 1, . . . , n

}
,

where cone(Y ) is said to be the conical hull of Y. Also,
∑n

i=1 λiyi for λi ≥ 0, ∀i =
1, . . . , n is called a conical combination.

A particularly important polyhedral cone is the positive quadrant of Rn. This

quadrant denoted by C, can be dually represented by a collection of n rays. In R
2,

this is represented by

C = cone

{[
0
1

]
,

[
1
0

]}
, C =

{
x ∈ R

2 |
[
−1 0
0 −1

]
x ≤

[
0
0

]}
.

2.2.3 Polyhedra

A polyhedron usually implies an unbounded, polyhedral and convex set. Simi-

lar to a polytope, a polyhedron is also defined as the intersection of finitely many

closed halfspaces. Dually, according to Theorem 2.1.7, a polyhedron as an un-

bounded convex set, should include a ray. A famous theorem related to the struc-

ture of polyhedra, known as the Minkowski-Weyl theorem, is recalled as follows.

Theorem 2.2.3 A polyhedron P ⊆ R
d can be represented as the Minkowski sum

of the convex hull of a finite set of points and conical hull of finite vectors; i.e.

P = conv(V(P ))⊕ cone(R(P )),

where V(P ),R(P ) stand for the sets of vertices and extreme rays of polyhedron

P, respectively.

For illustration, consider a polyhedron P ⊂ R
2, whose halfspace representation

is shown below:

P =




x ∈ R

2 |




−1 0
−3 1
1 −2
0 −1


 x ≤




2
5
3
2








.

This polyhedron is presented in Figure 2.3a. Also, it can be decomposed into the

Minkowski sum as follows:

P = P1 ⊕ P2,

P1 = conv

{[
−1
−2

]
,

[
−2
−2

]
,

[
−2
−1

]}
, P2 = cone

{[
2
1

]
,

[
1
3

]}
.
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These decomposed cone and polytope, presented in Figure 2.3b, are also called

summands of P.

(a) Polyhedron P. (b) Decomposition of P into the Minkowski sum

of P1, P2.

Figure 2.3: An illustrative example for the Minkowski-Weyl theorem.

2.2.4 Additional notes

For simplicity, given a full-dimensional polyhedron P ⊆ R
d, k−face implies a

face of dimension k for k = 0, . . . , d. More specially, 0−face is also called vertex,

1−face is denoted as edge. Also, (d− 1)−face is alternatively called facet.

If P is a polytope, then its faces are also lower-dimensional polytopes.

Recall that throughout this manuscript, V(P ),R(P ) are used to denote the set

of vertices and extreme rays of P, respectively. Also, F(P ) denotes the set of

facets of the given polyhedron P.
The following properties of polyhedron/polytope are also important:

— Any affine transformation of a polyhedron is also a polyhedron.

— Given two polyhedra P1, P2 ⊆ R
d, then P1 ⊕ P2, λP1, λ > 0 are also

polyhedra.

— The orthogonal projection of a polyhedron is also a polyhedron.

Recall that the orthogonal projection is denoted by Proj() throughout this manuscript.

The definition of the orthogonal projection is recalled as follows.

Given a polyhedron P ⊆ R
d, the orthogonal projection onto the space of (d−1)

first coordinates i.e. Rd−1, is defined by

ProjRd−1P =

{
x ∈ R

d−1 | ∃y ∈ R, s.t.

[
x
0

]
+

[
0d−1

y

]
∈ P

}
.

The orthogonal projection is known to be computationally demanding. A fa-

mous method for this computation is the Fourier-Motzkin elimination George and

Eaves [1973], Ziegler [1995]. More specially, this projection for a polytope can
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also be alternatively carried out by computing its vertices and projecting these ver-

tices onto a given subspace. The latter operation is easily computed by removing

the last coordinate of each vertex. Finally, to obtain the resulting polytope, one

needs to compute the convex hull of the projected vertices.

A polyhedron in the halfspace representation can be considered as linear con-

straints which are closely related to linear programming. Another important result

named Farkas’ lemma is recalled as follows. It is quoted from Theorem 7.1 in

Schrijver [1998].

Theorem 2.2.4 Let a1, . . . , am, b be vectors in n−dimensional space. Then

— Either, b is a nonnegative linear combination of linearly independent vec-

tors from a1, . . . , am;
— or, there exists a hyperplane {x | cTx = 0} containing t− 1 linearly inde-

pendent vectors from a1, . . . , am such that cT b < 0 and cTa1, . . . , c
Tam ≥

0 where t = rank [a1 . . . am b] .

2.3 Stability and Robust stability

2.3.1 Stability

This section aims to recall some definitions of stability useful for later develop-

ments. Consider the following discrete-time, autonomous system:

xk+1 = f(xk), (2.3)

where xk ∈ R
d stands for the state at time k and f : R

d → R
d, f(0) = 0.

The stability and asymptotic stability definitions for this system are recalled in the

sequel.

Definition 2.3.1 Consider the autonomous system (2.3). The origin is said to be

stable in the sense of Lyapunov if for any ǫ > 0, there exists a δ > 0 such that

|x0| ≤ δ, ⇒ |xk| ≤ ǫ, ∀k ≥ 0.

Definition 2.3.2 The origin is called asymptotically stable if it is stable and

limk→∞|xk| = 0.

Recall that a function V : Rd → R is called positive definite if V (0) = 0 and

V (x) > 0 for all x 6= 0. Accordingly, the celebrated result of Lyapunov’s stability

theory is expressed via the following statement.
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Theorem 2.3.3 (Lyapunov) Consider system (2.3). Suppose there exists a positive

definite function V : Rd → R satisfying:

V (f(x))− V (x) ≤ 0, ∀x,

then system (2.3) is stable. Also, if this function satisfies

V (f(x))− V (x) < 0, ∀x 6= 0,

then system (2.3) is asymptotically stable.

2.3.2 Positively invariant sets

Set-theoretic approach in control theory has been extensively studied due to

its relevance in control theory, particularly robust control designs for constrained

systems Bitsoris [1988a,b], Bitsoris and Vassilaki [1995], Blanchini [1999], Blan-

chini and Miani [2008], Gilbert and Tan [1991], Kerrigan [2001], Kolmanovsky

and Gilbert [1998], Rakovic et al. [2004, 2005, 2006], and recently in fault-

tolerant control Olaru et al. [2010], Stoican and Olaru [2013]. This has impor-

tant connections with the control design, the notation of positively invariant set

being used for stability study. Moreover, in the presence of bounded persistent

disturbances, asymptotic stability of the origin cannot be sought and the robust

positively invariant set and the ultimate bounds have to be employed. These no-

tions are recalled below for completeness.

Consider a discrete-time invariant system

xk+1 = f(xk, uk), (2.4)

where xk, uk stand for the state and control variables at sampling time k. These

are subject to constraints

xk ∈ X ⊆ R
dx , uk ∈ U ⊆ R

du , (2.5)

such that X,U contain the origin in their interior. Let u = κ(x) ∈ U be a given

controller. The definition of a positively invariant set is recalled as follows:

Definition 2.3.4 Given system (2.4), a set Ω ⊆ X is called positively invariant

with respect to a given control law u = κ(x) ∈ U if

∀x ∈ Ω, f(x, κ(x)) ∈ Ω.

Definition 2.3.5 Given system (2.4), a set Ω ⊆ X is called control invariant if

∀x ∈ Ω, ∃u(x) ∈ U s.t. f(x, u(x)) ∈ Ω.
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Consider next a discrete-time, invariant system subject to bounded persistent dis-

turbances

xk+1 = f(xk, uk, wk). (2.6)

The state and control variables are subject to constraints (2.5), while the distur-

bances satisfy the following constraint:

wk ∈W. (2.7)

The definition of a robust positively invariant set Ω ⊆ X, is recalled below with

respect to a given control law u = κ(x) ∈ U.

Definition 2.3.6 Let system (2.6) be given. A set Ω ⊆ X is called robust posi-

tively invariant with respect to the dynamics (2.6) and a control law u = κ(x) ∈ U

if

∀x ∈ Ω, f(x, κ(x), w) ∈ Ω for all w ∈W.

Definition 2.3.7 Let system (2.6) be given. A set Ω ⊆ X is called robust control

invariant with respect to the dynamics (2.6) if

∀x ∈ Ω, ∃u(x) ∈ U s.t. f(x, u(x), w) ∈ Ω for all w ∈W.

Domain of attraction is defined as a subset of all points which can be steered to

a target set (usually known to be the origin or a positively invariant set). Namely,

for any point belonging to a domain of attraction, there always exists control law

satisfying constraints (2.5) such that the state is driven to a target set despite any

disturbance wk ∈W.
As mentioned before, in the presence of bounded persistent disturbances, guar-

anteeing asymptotic stability of the origin is difficult. However, the positive in-

variance principle is meaningful to guarantee robust stability by steering the state

into a robust positively invariant set and keeping it inside this set with an appro-

priate state feedback satisfying input constraints.

Let system (2.6) be controlled by a given state feedback uk = κ(xk) ∈ U.
X ⊆ X denotes a domain of attraction for system (2.6) and Ω ⊂ X denotes a

robust positively invariant set as a target set despite any disturbance wk ∈ W.

Accordingly, the closed loop is expressed in the following form:

xk+1 = f(xk, κ(xk), wk). (2.8)

The definition of robust stability for system (2.8) is presented in the sequel.

Definition 2.3.8 System (2.8) is called robust stable with respect to robust posi-

tively invariant set Ω if for any ǫ > 0 and x0 ∈ X , there exists a finite T ∈ N>0

such that

ρΩ(xk) ≤ ǫ, ∀k ≥ T, ∀wi ∈W where 0 ≤ i ≤ k − 1.
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Based on the principle of asymptotic stability and robust positively invariant set,

the following definition is of use in the sequel based on a suitable robust control

Lyapunov function.

Definition 2.3.9 Let system (2.6) be controlled by a state feedback u = κ(x) ∈
U. X ⊆ X denotes a domain of attraction and Ω ⊂ X denotes a robust posi-

tively invariant set. System (2.6) is called robust stable if there exists a Lyapunov

function V : X → R such that

— V (x) > 0 for every x ∈ X\Ω, V (x) = 0 for all x ∈ Ω
— V (f(x, κ(x), w))− V (x) < 0, ∀x ∈ X\Ω, ∀w ∈W.

As the other methods based on a robust control Lyapunov function, finding such

a function V (x) is of importance in design procedure, as well as in guaranteeing

the feasibility of proposed method. This aspect will be detailed later.

2.4 Linear systems

Throughout this manuscript, a discrete-time, linear system will be of interest.

It is expressed as follows:

xk+1 = A(k)xk +B(k)uk + wk, (2.9)

where [A(k)B(k)] belongs to a polytopic uncertainty set Ψ

Ψ = conv {[A1 B1] , . . . , [AL BL]} , (2.10)

meaning that any [A B] ∈ Ψ can be expressed by

[A B] =
L∑

i=1

αi [Ai Bi] ,

for αi ≥ 0, ∀i ∈ IL and
∑L

i=1 αi = 1.
Also, the state, control variables and disturbances are subject to constraints:

xk ∈ X ⊂ R
dx , uk ∈ U ⊂ R

du , wk ∈W ⊂ R
dx , (2.11)

where polytopes X,U,W contain the origin in their interior.

Note that by assuming X,U,W are polytopes, the problem is restricted to lin-

ear constraints. Accordingly, the computation of an appropriate robust positively

invariant set and a domain of attraction becomes much easier. These tasks will be

detailed in the sequel. Also, the definition of robust stability for system (2.9) in

the sense of Lyapunov can be in the following form:
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Definition 2.4.1 Given a robust positively invariant set Ω and a domain of attrac-

tion X ⊆ X, consider the linear system (2.9) subject to constraints (2.11) and a

control law u = κ(x) ∈ U. The closed loop is called robustly stable if there exists

a Lyapunov function V (x) : X → R+ and an α ∈ [0, 1) such that:

— V (x) = 0 for all x ∈ Ω, V (x) > 0 for all x ∈ X\Ω,
— V (A(k)xk + B(k)κ(xk) + wk) − αV (xk) ≤ 0, ∀wk ∈ W, ∀ xk ∈ X\Ω

and ∀ [A(k) B(k)] ∈ Ψ.

2.4.1 Robust positively invariant sets

This section aims to recall some existing results for computing particular robust

positively invariant sets for linear systems. First, it is important to choose a suit-

able state feedback uk = Kxk ∈ U. This control law gain needs to satisfy that

there exists a Lyapunov function V (x) over a robust positively invariant domain,

say Ω, such that

V ((A(k) + B(k)K)xk)− V (xk) < 0 ∀xk ∈ Ω, ∀ [A(k) B(k)] ∈ Ψ.

The computation of such a gain is studied e.g. in Kothare et al. [1996]. A simple

formulation is presented below, based on the same principle:

min
Z,Y
− logdet(Z)

subject to

Z = ZT > 0[
Z (AiZ +BiY )T

AiZ +BiY Z

]
> 0 for all i ∈ IL.

Then gain K is determined by

K = Y Z−1.

It is well known that the above formulation is a linear matrix inequality (LMI)

problem and solvable by using semidefinite programming. Interested readers can

find details in Boyd et al. [1994]. These conditions can be relaxed by using a

parameter dependent Lyapunov function Daafouz and Bernussou [2001].

Note also that if system (2.9) does not take model uncertainty into account, such

a gain K can be easily computed from the Riccati equation with some positive

definite weighting matrices Q,R in the classical linear quadratic optimal control

design.

With respect to the state feedback uk = Kxk, the computation of a robust posi-

tively invariant set for system (2.9) has been put forward in Nguyen [2014] and is
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recalled in Algorithm 2.1. Note however that before this study, many results for

computing such positively invariant sets for a nominal system; i.e. system (2.9)

without model uncertainties and bounded persistent disturbances, were presented,

see Bitsoris [1988a,b], Bitsoris and Vassilaki [1995], Gilbert and Tan [1991], Vas-

silaki and Bitsoris [1989].

Algorithm 2.1 Computation of the maximal robust positively invariant set de-

noted by ΩM , with respect to state feedback uk = Kxk.

Input: System (2.9), uk = Kxk, X given by (2.11).

Output: The maximal robust positively invariant set ΩM .

1: Initialize ΩM = X.
2: Ω+

M = {x ∈ ΩM | (Ai +BiK)x⊕W ⊆ ΩM ∀i ∈ IL} .
3: If Ω+

M = ΩM then Stop,

4: Else ΩM ← Ω+
M . Return to step 2.

5: End

Note also that prominent studies on the computation of the maximal and mini-

mal positively invariant sets for a linear, discrete-time invariant system affected by

bounded persistent disturbances are referred to Kolmanovsky and Gilbert [1998],

Rakovic et al. [2005]. Still, if in system (2.9), additive disturbances are not taken

into consideration, then the minimal robust positively invariant set coincides with

the origin due to its asymptotic stability.

2.4.2 Controllable sets

A domain of attraction is of importance to design (robust) control laws for con-

strained systems, possibly affected by bounded additive disturbances and/or poly-

topic model uncertainties. Therefore, the computation of such a set is also of

interest. In this section, a candidate for these domains of attraction called control-

lable sets 2 is discussed. These sets are defined as follows.

Definition 2.4.2 Consider system (2.9) subject to model uncertainty (2.10) and

constraints (2.11). Let a robust positively invariant set Ω and N ∈ N>0 be given.

A set denoted by KN(Ω) ⊆ X is called the N−steps controllable set if any point

belonging to this set, can reach to Ω in N steps, while staying inside X despite

2. Note that in Kerrigan [2001], these sets are also called robust controllable sets.
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any disturbances in W and model uncertainties Ψ, i.e.

K0(Ω) := Ω,

KN(Ω) :=
{
x0 ∈ X | ∃u0, . . . , uN−1 ∈ U s.t. xN ∈ Ω,

∀wi ∈W, ∀ [A(i) B(i)] ∈ Ψ with 0 ≤ i ≤ N − 1
}
.

Based on this definition, many algorithms to compute KN(Ω) are proposed in

different studies e.g. Kerrigan [2001]. One of them is recalled in Algorithm 2.2.

Algorithm 2.2 Construct the N−steps controllable set KN(Ω)

Input: N ∈ N>0, Ω ⊂ X.
Output: KN(Ω)

1: For i = 1 : N
2: K̂i := {(x, u) ∈ X× U | (Ajx+Bju)⊕W ⊆ Ki−1(Ω), ∀j ∈ IL} .
3: Ki(Ω) = ProjRdx K̂i.
4: End

The maximal controllable set K∞(Ω) can thus be approximated via Algorithm

2.2 when N → ∞. Within an ǫ−approximation, this algorithm is shown to be

finitely terminated; i.e. there exists N ∈ N>0, such that KN(Ω) ⊂ KN+1(Ω) ⊂
KN(Ω)⊕ Bdx(ǫ), where Bdx(ǫ) :=

{
x ∈ R

dx | ‖x‖∞ ≤ ǫ
}
.

2.4.3 Contractive sets

Another candidate for the characterization of domain of attraction is a so-called

contractive set. A necessary and sufficient condition for asymptotic stability of

a nominal system is that the domain of attraction is (non necessarily successive)

contractive as proved in Gutman and Cwikel [1986, 1987]. Later, this contractivity

property is exploited for linear system affected by bounded additive disturbances

and polytopic model uncertainties in Blanchini [1994]. Induced from this prop-

erty, a Lyapunov function is found to guarantee robust stability. The definition of

a contractive set is recalled as follows:

Definition 2.4.3 Consider system (2.9) subject to model uncertainty (2.10) and

constraints (2.11). A set X ⊆ X is called λ−contractive for 0 ≤ λ < 1 if for any

xk ∈ X , there exists a control law uk = κ(xk) ∈ U such that

(A(k)xk +B(k)κ(xk))⊕W ⊆ λX , ∀ [A(k) B(k)] ∈ Ψ.
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Note that if λ = 1, then X becomes a robust control invariant set, as defined in

Definition 2.3.7. The maximal λ−contractive set is defined as the set containing

all λ−contractive sets. Such a set can also be chosen as a domain of attraction

and will be of use to design robust control for system (2.9) via an appropriate

optimization problem and will be presented in Chapter 5. For completeness, we

recall a procedure to compute the maximal λ−contractive set for a given 0 ≤ λ <
1 in Algorithm 2.3. Such an algorithm has been put forward in Blanchini [1994].

Algorithm 2.3 Construct the maximal λ−contractive set

Input: System (2.9), constraints (2.11), model uncertainties (2.10), a given λ ∈
[0, 1) .
Output: The maximal λ−contractive set, denoted by Pλ.

1: S = X.
2: Ŝ+ = {(x, u) ∈ S × U | (Aix+Biu)⊕W ⊆ λS, ∀i ∈ IL} .
3: S+ = ProjRdx Ŝ+.
4: If S+ = S, then Stop,

5: Else S ← S+. Return to step 2.

6: End

7: Pλ ← S.

2.4.4 Additional notes

Throughout this section, some remarks to facilitate the computation of the sets

presented in Sections 2.4.1, 2.4.2, 2.4.3 are discussed in-depth. In particular, given

two polyhedra P1, P2 ⊆ R
d, the following question will be investigated:

whether or not P1 ⊆ P2.

Suppose the halfspace representation of P1, P2 are as follows:

P1 :=
{
x ∈ R

d | H1x ≤ K1

}
, H1 ∈ R

r1×d, K1 ∈ R
r1

P2 :=
{
x ∈ R

d | H2x ≤ K2

}
, H2 ∈ R

r2×d, K2 ∈ R
r2 .

(2.12)

This problem can be answered via the Extended Farkas Lemma Bitsoris [1988a,b],

Schrijver [1998]. This result is recalled below.

Lemma 2.4.4 Given two polyhedra (2.12), P1 ⊆ P2 if there exists a matrix M =
[mij] ∈ R

r2×r1 such that:

mij ≥ 0, ∀i ∈ Ir2 , ∀j ∈ Ir1 ,
MH1 = H2,

MK1 ≤ K2.

(2.13)
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Note also that (2.13) is an LMI problem 3. Therefore, it can be solved by using

semidefinite programming Boyd et al. [1994]. According to this lemma, if (2.13)

is feasible, then P1 ⊆ P2, otherwise it is not the case.

If P1 is a polytope, the verification becomes easier. Indeed, let the vertex repre-

sentation of P1 be given by:

P1 = conv {v1, . . . , vn} ,

then P1 ⊆ P2 if

H2vi ≤ K2, ∀i ∈ In.
Dually, if P1, P2 are polytopes and also the vertex representation of P2 is in the

following form:

P2 = conv {x1, . . . , xm} ,
then P1 ⊆ P2 leads to vi ∈ P2 for all i ∈ In. For each vi, there exist αji ≥ 0 for

j ∈ Im such that
∑

j∈Im
αji = 1 and vi =

∑
j∈Im

αjixj. In short, this inclusion

test can be written in the form:

[v1 . . . vn] = [x1 . . . xm]α, 1Tmα = 1Tn , α = [αji] ∈ R
m×n
+ .

Accordingly, Algorithms 2.1, 2.2, 2.3 can be enforced by the use of such simple

optimization based tests of set inclusion. For instance, consider Algorithm 2.1, in

step 2

(Ai +BiK)x⊕W ⊆ ΩM

amounts to

(Ai +BiK)x+ w ∈ ΩM for all w ∈ V(W).

More clearly, if the halfspace representation of ΩM is given by ΩM =
{
x ∈ R

dx |
Fx ≤ h

}
, then inclusion (Ai +BiK)x+ w ∈ ΩM is equivalent to:

F (Ai +BiK)x ≤ h− Fw.

To illustrate the above algorithms, consider the following system:

x+ =

[
1 1
0 1

]
x+

[
0
1

]
u+ w.

3. Recall that the above vector inequality implies the component-wise inequalities, i.e. given

two vectors a = [ai] , b = [bi] ∈ R
d,

a ≤ b ⇐⇒ ai ≤ bi, ∀i ∈ Id.
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The system state, input and disturbances are subject to the following constraints:

X =
{
x ∈ R

2 | ‖x‖∞ ≤ 30
}
,U = [−2, 2] ,W =

{
w ∈ R

2 | ‖w‖∞ ≤ 0.5
}
.

A linear state feedback u = [−0.4854 − 1.3676] x is computed from the Ric-

cati equation with weighting matrices Q =

[
1 0
0 1

]
, R = 0.5. The maximal

robust positively invariant set Ω with respect to the above linear controller and the

10−steps controllable set are shown in Figure 2.4a. Also, the maximal 0.9−contractive

set P0.9 is presented in Figure 2.4b.

(a) Ω and K10(Ω) (b) Ω and P0.9

Figure 2.4: An illustrative example for the maximal robust positively invariant

set Ω, the 10−steps controllable set K10(Ω) and the maximal 0.9−contractive set

P0.9.

2.5 Model predictive control

2.5.1 Basics of model predictive control

Model predictive control (MPC) has attracted great attention from control com-

munity due to its relevance in industrial applications, and its compatibility in re-

lated domains e.g. optimization. It aims to solve an optimization problem over a

suitable finite horizon scheme subject to constraints, at each sampling time, where

the current state is known and the finite sequence of controls stands for the deci-

sion variable. In this optimization problem, a model of the given system is of use

to predict future behaviors of the system. The first control in this sequence is then

applied to the given system, see more in Richalet et al. [1978].

A reason for a great interest in MPC may come from the fact that any indus-

trial process has physical constraints. Also, optimization problem can easily take

constraints into consideration even if they are non-convex. An MPC problem is

recalled as follows.
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Let system (2.4) and constraints (2.5) be considered. An MPC problem aims to

minimize a cost function:

J(u, xk) =
N−1∑

i=0

L(xk+i|k, uk+i|k) + V (xk+N |k), (2.14)

where xk+i|k, uk+i|k represent the state and control variables at time k+i, predicted

at time k. u denotes the sequence of controls over the prediction horizon

u =
[
uT
k|k . . . u

T
k+N−1|k

]T
.

Also L(xk+i|k, uk+i|k) stands for the stage cost and V (xk+N |k) denotes the terminal

cost function. It is assumed that the stage cost L(xk+i|k, uk+i|k) represents a con-

tinuous, time-invariant, non-negative function defined over X×U. Still, the termi-

nal cost V (xk+N |k) represents a continuous, time-invariant, non-negative function

defined over X.
Appropriate constraints may be added to guarantee the stability:

xk+N |k ∈ Xf ⊂ X. (2.15)

In summary, with the measured state, MPC requires solving the following opti-

mization problem at each sampling time:

u
∗ = argmin

u

J(u, xk)

subject to

xk+i+1|k = f(xk+i|k, uk+i|k), ∀i = 0, . . . , N − 1, xk|k = xk

xk+i|k ∈ X, uk+i|k ∈ U, ∀i = 0, . . . , N − 1

xk+N |k ∈ Xf .

(2.16)

The first control u∗(xk) = u∗
k|k = u

∗(1 : du, ·) is then applied to the dynamical

system. This procedure is repeated with the next measured state, predicted by the

closed loop xk+1 = f(xk, u
∗(xk)).

Remark 2.5.1 Note that the terminal cost function V (xk+N |k) is usually chosen

such that the optimal cost function J(u∗, xk) represents a Lyapunov function.

From the optimization viewpoint, problem (2.16) can be alternatively expressed

in the following form:

u
∗ = argmin

u

J(u, xk)

subject to

gi(u, xk) ≤ 0, ∀i = 1, . . . ,m,

hj(u, xk) = 0, ∀j = 1, . . . , n,

(2.17)
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where gi(u, xk) represents inequality constraints and hj(u, xk) represents equality

constraints.

It is well known that optimal solution to problem (2.17) can also be approxi-

mated by so-called piecewise affine functions with respect to a pre-chosen toler-

able error Grancharova and Johansen [2012], Johansen [2002, 2004]. Note that

problem (2.17) is in the general case a nonlinear programming problem. Finding

explicitly exact optimal solution is thus very difficult, even the exact optimal so-

lution does not possess the piecewise affine structure. However, in certain cases,

exact optimal solution can be sought and also represents a piecewise affine func-

tion.

2.5.2 Explicit solutions

As mentioned before, in certain cases, exact optimal solutions to particular

MPC problems possess the piecewise affine structure. Such particular MPC prob-

lems are called throughout this manuscript linear MPC. It is shown in Bemporad

et al. [2002], Feller et al. [2013], Gutman and Cwikel [1987], Olaru and Dumur

[2004], Pistikopoulos et al. [2007], Seron et al. [2003], Tøndel et al. [2003] that

linear MPC can be characterized by linear, time-invariant systems:

xk+1 = Axk +Buk, (2.18)

subject to linear constraints and the cost function as a linear or quadratic function.

Namely, the state constraints X, the control input constraints U as in (2.11) and the

terminal constraints Xf as in (2.15), represent polyhedra. Also, the cost function

(2.14) in a linear MPC problem is usually expressed in the following forms:

— the stage cost and the terminal cost take a 2−norm form; i.e.

L(xk+i|k, uk+i|k) = xT
k+i|kQxk+i|k + uT

k+i|kRuk+i|k,

V (xk+N |k) = xT
k+N |kPxk+N |k,

where Q = QT is a positive semi-definite matrix and R,P are positive

definite, symmetric matrices.

— the stage cost and the terminal cost take an 1/∞−norm form; i.e.

L(xk+i|k, uk+i|k) = ‖Qxk+i|k‖p + ‖Ruk+i|k‖p,
V (xk+N |k) = ‖Pxk+N |k‖p,

where p = 1/∞ and Q,R, P are matrices of appropriate dimensions.

From the optimization viewpoint, such a linear MPC problem can be presented in

the following form:

u
∗(xk) = argmin

u

u
THu+ (CTxk +D)Tu

subject to Gu ≤ Exk +W
(2.19)
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where u stands for the decision variable and the current state xk represents the

parameter. H = HT is a positive semidefinite matrix, C,D,G,E,W represent

matrices of appropriate dimension.

Explicit optimal solution to (2.19) has the following form:

u
∗(xk) = Fixk +Gi for xk ∈ Xi, (2.20)

where the state space X is splitted into finite many polyhedral regions

X =
⋃

i∈IN

Xi ⊆ X. (2.21)

This representation of optimal solution to (2.19) is called as introduced at the

beginning piecewise affine function Bemporad et al. [2002].

Particular structure of such piecewise affine control laws allows for a change in

the implementation, compared to the traditional fashion. Namely, instead of solv-

ing online an MPC problem, these particular control laws only require a simple

function evaluation, since control law gains are embedded into a look-up table,

stored at the hardware level Kvasnica [2009].

Remark 2.5.2 To guarantee that the optimal cost function

J(u∗(xk), xk) = (u∗)T (xk)Hu
∗(xk) + (CTxk +D)Tu∗(xk)

is a Lyapunov function, P can be computed as the solution to the Riccati equation

in case of 2−norm. Otherwise, in case of 1/∞−norm, the computation of P
becomes more complicated. The counterpart of the Riccati equation for these

cases is named the Minkowski-Lyapunov equation. Recent remarkable result for

these cases is presented in Raković and Lazar [2014].

Remark 2.5.3 It is shown in Bemporad et al. [2003], Nguyen et al. [2011] that if

an MPC problem (2.16) satisfies the following conditions:

— the system is linear, subject to polytopic uncertainties and bounded addi-

tive disturbances as in (2.9),

— X,U,Xf are polyhedra,

— the cost function (2.14) represents a linear function of u and xk.
then its optimal solution also represents a piecewise affine function.

To illustrate this explicit solution, consider again the double integrator system:

xk+1 =

[
1 1
0 1

]
xk +

[
0
1

]
uk,

yk =
[
1 0

]
x.
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The output and control variables are subject to constraints:

yk ∈ [−5, 5] , uk ∈ [−2, 2] .

The weighting matrices are chosen as follows: Q =

[
1 0
0 1

]
, R = 1. The linear

unconstrained control and terminal matrix P computed from the Riccati equation

are as follows:

uk =
[
0.4221 1.2439

]
xk, P =

[
2.9471 2.3692
2.3692 4.6131

]
.

Accordingly, the terminal constraints Xf are chosen to be the maximal output

(a) State space parition (b) Piecewise affine controller

Figure 2.5: An illustrative example for explicit solution.

admissible set, see Gilbert and Tan [1991]. The cost function is defined over the

prediction horizon 10:

J(u, xk) =
9∑

i=0

(xT
k+i|kQxk+i|k + uT

k+i|kRuk+i|k) + xT
k+10|kPxk+10|k. (2.22)

Resulted from this MPC problem, the state space partition is presented in Figure

2.5a where the yellow region represents the terminal constraints Xf . Also, the

optimal control as the first element in the sequence of optimization argument is

shown in Figure 2.5b.
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Starting from the analysis stage, this chapter focuses on robustness and fragility

analysis problems raised from the implementation of PWA control laws. These

problems consider capacities of a given PWA controller to cope with different

disturbing sources which can affect closed loop stability. Most of the results in

this chapter were presented in Nguyen et al. [2014a, 2015a], Olaru et al. [2013].

3.1 Introduction

When analyzing a control law, both practitioner and theoretician take into ac-

count the capacity to cope with disturbances and model uncertainties. This char-

acteristic is classically denoted in control theory as robustness. The presence of

additive disturbances in the control system structure is due to measurement noises

and external perturbation sources. Otherwise, the uncertainty stems from model

reduction, linearization of nonlinear elements, imperfect mathematical model or

partial information on the parameters. These elements are unavoidable in the con-

trol design by the essence of their causes and the practical need of complexity

reduction in model-based design. As a consequence, the robustness consideration

of the closed-loop is necessary.

First, this chapter tackles the robustness problem in the presence of model un-

certainty for PWA feedback control laws. This class of control laws is shown

to lead in closed-loop to a hybrid system formulation Heemels et al. [2001]. An-

other reason for interest in PWA controllers and their robustness is motivated from

great attention in optimization based control, particularly in model predictive con-

trol (MPC) via parametric convex programming problem as introduced in Section

2.5.2.

Different types of uncertainties exist in the robust control literature c.f. Boyd

et al. [1994], Kothare et al. [1996], Rugh and Shamma [2000], Zhou et al. [1996].

Two important classes are referred to as:

— the parametric uncertainties understood as variations of coefficients of the

model with a pre-imposed structure,

— uncertainty covering all the neglected dynamics and other norm-bounded

uncertainties.

Throughout this manuscript, the former one is of interest due to the fact that

unstructured, norm-bounded uncertainties in general lead to an augmented state
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space and the extension of a predefined controller leads to nonuniqueness and re-

lated well-posedness problems which go beyond the scope of the current study of

PWA dynamics defined over a given state space partition.

Subsequently, from the practical viewpoint, closed-loop stability may be af-

fected in the implementation of control laws due to the fact that numerical round-

offs usually happen. The set of admissible variations of control law gains, for

which the implemented control law still guarantees closed loop stability, is named

as the fragility margin. Note that studies on this problem are found in literature

in Dorato [1998], Keel and Bhattacharyya [1997]. Unfortunately, these studies

neither present a procedure to explicitly compute such a margin, nor cover the

present interest in PWA control laws. As far as it concerns the fragility margin for

PWA control laws, the set of possible inaccuracies on the local control law gains

for each region is referred to without assuming any uncertainty on the description

of the associated state space partition. Taking uncertainties on the region descrip-

tion into consideration will lead to overlapping regions and topological changes

in state space partition, with implications in nonuniqueness of the trajectories.

Instead, based on the same methodology, the problem of possible inaccuracies

on the region description will be independently considered without taking into

account numerical errors on control law gains. Still, the study will be subsequently

extended to find admissible additive disturbances with free variations on local

control law gains.

The methodology presented next will rely on the robust positive invariance

principles Bitsoris [1988b], Blanchini [1999], Blanchini and Miani [2008], Vassi-

laki et al. [1988]. Robust positive invariance is known to be associated with robust

stability by the fact that the trajectories are maintained inside a subset of the state

space, namely a positively invariant set. Guaranteeing robust asymptotic stability

needs further convergence and is not treated in this chapter. Note however that ver-

ifying asymptotic stability may incorporate the existence of a suitable Lyapunov

function once the positive invariance is fulfilled. This work for a nominal system

can be found in Hovd and Olaru [2012], Hovd et al. [2010].

3.2 Preliminaries

This section aims to recall some basic definitions needed for the developments

in the sequel to facilitate the presentation and problem formulations.

Definition 3.2.1 A collection of N full-dimensional polyhedra Xi ⊂ R
dx , de-

noted by {Xi}i∈IN , is called a polyhedral partition of a polyhedron X ⊆ R
dx if

the following conditions hold:

—
⋃

i∈IN
Xi = X ,
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— int(Xi) ∩ int(Xj) = ∅, ∀(i, j) ∈ I2N , i 6= j.
Two regions Xi,Xj are called neighboring or adjacent if i 6= j, (i, j) ∈ I2N ,
dim(Xi ∩ Xj) = dx − 1. Further, if X is a polytope, then {Xi}i∈IN is called a

polytopic partition.

Based on a polyhedral partition, the definition of a PWA function is defined as

follows:

Definition 3.2.2 A function fpwa(x) : X ⊆ R
dx → R

du , defined over a polyhe-

dral partition {Xi}i∈IN of a polyhedron X , is called a piecewise affine function if

fpwa(x) = Hix+Gi, for x ∈ Xi, (3.1)

where Hi ∈ R
du×dx , Gi ∈ R

du .

The continuity property of a PWA function is of interest.

Definition 3.2.3 Such a PWA function fpwa(x) : X ⊆ R
dx → R

du , is contin-

uous if for any pair of neighboring regions (Xi,Xj), in the polyhedral partition

{Xi}i∈IN :

Hix+Gi = Hjx+Gj, for any x ∈ Xi ∩ Xj.

From the above definition, it can be seen that the discontinuity of a PWA function

happens at common frontiers between neighboring regions. Further, at any point

on common frontiers, a PWA function can take any value. However, we restrict

attention to the discontinuous functions fpwa(x) defined as follows throughout this

thesis:

fpwa(x) =

{
Hix+Gi for x ∈ int(Xi),

Hix+Gi or Hjx+Gj for x ∈ Xi ∩ Xj,
(3.2)

for every pair of neighboring regions (Xi,Xj).
Another way to deal with these discontinuities is to take multi-values into ac-

count at the frontiers. Namely, for a pair of neighboring regions, the given func-

tion at each point of their common frontier can take many different values. This

extended multi-valued function can be alternatively called a set-valued map.

Consider a discrete linear time invariant (LTI) system:

xk+1 = Axk +Buk, (3.3)

where A ∈ R
dx×dx , B ∈ R

dx×du .
If system (3.3) is controlled by a PWA control law as defined in Definition 3.2.2,

then the closed loop is a piecewise affine system, i.e.

xk+1 = (A+BHi)xk +BGi, for xk ∈ Xi.
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If the region X , over which the given control law (3.1) is defined, is positively

invariant (for the definition of a positively invariant set, the reader is referred to

Section 2.3.2), the above closed-loop system is stable.

The developments of this chapter rely on the following standing assumptions:

Assumption 3.2.4 X is a polytope.

Assumption 3.2.5 X is assumed to be positively invariant with respect to the LTI

system (3.3) and the PWA control law (3.1).

Assumption 3.2.6 The PWA controller (3.1) is continuous.

Assumption 3.2.7 0 ∈ int(X ).
Note that the feasible region X can be in general not convex. This may happen

in MPC problems whose constraints are not convex Grancharova and Johansen

[2012]. Assumption 3.2.4 restricts the problem to a convex framework, particu-

larly to polytopes which is a common characterization of MPC problems based

on linear prediction models and linear input, state constraints. Also, Assumption

3.2.5 should be understood as a guarantee of proper MPC design, in the sense that

the trajectories are kept inside the state space X by the given PWA controller.

If X represents a polytope, then {Xi}i∈IN , associated with the PWA control

law (3.1), is a polytopic partition. It follows that each region in this partition is

also a polytope. It will be assumed (see details in Section 2.2) that these polytopes

are described via both the vertex and halfspace representations.

Assumptions 3.2.6, 3.2.7 are common properties of PWA control laws obtained

from MPC design and can be relaxed without any effect on main results of this

chapter.

For a unified use of notation, the halfspace representation of the polytopes of

interest is presented as follows:

X =
{
x ∈ R

dx | Fx ≤ h
}
, where F ∈ R

r×dx , h ∈ R
r

Xi =
{
x ∈ R

dx | Fix ≤ hi

}
, where Fi ∈ R

ri×dx , hi ∈ R
ri ,

(3.4)

for every i ∈ IN . Also, the vertices of polytopes X , Xi are denoted by

V(X ) = {v1, . . . , vq}
V(Xi) = {wi1, . . . , wiqi} , ∀i ∈ IN .

The vertex representation of these polytopes as shown in Section 2.2 can be ex-

pressed in the following form:

X = conv {v1, . . . , vq}
Xi = conv {wi1, . . . , wiqi} , ∀i ∈ IN .

(3.5)
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Define also the following sets:

Wi = V(Xi), for all i ∈ IN ,
W =

⋃

i∈IN

V(Xi).
(3.6)

Based on the above notations, the definition of the following matrices are also of

help for the forthcoming sections:

V = [V(X )] ∈ R
dx×q, U = [fpwa(W)] ∈ R

du×p

Vi = [Wi] ∈ R
dx×qi , Ui = [fpwa(Wi)] ∈ R

du×qi

W = [W ] ∈ R
dx×p.

(3.7)

3.3 Explicit robustness margin for PWA control laws

3.3.1 Problem formulation

The robustness problem aims to find the set of model uncertainties for which

closed loop stability is still ensured. Accordingly, a discrete-time linear system as

(2.9) is considered. However, additive disturbances are not taken into considera-

tion here. More precisely, the system is in the following form:

xk+1 = A(k)xk +B(k)uk, (3.8)

where [A(k) B(k)] is assumed to belong to a model uncertainty set Ψ as in (2.10).

For reading ease, this uncertainty set is recalled below:

Ψ := conv {[A1 B1] , . . . , [AL BL]} . (3.9)

System (3.8) is controlled by a PWA control law (3.1). Then, the closed loop can

be expressed by

xk+1 = (A(k) + B(k)Hi)xk +B(k)Gi, for xk ∈ Xi. (3.10)

The main goal is to characterize the robustness margin defined as the set of model

uncertainties, denoted by Ψrob ⊆ Ψ such thatX is positively invariant with respect

to the closed loop (3.10) for any [A(k) B(k)] ∈ Ψrob.
Recall that a polytope can be expressed by the convex hull of its vertices, rep-

resented as vectors in an Euclidean space. However, in case these vertices are

matrices, each vertex will be understood as a vector composed of the elements of

this matrix. In other words, the polytopic set (3.9) can be equivalently written in

the following form:

Ψ = conv {vec([A1 B1]), . . . , vec([AL BL])} .
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For ease of presentation, the set Ψ defined as in (3.9) is also denoted as polytopic

model uncertainty set. Then, any model [A B] ∈ Ψ can be written in the form

of a convex combination of the extreme model realizations; i.e. there exists α =
[α1 . . . αL] ∈ R

L
+ such that

∑L

i=1 αi = 1 and

[A B] =
L∑

i=1

αi [Ai Bi] . (3.11)

Based on the above premise, computing the robustness margin Ψrob amounts

to finding its associated set of coefficients α in (3.11), denoted by Ψα
rob due the

fact that Ψrob and Ψα
rob are isomorphic. Clearly, Ψα

rob ⊆ SL where SL is the unit

simplex defined in (6). The definition of Ψα
rob can be written in the following form:

Ψα
rob :=

{
α ∈ SL |

L∑

i=1

αi [Ai Bi] ∈ Ψrob

}
.

The robustness margin Ψrob can be characterized, based on the local structure

of PWA dynamics. The first fundamental property of such a set Ψrob is stated via

the following theorem. This theorem shows that the robustness margin inherits

the convexity despite the non-linearity of the closed loop dynamics.

Theorem 3.3.1 Ψrob is a convex set.

Proof: Consider [A(k1) B(k1)] , [A(k2) B(k2)] ∈ Ψrob. It will be proved that

µ [A(k1) B(k1)] + (1− µ) [A(k2) B(k2)] ∈ Ψrob, for any µ ∈ [0, 1] .
Indeed, due to the positive invariance of X , the following holds for any i ∈ IN :

(A(k1) + B(k1)Hi)Xi ⊕ B(k1)Gi ⊆ X
(A(k2) + B(k2)Hi)Xi ⊕ B(k2)Gi ⊆ X

Due to the convexity of X , then for any µ ∈ [0, 1]

(1− µ)((A(k2)+B(k2)Hi)Xi ⊕ B(k2)Gi)

⊕ µ((A(k1) + B(k1)Hi)Xi ⊕ B(k1)Gi) ⊆ X .
(3.12)

Inclusion (3.12) implies that µ [A(k1) B(k1)] + (1 − µ) [A(k2) B(k2)] ∈ Ψrob,
meaning the convexity of Ψrob. �

Remark 3.3.2 Note that if L < dx(dx + du) then the representation of the ro-

bustness margin via Ψα
rob is more effective than the one via the elements of state

space matrices vect([A B]), in case all the elements of the state space matrices

[A(k) B(k)] in (3.8) are uncertain. Otherwise, the constructive results presented

in the sequel, still handle the latter case.



Chapter 3. Explicit robustness and fragility margins for PWA controllers 42

3.3.2 Construction based on the vertex representation

Once the notation is given in (3.4)–(3.7) and the structure of the robustness

margin is clarified, its computation starting from the vertex representation, is pre-

sented in the following theorem.

Theorem 3.3.3 Consider system (3.8) subject to model uncertainties (3.9). For a

PWA control law (3.1) satisfying Assumptions 3.2.4, 3.2.5, 3.2.6, the robustness

margin can be obtained by:

Ψα
rob = ProjRLΥv (3.13)

where Υv represents the following set:

Υv =

{
(α,M) ∈ SL×Rq×p

+ |
L∑

j=1

αj(AjW +BjU) = VM, 1TM = 1T
}
,

(3.14)

with W, U, V defined in (3.7), p = Card(W), q = Card(V(X )), SL defined in (6)

and M represents any matrix with the non-negative elements, satisfying (3.14).

Proof: If Ψrob denotes the robustness margin, then for any [A(k) B(k)] ∈ Ψrob,
the following holds due to the positive invariance of X :

(A(k) + B(k)Hi)x+B(k)Gi ∈ X , ∀x ∈ Xi, ∀i ∈ IN . (3.15)

Any [A(k) B(k)] ∈ Ψrob ⊆ Ψ is expressible by a convex combination of the

extreme models. It follows that (3.15) can be written in the following form:

L∑

j=1

αj(Aj +BjHi)x+ αjBjGi ∈ X , (3.16)

for some α = [α1 . . . αL]
T ∈ SL. Note that inclusion (3.16) holds true for any

x ∈ Xi, then it holds for all vertices of Xi. Namely,

L∑

j=1

αj(Aj +BjHi)wil + αjBjGi ∈ X , for all l ∈ Iqi , (3.17)

where wil, l ∈ Iqi are defined in (3.5). For each wil ∈ V(Xi), there exists yil ∈ X
such that

L∑

j=1

αj(Aj +BjHi)wil + αjBjGi = yil. (3.18)
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Note also that yil ∈ X can be written in the form of a convex combination of the

vertices of X , defined in (3.5), then there exists γil ∈ Sq i.e. 1Tγil = 1 such that

yil = [V(X )] γil = V γil.

This end leads to another representation of (3.18) as follows:

L∑

j=1

αj(Aj +BjHi)wil + αjBjGi = V γil. (3.19)

Note that based on (3.15), inclusion (3.19) holds for every i ∈ IN , l ∈ Iqi . This

fact leads to
L∑

j=1

αj(AjW +BjU) = VM,

where matrix M ∈ R
q×p
+ is composed of the above vectors γil as its columns with

respect to the notation from (3.4)–(3.7); i.e. 1TM = 1T .

Finally, it can be observed that Υv as defined in (3.14) represents a parameter-

ized polyhedron in the space of α and the elements of M. Therefore, the robust-

ness margin can be obtained from the orthogonal projection of Υv onto the space

of α as presented in (3.13). �

This result can also be of help to certificate whether the given PWA controller

is robust with respect to a given polytopic model uncertainty set. Accordingly, if

there exist matrices M1, . . . ,ML of non-negative elements such that:

AiW +BiU = VMi, 1
T
q Mi = 1Tp , ∀i ∈ IL,

then this PWA controller can be said to be robust.

3.3.3 Construction based on the halfspace representation

Based on the same methodology, but starting from the halfspace representation

of a polytope, the next theorem presents a dual approach for computing the robust-

ness margin. Note also that the notation of interest has already been introduced in

(3.4)–(3.7).

Theorem 3.3.4 Consider system (3.8) subject to uncertainties (3.9) and a PWA

control law (3.1) satisfying Assumptions 3.2.4, 3.2.5, 3.2.6. The robustness margin

can be obtained by:

Ψα
rob = ProjRLΥh (3.20)
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where Υh represents the following set:

Υh =

{
(α,M1, . . . ,MN) ∈ SL × R

r×r1
+ × . . .× R

r×rN
+ |

L∑

j=1

αjF (Aj +BjHi) = MiFi, Mihi ≤ h− F

L∑

j=1

αjBjGi, ∀i ∈ IN
}
,

(3.21)

and Mi, i ∈ IN are matrices of non-negative elements satisfying constraints

(3.21).

Proof: For any [A(k) B(k)] ∈ Ψrob, i ∈ IN , the positive invariance of X leads

to (A(k) + B(k)Hi)x+B(k)Gi ∈ X , for every x ∈ Xi. It follows that

Xi ⊆ {x ∈ X | (A(k) + B(k)Hi)x+B(k)Gi ∈ X} .
In other words, this inclusion can be expressed in the following form

{x ∈ X | Fix ≤ hi} ⊆ {x ∈ X | F ((A(k) + B(k)Hi)x+B(k)Gi) ≤ h} .
Using the Extended Farkas Lemma as presented in Section 2.4.4, there exists a

matrix Mi with the non-negative elements; i.e. Mi ∈ R
r×ri
+ satisfying:

F (A(k) + B(k)Hi) = MiFi,

Mihi ≤ h− FB(k)Gi

(3.22)

Also, any [A(k) B(k)] ∈ Ψ can be written in the form of a convex combination

of the extreme models, then (3.22) can be expressed as follows:

L∑

j=1

αjF (Aj +BjHi) = MiFi,

Mihi ≤ h− F

L∑

j=1

αjBjGi.

(3.23)

Note also that (3.23) holds true ∀i ∈ IN , leading to (3.21). It can be observed

that Υh as defined in (3.21), represents a polyhedron of α and the elements of

Mi, ∀i ∈ IN , therefore the robustness margin can be obtained from the orthogonal

projection of Υh onto the space of α, as presented in (3.20). �

Remark 3.3.5 Note that the sets Υv,Υh, defined in (3.14), (3.21), respectively

are described by linear constraints. However, these are not in the regular forms

introduced in Section 2.2. Therefore, the robustness margin computation might

not be straightforward from the compact expressions in (3.14) and (3.21). These

technical aspects will be detailed in Section 3.7.
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3.3.4 Illustrative example

An illustration is carried out on a linear system with uncertainty set described

by:

[A1 B1] =

[
1 0 0
0.1 1 1.5

]
, [A2 B2] =

[
1 0 1.5
0.5 1.5 1

]
, [A3 B3] =

[
1.5 0 1
3.8 1 1

]
,

in the presence of constraints on the control variable and the output variable:

−5 ≤ uk ≤ 5,−5 ≤ yk ≤ 5,

with the nominal model chosen to synthesize a PWA control law:

A = 0.3A1 + 0.2A2 + 0.5A3 =

[
1.25 0
2.03 1.1

]
,

B = 0.3B1 + 0.2B2 + 0.5B3 =

[
0.8
1.15

]
, C = [1 0] .

A continuous PWA control law is designed with prediction horizon 2, weighting

matrices Q = I2, R = 1 and the terminal constraints chosen as the maximal output

admissible set Gilbert and Tan [1991]. The state space partition is presented in

Figure 3.1, whereas its associated PWA control law is shown in Figure 3.2.

Figure 3.3 shows the image of Ψα
rob obtained from the vertex representation,

via the orthogonal projection on the plane [α1 α2]
T . Also, Figure 3.4 depicts

Proj [α1 α2]TΨ
α
rob obtained from the halfspace representation. Note that the shaded

violet region represents the whole region of α1, α2. The blue point denotes the

considered nominal system, this point coincides with a vertex of this robustness

margin set. This numerical example verifies that Ψα
rob obtained from the vertex

and halfspace representations are identical. Further, it is observed that this robust-

ness margin differs from the classical notion, because the given control law cannot

guarantee the positive invariance of the feasible region X if the nominal system is

perturbed away from the robustness margin.

3.3.5 Further results on the robustness margin

The convexity of the robustness margin was proved in Theorem 3.3.1. As a

consequence of Theorems 3.3.3/3.3.4 which characterize in a dual manner the

robustness margin, further structural properties can be formally stated.

Corollary 3.3.6 The robustness margin Ψrob is polytopic.
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Figure 3.1: State space partition. Figure 3.2: Associated PWA controller.

Figure 3.3: Robustness margin in the

plane of α1, α2 obtained from the ver-

tex representation.

Figure 3.4: Robustness margin in the

plane of α1, α2 obtained from the halfs-

pace representation.

Proof: Due to the boundedness of SL, the robustness margin Ψrob is bounded.

Also, Υv as defined in (3.14) or Υh in (3.21) is described by linear constraints,

therefore Υv,Υh represent polyhedra. The robustness margin, obtained from the

orthogonal projection of these polyhedra, also represents a polyhedron. In con-

clusion, the robustness margin is a bounded polyhedron, meaning a polytope ac-

cording to the definitions in Section 2.2. The proof is complete. �

Recall that Theorem 3.3.3 is stated under Assumptions 3.2.4, 3.2.5, 3.2.6, but its

formulation can be relaxed in case additional assumption regarding the inclusion

of the origin in the interior of X , is considered.

Corollary 3.3.7 Under the hypotheses of Theorem 3.3.3, if in addition Assump-

tion 3.2.7 holds, then the robustness margin can be obtained as follows:

Ψα
rob = ProjRL Υ∗

v,
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where Υ∗
v is defined by:

Υ∗
v =

{
(α,M) ∈ SL × R

q×p
+ | 1TM ≤ 1T ,

L∑

j=1

αj(AjW +BjU) = VM

}
.

Proof: For any [A(k) B(k)] ∈ Ψrob

(A(k) + B(k)Hi)x+B(k)Gi ∈ X , ∀x ∈ Xi, ∀i ∈ IN .
There exists a β ∈ [0, 1] such that

(A(k) + B(k)Hi)x+B(k)Gi ∈ βX , ∀x ∈ Xi, ∀i ∈ IN .
Due to Assumption 3.2.7, βX ⊆ X . Following the same line as in the proof of

Theorem 3.3.3, there also exists a matrix M∗ ∈ R
q×p
+ such that:

L∑

j=1

αj(AjW +BjU) = βVM∗, 1TM∗ = 1T .

Replacing M = βM∗ leads to the definition of Υ∗
v. This completes the proof. �

Note also that Corollary 3.3.7 may be of help for further developments of ro-

bustness margin while guaranteeing asymptotic stability of the origin. Accord-

ingly, a contractivity condition of X may be required when appropriate con-

straints are imposed, whereby 1TM ≤ 1T is replaced with 1TM ≤ β1T for some

β ∈ [0, 1) .
Also, the robustness margins obtained from Theorem 3.3.3 and Corollary 3.3.7

should be identical in spite of different formulations.

Moreover, the continuity of a PWA control law can be relaxed. Accordingly, if

Assumption 3.2.6 is dropped, then the robustness margin for a discontinuous PWA

controller does not lose any fundamental property. Recall that we are interested

in discontinuous PWA functions defined as in (3.2).

Corollary 3.3.8 Under the hypotheses of Corrollary 3.3.7, if Assumption 3.2.6 is

dropped, then the robustness margin can be obtained as follows:

Ψα
rob = ProjRL Υ∗∗

v ,

where Υ∗∗
h is defined as:

Υ∗∗
v =

{
(α,M1, . . . ,MN) ∈ SL × R

q×q1
+ × . . .Rq×qN

+ |

1TMi ≤ 1T ,
L∑

j=1

αj(AjVi +Bj(HiVi + 1Tqi ⊗Gi)) = VMi, ∀i ∈ IN
}
.
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Proof: The argument follows the same line as the one of Corollary 3.3.7 with

a particularity that each vertex of the state space partition (elements of W) may

correspond to different values of the given control law. All these values have to be

taken into account in computation of the robustness margin. More precisely, for

any [A(k) B(k)] ∈ Ψrob, and an i ∈ IN

(A(k) + B(k)Hi)x+B(k)Gi ∈ X , ∀x ∈ Xi.

Then there exists Mi ∈ R
q×qi
+ such that

L∑

j=1

αj(AjVi +Bj(HiVi + 1Tqi ⊗Gi)) = VMi, 1TMi ≤ 1T . (3.24)

Due to the positive invariance of X , (3.24) holds true for every i ∈ IN . The proof

is complete. �

3.4 Explicit fragility margin for PWA control laws

The fragility problem aims to find the set of admissible variations on the control

law gains such that closed loop stability is still ensured. This has been extensively

studied for PID controllers and other classical controllers Dorato [1998], Keel

and Bhattacharyya [1997]. Such a set is alternatively called fragility margin. The

problem formulation for the class of PWA control laws is detailed in the sequel.

3.4.1 Problem formulation

Consider the discrete LTI system (3.3) and a PWA control law (3.1). The

fragility problem aims to find the set of admissible variations on the local con-

trol law gains Hi, Gi such that the positive invariance of X is preserved. Due to

the PWA structure, the fragility margin of control law for each region of the state

space partition can be independently studied.

As introduced before, the closed-loop dynamics represent a PWA system. Let

δHi
, δGi

denote the variation variables for the control law gains of region Xi. Also,

∆u
i is used to denote the set of admissible variations δHi

, δGi
such that the positive

invariance of X is preserved. More clearly,

xk+1 = (A+B(Hi + δHi,k))xk +B(Gi + δGi,k) ∈ X , (3.25)

for all xk ∈ Xi and any
[
vecT (δHi,k) δ

T
Gi,k

]T ∈ ∆u
i ⊂ R

dxdu+du .
Similar to the robustness margin case, the study of fragility problem relies on

the positive invariance principles Athanasopoulos et al. [2014], Benlaoukli and
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Olaru [2009], Benlaoukli et al. [2009], Bitsoris [1988b], Blanchini [1999], Hennet

[1995], Tahir and Jaimoukha [2012]. The first characteristic of the fragility margin

is stated in the following theorem.

Theorem 3.4.1 The local fragility margins ∆u
i , ∀i ∈ IN are convex.

Proof: The proof is similar to the one of Theorem 3.3.1. �

3.4.2 Construction based on the vertex representation

According to the notations introduced in (3.4)–(3.7), the fragility margin can be

obtained, based on the following construction.

Theorem 3.4.2 Consider the discrete LTI system (3.3) and the PWA control law

(3.1) satisfying Assumptions 3.2.4, 3.2.5, 3.2.6. The fragility margin of the con-

troller over region Xi is obtained from:

∆u
i = Proj(δHi

,δGi
)Λv, (3.26)

where Λv is defined as follows:

Λv =

{
(δHi

, δGi
,Mi) ∈ R

du×dx × R
du × R

q×qi
+ | 1TMi = 1T

[A B]

[
Vi

Ui

]
+BδHi

Vi +BδGi
1T = VMi

}
.

(3.27)

Proof: Due to the positive invariance of X , the following holds:

(A+B(Hi + δHi
))x+B(Gi + δGi

) ∈ X , ∀x ∈ Xi.

This can be written in the following form:

[A B]

[
x

fpwa(x)

]
+BδHi

x+BδGi
∈ X , ∀x ∈ Xi. (3.28)

Inclusion (3.28) holds for every x ∈ Xi, meaning that it holds for every vertex of

Xi; i.e.

[A B]

[
wil

fpwa(wil)

]
+BδHi

wil +BδGi
∈ X , ∀wil ∈ V(Xi). (3.29)

Then for each wil ∈ V(Xi), there exists yil ∈ X such that

[A B]

[
wil

fpwa(wil)

]
+BδHi

wil +BδGi
= yil.
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Such a yil ∈ X can be described by a convex combination of the vertices of X ;
i.e.

∃γil ∈ Sq, such that yil = V γil, 1Tγil = 1. (3.30)

(3.29) and (3.30) lead to:

[A B]

[
wil

fpwa(wil)

]
+BδHi

wil +BδGi
= V γil. (3.31)

Note also that (3.31) holds true for every wil ∈ V(Xi), leading to the definition of

Λv as in (3.27), where matrix Mi is composed of the columns as γil for all l ∈ Iqi .
The proof is complete. �

Remark 3.4.3 It is also important to emphasize that if the description of the state

space partition {Xi}i∈IN is perturbed, the description of Λv will no longer be

linear, thus not representing a polyhedron. Instead, the fragility margin of state

space partition will be independently studied later in Section 3.6.

As a consequence, the following corollary presents an important property of the

fragility margin ∆u
i for the control law over region Xi.

Corollary 3.4.4 The local fragility margin ∆u
i is a polyhedron.

Proof: The proof follows the same arguments of the one for Corollary 3.3.6. �

Corollary 3.4.5 Under the hypotheses of Theorem 3.4.2, if in addition Assump-

tion 3.2.7 holds, then the fragility margin of the controller over region Xi is ob-

tained as:

∆u
i = Proj (δHi

,δGi
)Λ

∗
v,

where Λ∗
v is defined as follows:

Λ∗
v =

{
(δHi

, δGi
,Mi) ∈ R

du×dx × R
du × R

q×qi
+ | 1TMi ≤ 1T ,

[A B]

[
Vi

Ui

]
+BδHi

Vi +BδGi
1T = VMi

}
.

Proof: The proof follows the same line as Corollary 3.3.7. �

Remark 3.4.6 Similar to the robustness margin, in spite of a relaxation of Corol-

lary 3.4.5 over Theorem 3.4.2, the margins obtained from these two results are

equivalent.

Remark 3.4.7 The fragility margin can be of help in the context of explicit MPC

design under finite precision arithmetic as discussed in Suardi et al. [2014].
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3.4.3 Construction based on the halfspace representation

Based on the halfspace representation of a polyhedron, the fragility margin can

also be obtained from the following dual result.

Theorem 3.4.8 Consider the LTI system (3.3) and the PWA control law (3.1) sat-

isfying Assumptions 3.2.4, 3.2.5, 3.2.6. The fragility margin of the controller over

region Xi is obtained from:

∆u
i = Proj (δHi

,δGi
)Λh

where Λh is defined as:

Λh =

{
(δHi

, δGi
,Mi) ∈ R

du×dx × R
du × R

r×ri
+ |

F (A+B(Hi + δHi
)) = MiFi, Mihi ≤ h− FB(Gi + δGi

)

}
.

(3.32)

Proof: For an i ∈ IN , the positive invariance of X leads to:

(A+B(Hi + δHi
))x+B(Gi + δGi

) ∈ X , ∀x ∈ Xi.

This inclusion can also be written in the following form:

{x ∈ X | Fix ≤ hi} ⊆ {x ∈ X | F (A+B(Hi + δHi
))x ≤ h− FB(Gi + δGi

)} .

Using the Extended Farkas Lemma (in Section 2.4.4), the above inclusion holds at

the price of the existence of a matrix Mi ∈ R
r×ri with the non-negative elements

such that:

F (A+B(Hi + δHi
)) = MiFi,

Mihi ≤ h− FB(Gi + δGi
).

These complete the proof. �

3.4.4 Illustrative example

Again, consider the numerical example in Subsection 3.3.4. Region 6 has the

halfspace representation and its corresponding controller as follows:

F6 =

[
−1 1 −0.2073 0.2073
0 0 −0.9783 0.9783

]T
,

h6 =
[
−0.8 5 23.6177 −17.9116

]T
,

u(x) =
[
−1.5625 0

]
x+ 6.25.
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Figure 3.5: Fragility margin of the con-

troller in region X6 obtained from the

halfspace representation.

Figure 3.6: Fragility margin of the con-

troller in region X6 obtained from the

vertex representation.

The fragility margin for the control law of region X6 is illustrated in Figures 3.5

and 3.6. These numerical results prove that the fragility margins obtained from

two dual approaches are theoretically identical. It can be seen that the slope

gain H6 without parametric error of the control law associated with this region

is pointed out at point (0, 0) in blue which is a vertex of the fragility margin set.

It is easy to see that this control law is fragile since if the control law gain H6 is

perturbed away from the fragility set, then closed loop stability may be lost.

3.5 Robustness margin with respect to additive dis-

turbances

3.5.1 Problem formulation

This section focuses on the effect of additive disturbances on the stability of a

nominal system, controlled by a PWA control law. Again, consider the discrete

LTI system (3.3), and the PWA control law (3.1) satisfying Assumptions 3.2.4,

3.2.5, 3.2.6. Suppose there is no numerical error on the given PWA control law

gains. The goal is to find the set of additive disturbances denoted by ∆w ⊂ R
dx

such that the positive invariance of X is preserved. More precisely, the closed

loop dynamics are kept inside X despite any additive disturbances w ∈ ∆w:

Ax+B(Hix+Gi) + w ∈ X , ∀x ∈ Xi, ∀i ∈ IN , ∀w ∈ ∆w. (3.33)
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3.5.2 Construction based on the vertex representation

The robustness margin ∆w can be computed via the following theorem, using

the notations presented in (3.4)–(3.7).

Theorem 3.5.1 Given an LTI system (3.3) and a PWA control law (3.1) satisfying

Assumptions 3.2.4, 3.2.5, 3.2.6, the robustness margin ∆w can be obtained as:

∆w =

{
w ∈ R

n

∣∣∣∣(1⊗F )w ≤ (1⊗ h)− (I ⊗F
[
A B

]
)vec

([
W
U

])}
, (3.34)

where 1 ∈ R
p, I ∈ R

p×p and p = Card(W).

Proof: Due to the positive invariance of X , inclusion (3.33) holds true for any

wil ∈ V(Xi), meaning

[
A B

] [ wil

fpwa(wil)

]
+ w ∈ X , ∀wil ∈ V(Xi), ∀w ∈ ∆w. (3.35)

In other words, with the halfspace representation of X , inclusion (3.35) can be

written in the following form:

F
[
A B

] [ wil

fpwa(wil)

]
+ Fw ≤ h, ∀wil ∈ V(Xi), ∀w ∈ ∆w. (3.36)

Clearly, inclusion (3.36) holds for every region Xi in the given state space parti-

tion. This end leads to formulation (3.34). �

3.5.3 Construction based on the halfspace representation

Similar to the above sections, the set of additive disturbances satisfying (3.33),

can also be determined via the halfspace representation of Xi by using the Ex-

tended Farkas Lemma.

Theorem 3.5.2 Given an LTI system (3.3) and a PWA control law (3.1) satisfying

Assumptions 3.2.4, 3.2.5, 3.2.6, ∆w can be obtained as:

∆w = ProjRdxΘ, (3.37)

where Θ is defined as follows:

Θ =

{
(w,M1, . . . ,MN) ∈ R

dx × R
r×r1
+ × . . .× R

r×rN
+

∣∣∣∣

MiFi = F (A+BHi), Mihi + Fw ≤ h− FBGi, ∀i ∈ IN
}
.

(3.38)



Chapter 3. Explicit robustness and fragility margins for PWA controllers 54

Proof: Relation (3.33) holds for every x ∈ Xi, leading to:

{x ∈ X | Fix ≤ hi} ⊆ {x ∈ X | F (A+BHi)x+ FBGi + Fw ≤ h} . (3.39)

Exploiting the Extended Farkas Lemma, (3.39) holds if there exists a matrix Mi

composed of non-negative elements such that:

F (A+BHi) = MiFi, Mihi ≤ h− Fw − FBGi. (3.40)

Further, inclusion (3.40) holds true for every i ∈ IN , leading to the definition of

Θ as in (3.38). Note that Θ represents a parameterized set of w and the elements

of Mi, ∀i ∈ IN , therefore the set of admissible disturbances satisfying (3.33) can

be obtained from the orthogonal projection of Θ onto the space of w. �

Remark 3.5.3 Note that the study of robustness (fragility) margin considering si-

multaneously model uncertainties (numerical errors on the control law gains) and

additive disturbances can also be conducted, following the same constructions

presented above. Clearly, in the presence of additive disturbances, the robust-

ness/fragility margin is smaller than the one without such perturbations.

3.5.4 Illustrative example

The nominal system and the control law designed in Subsection 3.3.4 are again

considered to illustrate in an explicit form the set of admissible additive dis-

turbances. This set is depicted in Figure 3.7 and can be noticed to be lower-

dimensional. This is due to the fact that with respect to the positive invariance of

X , admissible additive disturbances can only perturb along the boundary of X .
Also, due to the constraints on the output −5 ≤ [1 0] x ≤ 5, there is no freedom

on w1 to ensure the satisfaction of constraints, whereas the feasible set X is not

contractive.

3.6 Fragility margin of state space partition

This section concentrates on the so-called explicit fragility of the state space

partition problem stemming from implementation of PWA control laws. Namely,

it aims to find the set of tolerable errors for the description of the given polytopic

partition {Xi}i∈IN , provided the positive invariance property of X is not lost.

Note that if the halfspace representation of each region in the given polytopic

partition is considered, then the fragility margin is no longer described by linear

constraints. This is principally related to the sensitivity of the halfspace represen-

tation. Instead, this computation can be carried out via the vertex representation,

whereby the errors on the halfspace description can be implicitly deduced.
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Figure 3.7: The set of admissible disturbances ∆w.

Consider the LTI system (3.3) and the PWA control law (3.1) satisfying As-

sumptions 3.2.4, 3.2.5, 3.2.6 associated with the polytopic partition {Xi}i∈IN .
Suppose the PWA control law gains are fixed. Consider the vertex representation

of region Xi as in (3.5). Its representation in the presence of description errors,

introducing a perturbed set X̃i, can be represented as follows:

X̃i = conv {wi1 + δi1, . . . , wiqi + δiqi} .

A solution to the fragility margin of region Xi will be expressed in terms of

δil, ∀l ∈ Iqi . The validity of this solution is associated with the following as-

sumption.

Assumption 3.6.1 The polytope X =
⋃

i∈IN
Xi is not subject to uncertainties;

i.e. X =
⋃

i∈IN
X̃i.

This assumption ensures that the positive invariance can be stated and analyzed in

terms of an explicit inclusion:

(A+BHi)x+BGi ∈ X , ∀x ∈ X̃i ⊆ X , (3.41)

with the right-hand side presented by X , free of variations. The set of admissi-

ble errors δi =
[
δTi1 . . . δ

T
iqi

]T ∈ R
dxqi denoted by ∆v

i , can be computed via the

following theorem.

Theorem 3.6.2 Consider the LTI system (3.3) and the PWA control law (3.1) sat-

isfying Assumptions 3.2.4, 3.2.5, 3.2.6 and 3.6.1. The fragility margin of the vertex
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representation of each region Xi, in the polytopic partition {Xi}i∈IN can be ob-

tained as follows:

∆v
i =

{
δi ∈ R

dxqi |
[

I ⊗ F
I ⊗ F (A+BHi)

]
δi

≤




1⊗ h− (I ⊗ F )vec(Vi)

1⊗ h− (I ⊗ F
[
A B

]
)vec

([
Vi

Ui

])


}
,

(3.42)

where 1 ∈ R
qi and I ∈ R

qi×qi .

Proof: Due to Assumption 3.6.1, any x ∈ X̃i ⊆ X can be expressed in the form

of a convex combination of the vertices of X̃i, i.e. there exists γi = [γi1 . . . γiqi ]
T ∈

Sqi such that x =
∑qi

l=1 γil(wil + δil) ∈ X . It follows that F (wil + δil) ≤ h, ∀l ∈
Iqi leading to:

(I ⊗ F )δi ≤ 1⊗ h− (I ⊗ F )vec(Vi). (3.43)

Furthermore, (3.41) holds true for every x ∈ X̃i, then so does it for the vertices of

X̃i. It follows that

(A+BHi)(wil + δil) + BGi ∈ X , ∀l ∈ Iqi . (3.44)

In other words, inclusion (3.44) can be written in the following form:

F (A+BHi)δil ≤ h− F
[
A B

] [ wil

fpwa(wil)

]
. (3.45)

Recall that (3.45) holds true for every l ∈ Iqi , leading to:

(I ⊗ F (A+BHi))δi ≤ 1⊗ h− (I ⊗ F
[
A B

]
)vec

([
Vi

Ui

])
. (3.46)

Inclusions (3.43) and (3.46) complete the proof. �

From the above result, the following set:

X̂i = conv




⋃

l∈Iqi

wil ⊕ Projδil∆
v
i



 , (3.47)

represents the maximal erroneous halfspace representation of Xi. More clearly,

if X̃i stands for the implemented halfspace representation of Xi, then any imple-

mented X̃i ⊆ X̂i can guarantee the positive invariance of X with respect to the

local PWA control law.
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Figure 3.8: The shaded pink region represents X̂5, defined in (3.47).

To illustrate this study, the state space partition and the PWA control law de-

signed in Subsection 3.3.4, are reconsidered. The white polytope in Figure 3.8,

represents X . For illustration, the unconstrained region X5, which is the orange

polytope, is illustrated. The pink polytope represents X̂5, defined in (3.47). It im-

plies that for any implemented representation X̃5 of X5, satisfying X̃5 ⊆ X̂5, the

positive invariance of X is ensured with respect to the above PWA control law.

3.7 Computational aspects

The above formulations for computation of the robustness and fragility mar-

gins are not in the canonical representations (vertex/halfspace representations).

Therefore, to explicitly compute these margins, transformations from these ma-

trix equalities/inequalites into canonical representations will be discussed in this

section.
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3.7.1 Explicit robustness margin of PWA controllers

3.7.1.1 The vertex representation

Consider (3.14) element by element; for l ∈ Ip :

Ψα
l :=

{
α ∈ SL |1TM(·, l) = 1, M(·, l) ∈ R

q
+,

L∑

j=1

αj(AjW (·, l) + Bjfpwa(W (·, l))) = VM(·, l)
}
,

(3.48)

then the robustness margin can be computed as:

Ψα
rob =

⋂

l∈Ip

Ψα
l . (3.49)

If ŵl =

[
W (·, l)

fpwa(W (·, l))

]
, then (3.48) can be written in the following form where

the variable is βl =
[
α1 . . . αL MT (·, l)

]T ≥ 0



[A1 B1] ŵl . . . [AL BL] ŵl −V

0TL 1Tq
1TL 0Tq


 βl =



0dx
1
1


 (3.50)

This system of equations in the form Aβl = B has a family of solutions:

βl = Ast+ Bs,

whereAs denotes an orthonormal basis for the null space of matrixA (i.e. AAs =
0), Bs denotes a feasible solution of equation (3.50) and t stands for a vector

of appropriate dimension. Due to the non-negativity of all elements in βl, the

admissible set of t denoted by Φt is defined as follows: Φt = {t | −Ast ≤ Bs} .
Note also that

Φβl
:= {βl | (3.50) holds} = AsΦt ⊕ Bs

represents a polytope. Therefore, due to the above relation, Φt also represents a

polytope. So one only needs to calculate all vertices of Φβl
by applying the trans-

formation to the vertices of Φt. Thus, the set Ψα
l of coefficients α for which (3.48)

holds, is obtained via the orthogonal projection of Φβl
onto the space of α : i.e.

Ψα
l = ProjRL Φβl

. Note that to avoid computing directly the orthogonal projec-

tion, it suffices to compute the vertices of Φβl
and keep the L first coordinates for

each vertex. Subsequently, Ψα
l is obtained by computing the convex hull of these

reduced vertices. Finally, the robustness margin is obtained by inclusion (3.49).
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3.7.1.2 The halfspace representation

From the definition of Υh in (3.21), if one defines the following set:

Υi =

{
(α,Mi) ∈ SL × R

r×ri
+

∣∣∣∣
L∑

j=1

αjF (Aj +BjHi) = MiFi, Mihi ≤ h− F

L∑

j=1

αjBjGi

}
,

(3.51)

then the robustness margin can be obtained from the following inclusion

Ψα
rob =

⋂

i∈IN

ProjRLΥi. (3.52)

To facilitate the computation, it is necessary to transform Υi into a canonical rep-

resentation. Indeed, the equation in (3.51) can be decoupled row by row as fol-

lows:

Mi(k, ·)Fi = [α1 . . . αL−1]Zk + F (k, ·)(AL +BLHi), ∀k ∈ Ir,

Zk =




F (k, ·)(A1 − AL +B1Hi − BLHi)
...

F (k, ·)(AL−1 − AL +BL−1Hi − BLHi)


 .

(3.53)

Denote the following vector: z =
[
vecT (MT

i ) α1 . . . αL−1

]T
, then (3.53) can be

written in the following form:

D1z = E1, D1 =




Fi . . . 0ri×dx
...

. . .
...

0ri×dx . . . Fi

−Z1 . . . −Zr




T

,

E1 = (Ir ⊗ (AL +BLHi)
T )vec(F T

i ).

(3.54)

Similarly, the inequality in (3.51) can be expressed in the form:

D2z ≤ E2, D2 =




hi . . . 0ri
...

. . .
...

0ri . . . hi

Y1 . . . Yr




T

, E2 = h− FBLGi, (3.55)

where Yk = [F (k, ·)(B1 − BL)Gi . . . F (k, ·)(BL−1 − BL)Gi]
T , ∀k ∈ Ir.
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It is known that the solution to (3.54) is a set of z which depends on t such that

z = D1t+ E1, where D1 represents an orthonormal basis for the null space of D1

and E1 denotes a feasible solution to (3.54). Due to the non-negativity of z, the

values of t satisfy −D1t ≤ E1. Accordingly, from (3.55), the set of t denoted by

Φt, can be described by:

Φt = {t | −D1t ≤ E1, D2D1t ≤ E2 −D2E1} .

Recall that the set of z denoted by Φz, is an affine transformation of Φt; i.e. Φz =
D1Φt ⊕ E1. Finally, ProjRLΥi can be derived from ProjRL−1Φz.

3.7.2 Explicit fragility margin of PWA controllers

For simplicity, without loss of generality, variations in Hi are exclusively con-

sidered.

3.7.2.1 The vertex representation

Based on the computation of fragility margin in (3.26) and (3.27), it is easier to

consider Λv column by column. Indeed, define the following set:

Λl =

{
δHi
∈ R

du×dx | 1TMi(·, l) = 1, Mi(·, l) ∈ R
q
+,

[
A B

] [Vi(·, l)
Ui(·, l)

]
+BδHi

Vi(·, l) = VMi(·, l)
}
, l ∈ Iqi .

(3.56)

Then the fragility margin can be obtained as:

∆u
i =

⋂

l∈Iqi

Λl.

Now, it is necessary to transform the constraints of Λl into a canonical repre-

sentation. Denote ŵil =
[
V T
i (·, l) UT

i (·, l)
]T

, then (3.56) can be equivalently

written as a set of linear equations whose variable is denoted by βil and defined as

βil =
[
vecT (δHi

) MT
i (1 : q − 1, l)

]T ∈ R
dudx+q−1, i.e.



V T
i (·, l)(Idx ⊗ B(1, ·))

...

V T
i (·, l)(Idx ⊗ B(dx, ·))

− Ṽ


 βil = vq − [A B] ŵil, (3.57)

where Ṽ = [v1 − vq . . . vq−1 − vq] with respect to the notation in (3.5).
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Equation (3.57) in the form Aβil = B, has a family of solution βil = Ast+ Bs
where As denotes an orthonormal basis for the null space of A, Bs denotes a

feasible solution of (3.57), t denotes a vector of appropriate dimension. Moreover,

due to the non-negativity of βil(1 + dxdu : dxdu + q − 1) = Mi(1 : q − 1, l), the

values of t satisfy: −A(2)
s t ≤ B(2)

s , where the matrices of interest are defined as

follows:
[
A(1)

s B(1)
s

]
= [As Bs] (1 : dxdu, ·),[

A(2)
s B(2)

s

]
= [As Bs] (1 + dxdu : dxdu + q − 1, ·).

Recall that 1TMi(1 : q − 1, l) ≤ 1. Thus, the set of admissible t denoted by Φt,

can be described by: Φt =
{
t | −A(2)

s t ≤ B(2)
s , 1TA(2)

s t ≤ 1− 1TB(2)
s

}
. The set

of admissible βil denoted by Φβil
is computed by

Φβil
= {βil | (3.57) holds} = AsΦt ⊕ Bs,

representing a polyhedron. Further, due to the boundedness of βil(1 + dxdu :

dxdu + q − 1), Φt is a polytope, thus so is Λl = A(1)
s Φt ⊕ B(1)

s . Repeat the same

computation for all l ∈ Iqi leading to the fragility margin ∆u
i .

3.7.2.2 The halfspace representation

Recall that variations in Hi are exclusively considered. Therefore, Λh in (3.32)

represents a polyhedron with the variable denoted by z and defined by z =
[
zT1 zT2

]T
z1 = vec(MT

i ), z2 = vec(δHi
), i.e.

Λh =

{
(δHi

,Mi) ∈ R
du×dx × R

r×ri
+ |

F (A+B(Hi + δHi
)) = MiFi, Mihi ≤ h− FBGi

}
.

(3.58)

Considering row by row the equality in (3.58) leads to:

Mi(k, ·)Fi = F (k, ·)(A+B(Hi + δHi
)), ∀k ∈ Ir.

Then, the equality in (3.58) can be equivalently written in the form of z as follows

D1z = E1, E1 = (Ir ⊗ (A+BHi)
T )vec(F T ),

D1 =




Fi . . . 0ri×dx
...

. . .
...

0ri×dx . . . Fi

Z1 . . . Zr




T

, Zk = Idx ⊗ (−BTF T (k, ·)), ∀k ∈ Ir.
(3.59)
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Similarly, the inequality in (3.58) can be written as follows:

D2z1 ≤ E2, D2 =



hi . . . 0ri
...

. . .
...

0ri . . . hi




T

, E2 = h− FBGi. (3.60)

The family of solutions to the set of equations in (3.59) is in the form z = Ast+Bs,
where As denotes an orthonormal basis for the null space of D1, Bs denotes a

feasible solution to (3.59). For simplicity, the following matrices are defined:

A(1)
s = As(1 : rri, ·), A(2)

s = As(rri + 1 : rri + dxdu, ·),
B(1)
s = Bs(1 : rri, ·), B(2)

s = Bs(rri + 1 : rri + dxdu, ·).

Due to the non-negativity of z1 and (3.60), the set of t denoted by Φt can be

computed as:

Φt =
{
t | −A(1)

s t ≤ B(1)
s , D2A(1)

s t ≤ E2 −D2B(1)
s

}
.

As a consequence, the fragility margin ∆u
i can be obtained as ∆u

i = A(2)
s Φt⊕B(2)

s .

3.8 Complexity analysis

Due to the similarity between the robustness margin and the fragility margin,

the complexity analysis of the robustness margin via two different approaches will

be exclusively studied.

3.8.1 The vertex representation

From (3.48) and (3.49), the computation of the robustness margin requires solv-

ing (3.50) for all elements of W . Therefore, it is necessary to analyze the com-

plexity for solving (3.50).

Indeed, according to Golub and Van Loan [2012], solving a system of linear

equations Ax = b, x ∈ R
n, has a complexity of O(n2). Therefore, solving (3.50)

requires a complexity of O((q + L)2). Further, computing an orthonormal basis

for the null space of a matrix A ∈ R
m×n using the singular value decomposition

(SVD) method, has a complexity of O(n3) according to Chan [1987]. Thus com-

puting an orthonormal basis for the null space of A in (3.50) has a complexity of

O((q + L)3).
Also, instead of computing the orthogonal projection via the Fourier-Motzkin

elimination, it is less demanding to compute the vertices of Ψα
l via an affine trans-

formation of those of Φt. Recall that the algorithm put forward in Avis and Fukuda
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[1992], carries out the vertex enumeration problem for a polytope in O(ndv),
where v denotes the number of its vertices, d denotes its dimension and n denotes

the number of its supporting halfspaces. Dually, the facet enumeration problem

has a complexity ofO(ndv), where d still denotes the dimension of this polytope,

n denotes the number of points, v denotes the number of its facets. Back to the

solutions to (3.50), the vertex enumeration problem for Φt ∈ R
q+L−dx−2 has a

complexity of O((q + L)(q + L − dx − 2)v) where v stands for the number of

vertices of Φt. Note that the maximal number of vertices of Φt is equal to

f0 =

(
q + L

q + L− dx − 2

)
,

where

(
n
k

)
denotes the number of k−combinations from the set of n elements;

i.e.

(
n
k

)
= n!

k!(n−k)!
. Therefore, the vertex enumeration of Φt can be achieved at

most in

O ((q + L)(q + L− dx − 2)f0) .

The vertices of Ψα
l can be obtained by an affine transformation of those of Φt.

Finally, obtaining Ψα
l via the convex hull amounts to solving the facet enumeration

problem, as mentioned above, having a complexity of O(vLfL−1(L, v)), where v
represents the number of vertices of Φt and fL−1(L, v) stands for the number of

facets of Ψα
l . Recall that Ψα

l is in fact an affine transformation of Φt. Accordingly,

the number of facets of Ψα
l i.e. fL−1(L, v) is smaller than the number of facets of

Φt, known to be equal to q + L. It follows that the facet enumeration of Ψα
l has a

complexity at most equal to O(f0L(q + L)).
Finally, the computation of Ψα

l has a complexity at most equal to:

O((q + L)2) +O((q + L)3) +O ((q + L)(q + L− dx − 2)f0) +O(f0L(q + L))

= O ((q + L)(q + L− dx − 2)f0) ,

since q always satisfies q ≥ dx + 1.
In conclusion, the robustness margin is obtained by the intersection of Ψα

l , ∀l ∈
Ip as presented in (3.49), thus the total time complexity is equal to:

pO ((q + L)(q + L− dx − 2)f0) .

3.8.2 The halfspace representation

Similarly, from (3.54), computing an orthonormal basis for the null space of D1

has a complexity of O((rri + L− 1)3). Also, finding a feasible solution to (3.54)

has a complexity of O((rri + L− 1)2). Note also that

dim(Φt) = rri + L− 1− rdx = r(ri − dx) + L− 1.
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Further, the number of constraints describing Φt is equal to r(ri + 1) + L − 1.
Then the maximal number of vertices is equal to

f0,i =

(
r(ri + 1) + L− 1
r(ri − dx) + L− 1

)
.

Therefore, the vertex enumeration problem of Φt has a complexity at most equal

to O((r(ri − dx) + L− 1)(r(ri + 1) + L− 1)f0,i).
Similar to the vertex representation case, ProjRLΥi is an affine transformation

of Φt, therefore the number of facets of ProjRLΥi is smaller than the number of

facets of Φt. Accordingly, the facet enumeration of ProjRLΥi has a complexity at

most equal to

O(vL(r(ri + 1) + L− 1)).

Finally, the computation of ProjRLΥi has the biggest complexity of

O((rri + L− 1)2) +O((r(ri − dx) + L− 1)(r(ri + 1) + L− 1)f0,i)

+O((rri + L− 1)3) +O(f0,iL(r(ri + 1) + L− 1))

= O((r(ri − dx) + L− 1)(r(ri + 1) + L− 1)f0,i) +O(f0,iL(r(ri + 1) + L− 1)),

= O((r(ri − dx) + L− 1)(r(ri + 1) + L− 1)f0,i),

since each region Xi in the given polytopic partition is a polytope, leading to

ri ≥ dx + 1.
In conclusion, the robustness margin via the halfspace representation can be

obtained at most in

N∑

i=1

O((r(ri − dx) + L− 1)(r(ri + 1) + L− 1)f0,i).

3.8.3 Complexity comparison

This subsection aims to compare the computational complexity of the robust-

ness margin via two different approaches. It is already known that the V−representation

andH−representation are dual, thus it is difficult to clearly state that one is better

than the other.

According to Table 3.1, it can be relatively observed that if the number of ver-

tices of the given polytopic partition satisfies:

p(q + L− dx − 2) <
N∑

i=1

(r(ri − dx) + L− 1),

then the approach via the V−representation is less complex than the one via the

H−representation. Otherwise, the approach via the H−representation is less

computationally demanding than the other.
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Approaches Computational complexity

V−representation pO ((q + L)(q + L− dx − 2)f0)

H−representation
∑N

i=1O((r(ri − dx) + L− 1)(r(ri + 1) + L− 1)f0,i)

Table 3.1: Comparison of computational complexities for the robustness margin

via two different approaches.

For illustration, consider again the numerical example in Subsection 3.3.4. In

this example q = 8, p = 22, dx = 2, L = 3, r = 8, N = 11, ri ∈ {4, 5, 6} , for

i ∈ I11. It can be observed that the approach via the vertex representation is more

efficient than the one via the halfspace representation, since the latter one has to

work with polyhedral operations for high dimensional sets. This is advocated via

computational times, presented in Table 3.2.

Approaches Computational time [s]

V−representation 0.6550

H−representation > 3600

Table 3.2: Comparison of computational time for the robustness margin via two

different approaches. This simulation is carried on a computer with an Intel Core

i5, M430, 2.27 Ghz, Ram 4G. This computer was equipped with a 32 bit version

of Windows 7.

Remark 3.8.1 To make the computation more efficient, it is better to avoid work-

ing with high dimensional sets by considering smaller polyhedra with appropriate

variables and projecting them onto the space of interest. Finally, the robustness

margin can be obtained as their intersection. For example, consider (3.54). In-

stead of constructing a high dimensional polyhedron as in (3.54), one can con-

struct smaller polyhedra with variables
[
MT

i (k, ·) α1 . . . , αL−1

]T
for all k ∈ Ir.

Subsequently, to obtain the robustness margin, it suffices to project these polyhe-

dra onto the space of [α1 . . . αL−1]
T

and compute their intersection.

3.9 Conclusions

A measure of the robustness and fragility margins for the class of PWA con-

trollers has been introduced in this chapter. Two points of view have been pre-

sented with respect to the closed-loop dynamics of a linear system with a piece-

wise affine control law: the robustness with respect to parametric model uncer-

tainties and the fragility of the piecewise affine control function. For both cases

it has been shown that the margins are represented by convex sets of admissible
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parameter variations. Following this idea, extensions to the explicit fragility mar-

gin of the state space partition and the robustness margin with respect to additive

disturbances have also been tackled. These problems also lead to polyhedral set

descriptions. The approach allows one to have a generic vision about the margins

related to PWA control laws and also provides new insight in the implementation

limitations for this class of controllers. We conclude this chapter with an obser-

vation that the robustness margin with respect to parametric model uncertainties

is denoted as matched portion of model in other texts e.g. Barmish and Leit-

mann [1982]. The characterization of this robustness margin amounts to finding

a matching condition for parametric uncertainties to guarantee the positive invari-

ance.
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Inverse parametric linear/quadratic programming (IPL/QP) aims to construct

an appropriate optimization problem composed of a set of linear constraints and

a cost function such that the optimal solution to such a problem is equivalent to

the given continuous piecewise affine function defined over a polyhedral parti-

tion. This chapter introduces a constructive procedure to find this formulation.

The approach is based on the so-called convex liftings Rybnikov [1999]. As the

first geometrical result, an algorithm to construct convex liftings of a given con-

vexly liftable cell complex will be put forward. Moreover, it will be shown that

a polyhedral partition or a non-convexly liftable cell complex can be subdivided

into a convexly liftable cell complex without changing boundaries between the

regions of the partition. Following this idea, an important result will be presented:

any continuous piecewise affine function defined over a polyhedral partition is the

solution of a parametric linear/quadratic programming problem which can be nu-

merically constructed. Furthermore, this convex liftings based method requires at

most one scalar auxiliary variable.

Based on a similar methodology, the extension of IPL/QP problem for the class

of discontinuous piecewise affine functions will also be studied. It will be shown

that any possibly discontinuous PWA function is optimal solution to a parametric

convex optimization problem. However, the uniqueness of this optimal solution is

no longer guaranteed.

4.1 Introduction

Parametric convex programming (PCP) has attracted significant attention from

the control community due to its interesting applications in model predictive con-

trol. A parametric convex programming problem, characterized by a set of lin-

ear constraints and a linear/quadratic cost function, is called a parametric lin-

ear/quadratic programming problem (PL/QP). It is well known that optimal solu-

tion of such a linear/quadratic programming problem is a piecewise affine (PWA)

function defined over a polyhedral partition of the parameter space. In fact, in

control theory, this class of control laws emerged in the last decade as an ap-

proximation of the classical nonlinear control laws with respect to a predefined

approximation error Grancharova and Johansen [2012], Johansen [2002, 2004].

Then, it was shown that this piecewise affine structure is inherited by the exact

optimal solution of a linear MPC problem with respect to a linear/quadratic cost

function Bemporad et al. [2002], Feller et al. [2013], Olaru and Dumur [2004],

Pistikopoulos et al. [2007], Seron et al. [2003], Tøndel et al. [2003]. Note that

piecewise affine control laws may also result from other control design approaches

than MPC, an approach based on interpolation for robust PWA control law design

can be found in Nguyen [2014].
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Inverse parametric convex programming (IPCP) aims to build a parametric con-

vex optimization problem characterized by an appropriate constraint set and a

cost function such that its optimal solution contains as a subcomponent the given

function. In particular, inverse parametric linear/quadratic programming aims to

construct a linear constraint set and a linear/quadratic cost function such that a

subcomponent of the optimal solution to their associated optimization problem is

equivalent to a given PWA function defined over a given polyhedral partition.

This inverse optimality problem has been investigated for some years and has

resulted in interesting results in the general nonlinear continuous functions case

Baes et al. [2008], and recently with respect to continuous piecewise affine func-

tions Hempel et al. [2015], Nguyen et al. [2014d]. One of the main reasons for

this interest in inverse parametric convex programming problems is related to im-

plementation of piecewise affine control laws Nguyen et al. [2015e]. It is already

known that if the state space partition of the given PWA control law contains nu-

merous regions, two major limitations are well recognized:

— its implementation requires substantial computer memory to store the par-

tition and its associated control law gains,

— at each sampling instant, the point-location problem determining to which

region the current state belongs, becomes more expensive.

Therefore, reducing the implementation complexity for this class of controllers is

necessary. Finding a simpler optimization problem, which generates an equivalent

piecewise affine control law, is a promising approach for implicit implementation.

Note that some efforts for fast MPC study can be found in Wang and Boyd [2010]

where the structure of optimization problem is shown to benefit online solvers.

Also, results towards the complexity reduction of PWA control laws can also be

found in Kvasnica and Fikar [2012], Kvasnica et al. [2013].

This chapter is closely related to the first results of inverse parametric con-

vex programming presented in Baes et al. [2008]. The authors proved that every

continuous feedback law can be obtained by PCP. This is an insightful mathemat-

ical result. However, it remains pure theoretical; neither a constructive procedure

nor a qualitative interpretation of the dimension of the optimization arguments

is provided in Baes et al. [2008]. The present work is motivated by a comment

therein: A natural question that can arise from this note would be to particularize

our results to piecewise linear controllers: can any continuous piecewise linear

feedback law be obtained by parametric linear programming? Should such a con-

struction be possible, it might offer computational advantages for explicit MPC

algorithms. The answer is positive, and one solution to such an inverse optimality

problem is recently found in Hempel et al. [2015] wherein an indirect solution,

built upon a decomposition of a continuous PWA function into the difference of

two continuous convex functions, is introduced. It is shown therein that the num-

ber of auxiliary variables is at most 2du, where du represents the dimension of the
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given PWA function to be recovered.

Here, stronger results are obtained using a different approach i.e. the convex

lifting approach. Furthermore, it will be proved that the proposed method can

recover the given PWA function with at most one supplementary scalar variable.

The major contributions in this direction are:

1. the introduction of the convex lifting concept for use in the inverse optimal-

ity problem,

2. a convex liftability related condition for the existence of a solution for the

inverse optimality problem,

3. a constructive procedure based on linear/quadratic programming and poly-

hedral operations for obtaining such a solution,

4. a partition refining algorithm which produces an equivalent PWA function

for those that do not fulfill convex liftability conditions.

The theoretical results prove to have a number of implications in control design.

The most important is related to linear MPC and can be stated as follows: every

continuous piecewise affine control law can be recovered via a model predictive

control problem with a control horizon at most equal to 2 prediction steps.

The most important concept used in these developments: the lifting can be de-

fined in the geometrical sense as an inverse operation of orthogonal projection. It

has been applied in different fields: e.g. mechanics, geometry, signal processing,

control, etc. As emphasized by its definition, this operation allows lifting of a

given partition onto a higher dimensional space. In particular, a so-called convex

lifting of a given partition in R
d amounts to a convex PWA surface in R

d+1 such

that its image via the orthogonal projection onto R
d coincides with the given par-

tition. It is worth stressing that such a convex lifting of a partition has each pair

of adjacent (neighboring) regions in the given partition lifted onto two distinct

hyperplanes, as defined in Rybnikov [1999]. This concept differs from the notion

of convex function employed in Hempel et al. [2015] which allows two adjacent

regions to be lifted onto the same hyperplane.

Note that a polyhedron bounded by such a convex lifting in (d+1)−dimensional

space is called an affinely equivalent polyhedron associated with the given parti-

tion. It is worth reminding that the lifting notion was introduced for the first

time in Maxwell’s research publications e.g. Maxwell [l864] some 150 years ago.

Later, a plethora of studies were dedicated for the existence conditions of such a

convex lifting of a given partition Aurenhammer [1987a,b], Crapo and Whiteley

[1993, 1994], Nguyen et al. [2014c], Rybnikov [1999], Schulz [2008]. In fact,

the equilibrium stress notion was presented in Maxwell [l864] to obtain recipro-

cal diagrams of a given partition on the plane. Afterwards, an isomorphism so-

called Maxwell correspondence between equilibrium stresses and convex lifting
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in R
2 was advocated in Crapo and Whiteley [1993, 1994], Schulz [2008]. Subse-

quently, these equivalences were generalized and extended to partitions in general

dimensional space R
d in studies by Rybnikov and Aurenhammer Aurenhammer

[1987a,b], Rybnikov [1999]. However, most of these results are difficult to apply

in numerical methods such as those usually employed in linear control design.

One of the goals of this work is to revisit these concepts and extract the most im-

portant elements needed in the inverse optimal control design. Indeed, in regard

to applications in linear MPC, a difficulty arises: the explicit solution of a linear

MPC problem with respect to a quadratic cost function is not, in many cases, con-

vexly liftable. As a consequence, control theory needs a systematic approach for

the use of a lifting procedure in the inverse optimality problem. This aspect will

be discussed in details to provide a complete solution for any PWA function.

4.2 Preliminaries

The definition of a polyhedral partition {Xi}i∈IN has been presented in Defini-

tion 3.2.1. Note however that a polyhedral partition is not necessarily a subdivi-

sion of a polyhedron. Instead, the union of its components i.e. X =
⋃

i∈IN
Xi,

can be a non-convex set. A simple example to illustrate a non-convex polyhe-

dral set can be found in Figure 4.1. In many texts, such a particular set is still

called a polyhedral set even if it is not convex. It is mainly due to the fact that its

boundaries are described by linear constraints. In some places of this chapter, the

term non-convex polyhedral/polytopic set is of use to denote such particular sets.

Also, a subdivision of a non-convex polyhedral set into several polyhedra is still

called a polyhedral partition and polytopic partition if this non-convex polyhe-

dral set is compact. Apart from this particularity, a polyhedron/polytope is always

understood as a convex polyhedron/polytope.

Figure 4.1: A non-convex polytopic set. Figure 4.2: A cell complex.
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Another particular class of polyhedral partitions is called cell complexes which

will be usually employed in this chapter. Its definition is presented in Grünbaum

[1967] and is recalled below for completeness.

Definition 4.2.1 A finite family C of polyhedra in R
d will be called a cell complex

provided:

— every face of a member of C is itself a member of C,

— the intersection of any two members of C is a face of these two members.

From the above definition, a cell complex may not need to build a full-dimensional

set. An example in this sense is the boundary of a polytope in R
3. This boundary is

a cell complex, consisting of the facets, the edges, the vertices of this polytope and

the empty set, known to be an improper face of a polyhedron. However, this cell

complex does not build a full-dimensional set in R
3, which is the first condition

of a polyhedral partition.

For simplicity, a cell complex should be understood, in this manuscript, as a

polyhedral partition satisfying the face-to-face property i.e. any pair of regions

share a common face. Recall that the empty set is considered as an improper

face of a polyhedron. Accordingly, the polytopic partition in Figure 4.2 is a cell

complex since the intersection of two regions is empty. However, to keep the

convexity, we mostly restrict our attention in this manuscript to a cell complex of

a polyhedron. More intuitively, a cell complex of a polyhedron is a polyhedral

partition whose facet-to-facet property is fulfilled i.e. any pair of neighboring

regions share a common facet.

Another illustration is presented in Figure 4.3. The partition therein is a poly-

topic partition but not a cell complex in R
2, since the intersection of the red poly-

tope and the yellow one is a facet of the red polytope, but not a facet of the yellow

one. Otherwise, the partition in Figure 4.4 is a cell complex due to the fact that

the intersection any pair of neighboring regions is their common facet.

Definition 4.2.2 Given a polyhedral partition {Xi}i∈IN of a polyhedron X ⊆ R
d,

a piecewise affine lifting is described by function z : X → R with:

z(x) = aTi x+ bi for any x ∈ Xi, (4.1)

and ai ∈ R
d, bi ∈ R, ∀i ∈ IN .

Definition 4.2.3 Given a polyhedral partition {Xi}i∈IN of a polyhedron X ⊆ R
d,

a piecewise affine lifting z(x) = aTi x + bi for x ∈ Xi, is called convex piecewise

affine lifting if the following conditions hold true:

— z(x) is continuous over X ,

— for each i ∈ IN , z(x) > aTj x+ bj for all x ∈ Xi\Xj and all j 6= i, j ∈ IN .
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Figure 4.3: A polytopic partition in R
2. Figure 4.4: A cell complex in R

2.

Note that the second condition in this definition implies that any pair of neighbor-

ing regions are lifted onto two distinct hyperplanes. Also, it implies the convexity

of this piecewise affine lifting. Again, we note that this definition differs from the

term convex function which allows two neighboring regions to be lifted onto the

same hyperplane.

For ease of presentation, a slight abuse of notation is used hereafter: a convex

lifting will be understood as a convex piecewise affine lifting.

From the above definition, if {Xi}i∈IN is a polyhedral partition of a polyhe-

dron whose convex liftings exist, then {Xi}i∈IN should be a cell complex. This

observation is formally stated by the following proposition.

Proposition 4.2.4 A polyhedral partition {Xi}i∈IN of a polyhedron X ⊆ R
d

which admits a convex lifting, is a cell complex.

Proof: Suppose the given polyhedral partition {Xi}i∈IN of a polyhedron X ⊆
R

d which admits a convex lifting, is not a cell complex. Let

z(x) = aTi x+ bi for x ∈ Xi

denote a convex lifting of {Xi}i∈IN . As {Xi}i∈IN is not a cell complex, there ex-

ists a pair of neighboring regions, denoted byXi,Xj, whose facet-to-facet property

is not fulfilled. Due to the definition of convex liftings, the hyperplane denoted by

H0, containing Xi ∩ Xj, can be described by

H0 =
{
x ∈ R

d | aTi x+ bi = aTj x+ bj
}
.

Also, due to the non-satisfaction of the facet-to-facet property, there exists a point,

denoted by x0, such that either x0 ∈ H0 ∩ Xi, x0 /∈ Xj or x0 ∈ H0 ∩ Xj, x0 /∈ Xi
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Xi
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Figure 4.5: An illustration for Proposition 4.2.4.

(an illustration can be found in Figure 4.5). Without loss of generality, suppose

the former case happens, then x0 ∈ H0 implies

aTi x0 + bi = aTj x0 + bj. (4.2)

On the other hand, from the definition of convex lifting, x0 ∈ Xi, x0 /∈ Xj lead to

aTi x0 + bi > aTj x0 + bj. (4.3)

Inclusions (4.2) and (4.3) are clearly contradictory. Therefore, partition {Xi}i∈IN
has to be a cell complex. The proof is complete. �

Remark 4.2.5 Note that Proposition 4.2.4 holds true not only for polyhedral par-

titions of a polyhedron, but also for polyhedral partitions of a non-convex polyhe-

dral set.

It is worth stressing that the cell complex characterization of {Xi}i∈IN is a nec-

essary condition for the existence of a convex lifting, but not a sufficient condition.

Namely, a cell complex still has to satisfy additional conditions for the existence

of a convex lifting.

Definition 4.2.6 A given cell complex {Xi}i∈IN of a possibly non-convex polyhe-

dral set X ⊆ R
d has an affinely equivalent polyhedron if there exists a polyhedron

X̃ ⊂ R
d+1 such that for each i ∈ IN :

1. ∃Fi ∈ F(X̃ ) satisfying: ProjRd Fi = Xi,

2. if z(x) = min
z

z s.t.
[
xT z

]T ∈ X̃ , then

[
x

z(x)

]
∈ Fi for x ∈ Xi.
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Figure 4.6: An illustration of the operation Xproj and an affinely equivalent poly-

hedron.

An illustration can be found in Figure 4.6 where the cell complex in R consists of

the multicolored segments along the horizontal axis. One of its affinely equivalent

polyhedra in R
2 is the pink shaded region. Moreover, the lower facets of this

polytope are an illustration of the facets Fi appearing in the definition.

Remark 4.2.7 This definition does not imply thatX =
⋃

i∈IN
Xi has to be a poly-

tope (polyhedron). The second condition in the definition of an affinely equiva-

lent polyhedron ensures that some of the facets of X̃ at the lower values of z are

exclusively considered. The image of these facets via the orthogonal projection

coincides with cell complex {Xi}i∈IN . An illustration can be found in Figure 4.7

where the given polytopic partition is presented in Figure 4.1, one of its affinely

equivalent polyhedron is the polytope above whose lower facets interested in the

orthogonal projection are solid-colored. In case X is a polytope (polyhedron), all

the lower facets of X̃ are of interest in the orthogonal projection. These facets

build a convex surface called a convex lifting as defined previously. Some nec-

essary and sufficient conditions for a cell complex to be convexly liftable are re-

called in Section 4.4.1. Note that none of them requires {Xi}i∈IN to be a partition

of a polytope (polyhedron). However, in applications to inverse parametric lin-

ear/quadratic programming problem, this assumption will be of help to guarantee

the convexity of recovered optimization problem.

Remark 4.2.8 Note also that in some texts e.g. De Loera et al. [2010] a poly-

hedral partition admitting a convex lifting, is alternatively called a regular par-

tition. Moreover, in Aurenhammer [1987a,b], these partitions are alternatively

called polytopical cell complexes. In our works, we choose the terminology con-

vexly liftable cell complex for a more intuitive reason.
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Figure 4.7: An illustration of the lower facets Fi interested in the orthogonal pro-

jection in Definition 4.2.6.

In order to link a given cell complex and one of its affinely equivalent polyhedra, it

is necessary to introduce a new operator called partitioned orthogonal projection.

Definition 4.2.9 Given a polyhedron X̃ ⊂ R
d+1, the partitioned orthogonal pro-

jection of X̃ on the first d coordinates is denoted as XprojRd X̃ , and is defined as:

XprojRd X̃ :=

{
{Xi}i∈IN | Xi = ProjRd Fi s.t. Fi ∈ F(X̃ ),

any

[
x

z(x)

]
∈ Fi satisfies z(x) = min

z
z subject to

[
xT z

]T ∈ X̃
}
.

(4.4)

The partitioned orthogonal projection is also illustrated in Figure 4.6. The

x−coordinates are described by the horizontal axis, and the z−coordinates can

be described by the vertical axis. The given polytope X̃ is the pink one whose

lower facets are multicolored. These multicolored facets of X̃ are the facets Fi

which are the objects of the Xproj operation. The result of this operation is rep-

resented by the multicolored regions along the horizontal axis.

It can be observed that if {Xi}i∈IN = XprojRdX̃ , then the set X =
⋃

i∈IN
Xi ⊆

R
d is a polyhedron.

Remark 4.2.10 XprojRdX̃ is a finite collection of polyhedra, since F(X̃ ) is a

finite collection of polyhedra in R
d+1. The uniqueness of the partitioned orthogo-
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nal projection is due to the uniqueness of the set of lower facets of X̃ . XprojRdX̃
returns a cell complex.

Remark 4.2.11 From the two last definitions, if partition {Xi}i∈IN of a possibly

non-convex polyhedral set X ⊆ R
d is convexly liftable and X̃ denotes one of its

affinely equivalent polyhedra, then {Xi}i∈IN ⊆ XprojRdX̃ . More precisely, if

{Xi}i∈IN is a cell complex of a polyhedron then XprojRdX̃ = {Xi}i∈IN , other-

wise XprojRdX̃ =
⋃

i∈I Xi with IN ⊂ I.

Remark 4.2.12 Notice also that given a polyhedron X̃ ⊂ R
d+1, if z denotes the

last coordinate of X̃ such that
[
xT z

]T ∈ X̃ , then XprojRd X̃ is nothing other than

the cell complex, associated with the optimal solution to the following parametric

linear programming problem:

min
z

z subject to
[
xT z

]T ∈ X̃ .

4.3 Problem statement

4.3.1 Parametric linear/quadratic programming problems

It is shown in Bemporad et al. [2002], Olaru and Dumur [2004], Pistikopou-

los et al. [2007], Seron et al. [2003], Tøndel et al. [2003] that a parametric lin-

ear/quadratic programming problem is defined with respect to dx, du ∈ N>0 as

follows:

min
u

f(u, x),

subject to: Gu ≤ W + Ex,
(4.5)

where x ∈ R
dx represents the parameter vector, u ∈ R

du represents the decision

variable, and f(u, x) represents a linear/quadratic cost function in u and x. The

above problem has a continuous solution denoted as u∗(x) (see Olaru and Dumur

[2006] and Theorem 4 in Bemporad et al. [2002]), known to be a piecewise affine

function defined over a polyhedral partition of the parameter space denoted as

{Xi}i∈IN :

X =
⋃

i∈IN

Xi, is a polyhedron,

u
∗(x) = fpwa(x) = Hix+Gi, ∀x ∈ Xi.

(4.6)

Notice that the optimal solution to a parametric quadratic programming problem

is unique Bemporad et al. [2002] when f(u, x) is a strictly convex function of u.
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It is already known that this uniqueness may no longer be preserved in case of a

parametric linear programming problem. However, a continuous selection among

the optimal solutions to such a linear problem is shown in Olaru and Dumur [2006]

to exist.

Conversely, given a continuous PWA function defined over a polyhedral par-

tition, the question is whether there exists an optimization problem such that its

optimal solution is equivalent to the given PWA function. The answer is shown in

Baes et al. [2008] to be affirmative, although the numerical construction of such

an optimization problem is still open. A possible candidate optimization problem

may be characterized by a linear/quadratic cost function and a set of linear con-

straints. Such a set of constraints must be constructed from the given polyhedral

partition and its associated PWA function. An approach for such a construction

can be based on convex lifting which makes a link with the polyhedral partitions.

This convex lifting construction will be detailed in the sequel. For the moment,

the definition of an inverse parametric linear/quadratic programming problem is

introduced.

4.3.2 Inverse parametric linear/quadratic programming prob-

lems

From the mathematical point of view, an inverse parametric linear/quadratic

programming problem intends to reconstruct an appropriate optimization problem

with respect to a given continuous piecewise affine function u(x) = fpwa(x), de-

fined over a given polyhedral partition {Xi}i∈IN of the parameter space X ⊆ R
dx ,

such that the optimal solution of this reconstructed problem is equivalent to the

given piecewise affine function fpwa(x). It is worth stressing that the equivalence

here means that the boundary between two different regions of the parameter space

partition corresponding to two different affine functions is preserved, and a sub-

division or refinement of the regions corresponding to the same affine function is

acceptable. This problem can be briefly stated as follows:

Problem statement: For a given polyhedral partition {Xi}i∈IN of the state space

X ⊆ R
dx associated with a continuous piecewise affine function fpwa(x) : X →

R
du , find a linear/quadratic cost function J(x, z, u) and matrices Hx, Hu, Hz, K

such that: 



fpwa(x) = ProjRdu arg min
[z uT ]T

J(x, z, u),

s.t. Hxx+Hzz +Huu ≤ K.
(4.7)

As mentioned before, the convex-lifting based approach to such an inverse opti-

mality problem is presented next. A definition of invertibility needs to be intro-

duced in order to establish the working assumption of this convex lifting based

method.
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Figure 4.8: An illustration of the star of the 0−face A in R
2.

Definition 4.3.1 A continuous PWA function defined over a polyhedral partition

is called invertible if there exists an appropriate constraint set and a cost function

such that their associated parametric convex programming problem admits the

given continuous PWA function as its optimal solution.

4.4 A constructive convex lifting based approach for

IPL/QP

4.4.1 Existing results on convex liftings

The definition of a convex lifting has previously been presented. To clarify

some existing results, we now recall the definition of equilibrium stresses, briefly

denoted as stresses c.f. Lee [1996], Rybnikov [1999]. For ease of presentation,

let n(F,C) denote the inward unit normal vector to the polyhedron C at its facet

F , meaning the unit vector n(F,C) normal to F at F and inward to C.

Further, the star of a face in a cell complex C is its smallest sub-complex con-

taining all faces of C which contain this face. An illustration can be found in

Figure 4.8 where a cell complex consists of several triangles and quadrilaterals,

the star of the 0−face (point) A composes of the red faces:

— 0−face A,

— 1−faces AB, AC, AE, AF ,

— 2−faces ABC, ACE, AEF, AFDB.

Definition 4.4.1 (Rybnikov [1999]) A real-valued function s(·) defined on the

(d − 1)−faces of a cell complex K ⊂ R
d is called a d−stress if at each internal
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Figure 4.9: An illustration of 3−stress.

(d− 2)−face F of K: ∑

C|F⊂C

s(C)n(F,C) = 0, (4.8)

where this sum ranges over all (d− 1)−faces in the star of F (the (d− 1)−faces

such that F is their common facet). The quantities s(C) are the coefficients of this

d−stress, are called a tension if the sign is strictly positive, and a compression if

the sign is strictly negative.

An illustration of the above definition is depicted in Figure 4.8. This cell complex

contains the following 0−faces in its interior: E,F,A,B,C. Suppose there exists

a 2−stress defined over the set of 1−faces of this cell complex, let s(·) denote

the coefficients of this 2−stress. Then, considering 0−face A, AE is an 1−face

in the star of A,
−→
AE is a vector normal to A and inward to 1−face AE, but

it is not a unit vector, therefore, the inward unit normal vector at A to AE is

n(A,AE) =
−→
AE
|AE|

, where |AE| denotes the Euclidean distance between A and E.

Similarly, the inward unit normal vectors at A to the 1−faces AF,AB,AC are

n(A,AF ) =
−→
AF
|AF |

, n(A,AB) =
−→
AB
|AB|

, n(A,AC) =
−→
AC
|AC|

, respectively. Following

the definition of stresses at the 0−face A, one obtains:

s(AE)n(A,AE) + s(AF )n(A,AF ) + s(AB)n(A,AB) + s(AC)n(A,AC) = 0,

then the 0−face A is called in equilibrium. This cell complex is convexly liftable

if the 0−faces E,F,A,B,C are in equilibrium with strictly positive function s(·)
(this necessary and sufficient condition will be recalled next.)

Another illustration for the definition of 3−stress is shown in Figure 4.9. More

clearly, consider an internal 1−face F of an arbitrary cell complex in R
3. Suppose
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the 2−faces of this cell complex which share a common facet F, are C1, C2, C3,
respectively. The inward unit normal vectors of F to C1, C2, C3, i.e. n(F,C1),
n(F,C2), n(F,C3), are shown therein. According to Definition 4.4.1, the condi-

tion for the 1−face F to be in equilibrium is the existence of a 3−stress: s(C1),
s(C2), s(C3) ∈ R such that:

s(C1)n(F,C1) + s(C2)n(F,C2) + s(C3)n(F,C3) = 0.

The equivalence between the existence of stresses and convex liftings for cell

complexes in R
2 was already stated through studies by Maxwell in Maxwell

[l864], Cremona, Crapo, Whiteley in Crapo and Whiteley [1993, 1994], Schulz

in Schulz [2008]. These results were then generalized to the cell complexes in the

general dimensional space R
d through different studies e.g. in Rybnikov [1999].

It was shown therein that there exists a convex lifting for a cell complex in R
d if

and only if one of the followings holds:

— it admits a strictly positive d−stress,

— it is an additively weighted Dirichlet-Voronoi diagram

— it is an additively weighted Delaunay decomposition,

— it is the section of a (d+ 1)-dimensional Dirichlet-Voronoi partition 1.

The above results cover the general class of cell complexes in R
d. Unfortunately,

despite the mathematical completeness of the existing results, the verification of

these conditions are computationally expensive. Furthermore, they do not provide

any hint for the construction of a convex lifting. From applications in control

design, due to the dimension of the state space, there are several obstacles to

make use of the above results difficult:

— The computation of d−stresses for all (d− 1)−faces of a given cell com-

plex is based on the determination of inward unit normal vectors. With

respect to the halfspace/vertex representation of a polytope/polyhedron,

this determination is not trivial. As a consequence, the construction of a

convex lifting, based on the d−stresses notion, may not be appropriate.

— To our best knowledge, recognizing an additively weighted Voronoi di-

agram or an additively weighted Delaunay decomposition requires solv-

ing an optimization problem with bi-linear constraints (c.f. Nguyen et al.

[2015d] or related materials in Section 7.3). Thus, this task becomes com-

putationally demanding, once the number of regions of a given cell com-

plex is large.

— The solution to a parametric quadratic programming problem is in some

cases a piecewise affine function defined over a polyhedral partition in-

stead of a cell complex.

1. Other related results can be found in Konstantin Rybnikov’s thesis Rybnikov [1999], equally

in Aurenhammer [1987a,c, 1991]. Note that an additively weighted Dirichlet-Voronoi diagram is

in fact a generalization of a power diagram.
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Due to the above reasons, applications in control theory need specific algorithms

to verify the convex liftability of the cell complexes inherited from parametric

linear/quadratic programming problems, and construct their convex liftings if they

exist. These discussions and related problems are detailed in the next section.

Note however that the construction of convex liftings for some special cases e.g.

Voronoi diagrams and Delaunay triangulations and their recognition were already

investigated in Aurenhammer [1991], Edelsbrunner and Seidel [1986], Hartvigsen

[1992]. The aim of the next subsection is to present such a construction in the

general case of cell complexes and shows how to transform a generic polyhedral

partition into a convexly liftable cell complex.

4.4.2 A construction of convex liftings

In this subsection, the main objective is to present an algorithm for the con-

struction of an affinely equivalent polyhedron (or a convex lifting) for a given cell

complex via linear/quadratic programming. This algorithm exploits the continuity

and the convexity of two neighboring regions.

4.4.2.1 Construction for polytopic partitions

Given a cell complex {Xi}i∈IN of a polytope X ⊂ R
d, X̃ ⊂ R

d+1 denotes one

of the affinely equivalent polyhedra of {Xi}i∈IN . For each region Xi, i ∈ IN , the

hyperplane, containing the lower facet of X̃ whose orthogonal projection onto R
d

coincides with Xi, has the following form:

Hi =

{[
x

zi(x)

]
∈ R

d+1 | zi(x) = aTi x+ bi

}
, (4.9)

for suitable ai ∈ R
d, bi ∈ R.

Let (i, j) ∈ I2N be an index pair such that (Xi,Xj) are neighbors. The continuity

conditions between them are described as follows:

∀x ∈ Xi ∩ Xj, i 6= j, zi(x) = zj(x). (4.10)

Moreover, the convexity conditions between them can be handled as:

∀x ∈ Xi\(Xi ∩ Xj), zi(x) > zj(x). (4.11)

The conditions (4.10) and (4.11) represent fundamental properties of a convex

lifting, therefore they can be used for a construction by considering (ai, bi) as

variables. Algorithm 4.1 summarizes such a constructive procedure which allows

for the computation of the gains (ai, bi), ∀i ∈ IN of a convex lifting.

The following theorem serves as an explanation of this algorithm.
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Algorithm 4.1 An algorithm to construct a convex lifting for a given cell complex

{Xi}i∈IN of a polytope X ⊂ R
d.

Input: {Xi}i∈IN and a given constant c > 0.

Output: (ai, bi), ∀i ∈ IN , a polyhedron X̃ ⊂ R
d+1 such that {Xi}i∈IN =

XprojRdX̃ .
1: Register all pairs of neighboring regions in {Xi}i∈IN .
2: For each pair of neighboring regions (Xi, Xj), (i, j) ∈ I2N :

— Add continuity conditions ∀v ∈ V(Xi ∩ Xj):

aTi v + bi = aTj v + bj. (4.12)

— Add convexity conditions ∀u ∈ V(Xi), u /∈ V(Xi ∩ Xj):

aTi u+ bi ≥ aTj u+ bj + c. (4.13)

3: Solve the following convex optimization problem by minimizing a chosen

cost function e.g.

min
ai, bi

N∑

i=1

(aTi ai + bTi bi) subject to (4.12), (4.13). (4.14)

4: Construct an affinely equivalent polyhedron

X̃ = conv

{[
v

z(v)

]
∈ R

d+1 | v ∈
⋃

i∈IN

V(Xi), z(v) = aTi v + bi if v ∈ Xi

}
.

Theorem 4.4.2 If problem (4.14) is feasible, then function z(x) = aTi x + bi for

x ∈ Xi is a convex lifting over the given cell complex {Xi}i∈IN .

Proof: If the optimization problem (4.14) is feasible, then the continuity condi-

tions of function z(x) and the convexity conditions of its epigraph are all fulfilled.

Accordingly, for two neighboring regions (Xi,Xj), it follows that:

aTi x+ bi = aTj x+ bj, for all x ∈ Xi ∩ Xj,

aTi x+ bi > aTj x+ bj, for all x ∈ Xi\Xj.
(4.15)

The same inclusion holds for the other pairs of neighboring regions. This leads to

the continuity of z(x) and for each i ∈ IN :

aTi x+ bi > aTj x+ bj for all x ∈ Xi\Xj, ∀j 6= i, j ∈ IN . (4.16)
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Therefore, function z(x) = aTi x + bi for x ∈ Xi is a convex lifting defined over

the cell complex {Xi}i∈IN , as defined in Definition 4.2.3. �

Remark 4.4.3 Note that due to (4.16), (ai, bi) and (aj, bj) are different for any

i 6= j, (i, j) ∈ I2N . This implies that any pair of regions in the given cell complex

are lifted onto two distinct hyperplanes. More specially, function z(x) can be

written in the form z(x) = max
i∈IN

(aTi x + bi), known to be a convex function over

X .

Also, the hyperplanes Hi, ∀i ∈ IN defined in (4.9) are supporting hyperplanes

of polytope X̃ at its lower facets.

It is worth emphasizing that the first step in Algorithm 4.1 considers all non

identical pairs of different regions without taking the order into account. For each

of these pairs, if the intersection of these two regions is a polytope of dimen-

sion d − 1, then they are neighboring. This task can be performed through the

halfspace representation. More clearly, if these two polytopes have the halfspace

representation H1x ≤ K1, H2x ≤ K2, respectively, then their intersection is a

polytope, described by:

[
H1

H2

]
x ≤

[
K1

K2

]
. Determining the real dimension of a

polytope/polyhedron can be carried out using existing routines (see MPT Herceg

et al. [2013]).

As for the complexity of this step, if the given cell complex consists of N
regions, then the number of cases considered is 1

2
N(N − 1). The second step im-

poses constraints via the vertices of related polytopes, thus it requires the vertex

representation of these regions. Moreover, the third step of this algorithm finds

ai, bi by solving an optimization problem with respect to a pre-chosen quadratic

cost function. This choice of cost function aims to reduce the slope of the facets of

this convex lifting corresponding to the regions of the given cell complex. Other

choices may be possible, however, if these slopes are large, the computation of

an affinely equivalent polyhedron via the convex hull in the next step may lead

to numerical sensitivity. In fact, algorithms to compute the convex hull of a set

of discrete points are known to be quite expensive and their precision is limited.

Therefore, if a coordinate of these points is greater with several orders of mag-

nitude than the other coordinates, this computation may no longer be reasonable.

Otherwise, the feasibility of an optimization problem depends simultaneously on

the feasibility of the constraint set and the boundedness of the optimal cost func-

tion. If the constraint set is feasible, but the optimal cost function is infinite, one

cannot conclude that this optimization problem is feasible.

As seen in (4.13), the strict convexity condition (4.11) can be easily transformed

into inequality constraints in an optimization problem by adding a positive con-

stant c on the right-hand side of (4.13), thus > can be replaced with ≥. Theoreti-
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Figure 4.10: A cell complex in R
2 and one of its affinely equivalent polyhedra.

cally, if the given cell complex is convexly liftable, then any choice of this positive

constant does not have any effect on the feasibility of the optimization problem

(4.14). In fact, if ai, bi for i ∈ IN are coefficients of a convex lifting for the given

cell complex {Xi}i∈IN , then so are (αai, αbi) for any α > 0, since (4.12), (4.13)

amount to

(αai)
Tv + (αbi) = (αaj)

Tv + (αbj) for v ∈ V(Xi ∩ Xj)

(αai)
Tu+ (αbi) ≥ (αaj)

Tu+ (αbj) + αc for u ∈ V(Xi), u /∈ V(Xj).

In other words, ℓ̃(x) = (αai)
Tx+(αbi) for x ∈ Xi also represents a convex lifting

of cell complex {Xi}i∈IN which may be resulted from Algorithm 4.1 with a given

constant αc. Therefore, the optimization problem (4.14) is still feasible with the

constant αc > 0.

A numerical example of a cell complex of a polytope in R
2 to illustrate Algo-

rithm 4.1 is presented in Figure 4.10. One of its affinely equivalent polyhedra is

the shaded polytope with the lower facets multicolored.

Note that Algorithm 4.1 is applicable for the general case of cell complexes

of polytopes and polytopic partitions in R
d. It leads to a verification condition

for the convex liftability of a given polytopic partition via the feasibility of the

associated optimization problem. More precisely, a given polytopic partition in

R
d is convexly liftable if the optimization problem (4.14) is feasible. According

to Proposition 4.2.4, if a polyhedral partition is convexly liftable, then it should

be a cell complex. Therefore, the optimization problem (4.14) is infeasible for the

polytopic partitions whose facet-to-facet property is not fulfilled.
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Figure 4.11: A polyhedral partition for which Algorithm 4.1 does not hold.

4.4.2.2 Construction for polyhedral partitions

Based on the vertex representation, Algorithm 4.1 can construct a convex lift-

ing for a polytopic partition whenever it exits. However, for a polyhedral partition

including several unbounded polyhedra, this algorithm is not directly applicable.

This limitation can be explained via a simple example. Consider a polyhedral par-

tition of the whole space R
2 which contains four quadrants, as shown in Figure

4.11. It can be seen that these four regions share the unique vertex of this parti-

tion, known to be the origin (0, 0). It can be observed that the regions P1, P2 are

neighbors. According to Algorithm 4.1, the continuity constraint is applied at the

origin, however no convexity constraint is enforced here. Therefore, the optimiza-

tion problem (4.14) is only subject to continuity constraints between (P1, P2),
(P2, P3), (P3, P4), (P4, P1). This leads to the fact that the obtained result from

(4.14) is likely (ai, bi) = 0 for all i ∈ I4. Clearly, with these trivial values, Algo-

rithm 4.1 does not result in a convex lifting.

To cover these particular partitions, two intuitive approaches can be proposed:

— either modify this algorithm subject to cell complexes of polyhedra,

— or adjust the given cell complex of polyhedra in such a manner that this

algorithm can be directly of use.

The latter approach will be of interest based on an intermediate operation. More

precisely, the given polyhedral partition will be restricted to an appropriate bounded

region such that the convex liftability of this new partition and the initial one is

treated in a similar manner. Accordingly, the use of a hyperbox large enough to

contain in its interior all vertices of the initial partition, will be proposed. The ex-

istence of such a hyperbox is guaranteed by the fact that a polyhedral partition is
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a collection of finitely many polyhedra, as a consequence the number of vertices

is finite.

Let Bd(ǫ) denote a hyperbox for a given ǫ > 0 defined as follows:

Bd(ǫ) :=
{
x ∈ R

d | ‖x‖∞ ≤ ǫ
}
.

The hyperbox used for the aforementioned goal needs to meet the following as-

sumption:

Assumption 4.4.4 For all x ∈ ⋃i∈IN
V(Xi), x ∈ int(Bd(ǫ)) for some suitable

ǫ > 0.

The following observation shows the convex liftability equivalence between a

polyhedral partition and a suitable polytopic partition.

Proposition 4.4.5 Given a cell complex {Xi}i∈IN of an unbounded polyhedron

X ⊆ R
d, then this cell complex is convexly liftable, if and only if there exists

a hyperbox Bd(ǫ) satisfying Assumption 4.4.4 such that the polytopic partition

{Xi ∩ Bd(ǫ)}i∈IN of bounded set X ∩Bd(ǫ) is convexly liftable.

Proof: −→ As recalled in Section 4.4.1, the convex liftability of cell complex

{Xi}i∈IN leads to the existence of a strictly positive function s(·) defined over its

(d − 1)−faces such that every internal (d − 2)−face is in equilibrium. Consider

an internal (d− 2)−face of {Xi}i∈IN denoted by F. Let F (d−1)(F ) denote the set

of (d − 1)−faces of {Xi}i∈IN in the star of F i.e. the (d − 1)−faces sharing a

common facet F , then the following inclusion holds true:

∑

C∈F(d−1)(F )

s(C)n(F,C) = 0.

Since Bd(ǫ) satisfies Assumption 4.4.4, thus if F is an internal (d − 2)−face of

{Xi}i∈IN , then the face F ∩ Bd(ǫ) is also an internal (d − 2)−face of the cell

complex {Xi ∩ Bd(ǫ)}i∈IN . Furthermore, F ∩ Bd(ǫ) also satisfies the following

property: ∑

C∈F(d−1)(F )

s(C)n(F ∩ Bd(ǫ), C ∩ Bd(ǫ)) = 0,

due to the fact that n(F ∩ Bd(ǫ), C ∩ Bd(ǫ)) = n(F,C). Therefore any internal

face F ∩ Bd(ǫ) is in equilibrium with strictly positive d−stress: s(C ∩ Bd(ǫ)) =
s(C) > 0, meaning the cell complex {Xi ∩ Bd(ǫ)}i∈IN is convexly liftable.

←− The sufficient condition can be similarly proved. �

With respect to Assumption 4.4.4, the following proposition is of help to construct

convex liftings for cell complexes of unbounded polyhedra.
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Proposition 4.4.6 Given a convexly liftable cell complex {Xi}i∈IN of a polyhe-

dron X ⊆ R
d and a hyperbox Bd(ǫ) satisfying Assumption 4.4.4, then function

f : X ∩Bd(ǫ)→ R

f(x) = aTi x+ bi for x ∈ Xi ∩ Bd(ǫ),

is a convex lifting of the cell complex {Xi ∩ Bd(ǫ)}i∈IN , if and only if the function

g : X → R defined as follows:

g(x) = aTi x+ bi for x ∈ Xi,

is also a convex lifting of {Xi}i∈IN .

Proof: −→ First, due to Assumption 4.4.4, the intersection X ∩ Bd(ǫ) does not

have any effect on the internal subdivision of X , since all vertices of the partition

{Xi}i∈IN lie in the interior of Bd(ǫ).
Consider now two neighboring regions in the partition {Xi ∩ Bd(ǫ)}i∈IN , de-

noted as Xi ∩ Bd(ǫ),Xj ∩ Bd(ǫ). As assumed, f(x) is a convex lifting of this

polytopic partition, then it can be deduced from its definition that:

aTi x+ bi = aTj x+ bj ∀x ∈ (Xi ∩ Bd(ǫ)) ∩ (Xj ∩ Bd(ǫ))

aTi x+ bi > aTj x+ bj ∀x ∈ (Xi ∩ Bd(ǫ))\(Xj ∩ Bd(ǫ)).

Note also that constraint aTi x+bi = aTj x+bj describes the hyperplane, separating

Xi ∩ Bd(ǫ) and Xj ∩ Bd(ǫ), then it also separates Xi and Xj . This end leads to:

aTi x+ bi = aTj x+ bj ∀x ∈ Xi ∩ Xj,

aTi x+ bi > aTj x+ bj ∀x ∈ Xi\Xj.

Applying this argument to all pairs of neighboring regions, the following inclusion

can be obtained:

aTi x+ bi > aTj x+ bj, ∀x ∈ Xi\Xj, ∀j 6= i, j ∈ IN ,

meaning g(x) is a convex lifting of {Xi}i∈IN .
←− The sufficient condition can be similarly proved. �

The above result is meaningful to construct a convex lifting for the cell complex

{Xi}i∈IN of an un bounded polyhedron X ⊆ R
d, from a convex lifting of the

polytopic partition {Xi ∩ Bd(ǫ)}i∈IN with appropriate ǫ > 0. The remaining step

is to determine such an ǫ satisfying Assumption 4.4.4. This determination can be

carried out via Algorithm 4.2.
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Algorithm 4.2 Computation of a hyperbox satisfying Assumption 4.4.4.

Input: Cell complex {Xi}i∈IN and scalar a > 0,
Output: ǫ satisfying Assumption 4.4.4.

1: V =
⋃

i∈IN
V(Xi).

2: Solve the following problem

min
ǫ

ǫ s.t. ǫ ≥ 0, −(ǫ− a)1d ≤ x ≤ (ǫ− a)1d, ∀x ∈ V.

According to Algorithm 4.2, the insertion of a scalar a > 0 in the set of con-

straints aims to guarantee Assumption 4.4.4. In fact, constraints

−(ǫ− a)1d ≤ x ≤ (ǫ− a)1d, ∀x ∈
⋃

i∈IN

V(Xi),

imply that ‖x‖∞ ≤ ǫ− a < ǫ, leading to x ∈ int(Bd(ǫ)) for all x ∈ ⋃i∈IN
V(Xi).

Note also that this constant can be freely chosen as long as it is strictly positive.

From this result, to construct a convex lifting for cell complex {Xi}i∈IN of an

unbounded polyhedron, one can run Algorithm 4.2 to compute Bd(ǫ), then use

Algorithm 4.1 to construct a convex lifting for cell complex {Xi ∩ Bd(ǫ)}i∈IN .
Subsequently, a convex lifting for cell complex {Xi}i∈IN can be built as in Propo-

sition 4.4.6. Accordingly, the construction of an affinely equivalent polyhedron is

presented in the sequel. Let ℓ(x) denote a convex lifting for cell complex {Xi}i∈IN
i.e.

ℓ(x) = aTi x+ bi for x ∈ Xi.

Also, define the following sets:

V =
⋃

i∈IN

V(Xi), R =
⋃

i∈IN

R(Xi),

V̂ =
{[

xT ℓ(x)
]T | x ∈ V

}
,

R̂ =

{[
rT ℓ̂(r)

]T
| r ∈ R, ℓ̂(r) = aTi r if r ∈ R(Xi)

}
.

Then an affinely equivalent polyhedron for {Xi}i∈IN denoted by Π, can be defined

as follows:

Π[xT z]T = conv(V̂ )⊕ cone(R̂). (4.17)

This construction directly follows the Minkowski-Weyl theorem as presented in

Section 2.2.3.
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4.4.3 Related results of polyhedral partitions and non-convexly

liftable cell complexes

This subsection focuses on non-convexly liftable cell complexes which do not

admit convex liftings. From the generality of inverse optimality, a particular treat-

ment needs to be introduced to cover these singular partitions. First, the property

related to the dimension of auxiliary variables in construction of convex lifting for

such partitions will be clarified. It will be proved that a non-convexly liftable cell

complex/polyhedral partition in R
d remains non-convexly liftable onto any higher

dimensional space R
n with n > d + 1. One cannot build a convex lifting associ-

ated with such a cell complex/polyhedral partition despite an increase of degrees

of freedom. To prove it, an intermediate observation also needs to be proved.

Proposition 4.4.7 Consider a cell complex {Xi}i∈IN of a polyhedron X ⊆ R
d

and a polyhedron Y(n) ⊂ R
n, n > d + 1. Let x ∈ R

d and z ∈ R
n−d denote the

first d and the last n−d coordinates of Rn respectively, i.e. z =
[
z(d+1) . . . z(n)

]T
.

If there exists an index i, with d + 1 ≤ i ≤ n such that the optimal cost function

of the following parametric linear programming problem:

(z(i))∗(x) = min
z

z(i) subject to
[
xT zT

]T ∈ Y(n), x ∈ X ,

is a convex lifting for the given cell complex {Xi}i∈IN , then there also exists a

polyhedron Y(d+1) ⊂ R
d+1 such that XprojRdY(d+1) = {Xi}i∈IN .

Proof: If (z(i))∗(x) is a convex lifting of a given cell complex {Xi}i∈IN , then

the set defined as follows:

Y(d+1) =

{[
x
z(i)

]
| (z(i))∗(x) ≤ z(i), x ∈ X

}
⊂ R

d+1,

represents the epigraph of the function (z(i))∗(x), and is an affinely equivalent

polyhedron of cell complex {Xi}i∈IN . Following the definition of an affinely

equivalent polyhedron, XprojRd Y(d+1) = {Xi}i∈IN . �

The above proposition shows that one supplementary dimension is sufficient

for the construction of convex liftings if they exist.

Remark 4.4.8 Note that if a function z = f(x) describes the upper boundary of

a polyhedron Y(d+1) (known to be a concave function), associated with the cell

complex {Xi}i∈IN , then z = −f(x) is a convex function defined over the same

cell complex. Therefore, the above proposition still holds true if the optimal cost

function of the following parametric linear programming problem:

(z(i))∗(x) = max
z

z(i) subject to
[
xT zT

]T ∈ Y(n), x ∈ X ,
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satisfies −(z(i))∗(x) is a convex lifting for the given cell complex {Xi}i∈IN . Ac-

cordingly, such an affinely equivalent polyhedron can be chosen as follows:

Y(d+1) =

{[
x
z(i)

]
| (z(i))∗(x) ≥ −z(i), x ∈ X

}
.

Proposition 4.4.7 has an important implication on non-convexly liftable cell com-

plexes, this implication is described in details through the next result.

Corollary 4.4.9 A cell complex in R
d is non-convexly liftable in higher dimen-

sional space R
n for an n ≥ d + 1 if and only if it does not have any affinely

equivalent polyhedron in R
d+1.

Proof: The implication→ is straightforward as long as n = d+1 is a particular

choice of n.

For the implication←, suppose the given cell complex is not convexly liftable in

R
d+1 but convexly liftable in R

n, n > d+ 1. Through Proposition 4.4.7, it is easy

to find the contradiction by showing that an appropriate polyhedron in particular

subspace R
d+1 ⊂ R

n can be selected as an affinely equivalent polyhedron. �

A natural question arises whether the partition associated with optimal solu-

tion to a parametric linear/quadratic programming problem is convexly liftable.

Practically, such non-convexly liftable configurations often appear, particularly in

constrained control for linear systems. The non-liftability limitations emphasized

in the previous results raise a question about the utility of the convex lifting op-

eration. Fortunately, in control theory, splitting a given polyhedral partition is

admissible. However, any modification of the initial boundaries 2 of the given

polyhedral partition is not permitted due to the fact that such a modification will

destroy the original structure of PWA controller. It leads to the case where two dif-

ferent affine control laws are defined over the same region of state space. There-

fore, by preserving the internal boundaries, are there possible refinements for a

given polyhedral partition in order to recover the convex liftability property?

Figure 4.12 represents a cell complex composed of several triangles in R
2. This

cell complex is not convexly liftable. This fact can be confirmed by the infeasi-

bility of the optimization problem (4.14) in Algorithm 4.1. However, it will be

shown next that there exists a subdivision which can retrieve the convex liftability

for a given polyhedral partition. This class of subdivision is referred to as a hy-

perplane arrangement (see Aurenhammer [1987a]), defined as the decomposition

of a space by a set of hyperplanes. It will be shown that the partitions, induced

by such decompositions, are convexly liftable. As a consequence, if a partition is

2. In fact, the modification of boundaries between regions whose associated control laws are

similar may be possible, and this trick can help to reduce the complexity of PWA controllers.
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not convexly liftable, one can try to refine it such that the original partitioning is

maintained and the new cell complex is convexly liftable. The above discussion

is summarized in the following theorem.

Figure 4.12: A non-convexly liftable cell complex in R
2 extracted from Aich-

holzer et al. [2003].

Theorem 4.4.10 Given a non-convexly liftable polyhedral partition {Xi}i∈IN of a

polyhedron X ⊆ R
d, there exists at least one subdivision, preserving the internal

boundaries of this partition, such that the new cell complex is convexly liftable.

Proof: LetH(Xi) be the set of supporting hyperplanes ofXi at its facets,H(X ) =⋃
i∈IN
H(Xi). We will show that the decomposition ofX byH(X ) makes the new

cell complex convexly liftable. As presented above, such a decomposition is de-

noted as hyperplane arrangement. The convex liftability of such a decomposition

can be proved by returning to the concept of stresses presented in Subsection 4.4.1.

In fact, considering any (d − 2)−face F0 lying in the interior of X , this (d −
2)−face F0 is the intersection of finitely many hyperplanes inH(X ). IfF (d−1)(F0)

denotes the set of all (d − 1)−faces in the star of F0, then for each F
(d−1)
i ∈

F (d−1)(F0), there exists a unique F
(d−1)
j 6= F

(d−1)
i and F

(d−1)
j ∈ F (d−1)(F0) such

that F
(d−1)
i , F

(d−1)
j lie in a common hyperplane of H(X ) and they have a com-

mon facet F0. Accordingly, it can be seen that the inward unit normal vectors

to the faces F
(d−1)
i , F

(d−1)
j at their common facet F0, denoted by n(F0, F

(d−1)
i ),

n(F0, F
(d−1)
j ), respectively, satisfy:

n(F0, F
(d−1)
i ) = −n(F0, F

(d−1)
j ).
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Figure 4.13: A subdivision of the given non convexly liftable cell complex in

Figure 4.12 into a convexly liftable cell complex.

Thus, a pair of coefficients of strictly positive stresses s(F
(d−1)
i ), s(F

(d−1)
j ) exists

( e.g. s(F
(d−1)
i ) = s(F

(d−1)
j ) = 1) such that:

s(F
(d−1)
i )n(F0, F

(d−1)
i ) + s(F

(d−1)
j )n(F0, F

(d−1)
j ) = 0.

Applying the same argument for every element of F (d−1)(F0), one can obtain a

strictly positive d−stress such that F0 is in equilibrium. �

Remark 4.4.11 Theorem 4.4.10 is related to Theorem 3 in Aurenhammer [1987a].

It ensures that the optimization problem (4.14) is feasible for any cell complex of

a polyhedron, obtained by the hyperplane arrangement technique.

An illustration of this result is provided in Figure 4.13. This hyperplane arrange-

ment technique is applied for the non-convexly liftable cell complex in Figure

4.12.

Remark 4.4.12 Practically, hyperplane arrangement is only one way to show the

existence of modifications for the given non-convexly liftable cell complex/polyhedral

partition into a convexly liftable cell complex. In control theory, such a modifi-

cation can increase the complexity of PWA control laws in the implementation.

Therefore, such a complete refinement may not be necessary in practical applica-

tions. Many different refinement techniques exist. We refer to Gulan et al. [2015]

for an alternative technique for a class of particular cases in control theory.
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4.5 Solution to IPL/QP problems

This section provides a complete view of inverse parametric linear/quadratic

programming problems for the given continuous/discontinuous PWA function de-

fined over a polyhedral partition.

4.5.1 IPL/QP for continuous PWA functions over polytopic par-

titions

The definition of an inverse parametric convex programming problem has been

introduced in Subsection 4.3.2. The solution to such inverse optimality problems

is built upon the convex lifting approach. For the moment, some regularity as-

sumptions need to be stated to make the present approach reasonable from the

construction point of view.

Assumption 4.5.1 The parametric linear/quadratic programming problems are

exclusively considered as possible candidates for solutions to inverse optimality

problem. As a consequence, the cost function has the following form:

J(x, z, u) =
[
xT z uT

]
Q



x
z
u


+ CT



x
z
u


 , (4.18)

with positive semidefinite matrix QT = Q ≥ 0.

Assumption 4.5.2 The given parameter space partition {Xi}i∈IN , associated with

a given PWA function, is convexly liftable.

Assumption 4.5.3 The parameter space X =
⋃

i∈IN
Xi is a polytope.

Assumption 4.5.1 provides a manageable framework for the constructive inverse

optimality procedures. Larger classes of objective functions can provide more

degrees of freedom, but the linearity of such parametric convex programming

problems is lost. Meanwhile, Assumption 4.5.2 underlines the convex liftability of

the given cell complex and can be enforced via the refinement procedure described

in the proof of Theorem 4.4.10. This condition is sufficient for the existence of a

solution and will be detailed next. Finally, Assumption 4.5.3 restricts the inverse

optimality to bounded feasible region in the parameter space with the bound given

by a polytope. This assumption is not restrictive in MPC context since the feasible

region of the state space is usually a polytope. Moreover, this assumption can

be relaxed to polyhedron. It is mainly due to the fact that linear constraints are

exclusively considered. This relaxation will be discussed in Section 4.5.2.



4.5. Solution to IPL/QP problems 95

The following intermediate result is necessary for the development of a con-

structive solution to the inverse optimality problem.

Proposition 4.5.4 Let Γs ⊂ R
ds be a polytope with the set of vertices V(Γs) =

{s(1), . . . , s(q)}. For any finite set of points {t(1), . . . , t(q)} ⊂ R
dt defining a non-

degenerate polytope in R
dt , an extension of the family V(Γs) can be obtained in

higher dimensional space R
ds+dt for the concatenated vectors

[
sT tT

]T
defining

the set:

V[sT tT ]T :=

{[
s(1)

t(1)

]
, . . . ,

[
s(q)

t(q)

]}
. (4.19)

The polytope Γ[sT tT ]T = conv(V[sT tT ]T ) satisfies:

V[sT tT ]T = V(Γ[sT tT ]T ). (4.20)

Proof: Geometrically, this proposition shows that if s(i) is a vertex of Γs ⊂ R
ds ,

then with any complementary vector t(i) ∈ R
dt leading to an extended vec-

tor
[
s(i)

T
t(i)

T
]T
∈ R

ds+dt , this vector represents a vertex of the new polytope

Γ[sT tT ]T in R
ds+dt defined as the convex hull of the extended set of points V[sT tT ]T .

By construction V(Γ[sT tT ]T ) ⊆ V[sT tT ]T . Therefore, in order to prove this claim,

we will prove that V(Γ[sT tT ]T ) ⊂ V[sT tT ]T leads to a contradiction.

In fact, suppose V(Γ[sT tT ]T ) ⊂ V[sT tT ]T . According to this assumption, there

exists a point in V[sT tT ]T which lies in the interior of the polytope Γ[sT tT ]T or

can be described by a convex combination of the other points. Without loss of

generality, let

[
s(q)

t(q)

]
denote this point, then there exists a vector α ∈ R

q−1
+ such

that: [
s(q)

t(q)

]
=

q−1∑

i=1

αi

[
s(i)

t(i)

]
,

q−1∑

i=1

αi = 1. (4.21)

One can easily see from (4.21) that s(q), as a vertex of Γs, is described by a convex

combination of the other vertices of Γs. This inclusion is contradictory to the def-

inition of a vertex of a convex set (see Section 2.2.1 or 2.4 in Grünbaum [1967]).

In other words, all elements of V[sT tT ]T are the vertices of Γ[sT tT ]T . �

Remark 4.5.5 Note also that this proposition remains valid for the degenerate

case where all points
{
t(1), . . . , t(q)

}
are placed on a hyperplane in R

dt . However,

in this case, the new polytope lies practically in a strict subspace of Rds+dt . This

particular case of values t(i), ∀i ∈ Iq, is excluded in the previous result as not

relevant for the scope of this chapter, even though the mathematical result holds.
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Consider a given cell complex {Xi}i∈IN of a polytope X ⊂ R
dx satisfying

Assumption 4.5.2 and a continuous PWA function fpwa(x) : X → R
du defined

over this cell complex. For ease of presentation, let ℓ(x) denote a convex lifting

defined over {Xi}i∈IN . Define also the following sets:

Π[xT z]T = conv

{
[
vT ℓ(v)

]T | v ∈
⋃

i∈IN

V(Xi)

}
,

V[xT z uT ]T =

{
[
vT ℓ(v) fT

pwa(v)
]T | v ∈

⋃

i∈IN

V(Xi)

}
,

Π[xT z uT ]T = conv
(
V[xT z uT ]T

)
.

(4.22)

Note that Π[xT z]T defined above, represents an affinely equivalent polyhedron of

cell complex {Xi}i∈IN by appending to the vertices of {Xi}i∈IN the correspond-

ing coordinates of convex lifting ℓ(x) at these vertices. Subsequently, Π[xT z uT ]T

is constructed by adding to the vertices of Π[xT z]T the corresponding coordinates

of the given continuous PWA function fpwa(x) at the vertices of {Xi}i∈IN . The

set Π[xT z uT ]T will be used as a constraint set in our recovered optimization prob-

lem. With respect to the above notation, the solution to an inverse parametric

linear/quadratic programming problem can be stated as follows.

Theorem 4.5.6 Given a continuous PWA function fpwa(x) defined over a poly-

topic partition {Xi}i∈IN satisfying Assumptions 4.5.2, 4.5.3 and the sets defined

in (4.22), the followings hold true:

1. V[xT z uT ]T = V(Π[xT z uT ]T ) and Π[xT z]T = Proj [xT z]TΠ[xT z uT ]T ,

2. The given piecewise affine function fpwa(x) is the image via the orthogo-

nal projection onto R
du of the optimal solution to the optimization problem

below:

min
[z uT ]T

z s.t.
[
xT z uT

]T ∈ Π[xT z uT ]T . (4.23)

Proof: 1. The first claim: V[xT z uT ]T = V(Π[xT z uT ]T ), is directly deduced from

Proposition 4.5.4. The second claim follows from the construction of Π[xT z uT ]T

having all its vertices as non-degenerate extended vectors of the vertices of Π[xT z]T .

2. It is known that Π[xT z]T ⊂ R
dx+1 represents an affinely equivalent polyhe-

dron of the partition {Xi}i∈IN . Let F
(i)

[xT z]T
for i ∈ IN denote the lower facet of

Π[xT z]T such that:

— ProjxF
(i)

[xT z]T
= Xi,
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— for any x ∈ Xi,
[
xT z∗(x)

]T ∈ F
(i)

[xT z]T
satisfies

z∗(x) = min
z

z s.t.
[
xT z

]T ∈ Π[xT z]T .

Also, there exists in higher dimensional space R
dx+du+1, a dx−face denoted as

F
(i)

[xT z uT ]T
of Π[xT z uT ]T such that:

Proj [xT z]TF
(i)

[xT z uT ]T
= F

(i)

[xT z]T
.

Thus, a point
[
xT z uT

]T ∈ Π[xT z uT ]T satisfying x ∈ Xi has the minimal value of

z if and only if this point locates on F
(i)

[xT z uT ]T
. It is worth stressing that the face

F
(i)

[xT z uT ]T
is defined as follows:

F
(i)

[xT z uT ]T
= conv

{[
vT ℓ(v) fT

pwa(v)
]T | v ∈ V(Xi)

}
.

From the above argument, it follows that there exist non-negative scalars α(v) ∈
R+, for v ∈ V(Xi) such that:

∑

v∈V(Xi)

α(v) = 1,

[
xT z∗(x) (u∗)T (x)

]T
=

∑

v∈V(Xi)

α(v)
[
vT ℓ(v) fT

pwa(v)
]T

.

Since this property holds for all elements of Xi, it can be deduced that:

[
z∗(x)
u∗(x)

]
=

∑

v∈V(Xi)

α(v)

[
ℓ(v)

fpwa(v)

]
=

[
ℓ(x)

fpwa(x)

]
, ∀x ∈ Xi.

Clearly, fpwa(x) is a sub-component of this optimal solution.

To complete the proof, the uniqueness of such an optimal solution needs to be

clarified. Suppose there exist two different optimal solutions to (4.23):

[
z∗1(x) (u

∗
1)

T (x)
]T

= arg min
[z uT ]T

z, s.t.
[
xT z uT

]T ∈ Π[xT z uT ]T ,

[
z∗2(x) (u

∗
2)

T (x)
]T

= arg min
[z uT ]T

z, s.t.
[
xT z uT

]T ∈ Π[xT z uT ]T ,

then it is clear that z∗1(x) = z∗2(x) = ℓ(x). Accordingly, if u∗
1(x) 6= u∗

2(x) for x ∈
Xi, there exists a (dx + 1)−face denoted as F of Π[xT z uT ]T (illustrated in Figure
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Figure 4.14: An illustration of two different optimal solutions.

4.14) to which two optimal solutions
[
z∗1(x) (u

∗
1)

T (x)
]T

and
[
z∗2(x) (u

∗
2)

T (x)
]T

belong such that F is perpendicular to the space
[
xT z

]T
. This implies that the

value of fpwa(v) is not uniquely defined for vertices v ∈ V(Xi). This consequence

contradicts the construction of the constraint set Π[xT z uT ]T presented in (4.22).

Therefore, such two optimal solutions have to be identical leading to the unique-

ness. �

Theorem 4.5.6 shows that the construction of constraint set characterized by the

polytope Π[xT z uT ]T ⊂ R
dx+du+1 depends on the construction of a convex lifting

(an affinely equivalent polyhedron Π[xT z]T ) for the given cell complex {Xi}i∈IN .
Thus, from the algorithmic point of view it is necessary to focus on the construc-

tion of such a convex lifting of the parameter space cell complex as detailed in the

previous section. This construction will lead with a simple extension to a complete

solution of the inverse optimality problem.

The constructive procedure towards recovering a continuous PWA function de-

fined over a convexly liftable polytopic partition is summarized through Algo-

rithm 4.3:

Theorem 4.5.6 proves the existence of an optimization problem with respect

to a linear cost function which has as a sub-component of the optimal solution,

a given PWA function defined over a convexly liftable polytopic partition. The

following theorem shows the existence of equivalent optimization problem with

respect to a quadratic cost function.

Theorem 4.5.7 Consider a continuous PWA function fpwa(x) defined over a poly-

topic partition {Xi}i∈IN satisfying Assumptions 4.5.2, 4.5.3 and the sets defined

in (4.22). Function fpwa(x) is the image via the orthogonal projection onto R
du
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Algorithm 4.3 Linear equivalent optimization problem

Input: A continuous PWA function fpwa(x) defined over a convexly liftable poly-

topic partition {Xi}i∈IN of a polytope X ⊂ R
dx .

Output: Π[xT z uT ]T and J(x, z, u).

1: Construct a convex lifting ℓ(x) for {Xi}i∈IN via Algorithm 4.1.

2: Compute Π[xT z uT ]T as in (4.22).

3: Define J(x, z, u) = z.
4: Solve the following parametric linear programming problem:

[
z∗(x) (u∗)T (x)

]T
= arg min

[z uT ]T
z subject to

[
xT z uT

]T ∈ Π[xT z uT ]T .

5: Obtain the given PWA function: Proju

[
z∗(x)
u∗(x)

]
= fpwa(x).

of the optimal solution to the following optimization problem:

min
[z uT ]T

(z − σ(x))2 s.t.
[
xT z uT

]T ∈ Π[xT z uT ]T , (4.24)

where σ(x) : X → R denotes any function satisfying: σ(x) ≤ ℓ(x).

Proof: Consider an affinely equivalent polyhedron Π[xT z]T defined as in (4.22).

According to its definition, we obtain:

ℓ(x) = min
z

z subject to
[
xT z

]T ∈ Π[xT z]T .

Therefore, for any function σ(x) : X → R satisfying σ(x) ≤ ℓ(x), the minimiza-

tion of (z − σ(x))2 amounts to the minimization of z subject to the same set of

constraints Π[xT z uT ]T . According to Theorem 4.5.6, the given continuous PWA

function fpwa(x) is a sub-component of the optimal solution to (4.23), as well as

(4.24). �

Theorem 4.5.7 proposes a generic quadratic cost function of
[
z uT

]T
. If the

goal is to obtain a quadratic cost function of
[
xT z uT

]T
, then function σ(x)

should be chosen as an affine function of x. Algorithm 4.4 summarizes the

constructive procedure of an equivalent optimization problem with respect to a

quadratic cost function.

Remark 4.5.8 Theorems 4.5.6, 4.5.7 prove that there exists an equivalence be-

tween linear programming problems and a class of quadratic programming prob-

lems. This characterization may be meaningful in reducing computational com-

plexity of control laws for such a class of optimization based controls.
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Algorithm 4.4 Quadratic equivalent optimization problem

Input: A continuous PWA function fpwa(x) defined over a convexly liftable poly-

topic partition {Xi}i∈IN of a polytope X ⊂ R
dx .

Output: Π[xT z uT ]T and J(x, z, u).

1: Construct a convex lifting ℓ(x) for {Xi}i∈IN via Algorithm 4.1.

2: Compute Π[xT z uT ]T as in (4.22).

3: Choose a function 3σ(x) : X → R such that σ(x) ≤ ℓ(x).
4: Define J(x, z, u) = (z − σ(x))2.
5: Solve the following parametric quadratic programming problem:

[
z∗(x) (u∗)T (x)

]T
= arg min

[z uT ]T
(z − σ(x))2 s.t.

[
xT z uT

]T ∈ Π[xT z uT ]T .

6: Project the optimal solution onto R
du : Proju

[
z∗(x)
u∗(x)

]
= fpwa(x).

Example 1: To illustrate the above theoretical results, the following continuous

PWA function is considered to be recovered:

f(x) =





−1.7160x+ 0.2287 for x ∈ X1 = {x | −0.1 ≤ x ≤ 0}
−1.2962x+ 0.2287 for x ∈ X2 = {x | 0 ≤ x ≤ 0.1}
0.3223x+ 0.4325 for x ∈ X3 = {x | −0.2 ≤ x ≤ −0.1}
1.5175x− 0.0527 for x ∈ X4 = {x | 0.1 ≤ x ≤ 0.2}
−1.0224x+ 0.1636 for x ∈ X5 = {x | −0.3 ≤ x ≤ −0.2}
4.5011x− 0.6494 for x ∈ X6 = {x | 0.2 ≤ x ≤ 0.3}
−1.9741x− 0.1219 for x ∈ X7 = {x | −0.4 ≤ x ≤ −0.3}
−0.4211x+ 0.8273 for x ∈ X8 = {x | 0.3 ≤ x ≤ 0.4}
6.0457x+ 3.0860 for x ∈ X9 = {x | −0.5 ≤ x ≤ −0.4}
0.7345x+ 0.3650 for x ∈ X10 = {x | 0.4 ≤ x ≤ 0.5} .

(4.25)

This function is visualized in Figure 4.15. Also, a convex lifting of the cell com-

plex {Xi}i∈I10 is shown in Figure 4.16.

The set of constraints for a recovered optimization problem is presented in Fig-

ure 4.17 as the shaded pink polytope. Note also that in this figure, the multi-

colored line along the x−axis represents the given cell complex {Xi}i∈I10 , i.e.

each region corresponds to a color, whereas the green line over this cell complex

represents the continuous PWA function defined in (4.25). The convex lifting

for {Xi}i∈I10 shown in Figure 4.16, is also embedded in the space R
3 in Figure

3. One can choose σ(x) to be an affine function composing ℓ(x).
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Figure 4.15: A parameter space parti-

tion and an associated continuous PWA

function.

Figure 4.16: A convex lifting for the cell

complex {Xi}i∈I10 .

Figure 4.17: A set of constraint

Π[xT z uT ]T .
Figure 4.18: A polytopic partition of the

parameter space.

4.17 as the multi-colored curve above the cell complex in the plane
[
xT z

]T
. It

is necessary to emphasize that the pink curve along several 1−faces of Π[xT z uT ]T

represents the optimal solution to the optimization problem (4.23). It can be ob-

served that the orthogonal projection of this optimal solution onto the space of[
xT uT

]T
coincides with the PWA function (4.25).

Example 2: To illustrate a case in which the given polyhedral partition is not

convexly liftable, consider example 1 presented in Spjøtvold et al. [2006]:

min
x

xTx s.t. x ∈ P(θ), θ ∈ Θ,

Θ =

{
θ ∈ R

2 | −3

2
≤ θi ≤

3

2
, i = 1, 2

}
.
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Figure 4.19: A continuous PWA func-

tion associated with the polytopic parti-

tion in Figure 4.18

Figure 4.20: A subdivision of the poly-

topic partition in Figure 4.18 into a con-

vex liftable cell complex.

Figure 4.21: A convex lifting for the cell

complex in Figure 4.20.

Figure 4.22: A continuous PWA func-

tion equivalent to the one shown in Fig-

ure 4.19.

P(θ) =





x ∈ R
3

∣∣∣∣∣

x1 − x3 ≤ −1 + θ1, − x1 − x3 ≤ −1− θ1

x2 − x3 ≤ −1− θ2, − x2 − x3 ≤ −1 + θ2
3

4
x1 +

16

25
x2 − x3 ≤ −1 + θ1

−3

4
x1 −

16

25
x2 − x3 ≤ −1− θ1





.

The parameter space partition is shown in Figure 4.18 to be a polytopic partition

but not a cell complex. Its associated continuous PWA function is presented in

Figure 4.19. It is clear that this polytopic partition is not convexly liftable. One

can also confirm this observation via the infeasibility of the optimization prob-

lem (4.14). This requires a subdivision into a convexly liftable cell complex. As

shown in the proof of Theorem 4.4.10, a hyperplane arrangement offers a possible
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refinement, however this complete subdivision is not necessary in this case. A

partial subdivision into a convexly liftable cell complex can be found in Figure

4.20. One of its convex liftings is shown in Figure 4.21. Further, a continuous

PWA function equivalent to the one shown in Figure 4.19, is presented in Figure

4.22, as a sub-component of the optimal solution to the recovered optimization

problem.

4.5.2 IPL/QP for continuous PWA functions over polyhedral

partitions

Note that Subsection 4.5.1 proposes two algorithms for recovering a given con-

tinuous PWA function defined over convexly liftable polytopic partition of a poly-

tope. Accordingly, the constraint set Π[xT z uT ]T as shown in (4.22) is defined by

the convex hull of the augmented vertices. This construction becomes no longer

valid in case of convexly liftable cell complexes of polyhedra, where each com-

ponent of such a cell complex may possess not only vertices, but also some rays.

Therefore, a more general construction of constraint set needs to be introduced.

This section focuses on overcoming this limitation.

Recall that the construction of a convex lifting for a cell complex {Xi}i∈IN
of a polyhedron X ⊆ R

dx satisfying Assumption 4.5.2, has been presented in

Subsection 4.4.2.2. For ease of presentation, let fpwa(x) : X → R
du and ℓ(x) :

X → R denote the given continuous PWA function to be recovered and a convex

lifting for cell complex {Xi}i∈IN . These functions are defined as follows:

fpwa(x) = Hix+Gi for x ∈ Xi

ℓ(x) = aTi x+ bi for x ∈ Xi.
(4.26)

Also, the following sets are defined:

Vx =
⋃

i∈IN

V(Xi), Rx =
⋃

i∈IN

R(Xi),

V[xT z uT ]T =
{[

xT ℓ(x) fT
pwa(x)

]T | x ∈ Vx

}
,

R[xT z uT ]T =








r

ℓ̂(r)

f̂(r)


 | r ∈ Rx,

ℓ̂(r) = aTi r

f̂(r) = Hir
if r ∈ R(Xi)



 ,

Πv = conv(V[xT z uT ]T ),Πr = cone(R[xT z uT ]T ),

Π[xT z uT ]T = Πv ⊕ Πr.

(4.27)

Note that Vx, Rx represent the set of vertices and extreme rays of the given cell

complex {Xi}i∈IN , respectively. Similar to the polytopic partition case, V[xT z uT ]T
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defines the set of augmented vertices induced from the vertices of {Xi}i∈IN . Also,

R[xT z uT ]T defines the set of extreme rays for the constraint set in our recovered

optimization problem. According to the Minkowski-Wiley theorem, the set of

constraints Π[xT z uT ]T is defined as above. With these notations, the following

theorem presents a solution to IPL/QP problems via convex liftings for a convexly

liftable cell complex of a polyhedron. This result generalizes the one presented in

Section 4.5.1.

Theorem 4.5.9 Given a continuous PWA function fpwa(x), defined as in (4.26)

over a polyhedral partition {Xi}i∈IN of a polyhedron X satisfying Assumption

4.5.2 and the sets defined in (4.27), then fpwa(x) is the image via the orthogonal

projection onto R
du of the optimal solution to the following parametric linear

programming problem:

min
[z uT ]T

z subject to
[
xT z uT

]T ∈ Π[xT z uT ]T . (4.28)

Proof: Consider x ∈ Xi, due to the Minkowski-Weyl theorem for polyhedra (c.f.

Subsection 2.2.3), x can be described as follows:

x =
∑

v∈V(Xi)

α(v)v +
∑

r∈R(Xi)

β(r)r,

where α(v), β(r) ∈ R+ and
∑

v∈V(Xi)
α(v) = 1. As a consequence, the convex

lifting at x, i.e. ℓ(x) can be described in the form:

ℓ(x) = aTi x+ bi = aTi (
∑

v∈V(Xi)

α(v)v +
∑

r∈R(Xi)

β(r)r) + bi,

=
∑

v∈V(Xi)

α(v)(aTi v + bi) +
∑

r∈R(Xi)

β(r)(aTi r).

Similarly,

fpwa(x) =
∑

v∈V(Xi)

α(v)(Hiv +Gi) +
∑

r∈R(Xi)

β(r)(Hir).

It can be observed that if r is an extreme ray of Xi, then
[
rT aTi r

]T
is an extreme

ray of the affinely equivalent polyhedron Π[xT z]T of {Xi}i∈IN , defined as follows:

Π[xT z]T = conv(V[xT z]T )⊕ cone(R[xT z]T ),
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where

V[xT z]T =
{[

xT ℓ(x)
]T | x ∈ Vx

}
,

R[xT z]T =

{[
rT ℓ̂(r)

]T
| r ∈ Rx, ℓ̂(r) = aTi r if r ∈ R(Xi)

}
.

Therefore, for each region Xi, there exists a facet of Π[xT z]T , denoted by F
(i)

[xT z]T
,

such that:

ProjRdxF
(i)

[xT z]T
= Xi,

∀
[
xT z(x)

]T ∈ F
(i)

[xT z]T
, ℓ(x) = z(x) = min

z
z s.t.

[
xT z

]T ∈ Π[xT z]T .
(4.29)

According to Proposition 4.5.4, all augmented points in V[xT z uT ]T are vertices of

Πv. Thus, lifting onto R
dx+du+1 leads to the existence of a dx−face of Π[xT z uT ]T ,

denoted by F
(i)

[xT z uT ]T
such that:

Proj [xT z]TF
(i)

[xT z uT ]T
= F

(i)

[xT z]T
. (4.30)

Note that such a dx−face F
(i)

[xT z uT ]T
is defined as follows:

F
(i)

[xT z uT ]T
= F

(i)
1 ⊕ F

(i)
2

F
(i)
1 = conv

{[
vT ℓ(v) fT

pwa(v)
]T | v ∈ V(Xi)

}

F
(i)
2 = cone

{[
rT aTi r (Hir)

T
]T | r ∈ R(Xi)

}
.

Due to (4.29) and (4.30), the minimal value of z at a point x ∈ Xi, is reached

if
[
xT z uT

]T
lies in F

(i)

[xT z uT ]T
. Therefore, optimal solution to (4.28) at x can be

described by:




x
z∗(x)
u∗(x)


 =

∑

v∈V(Xi)

α(v)




v
aTi v + bi
Hiv +Gi


+

∑

r∈R(Xi)

β(r)




r
aTi r
Hir


 ,

where α(v), β(r) ∈ R+ and
∑

v∈V(Xi)
α(v) = 1. It follows that

[
z∗(x)
u∗(x)

]
=

[
aTi x+ bi
Hix+Gi

]
=

[
ℓ(x)

fpwa(x)

]
, for x ∈ Xi.
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To complete the proof, it is necessary to show that the optimal solution to (4.28)

is unique. In fact, at a point x ∈ Xi, suppose there exist two different optimal

solutions to (4.28) i.e.

[
z1(x) u

T
1 (x)

]T
= arg min

[z uT ]T
z subject to

[
xT z uT

]T ∈ Π[xT z uT ]T

[
z2(x) u

T
2 (x)

]T
= arg min

[z uT ]T
z subject to

[
xT z uT

]T ∈ Π[xT z uT ]T

Accordingly, there exist two different dx−faces, denoted by F1, F2, such that[
xT z1(x) uT

1 (x)
]T ∈ F1 and

[
xT z2(x) uT

2 (x)
]T ∈ F2. It can be observed that

z1(x) = z2(x) = ℓ(x), leading to

Proj [xT z]TF1 = Proj [xT z]TF2 = F
(i)

[xT z]T
.

If u1(x) 6= u2(x), then F1, F2 lie in a hyperplane of dimension dx + 1 which is

orthogonal to the space of
[
xT z

]T
(again, an illustration can be found in Figure

4.14). Accordingly, fpwa(v) or f̂(r) in (4.27) is not uniquely defined for some

vertices v ∈ V(Xi) or some extreme rays r ∈ R(Xi). This end contradicts the

construction of Π[xT z uT ]T in (4.27). Therefore, F1 = F2 leading to the uniqueness

of the optimal solution to (4.28). �

Similarly, an equivalent optimization problem with respect to a quadratic cost

function is stated in the following theorem.

Theorem 4.5.10 Given a continuous PWA function fpwa(x), defined as in (4.26)

over a polyhedral partition {Xi}i∈IN of a polyhedron X satisfying Assumption

4.5.2 and the sets defined in (4.27), then fpwa(x) is the image via the orthogonal

projection of the optimal solution to the following parametric quadratic program-

ming problem:

min
[z uT ]T

(z − σ(x))2 subject to
[
xT z uT

]T ∈ Π[xT z uT ]T , (4.31)

where σ(x) : X → R denotes any function satisfying σ(x) ≤ ℓ(x) and ℓ(x) is

defined in (4.26).

Proof: The proof follows the same line of the proof for Theorem 4.5.7. �

For illustration, consider a continuous PWA function defined in (4.32). This

function is defined over a cell complex covering the whole space R2 and is shown

in Figure 4.24. A box B2(2.2987) satisfying Assumption 4.4.4, is resulted from

Algorithm 4.2 with a = 0.5. The cell complex {Xi ∩ B2(2.2987)}i∈I11 , is shown

in Figure 4.23. A convex lifting for the cell complex {Xi}i∈I11 is defined in (4.34)
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and is illustrated in Figure 4.25. Finally, the set of constraints for a recovered

optimization problem, is presented in (4.33).

f(x) =


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










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


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


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[

−0.8359 −0.1682
]

x− 1.0041 for





0.9426 −0.3339
−0.9732 0.2298
−0.9757 −0.2192



x ≤





−0.6087
0.7435
0.5049





[

−1.3107 0
]

x− 1.3107 for

[

−0.8740 −0.4859
−0.9426 0.3339

]

x ≤

[

0.3881
0.6087

]

[

−0.5172 −0.2434
]

x− 0.7606 for





0.9732 −0.2298
−0.9537 −0.3006
−0.9827 0.1854



x ≤





−0.7435
0.4473
0.7973





[

−0.0873 0
]

x− 0.6167 for





−0.9156 −0.4022
−1 0

0.9757 0.2192



x ≤





0.4302
0.6376
−0.5049





[

−0.6440 0.3706
]

x− 1.0147 for





−0.9983 0.0587
−0.9324 −0.3615
0.8740 0.4859



x ≤





0.5793
0.5709
−0.3881





[

0.3793 0.0392
]

x− 0.3402 for





−0.6839 −0.7296
0.9537 0.3006
0.7063 0.7079



x ≤





0.0457
−0.4473
−0.0016





[

0 −0.3410
]

x− 0.3410 for

[

−0.7063 −0.7079
0.9827 −0.1854

]

x ≤

[

0.0016
−0.7973

]

[

0.2815 0.1620
]

x− 0.4435 for





0.4448 −0.8956
−0.3531 0.9356
0.9156 0.4022



x ≤





−0.4508
0.5824
−0.4302





[

0.3426 0
]

x− 0.3426 for





0.3531 −0.9356
0.6839 0.7296

1 0



x ≤





−0.5824
−0.0457
−0.6376





[

0.2026 0.3208
]

x− 0.5234 for





0.9983 −0.0587
0.5603 −0.8283
−0.4448 0.8956



x ≤





−0.5793
−0.2680
0.4508





[

0 0.6203
]

x− 0.6203 for

[

0.9324 0.3615
−0.5603 0.8283

]

x ≤

[

−0.5709
0.2680

]

(4.32)
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Figure 4.23: The partition

obtained via the intersection

{Xi ∩ B2(2.2987)}i∈I11 .
Figure 4.24: The continuous PWA func-

tion defined in (4.32) to be recovered.
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]
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−0.7973

]
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]

x− 0.8507 for





0.4448 −0.8956
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

x ≤


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


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−2.3515 −0.1258
]
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



0.3531 −0.9356
0.6839 0.7296

1 0



x ≤
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−0.0457
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

[

−1.8506 −1.2910
]
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
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0.9983 −0.0587
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
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]
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]
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Figure 4.25: A convex lifting for the given cell complex {Xi}i∈I11 .

4.5.3 Invertibility and complexity of IPL/QP via convex liftings

This subsection focuses on the important properties of the solution to IPL/QP

problems via convex liftings, i.e. the invertibility and the complexity of the above

constructive inverse optimality procedures.

Theorem 4.5.11 (Invertibility) Given a polyhedral partition {Xi}i∈IN of a poly-

hedron X ⊆ R
dx , then any continuous piecewise affine function fpwa(x) : X →

R
du , defined over {Xi}i∈IN , is invertible.

Proof: If {Xi}i∈IN admits an affinely equivalent polyhedron, then Theorems

4.5.9 and 4.5.10 show a formulation of such an inverse parametric linear/quadratic

programming problem. In case the convex liftability of {Xi}i∈IN is not fulfilled,

according to Theorem 4.4.10, {Xi}i∈IN can be subdivided into a convexly liftable

cell complex such that the internal boundaries are maintained. fpwa(x) is replaced

with an equivalent PWA function corresponding to this new convexly liftable cell

complex. With these pre-conditionings, the problem is recast to recover a contin-

uous PWA function defined over a convexly liftable cell complex. �

The complexity of an inverse parametric linear/quadratic programming problem

based on convex liftings is also stated as follows:

Theorem 4.5.12 (Complexity) Any continuous PWA function defined over a poly-

hedral partition of a polyhedron can be equivalently obtained by a parametric
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linear/quadratic programming problem with at most one auxiliary 1−dimensional

variable.

Proof: Let {Xi}i∈IN denote this given polyhedral partition of a polyhedron X .
If {Xi}i∈IN is convexly liftable, this 1−dimensional variable describes the convex

lifting in the recovered optimization problem. Theorems 4.5.9, 4.5.10 show that

this PWA function is invertible through the convex lifting based approach.

Otherwise, in case the given partition is not convexly liftable, Theorem 4.4.10

shows that there exists at least one way to subdivide the given non-convexly

liftable polyhedral partition into a convexly liftable cell complex, denoted by{
X̃i

}
i∈I

Ñ

, meanwhile the internal boundaries are maintained. According to this

subdivision, the given PWA function fpwa(x) is also subdivided. This new PWA

function, say f̃pwa(x), is equivalent to fpwa(x) and defined over a convexly liftable

cell complex
{
X̃i

}
i∈I

Ñ

. Therefore, similar to the first case, a convex lifting of
{
X̃i

}
i∈I

Ñ

, represents the 1−dimensional auxiliary variable. Also, as proved in

Theorem 4.5.9/4.5.10, f̃pwa(x), associated with
{
X̃i

}
i∈I

Ñ

, is invertible via the

convex lifting based method. �

Remark 4.5.13 Theorem 4.5.12 clarifies that if there exists an 1−dimensional

component of the given continuous piecewise affine function able to serve as a

convex lifting, it is not necessary to construct an auxiliary variable. An affinely

equivalent polyhedron Π[xT z]T of {Xi}i∈IN is established as in (4.17), where z
represents this 1-dimensional component of the given continuous piecewise affine

function. Recall that in case this component denoted by f(x), is concave and

any pair of neighboring regions are associated with different affine functions, then

−f(x) is a convex lifting defined over the same cell complex.

Remark 4.5.14 It can be observed that the proposed method can be theoretically

applied for PWA functions, defined on any finite dimensional space. However, nu-

merical limitations can make the construction impractical. It is known that explicit

solution turns out to be efficient for small dimensional problems e.g. dx = 2, 3, 4.
Therefore, the tractability of this method lies in the tractability of the parametric

solvers. Moreover, as shown before, the presented approach relies on the con-

struction of a convex lifting. This construction is the essential step in the proposed

method. Hence, the tractability of this construction decides the tractability of the

inverse optimality problem via convex liftings. As for the complexity of this con-

struction (Algorithm 4.1), by considering two neighboring regions, the number of

constraints (including equality and inequality constraints) is equal to the number
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of vertices of the first region. If N denotes the number of regions in the given cell

complex {Xi}i∈IN and vmax denotes the maximal number of vertices among the

regions in this cell complex, then an upper bound for the number of constraints is

equal to N(N − 1)vmax/2. Thus this number of constraints scales quadratically

with the number of regions in the given partition.

4.5.4 IPL/QP for discontinuous PWA functions

Note that the solution to IPL/QP problem via convex liftings presented in Sub-

sections 4.5.1, 4.5.2 only focuses on the continuous PWA functions. As empha-

sized, the class of discontinuous PWA functions is omitted in those subsections.

This subsection aims to compensate the lack of interest for the discontinuous PWA

functions by investigating inverse optimality. Note also that due to the continuity

of the given PWA function, the optimal solution to inverse optimality formulation

is unique. However, the uniqueness may no longer be preserved for discontinu-

ous PWA functions. Therefore, finding an optimization problem, whose optimal

solution is unique and equivalent to the given discontinuous PWA function, may

render this optimization problem nonlinear (non-convex) from the point of view

of the ingredients i.e. the cost function and the constraint set.

Motivated by the above discussion, efforts will be made to show how to con-

struct a convex optimization problem that has a given discontinuous PWA function

as optimal solution at the price of non-unicity. More precisely, a PWA function

equivalent to the given discontinuous PWA function, will be shown to be an op-

timal solution to an optimization problem. This optimization problem will be

shown to be of parametric linear/quadratic programming type.

For ease of presentation, the definition of a discontinuous PWA function fpwa(x)
to be recovered is recalled below:

fpwa(x) =

{
Hix+Gi for x ∈ int(Xi),

Hix+Gi or Hjx+Gj for x ∈ Xi ∩ Xj,
(4.35)

for any pair of neighboring regions (Xi,Xj).
Taking the discontinuity into account, the problem formulation should be ad-

justed. Namely, consider a given cell complex {Xi}i∈IN of a polyhedronX ⊆ R
dx

satisfying Assumption 4.5.2 and a possibly discontinuous PWA function fpwa(x) :
X → R

du defined over this cell complex as in (4.35). The goal is to determine

J(x, z, u), Hx, Hu, Hz, K such that:





fpwa(x) ∈ Proj
Rdu arg min

[z uT ]T
J(x, z, u),

s.t: Hxx+Hzz +Huu ≤ K.
(4.36)



Chapter 4. IPL/QP problems via convex liftings 112

For ease of presentation, a convex lifting denoted by ℓ(x) for the cell complex

{Xi}i∈IN is employed here:

ℓ(x) = aTi x+ bi for x ∈ Xi. (4.37)

Also, f
(i)
pwa is of use to denote the ith component of the given PWA function at x.

According to this notation, define also the following sets and values:

Vx =
⋃

i∈IN

V(Xi), Rx =
⋃

i∈IN

R(Xi),

f
(j)

pwa(x) = max
i∈IN |x∈Xi

Hi(j, ·)x+Gi(j),

f (j)

pwa
(x) = min

i∈IN |x∈Xi

Hi(j, ·)x+Gi(j).

(4.38)

Note that f
(j)

pwa(x)
(
f (j)

pwa
(x)
)

is defined as the maximal (minimal) value among

the values of the jth component of the affine functions composing fpwa(x) at x,
defined over the regions which contain x.

For ease of presentation, define also the following sets

U(x) =







u(1)(x)

...

u(du)(x)



∣∣∣∣∣ u

(j)(x) ∈
{
f
(j)

pwa(x), f
(j)

pwa
(x)
}
, j ∈ Idu





,

V[xT z uT ]T =








x
ℓ(x)
u(x)



∣∣∣∣∣ x ∈ Vx, u(x) ∈ U(x)



 ,

R[xT z uT ]T =








r

ℓ̂(r)

ĥ(r)



∣∣∣∣∣ r ∈ Rx,

ℓ̂(r) = aTi r

ĥ(r) = Hir
if r ∈ R(Xi)



 ,

Πv = conv(V[xT z uT ]T ), Πr = cone(R[xT z uT ]T ),

Π[xT z uT ]T = Πv ⊕ Πr.

(4.39)

Note that V[xT z uT ]T

(
R[xT z uT ]T

)
represents the set of extended vertices (extreme

rays) of the partition {Xi}i∈IN in the augmented space. Note that each vertex x
of this cell complex may correspond to different augmented points in V[xT z uT ]T ,

since all the values of U(x) are appended. Also, if for a given x ∈ X , we have

f (j)

pwa
(x) = f̄

(j)
pwa(x) for every j ∈ Idu , then the function fpwa(x) is continuous at

x. In this case, Card(U(x)) = 1. The following observation is useful for the next

development.
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Proposition 4.5.15 For any x ∈ X and U(x) defined in (4.39), the following

holds: U(x) = V(conv(U(x))).

Proof: According to the construction of U(x), one can see that V(conv(U(x))) ⊆
U(x). We will prove that V(conv(U(x))) ⊂ U(x) leads to a contradiction.

Indeed, if V(conv(U(x))) ⊂ U(x), then there exists a point u0(x) ∈ U(x) for a

given x ∈ X such that u0(x) can be described via a convex combination of the

other points u(x) ∈ U(x), u(x) 6= u0(x), i.e.

u0(x) =
∑

u(x) 6=u0(x), u(x)∈U(x)

α(u(x))u(x),

α(u(x)) ≥ 0,
∑

u(x) 6=u0(x), u(x)∈U(x)

α(u(x)) = 1,
(4.40)

Note however that u
(1)
0 (x) takes value in the discrete set

{
f
(1)

pwa(x), f
(1)

pwa
(x)
}
,

and any of these two values cannot be described by a convex combination of the

other one if these two values are different. Thus, (4.40) holds true if u(1)(x) =

u
(1)
0 (x), meaning:

∑

u(x)∈U(x),u(x) 6=u0(x),u(1)(x)=u
(1)
0 (x)

α(u(x)) = 1,

α(u(x)) = 0 for u(1)(x) 6= u
(1)
0 (x).

The same argument, applied for the other components u
(j)
0 (x), j ∈ Idu , leads to:

α(u(x)) = 1, for u(x) = u0(x),

α(u(x)) = 0, for u(x) 6= u0(x).

This inclusion is clearly contradictory with (4.40). �

Proposition 4.5.16 V[xT z uT ]T = V(Πv), where V[xT z uT ]T ,Πv are defined in (4.39).

Proof: Suppose there exists a point of V[xT z uT ]T , denoted by
[
xT ℓ(x) uT

0 (x)
]T

,
which can be described via a convex combination of the other points in this set.

Formally, this leads to the following relationship:




x
ℓ(x)
u0(x)


 =

∑
[
vT ℓ(v) uT (v)

]
6=
[
xT ℓ(x) uT

0 (x)
]

[
vT ℓ(v) uT (v)

]T ∈ V[xT z uT ]T

α






v
ℓ(v)
u(v)








v
ℓ(v)
u(v)


 , (4.41)
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where

α






v
ℓ(v)
u(v)




 ≥ 0,

∑
[
vT ℓ(v) uT (v)

]
6=
[
xT ℓ(x) uT

0 (x)
]

[
vT ℓ(v) uT (v)

]T ∈ V[xT z uT ]T

α






v
ℓ(v)
u(v)




 = 1.

Due to the fact that any
[
xT ℓ(x)

]T
, x ∈ Vx, cannot be described via a convex

combination of the other
[
vT ℓ(v)

]T
, v 6= x, v ∈ Vx, then relation (4.41) holds

true only for v = x, leading to α






v
ℓ(v)
u(v)




 = 0 for v 6= x. The remaining coef-

ficients only depend on u(x), therefore for simplicity, the remaining coefficients

are denoted by α(u(x)) instead of α






x
ℓ(x)
u(x)




 .

To complete the proof, one needs to show that

u0(x) =
∑

u(x) 6=u0(x), u(x)∈U(x)

α(u(x))u(x),

α(u(x)) ≥ 0,
∑

u(x) 6=u0(x), u(x)∈U(x)

α(u(x)) = 1,
(4.42)

leads to a contradiction. This end is easily deduced from Proposition 4.5.15 and

the proof is complete. �

Based on the above inclusions, the main result of this subsection is presented

below.

Theorem 4.5.17 Given a possibly discontinuous PWA function fpwa(x) (4.35) de-

fined over a polyhedral partition of a polyhedron satisfying Assumption 4.5.2 and

the sets defined in (4.39), fpwa(x) is the image via the orthogonal projection onto

R
du of an optimal solution to the following optimization problem:

min
[z uT ]T

z s.t.
[
xT z uT

]T ∈ Π[xT z uT ]T . (4.43)

Proof: Given a point x ∈ Xi in the cell complex {Xi}i∈IN , due to the Minkowski-

Weyl theorem (c.f. Subsection 2.2.3), x can be written in the following form:

x =
∑

v∈V(Xi)

α(v)v +
∑

r∈R(Xi)

β(r)r,



4.5. Solution to IPL/QP problems 115

where α(v), β(r) ≥ 0,
∑

v∈V(Xi)
α(v) = 1. Due to Assumption 4.5.2, let ℓ(x)

denote a convex lifting for the cell complex {Xi}i∈IN , then ℓ(x) = aTi x + bi for

x ∈ Xi. For an x ∈ Xi, it follows that:

ℓ(x) = aTi x+ bi =
∑

v∈V(Xi)

α(v)(aTi v + bi) +
∑

r∈R(Xi)

β(r) (aTi r).

Thus, if one defines the following sets:

V[xT z]T =
{[

xT ℓ(x)
]T | x ∈ Vx

}
,

R[xT z]T =

{[
rT ℓ̂(r)

]T
| r ∈ Rx, ℓ̂(r) = aTi r if r ∈ R(Xi)

}
,

then Π[xT z]T = conv(V[xT z]T ) ⊕ cone(R[xT z]T ) is an affinely equivalent polyhe-

dron of the cell complex {Xi}i∈IN .
Following the definition of an affinely equivalent polyhedron, for a region Xi

in the given cell complex {Xi}i∈IN , there exists a lower facet of Π[xT z]T , denoted

by F[xT z]T such that ProjRdx F[xT z]T = Xi. Also, the optimal solution to the fol-

lowing optimization problem

min
z

z subject to
[
xT z

]T ∈ Π[xT z]T ,

falls in F[xT z]T for all x ∈ Xi.
Note however that, due to the construction in (4.39), every dx−face, denoted

by F# and defined as follows:

F# = F#
1 ⊕ F#

2 ,

F#
1 = conv

{[
vT ℓ(v) uT (v)

]T | v ∈ V(Xi)
}
,

F#
2 = cone

{[
rT aTi r (Hir)

T
]T | r ∈ R(Xi)

}
,

u(v) ∈ conv(U(v)) for each v ∈ V(Xi),

(4.44)

satisfies: Proj [xT z]T F# = F[xT z]T . Accordingly, consider a point x ∈ Xi, opti-

mizer of the optimization problem (4.43) at x, may be located on such a dx−face

F#. Due to this non-uniqueness, one can choose the following dx−face, denoted

by F̃ , defined as in (4.44) with u(v) = Hiv+Gi for v ∈ Xi. Then, for any x ∈ Xi,

the optimizer, located on F̃ , satisfies:



x
z∗(x)
u∗(x)


 =

∑

v∈V(Xi)

α(v)




v
ℓ(v)

Hiv +Gi


+

∑

r∈R(Xi)

β(r)




r
aTi r
Hir


 ,

meaning u∗(x) = Hix+Gi. �
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Remark 4.5.18 Note that one can easily fix a large enough box in R
du to bound

all U(v), ∀v ∈ Vx. Such a constraint can avoid the computation of U(v) at each

vertex of the cell complex {Xi}i∈IN . However, such a handy choice ignores the

structure of the given PWA function and cannot exploit its continuity property

whenever this exists.

Similar to the above construction, a simple extension from parametric linear pro-

gramming to parametric quadratic programming is introduced below.

Theorem 4.5.19 Given a possibly discontinuous PWA function (4.35) defined over

a polyhedral partition {Xi}i∈IN of a polyhedron X , satisfying Assumption 4.5.2,

ℓ(x) defined in (4.37), denotes a convex lifting for {Xi}i∈IN . Let σ(x) be a func-

tion such that σ(x) ≤ ℓ(x) for x ∈ X . The given PWA function (4.35) is the

image via the orthogonal projection onto R
du of an optimal solution to the follow-

ing parametric quadratic programming problem:

min
[z uT ]T

(z − σ(x))2 s.t.
[
xT z uT

]T ∈ Π[xT z uT ]T , (4.45)

where Π[xT z uT ]T is defined as in (4.39).

Proof: The proof is similar to the one of Theorem 4.5.7. �

The following theorem presents the main result of this subsection and is also of

importance in the context of PWA functions analysis.

Theorem 4.5.20 Any possibly discontinuous PWA function, defined over a poly-

hedral partition of a polyhedron, can be equivalently obtained as a selection

among the optimal solutions of a parametric linear/quadratic programming prob-

lem.

Proof: Let fpwa(x) denote a given PWA function, defined over a polyhedral par-

tition {Xi}i∈IN . If this partition is convexly liftable, Theorems 4.5.17, 4.5.19

show in a constructive manner, parametric linear/quadratic programming prob-

lems for which fpwa(x) is a sub-component of one of their optimal solutions.

Otherwise, in case this partition is not convexly liftable, according to Theorem

4.4.10, one can subdivide {Xi}i∈IN into a convexly liftable cell complex such that

the internal boundaries are maintained. According to this subdivision, fpwa(x) is

also subdivided into an equivalent PWA function, say f̃pwa(x). Note also that func-

tion f̃pwa(x) is defined over a convexly liftable partition. Again, as per Theorems

4.5.17, 4.5.19, f̃pwa(x) can be obtained via parametric linear/quadratic program-

ming problems. �
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Consider a simple discontinuous PWA function fpwa(x), defined over a partition

in R as follows:

fpwa(x) =





0.8116x+ 0.5328 for − 0.4 ≤ x < −0.3
0.3507x+ 0.9390 for − 0.3 ≤ x < −0.2
0.8759x+ 0.5502 for − 0.2 ≤ x < −0.1
0.6225x+ 0.5870 for − 0.1 ≤ x < 0

0.2077x+ 0.3012 for 0 ≤ x < 0.1

0.4709x+ 0.2305 for 0.1 ≤ x < 0.2

0.8443x+ 0.1948 for 0.2 ≤ x < 0.3

0.2259x+ 0.1707 for 0.3 ≤ x ≤ 0.4

One can easily check the discontinuity of this function via its values at the vertices

of the regions in the parameter space partition (see Figure 4.26). A convex lifting

of this partition denoted by ℓ(x), is presented below:

ℓ(x) =





−3.5x+ 0.4 for − 0.4 ≤ x ≤ −0.3
−2.5x+ 0.7 for − 0.3 ≤ x ≤ −0.2
−1.5x+ 0.9 for − 0.2 ≤ x ≤ −0.1
−0.5x+ 1 for − 0.1 ≤ x ≤ 0

0.5x+ 1 for 0 ≤ x ≤ 0.1

1.5x+ 0.9 for 0.1 ≤ x ≤ 0.2

2.5x+ 0.7 for 0.2 ≤ x ≤ 0.3

3.5x+ 0.4 for 0.3 ≤ x ≤ 0.4

This convex lifting is visualized in Figure 4.27. Following the approach presented

previously, an optimization problem that admits the given PWA function as an
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Figure 4.26: A given discontinuous

PWA function defined over a partition

in R.

Figure 4.27: A convex lifting for the

partition in Figure 4.26.

optimal solution, is presented in (4.46).

min
[z uT ]T

z s.t.




−0.8944 0
−0.5805 0.1893
−0.4462 0.3412
−0.5547 0
−0.2547 0.6733
−0.3714 0
−0.2747 0
−0.4473 −0.3356
−0.8944 0
−0.8200 0.2018
0.2738 0.7989
0.3139 0.8057
−0.6351 −0.2551
−0.5547 0
−0.3714 0
−0.4659 −0.5706
−0.2747 0
−0.3217 −0.8334
−0.1827 −0.9733
−0.0951 −0.9955
0.0455 −0.9968
0.8700 0.4919




[
z
u

]
≤




−0.4472
−0.7920
−0.8273
−0.8321
−0.6941
−0.9285
−0.9615
−0.8290
0.4472
0.5356
−0.5355
−0.5022
0.7291
0.8321
0.9285
0.6763
0.9615
0.4494
0.1390
0.0045
−0.0659
0.0325




x+




−0.8944
−0.4693
−0.2459
−0.4992
0.1406
−0.2600
−0.1099
−0.4799
−0.8944
−0.7015
0.9156
0.9763
−0.7119
−0.4992
−0.2600
−0.6378
−0.1099
−0.5727
−0.4759
−0.3766
−0.1520
1.6815




(4.46)
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Figure 4.28: Graphical illustration of

the recovered optimization problem.

Figure 4.29: Illustration for the set of

optimal solutions.

The given discontinuous PWA function is presented in Figure 4.26 wherein the

line along the horizontal axis describes the parameter space x and the multicol-

ored curve above describes the given PWA function. Also, in the extended space

of parameter x, the original function fpwa(x) and lifting ℓ(x), the green curve in

Figure 4.28 represents the given PWA function. The shaded pink polytope repre-

sents the set of constraints in the inverse optimization problem (4.46). Note also

that the dark pink curve describes an optimal solution to this optimization prob-

lem. Moreover, the image of this curve onto the space of
[
xT uT

]T
coincides with

the given PWA function. It is also worth emphasizing that for each segment of

state space partition, the set of optimal solutions to the above optimization prob-

lem represents a facet of the pink polytope Π[xT z uT ]T , which is orthogonal to the

space
[
xT z

]T
. As illustrated in Figure 4.29, the pink facets represent the set of

optimal solutions to the optimization problem (4.46).

Note also that based on the same methodology, inverse parametric linear/quadratic

programming problem can also be extended to continuous piecewise affine set-

valued maps. These discussions will be presented in Section 7.2.

4.6 Constraint removal of the convex liftings based

solution to IPL/QP

The convex liftings-based solution to inverse parametric linear/quadratic pro-

gramming problem for PWA functions has been presented in Section 4.5. It has

been shown that any PWA function can be equivalently obtained by a parametric

linear programming problem with at most one auxiliary 1−dimensional variable.

This auxiliary variable represents a convex lifting. Accordingly, the main advan-
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tage is an important decrease of the dimension of optimization arguments and

a relatively compact use of constraints in optimization problems. With respect

to the latter aspect, these first results also point out a drawback: the number of

constraints may still be relatively large. An important part of these constraints is

practically used to bound the feasible set rather than to contribute to the optimal

solution. This problem is tackled in this section. The target is the reduction of

constraint set towards the minimal number of constraints necessary for the inverse

optimality problem. Two algorithms are proposed to eliminate these redundant

constraints in the IPL/QP formulation. It is worth emphasizing that the class of

continuous PWA functions are exclusively of interest for the results in this section

even though those still hold true for the class of discontinuous PWA functions.

For ease of presentation, additional notations are defined as follows. Given a

full row rank matrix M ∈ R
r×(d+1), P(M) denotes the polyhedron

P(M) =
{
x ∈ R

d |M(·, 1 : d)x ≤M(·, d+ 1)
}
,

where M(·, i) denotes the ith column of matrix M and M(·, i : j) represents the

matrix formed by the ith to jth columns of M .

Conversely, given a polyhedron P , P−1(P ) denotes the minimal representation

(in terms of dimension) of a matrix M satisfying

P =
{
x ∈ R

d |M(·, 1 : d)x ≤M(·, d+ 1)
}
.

Note that P−1(P ) is not unique for a given polyhedron P , even if its results are in

the minimal representation due to the following observation:

Lemma 4.6.1 Given a matrix M and any diagonal matrix D with the diagonal

elements belonging to R>0, then P(DM) = P(M).

Moreover, given two polyhedra PM , PN ⊂ R
d, M ∈ P−1(PM) ⊂ R

rM×(d+1), N ∈
P−1(PN) ⊂ R

rN×(d+1), then RmSm(M,N) denotes the matrix composed of the

rows of M which cannot be described as a scaling of a row of N . Namely,

RmSm(M,N) = K such that

— K is a sub-block of M ,

— for any row K(i, ·) of K, matrix

[
K(i, ·)
N(j, ·)

]
has full row rank ∀j ∈ IrN .

Also, another operator needs to be introduced for removal of redundant con-

straints. Given two sets of constraints corresponding to two polyhedra PM , PN ,

M ∈ P−1(PM) ⊂ R
rM×(d+1), N ∈ P−1(PN) ⊂ R

rN×(d+1), RmRdd(M,N)
denotes the set of the constraints characterizing PM which are not redundant in

the representation of PN . In fact, there exist different algorithms which carry

out removal of redundant constraints, one of them presented in Olaru and Dumur

[2005], is recalled here through a mathematical presentation as follows:

RmRdd(M,N) = K ∈ R
rK×(d+1) such that
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— K is a sub-block of M ,

— for any i ∈ IrK , max
x |x∈PN

K(i, 1 : d)x > K(i, d+ 1).

This operator has the following property:

Lemma 4.6.2 Given two polyhedra PM ⊆ PN , M ∈ P−1(PM), N ∈ P−1(PN),
then RmRdd(N,M) = ∅.
It is worth recalling that the convex liftings based solution to IPL/QP problems is

usually in the following form:

min
[z uT ]T

z s.t.
[
xT z uT

]T ∈ Π[xT z uT ]T , (4.47)

where Π[xT z uT ]T stands for the set of constraints, z represents the auxiliary vari-

able.

Remark 4.6.3 Note that not all constraints describing Π[xT z uT ]T in its halfspace

representation are meaningful from the optimization point of view, in the sense

that they are not active at the optimum. In the geometrical sense, each active con-

straint corresponds to a supporting hyperplane containing a facet of Π[xT z uT ]T .

It follows that the constraints corresponding to the supporting hyperplanes of

Π[xT z uT ]T at its facets, which contain the dx−faces whose orthogonal projections

onto R
dx retrieve the partition {Xi}i∈IN , are exclusively of use in the IPL/QP

formulation.

The relaxation of the constraints which do not become active in the IPL/QP

formulation, will modify the feasible set in both parameter and argument space.

Thus, the constraint relaxation has to be associated with a restriction in the pa-

rameter space which limits the domain of validity for the optimal solution. Note

also that these supplementary constraints may give rise to redundancy phenom-

ena. The constraint redundancy is a classical problem in computational geometry

investigated in different publications, see for instance Olaru and Dumur [2005].

According to Remark 4.6.3, the first idea for simplification of constraint set, is

based on the removal of active constraints of the maximization problem charac-

terized by the same cost function and the same constraint set as in (4.47). Note

however that not all active constraints from this maximization problem are re-

movable. Some of them contribute to the construction of the solution to (4.47).

Therefore, some supplementary constraints are of use to conserve the optimal so-

lution to (4.47). For ease of presentation, the following notations are introduced:

Π[xT uT ]T = Proj [xT uT ]TΠ[xT z uT ]T , M[xT uT ]T = P−1(Π[xT uT ]T ),

Mx = M[xT uT ]T (·, 1 : dx), Mu = M[xT uT ]T (·, dx + 1 : dx + du + 1),

M[xT 0 uT ]T = [Mx 0Mu] ,
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where 0 represents a column vector of appropriate dimension with the elements

equal to zero. Πmax denotes the polyhedron having the halfspace representation

described by the set of constraints, which are active in the following parametric

linear programming problem:

max
[z uT ]T

z s.t.
[
xT z uT

]T ∈ Π[xT z uT ]T .

Moreover, define also:

M[xT z uT ]T = P−1(Π[xT z uT ]T ), Mmax = P−1(Πmax),

Mmax = RmSm(M[xT z uT ]T ,Mmax),

M̃ =

[
Mmax

M[xT 0 uT ]T

]
, Π̃ = P(M̃).

The following result shows an option of these supplementary constraints.

Proposition 4.6.4 The solutions to two following problems are equivalent:

min
[z uT ]T

z s.t.
[
xT z uT

]T ∈ Π̃

min
[z uT ]T

z s.t.
[
xT z uT

]T ∈ Π[xT z uT ]T .

Proof: Consider first the case x0 ∈ int(Xi) for some Xi which does not have any

facet as a facet of X , and the optimal solution to the following problem:

[
z(x0)
u(x0)

]
= arg min

[z uT ]T
z s.t.

[
xT
0 z uT

]T ∈ Π
[xT

0 z uT ]
T . (4.48)

Let S0 denote the polyhedron described by the constraints which are active in the

maximization problem:

[
z(x0)
u(x0)

]
= arg max

[z uT ]T
z s.t.

[
xT
0 z uT

]T ∈ Π
[xT

0 z uT ]
T . (4.49)

At x0, M0 = P−1(S0), M0 = RmSm(M[xT z uT ]T ,M0), then the optimal solution:

[
z̃(x)
ũ(x)

]
= arg min

[z uT ]T
z s.t.

[
xT z uT

]T ∈ P(M0), (4.50)

satisfies:
[
z(x0) u

T (x0)
]
=
[
z̃(x0) ũ

T (x0)
]
. Indeed, the optimal solution to (4.48)

does not change while removing S0 as the removed constraints do not contain the
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Figure 4.30: Illustration for removal of

constraints.

Figure 4.31: Illustration for additional

constraints.

optimal solution to (4.48) at x0. (a graphical illustration is presented in Figure

4.30, where the multicolored line along the x−axis represents a partition of the

parameter space, and the green curve above stands for its associated continuous

PWA function, which needs to be recovered. The shaded polytope represents

Π[xT z uT ]T . The optimal solution to (4.48) is represented by the solid pink line.

Also, the blue line represents the optimal solution to (4.49), and it is presented by

two constraints described by two hyperplanes containing two facets of Π[xT z uT ]T ,
marked with dark color.)

The second case to be considered, is the one of regions Xi which share com-

mon facets with X . Their removal cannot conserve the optimal solution to (4.48)

for x0 ∈ Xi (as seen in Figure 4.30, after the removal of two constraints contain-

ing two dark facets of Π[xT z uT ]T , the uniqueness of optimal solution to (4.50) is

lost when x0 belongs to the terminal segment i.e. the pink one containing point

x = 0.5). Therefore, a restriction of optimal solution needs to be set up via sup-

plementary constraints. These supplementary constraints are chosen here to be

related to Π[xT 0 uT ]T = P(M[xT 0 uT ]T ). The reason for this choice is to conserve

the optimal solution over such a region (as illustrated in Figure 4.31, a constraint

of Π[xT 0 uT ]T corresponding to the yellow hyperplane, is added to conserve the

optimal solution over the region [0.4 0.5] .) �

The preceding result leads to Algorithm 4.5 carrying out this removal. The

result of this algorithm is a modified set of constraints denoted by Π̃(1).
Note that steps 3-6 collect all active constraints of Π[xT z uT ]T in the maximiza-

tion problem (4.49). These constraints are eliminated via step 7. After this re-

moval, the remaining constraints may not conserve the original optimal solution

to (4.47), therefore, additional constraints described by Π[xT 0 uT ]T are added. Step

8 carries out the removal of the constraints in Π[xT 0 uT ]T which are redundant in

P(Mmax).
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Algorithm 4.5 Constraint removal via maximization problem

Input: M[xT z uT ]T ,M[xT 0 uT ]T .

Output: Π̃(1).

1: Compute the optimal solution to (4.49):

[
z(x)
u(x)

]
:
⋃

i∈I
N
X i → R

du+1.

2: Mmax = [] .
3: For i = 1 : N
4: Find the polyhedron P0 described by the active constraints at[

xT z(x) uT (x)
]T

for x ∈ X i.

5: M0 = P−1(P0), Mmax =

[
Mmax

M0

]
.

6: End

7: Mmax = RmSm(M[xT z uT ]T ,Mmax).

8: M̃ (0) = RmRdd(M[xT 0 uT ]T ,Mmax).

9: M̃ (1) =

[
Mmax

M̃ (0)

]
, Π̃(1) = P(M̃ (1)).

Remark 4.6.5 Note that even if Algorithm 4.5 eliminates a number of constraints,

it may not be of help in some cases in the overall reduction of constraints. More

precisely, through the example shown in Figure 4.30, by Algorithm 4.5 two con-

straints are removed, but five others are added. In this case, this algorithm does

not provide any benefit in terms of constraints reduction, however, it provides an

important insight for removal of constraints.

Back to the specific example shown in Figure 4.30, it is observed that the con-

straints containing the dark facets in Figure 4.32 are not necessary for the mini-

mization problem (4.48). While Algorithm 4.5 can only remove one of them, it

leads to an observation that the constraints containing the solid pink line, known

as the optimal solution to (4.48), are exclusively of interest. This remark will

be the basis of Algorithm 4.6 to carry out the constraint removal. The following

proposition summarizes the above comments.

Proposition 4.6.6 A given continuous PWA function fpwa(x) : X → R
du asso-

ciated with a convexly liftable partition {Xi}i∈IN of a polyhedron X ⊆ R
dx is

the image via the orthogonal projection onto R
du of the optimal solution to the

problem below:

min
[z uT ]T

z s.t.
[
xT z uT

]T ∈ Π̃(2), (4.51)

4. Matrix 0 has appropriate dimension with the number of columns equal to du + 1.
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Figure 4.32: Illustration for unnecessary constraints.

with Π̃(2) obtained from Algorithm 4.6.

Algorithm 4.6 Constraint removal via minimization problem

Input: M[xT z uT ]T ,

[
z(x)
u(x)

]
the optimal solution to (4.48).

Output: Π̃(2).

1: Mmin = [].
2: For i = 1 : N
3: Find the polyhedron P0 described by the constraints which are active at[

xT z(x) uT (x)
]T

for x ∈ Xi.

4: M0 = P−1(P0), Mmin =

[
M0

Mmin

]
.

5: End

6: Πmin = P(Mmin), Πx = ProjRdxΠmin.
7: Mx = P−1(Πx), Mf = P−1(X ).
8: M f = RmRdd(Mf ,Mx).
9: M =

[
M f (·, 1 : dx) 0 M f (·, dx + 1)

]
. 4

10: Mmin =

[
Mmin

M

]
, Π̃(2) = P(Mmin).
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Proof: The optimality condition conserves the constraints containing the opti-

mal solution to (4.48) as steps 2–5. However, while removing the non-active

constraints in Π[xT z uT ]T , the boundary of the parameter space is lost, therefore,

the new set of constraints needs to be restricted to the parameter region X . �

Note that step 8 in Algorithm 4.6 aims to remove redundant constraints of X in

Πmin.

Remark 4.6.7 If {Xi}i∈IN is a polytopic partition, an alternative for the set of

constraints can be in the following form:

Π[xT z uT ]T = conv(V[xT z uT ]T )⊕ cone(
[
0Tdx 1 0Tdu

]T
),

with the vectors 0dx , 0du composed of zeros of appropriate dimensions and V[xT z uT ]T

is defined as in (4.22). This choice can be of help to avoid constraints describing

upper bound of z which are not necessary in the minimization problem (4.23).

Finally, illustrative examples are referred to Section 5.1.

4.7 Conclusions

This chapter presents a method to solve inverse parametric linear/quadratic pro-

gramming problems. This method relies on convex liftings. It is shown that

for any continuous PWA function defined over a polyhedral partition, an appro-

priate equivalence of this function can be obtained by another parametric lin-

ear/quadratic programming problem with an auxiliary variable of dimension equal

to 1. This method also covers the class of discontinuous PWA functions. In this

case, it is shown that the uniqueness of optimal solution to the recovered op-

timization problem is no longer preserved. These results will be of help in an

alternative implementation of PWA control laws. This aspect will be detailed in

the next chapter. Finally, analysis on constraint removal for this method is also

considered. It aims at putting forward two algorithms to reduce the number of

constraints in the recovered optimization problem.
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5.1 Efficient alternative implementation of PWA con-

trol laws

This section makes use of the results in IPL/QP problems via convex liftings

in model predictive control. The basic on linear MPC has been recalled in Sec-

tion 2.5. It was shown that a linear MPC problem can be easily transformed into

a parametric linear/quadratic programming problem, where the optimization ar-

gument is defined as the vector composed of the control variables over a finite

prediction horizon N ∈ N>0 i.e.

u =
[
uT
k|k . . . u

T
k+N−1|k

]T ∈ R
Ndu ,

and the current state represents a parameter. In implementation, the first input is of

interest u∗(xk) = ProjRduu
∗(xk), as a consequence, it also inherits the piecewise

affine structure of optimal solution to this PL/QP problem. The following results

are direct consequences of those presented in Section 4.5.

Corollary 5.1.1 Any continuous PWA control law defined over a polyhedral par-

tition of the state space can be obtained through a parametric linear/quadratic

programming problem.

Proof: See the proof of Theorem 4.5.11. �

Central to the following result is the complexity of a linear MPC problem.

Theorem 5.1.2 Any continuous explicit solution of a linear MPC problem with

respect to a linear/quadratic cost function is equivalently obtained through a lin-

ear MPC problem with a linear or quadratic cost function and the control horizon

at most equal to 2 prediction steps.

Proof: Let u(x) : R
dx → R

du denote a continuous optimal control law to a

linear MPC problem, defined over a state space partition {Xi}i∈IN of a polyhedron

X ⊆ R
dx . If {Xi}i∈IN is not convexly liftable, it needs to be subdivided into a

convexly liftable cell complex. A constructive solution for this subdivision was

presented in the proof of Theorem 4.4.10. Therefore, one can exclusively focus

on the case {Xi}i∈IN is convexly liftable.

Now, let Π
[xT

k
z uT

k ]
T denote the set of constraints in the recovered optimization

problem i.e.

min
[z uT

k ]
T
z s.t.

[
xT
k z uT

k

]T ∈ Π
[xT

k
z uT

k ]
T . (5.1)
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Define also the following matrices (recall that the operation P−1() is defined in

Section 4.6):

H = P−1(Π
[xT

k
z uT

k ]
T ), Hx = H(·, 1 : dx), Hz = H(·, 1 + dx),

Hu = H(·, dx + 2 : dx + du + 1), K = H(·, dx + du + 2).

If du = 1, then it suffices to use z as the second predicted control law i.e. uk+1|k =
z. Otherwise, the set of constraints Hxxk +Huuk +Hzz ≤ K can also be written

in the following form:

Hxxk +Huuk + [Hz 0]

[
z
s

]
≤ K,

where 0 denotes a matrix of appropriate dimension, composed of zeros with the

number of columns equal to du − 1. Also, s ∈ R
du−1 denotes auxiliary variable.

Again, apply

[
z
s

]
for the next predicted control variable i.e. uk+1|k =

[
z
s

]
. Ac-

cordingly, (5.1) can be written as follows:

min
[

uT
k

uT
k+1|k

]T

[
0Tdu 1 0Tdu−1

] [ uk

uk+1|k

]
s.t. Hxxk + [Hu Hz 0]

[
uk

uk+1|k

]
≤ K,

known to be a linear MPC problem with respect to a linear cost function.

On the other hand, according to Theorem 4.5.10, the recovered optimization

problem with a quadratic cost function can also be written in the following form:

min
[z uT

k ]
T
(z − σ(xk))

2 s.t.
[
xT
k z uT

k

]T ∈ Π
[xT

k
z uT

k ]
T , (5.2)

where σ(xk) ≤ ℓ(xk), ℓ(xk) denotes the convex lifting for the given cell complex

{Xi}i∈IN , used to compute Π
[xT

k
z uT

k ]
T . Suppose ℓ(xk) = aTi xk + bi over a region

Xi, it suffices to choose σ(xk) = aTi xk + bi over X . Accordingly, (5.2) can be

easily written in the form of a linear MPC problem with respect to a quadratic

function of
[
uT
k uT

k+1|k

]T
. The proof is complete. �

Remark 5.1.3 It is worth stressing that the construction of a convex lifting is of

help to facilitate implementation of PWA controllers. More clearly, instead of

storing state space partition, this convex lifting and control law gains are stored in

the hardware level. Namely, suppose these convex lifting ℓ(x) and PWA controller

u(x) are denoted as follows:

ℓ(x) = aTi x+ bi

u(x) = Hix+Gi

for x ∈ Xi.
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Accordingly, one only needs to store ai, bi, Hi, Gi. Also at each sampling time,

with the current state x, it only requires determining index i such that

aTi x+ bi = max
j∈IN

(aTj x+ bj).

Then, control law u(x) = Hix + Gi is applied. This procedure is repeated for

the next instant. This implementation allows PWA controllers to be implemented

into low-cost platforms since the state space partition is not necessary in this case.

Further studies about efficient implementation of PWA control laws is referred to

Baotic et al. [2008].

It is worth considering some numerical examples to illustrate the relevance of

IPL/QP in implementation of PWA control laws.

5.1.1 Example 1

Consider the double integrator system, mathematically represented as follows:

xk+1 =

[
1 0.5
0 1

]
xk +

[
0.125
0.5

]
uk,

yk =
[
1 0

]
xk.

(5.3)

A cost function is minimized over a prediction horizon N = 5 with respect to

weighting matrices Q =

[
10 0
0 10

]
, R = 0.5:

J = xT
k+5|kPxk+5|k +

4∑

i=0

(xT
k+i|kQxT

k+i|k + uT
k+i|kRuk+i|k),

with P computed from the Riccati equation. The constraints on the control vari-

able and the output variable are given by:

uk+i|k ∈ [−2, 2] , yk+i|k ∈ [−5, 5] for 0 ≤ i ≤ 4

xk+5|k ∈ Xf ,

where Xf is chosen as the maximal output admissible set (further details in Gilbert

and Tan [1991]).

The state space partition known to be convexly liftable, is illustrated in Figure

5.1. The feedback control law computed from the original MPC problem is de-

picted in Figure 5.2. A convex lifting for the state space cell complex in Figure

5.1 is shown in Figure 5.3. Finally, the result of parametric linear programming

problem constructed via Algorithm 4.3 is shown in Figure 5.4. One can see that

the recovered PWA control law in Figure 5.4 and the original one in Figure 5.2

are identical.



5.1. Efficient alternative implementation of PWA control laws 131

Figure 5.1: State space partition of Ex-

ample 1.

Figure 5.2: The original PWA control

law.

Figure 5.3: A convex lifting for the cell

complex in Figure 5.1.

Figure 5.4: The recovered PWA control

law.

5.1.2 Example 2

The double integrator system is reconsidered, however, the output constraints

are disregarded in order to stress on the input constraints and the particularities of

the partition in this case. The constraints on input signal, the prediction horizon

and the cost function are preserved. The state space partition is known to be

non-convexly liftable, as seen in Figure 5.5. Its associated PWA control law is

presented in Figure 5.6. A state space partition equivalent to the original one and

satisfying Assumption 4.5.2, is presented in Figure 5.7, according to one of its

convex liftings. This partition is obtained by an appropriate refinement of the

regions associated with the same saturated control law i.e. u(x) = 2 or u(x) =
−2. Finally, the recovered PWA control law is presented in Figure 5.8, it is easy

to see that this PWA control law is equivalent to the original one in Figure 5.6.
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Figure 5.5: State space partition of Ex-

ample 2.
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Figure 5.6: The original PWA control

law.

Figure 5.7: Equivalent partition and one

of its convex liftings.

Figure 5.8: A PWA control law equiva-

lent to the original one in Figure 5.6.

5.1.3 Complexity analysis

These two numerical examples consider the double integrator system. The first

one needs 24 constraints in the standard formulation of MPC problem with the

prediction horizon equal to 5. Meanwhile, the formulation based on inverse opti-

mality i.e. Algorithms 4.3 + 4.6 needs the same number of constraints to obtain the

same PWA control law, but the dimension of the optimization argument is equal

to 2. This difference leads to a computational time for the explicit solution of

the formulation based on inverse optimality smaller than the one by the standard

MPC formulation. This complexity reduction is retrieved in the second exam-

ple. Nothing changes in terms of the dimension of optimization argument with

respect to the preceding example. However, the formulation of the standard MPC

problem employs 14 constraints, while the formulation based on Algorithms 4.3

+ 4.6 finds an equivalent solution by an optimization problem with 43 constraints.
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number of constraints a

Example Method Prediction horizon Computational time b (s) Π A
Standard MPC 5 3.9000 24

1 Algorithm 4.3 2 5.0870 74

Algorithms 4.3 + 4.5 2 4.5800 62 0

Algorithms 4.3 + 4.6 2 0.7410 14 10

Standard MPC 5 6.8190 14

2 Algorithm 4.3 2 7.230 81

Algorithms 4.3 + 4.5 2 6.399 69 14

Algorithms 4.3 + 4.6 2 3.073 32 11

a. The number of constraints for Algorithms 4.5, 4.6 consists of two parts: general con-

straints for the optimization problem after the removal denoted by Π and additional constraints

to conserve the optimal solution’s structure denoted as A. For Algorithm 4.5, Π = P(Mmax)

and A = P(M̃ (0)). For Algorithm 4.6, Π = Πmin and A = P(Mf ).
b. The numerical examples in this section were carried out in the environment of MPT 3.0

Herceg et al. [2013] on a computer with an Intel Core i5, M430, 2.27 Ghz, Ram 4G. This com-

puter was equipped with a 32 bit version of Windows 7.

Table 5.1: Comparison of different formulations of the IPL/QP problem

Similar to the first example, the computational time for the explicit solution of

the formulation based on Algorithms 4.3 + 4.6 is much smaller than the original

MPC one. More details can be found in Table 5.1. Accordingly, it can be seen

that if the computational time of the explicit solution is gained, the same thing

can be said for computing the implicit solution. This leads to the fact that if one

implements the implicit solution to the recovered optimization problem, the online

computational time is improved over the implementation of the implicit solution

to the original problem. Also, this implementation does not require storing the

control law gains and the regions.

To conclude this section, we refer interested readers to Gulan et al. [2015] for a

detailed analysis of a practical application.

5.2 Robust control design based on convex liftings

As presented before, convex liftings have been of use to solve inverse parametric

linear/quadratic programming problems. It has been shown via some numerical

examples that inverse optimality is of help to reduce the implementation complex-

ity of PWA control laws.

In the same line with the studies in Blanchini [1994], Gutman and Cwikel

[1987], Nguyen [2014], this section presents an attempt to use convex liftings in

the design of robust control for linear systems affected by bounded additive distur-

bances and polytopic uncertainties as defined in (2.9) which can serve as control

Lyapunov functions. This method will be proved to guarantee the recursive fea-
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sibility and closed loop stability. In terms of implementation, it only requires

solving a simple linear programming problem at each sampling instant.

5.2.1 Problem setting

For reading ease, a linear system affected by bounded additive disturbances and

polytopic uncertainties is recalled here:

xk+1 = A(k)xk +B(k)uk + wk, (5.4)

where xk, uk denote the state, control variables at time k, wk stands for the distur-

bance at time k and a polytopic uncertainty set is in the following form:

[A(k) B(k)] ∈ Ψ = conv([A1 B1] , . . . , [AL BL]). (5.5)

The state, control variables and the disturbances are subject to constraints:

xk ∈ X ⊂ R
dx , uk ∈ U ⊂ R

du , wk ∈W ⊂ R
dx , (5.6)

where dx, du ∈ N>0, X,U,W are polytopes. It is assumed that X,U,W contain

the origin in their interior.

The aim is to find a robust control law which can cope with bounded additive

disturbances and polytopic model uncertainties such that the closed loop is ro-

bustly stable. It is clear that if disturbance wk is unknown for the computation

of control action at instant k, one cannot expect to be able to guarantee asymp-

totic stability of the origin. The asymptotic stability is replaced with an ultimate

boundedness notion Khalil [2002], Kofman et al. [2007].

5.2.2 Positively invariant set and domain of attraction

The first step in this procedure is to find an unconstrained robust control law

uk = Kxk ∈ U. A computation of this control law has been proposed in Subsec-

tion 2.4.1. A control law is always associated with a (robust) positively invariant

set as defined in Subsection 2.3.2. For ease of presentation, let Ω denote such a

(robust) positively invariant set. To compute Ω for the linear system (5.4), Al-

gorithm 2.1 may be of help. This algorithm approximates the maximal (robust)

positively invariant set associated with this unconstrained control law.

Note however that in the presence of persistent disturbances, Ω is considered as

a full-dimensional set. Still, if system (5.4) is only affected by bounded additive

disturbances, one can choose Ω as the minimal positively invariant set to reduce

the impact of disturbances. Remarkable studies to compute the minimal robust

positively invariant set can be found in Kolmanovsky and Gilbert [1998], Rakovic
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et al. [2005]. Otherwise, if system (5.4) is not affected by additive disturbances

and/or is subject to polytopic model uncertainties, Ω = {0} can also be chosen.

In this case, asymptotic stability of the origin can be achieved.

On the other hand, a domain of attraction is also of importance. This is defined

as a subset of all points in the state space which can be driven to a target set.

To guarantee the convergence to a robust positively invariant set Ω, a domain of

attraction denoted by X , should ensure that for any point belonging to X , there

always exists control law satisfying constraint (5.6), which steers the state to Ω. A

candidate for this domain of attraction can be the maximal λ−contractive set for

a 0 ≤ λ < 1 as defined in Subsection 2.4.3. With a given 0 ≤ λ < 1, the maximal

λ−contractive set for the linear system (5.4) denoted by Pλ can be computed using

Algorithm 2.3. Without loss of generality, we assume that Ω ⊂ Pλ. This section

will present a control Lyapunov function defined over this contractive set.

5.2.3 Convex lifting construction for control

A definition of convex liftings is presented in Definition 4.2.3. It is known

that a polyhedral partition has to fulfill some conditions for the existence of a

convex lifting (see Section 4.4.1). In this section, a class of convex liftings will

be proved to be control Lyapunov functions. An algorithm for constructing such

convex liftings is presented in the sequel. This convex lifting denoted as ℓ(x), is

defined over a domain of attraction X . Recall that in this section, as discussed in

Subsection 5.2.2, the maximal λ−contractive set Pλ for a given 0 ≤ λ < 1, is

chosen as a domain of attraction i.e. X = Pλ.

Algorithm 5.1 Construct a convex lifting as a control Lyapunov function

Input: A given robust positively invariant set Ω ⊂ R
dx , the domain of attraction

X = Pλ ⊂ R
dx with a given 0 ≤ λ < 1 and a scalar c > 0.

Output: A convex lifting ℓ(x) such that ℓ(x) = 0 for every x ∈ Ω.

1: V1 = V(Ω), V̂1 =

{[
x
0

]
| x ∈ V1

}
⊂ R

dx+1.

2: V2 = V(X ), V̂2 =

{[
x
c

]
| x ∈ V2

}
⊂ R

dx+1.

3: Π = conv(V̂1

⋃
V̂2).

4: Solve the parametric linear programming problem:

z∗(x) = min
z

z s.t.
[
xT z

]T ∈ Π. (5.7)

5: ℓ(x) = z∗(x) = aTi x+ bi for x ∈ Xi.
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Steps 1-2 in Algorithm 5.1 aim to lift the vertices of Ω and X to R
dx+1 with

appropriate heights. Namely, the vertices of Ω are lifted with heights equal to 0,
whereas the vertices of X are lifted with heights equal to the given c > 0. Also the

convex lifting ℓ(x) is generated from the parametric linear programming problem

(5.7). Note also that due to the construction, there exists a region in the partition

associated with ℓ(x) coincident with Ω, since the vertices of Ω are lifted onto a

lower facet of Π. The following observation describes the properties of such an

ℓ(x), generated from Algorithm 5.1.

Lemma 5.2.1 The function ℓ(x) over X , generated from Algorithm 5.1, is contin-

uous, non-negative and convex. Also, ℓ(x) = 0 for every x ∈ Ω and ℓ(x) > 0 for

any x ∈ X\Ω.

Proof: The continuity and convexity of ℓ(x) can be easily derived from Theorem

IV.3 in Gal [1995] or Theorem 7.1.2.

The second statement is deduced from the construction in step 1. Indeed, con-

sider x ∈ Ω, then x can be written as a convex combination of the vertices of Ω
as: x =

∑
v∈V1

α(v)v with α(v) ≥ 0 and
∑

v∈V1
α(v) = 1. It is known that ℓ(x)

over Ω is an affine function, then ℓ(x) = aTi x + bi leads to ℓ(x) = 0 for every

x ∈ Ω.

To complete the proof, it is necessary to show that ℓ(x) is a non-negative func-

tion. Indeed, as shown above, ℓ(x) = aTi x + bi = 0 for every x ∈ Ω, then due to

the full dimension of Ω, ai = 0, bi = 0. By the definition of a convex lifting, ℓ(x)
is a piecewise affine function, thus over a region Xj, one has ℓ(x) = aTj x+ bj for

every x ∈ Xj . This satisfies the convexity condition for Xj 6= Ω (Xi = Ω):

aTj x+ bj > aTi x+ bi = 0, for every x ∈ Xj\Xi,

aTj x+ bj = aTi x+ bi = 0, for every x ∈ Xj ∩ Xi.

The same inclusion for the other affine functions of ℓ(x), leads to the non-negativity

of ℓ(x). Moreover, ℓ(x) > 0 for every x ∈ X\Ω. The proof is complete. �

A simple consequence of Lemma 5.2.1 can be deduced as follows.

Lemma 5.2.2 For any x ∈ X and 0 ≤ β ≤ 1, ℓ(βx) ≤ βℓ(x).

Proof: Due to the convexity of ℓ(x) over X as proved in Lemma 5.2.1, it leads

to

ℓ(βx+ (1− β)0) ≤ βℓ(x) + (1− β)ℓ(0).

Due to the assumption that 0 ∈ int(W), then 0 ∈ int(Ω), meaning that ℓ(0) = 0.
This inclusion and the above one imply that ℓ(βx) ≤ βℓ(x). �
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Algorithm 5.2 Robust control design procedure based on convex liftings

Input: A robust positively invariant set Ω associated with a stabilizing control

law u = Kx over Ω. A convex lifting ℓ(x) = aTi x + bi for x ∈ Xi, i ∈ IN as in

Algorithm 5.1.

Output: Control law u∗(xk) at each sampling time.

1: Compute ℓ(xk).
2: If xk ∈ Ω then u∗(xk) = Kxk, jump to Step 6.

3: Else Solve the following linear programming problem:

[
α∗ (u∗

k)
T
]T

= arg min
[α uT

k ]
T
α

s.t. aTi (A(k)xk +B(k)uk + wk) + bi ≤ αℓ(xk)

α ≥ 0, uk ∈ U, ∀i ∈ IN , ∀wk ∈ V(W), ∀ [A(k) B(k)] ∈ V(Ψ).

(5.8)

4: Apply u∗(xk) = u∗
k

5: End

6: k ← k + 1, return to Step 1.

5.2.4 Robust control design procedure

This subsection introduces the procedure for designing robust control laws

based on convex liftings. This procedure can guarantee robust stability of the

closed loop in the sense of Lyapunov function. A definition of this robust stability

is referred to Definition 2.4.1. The design procedure is summarized in Algorithm

5.2.

Remark 5.2.3 Note that the task of verifying whether or not xk belongs to Ω
in Step 2 of Algorithm 5.2, can be easily carried out by checking whether or

not ℓ(xk) = 0. This property is due to the construction of a convex lifting in

Algorithm 5.1. Therefore, it is not necessary to store the constraints describing Ω
in the implementation.

Natural questions arise here whether or not the linear programming problem

(5.8) is feasible and whether closed loop stability is guaranteed by the proposed

procedure. These questions are answered via the following theorem. Accordingly,

it will be shown that convex lifting constructed in Algorithm 5.1 can serve as a

control Lyapunov function. Thus, the proposed control design can guarantee the

robust stability as per Definition 2.4.1.

Theorem 5.2.4 Given a robust positively invariant set Ω associated with a robust

control law gain K and a domain of attraction X = Pλ for a given 0 ≤ λ < 1,
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if the initial condition xk ∈ X , then the linear programming problem (5.8) is

recursively feasible. Furthermore, the closed loop is robustly stable in the sense

of Lyapunov.

Proof: As for the feasibility of (5.8), one can easily see that 0 ≤ ℓ(x) ≤ c by the

construction in Algorithm 5.1. Therefore, due to the contractivity of X , for any

xk ∈ X there always exists u(xk) ∈ U such that:

A(k)xk +B(k)u(xk) + wk ∈ λX ⊂ X

for all wk ∈ W and for all [A(k) B(k)] ∈ Ψ. Therefore, if u∗(xk) denotes an

optimal solution to (5.8), then one has:

0 ≤ ℓ(A(k)xk +B(k)u∗(xk) + wk) ≤ ℓ(A(k)xk +B(k)u(xk) + wk) ≤ c,

∀wk ∈W, ∀ [A(k) B(k)] ∈ Ψ.

Due to this boundedness, the recursive feasibility of the linear programming prob-

lem (5.8) is ensured for a finite, large enough scalar α at each sampling time.

As for robust stability, it will be proved that for all xk ∈ X\Ω :

ℓ(A(k)xk +B(k)u∗(xk) + wk) < ℓ(xk), ∀wk ∈W, ∀ [A(k) B(k)] ∈ Ψ.

Indeed, due to the contractivity of X , for any v ∈ V(X ), there exists a control

law, denoted by u(v) ∈ U such that A(k)v + B(k)u(v) + wk ∈ λX despite any

disturbances wk ∈ W and for all [A(k) B(k)] ∈ Ψ. For each wk ∈ W and each

[A(k) B(k)] ∈ Ψ, there exists y(k, wk) ∈ X such that

A(k)v +B(k)u(v) + wk = λy(k, wk).

Due to Lemma 5.2.2, this inclusion leads to

ℓ(A(k)v +B(k)u(v) + wk) = ℓ(λy(k, wk)) ≤ λℓ(y(k, wk)). (5.9)

By the construction of ℓ(x) in Algorithm 5.1, the following is obtained:

ℓ(y(k, wk)) ≤ c. (5.10)

Also, according to Algorithm 5.1,

ℓ(v) = c. (5.11)

From (5.9), (5.10), (5.11), one can deduce that

ℓ(A(k)v +B(k)u(v) + wk) ≤ λℓ(v). (5.12)
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Note that (5.12) holds for all wk ∈ W and for all [A(k) B(k)] ∈ Ψ. Moreover, it

can be observed that:

ℓ(A(k)v +B(k)u∗(v) + wk) ≤ ℓ(A(k)v +B(k)u(v) + wk),

∀wk ∈W, ∀ [A(k) B(k)] ∈ Ψ,
(5.13)

where u∗(x) denotes optimal control to (5.8) at x as used in Algorithm 5.2.

(5.12), (5.13) lead to the following fact:

ℓ(A(k)v +B(k)u∗(v) + wk) ≤ λℓ(v), ∀wk ∈W, ∀ [A(k) B(k)] ∈ Ψ. (5.14)

Note that (5.14) holds true for all vertices of X . Now, consider a point xk ∈ Xi in

the polytopic partition {Xi}i∈IN of X over which ℓ(x) is defined. Without loss of

generality, suppose Xi 6= Ω, then xk can be described via a convex combination

of the vertices of Xi, meaning:

xk =
∑

v∈V(Xi)

α(v)v, where α(v) ∈ R+,
∑

v∈V(Xi)

α(v) = 1.

Recall that due to the definition of convex lifting, ℓ(x) overXi is an affine function,

then ℓ(xk) can be written in the following form:

ℓ(xk) =
∑

v∈V(Xi)

α(v)ℓ(v). (5.15)

If v ∈ V(Xi) is a vertex of Ω, then due to the robust positive invariance of Ω with

respect to a linear feedback u∗(x) = Kx, it satisfies

ℓ(v) = 0 = ℓ((A(k) + B(k)K)v + wk), ∀wk ∈W, ∀ [A(k) B(k)] ∈ Ψ. (5.16)

Otherwise, if v ∈ V(Xi) is a vertex of X , then it satisfies (5.14). Therefore, due

to the convexity of ℓ(x) proved in Lemma 5.2.1 and (5.14), (5.15), (5.16), the

following is obtained:

λℓ(xk) =
∑

v∈V(Xi)

α(v)(λℓ(v))

≥
∑

v∈V(Xi)

α(v)ℓ(A(k)v +B(k)u∗(v) + wk)

≥ ℓ(A(k)
∑

v∈V(Xi)

α(v)v +B(k)
∑

v∈V(Xi)

α(v)u∗(v) + wk)

= ℓ(A(k)xk +B(k)
∑

v∈V(Xi)

α(v)u∗(v) + wk).

(5.17)
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Recall that u∗(v) ∈ U, ∀v ∈ V(Xi) ∩ V(X ) and u∗(v) = Kv ∈ U, ∀v ∈ V(Xi) ∩
V(Ω), then it follows that

∑

v∈V(Xi)

α(v)u∗(v) ∈ U. (5.18)

Therefore, (5.18) leads to:

ℓ(A(k)xk +B(k)
∑

v∈V(Xi)

α(v)u∗(v) + wk) ≥ ℓ(A(k)xk +B(k)u∗(xk) + wk).

(5.19)

From (5.17) and (5.19), the following inclusion can be obtained:

λℓ(xk) ≥ ℓ(A(k)xk+B(k)u∗(xk)+wk), ∀wk ∈W, ∀ [A(k) B(k)] ∈ Ψ. (5.20)

Recall that 0 ≤ λ < 1, therefore

ℓ(xk) > ℓ(A(k)xk +B(k)u∗(xk) + wk), ∀wk ∈W, ∀ [A(k) B(k)] ∈ Ψ, (5.21)

meaning {ℓ(xk)}∞k=0 is a strictly decreasing sequence outside Ω and bounded in

the interval [0, c] . Thus, this sequence is convergent to 0. In other words, ℓ(x)
serves as a Lyapunov function according to Definition 2.4.1. �

Remark 5.2.5 Note that by the construction, the partition associated with a con-

vex lifting in Algorithm 5.1, may not be a Delaunay decomposition as in Scibilia

et al. [2009]. This method does not rely on such a decomposition, but relies on a

continuous, convex function, defined over this partition. This approach is simple

and needs only to solve a linear programming problem at each sampling instant.

However, the associated control law is not continuous at the moment the state

switches into Ω (see step 2 of Algorithm 5.2). Note also that the checking whether

the current state belongs to Ω can be relaxed. Accordingly, one can continue solv-

ing the problem (5.8) while trajectories still stay inside Ω. Indeed, if xk ∈ Ω,
then due to the construction ℓ(xk) = 0. Consider the next state, one can see that

Kxk ∈ U, then it leads to:

0 ≤ ℓ(A(k)xk +B(k)u∗(xk)+wk) ≤ ℓ(A(k)xk +B(k)Kxk +wk) = 0 = ℓ(xk).

This inclusion implies that optimal control law u∗(xk) ∈ U to problem (5.8) also

keeps the trajectories inside Ω, if xk is inside Ω.

Remark 5.2.6 An open problem is to guarantee closed-loop stability of the pro-

posed method for a domain of attraction as the N−steps robust controllable set

denoted byKN(Ω) and defined in Subsection 2.4.2. Note that in this case, proving

the strict decrease of ℓ(x) becomes more difficult. Also, this strict decrease may

not be successive.
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Figure 5.9: The maximal disturbance

invariant set Ω and the domain of attrac-

tion X = P0.9.

Figure 5.10: A convex lifting ℓ(x) con-

structed by Algorithm 5.1 with c = 2.

5.2.5 Illustrative example

For illustration, the double integrator system is considered. For simplicity,

bounded additive disturbances are only taken into account:

xk+1 =

[
1 0.5
0 1

]
xk +

[
0.125
0.5

]
uk + wk

yk =
[
1 0

]
xk,

(5.22)

subject to constraints:

−2 ≤ uk ≤ 2,

[
−20
−20

]
≤ xk ≤

[
20
20

]
, ‖wk‖∞ ≤ 0.4. (5.23)

A stabilizing control law gain K = [−0.8246 − 1.5262] is chosen to compute

the maximal robust positively (disturbance) invariant set Ω based on the algorithm

proposed in Gilbert and Tan [1991]. Also, the maximal 0.9−contractive set P0.9

is computed, based on Algorithm 2.3. These two sets are shown in Figure 5.9.

A convex lifting ℓ(x) is shown in Figure 5.10 according to Algorithm 5.1 with

c = 2. Optimal controller which solves the linear programming problem (5.8),

is presented in Figure 5.11. Accordingly, the discontinuous change of u∗(xk) at

instant 12 is due to the discontinuity of optimal control to (5.8) while switching

into Ω. The closed loop dynamics shown in Figure 5.9 illustrate the fact that this

control law ensures robust stability in the sense of Lyapunov. Finally, Figure 5.12

visualizes the strict decrease of convex lifting ℓ(x) along the state over X\Ω.
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Figure 5.11: Optimal control law solves

the linear programming problem (5.8)

with random behavior of disturbances.

Figure 5.12: Strict decrease of ℓ(x) over

X\Ω along the state.

5.3 Cascaded convex liftings based method

This section presents another method to design robust control in the presence

of bounded additive disturbances and polytopic model uncertainties. Unlike the

convex liftings based method presented in Section 5.2 which can only guarantee

closed loop stability over a λ−contractive region for 0 ≤ λ < 1, this method can

guarantee robust stability over the maximal controllable set as defined in Defini-

tion 2.4.2, known to be larger than the maximal λ−contractive set. The method-

ology still relies on a suitable control Lyapunov function. It is denoted as the

cascaded convex liftings based method in this manuscript.

Again, consider the linear system (5.4) affected by bounded additive distur-

bances and polytopic uncertainties (5.5). Also, this system is assumed to be sub-

ject to constraints (5.6). Similar to Section 5.2, let Ω denote a full-dimensional

robust positively invariant set associated with an unconstrained control law u =
Kx ∈ U and X denote a domain of attraction. This domain of attraction is cho-

sen as the N−steps controllable set i.e. X = KN(Ω). As mentioned before, a

construction of convex liftings as in Algorithm 5.1 over the domain of attrac-

tion KN(Ω) leads to difficulties ensuring strict decrease of such a convex lifting.

Therefore, another construction for a Lyapunov candidate is necessary.

It is worth emphasizing that one can build an appropriate optimization problem

by imposing:

xk ∈ Ki(Ω), A(k)xk +B(k)uk + wk ∈ Ki−1(Ω), ∀wk ∈W, [A(k) B(k)] ∈ Ψ.

Clearly, this construction can ensure that the state will be driven to Ω after N
steps. Also, such a construction can guarantee the recursive feasibility due to

the construction of KN(Ω). However, this construction has never been shown to
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be associated with a Lyapunov function. This limitation will be solved in the

proposed procedure. Furthermore, such a control Lyapunov function may be non-

convex which is a new feature to our best knowledge.

5.3.1 Cascaded convex liftings construction

This subsection aims to construct a cascade of convex liftings which serves as

a control Lyapunov function. This construction is summarized in Algorithm 5.3.

Algorithm 5.3 Construction of a cascade of convex liftings

Input: A given robust positively invariant set Ω = K0(Ω) ⊂ R
dx , the domain of

attraction X = KN(Ω) ⊂ R
dx with a given N ∈ N>0 and a scalar c > 0.

Output: A cascade of convex liftings {ℓi(x)}i∈IN .

1: For i = 1 : N

2: V1 = V(Ki−1(Ω)) ⊂ R
dx , V̂1 =

{[
v

(i− 1)c

]
| v ∈ V1

}
⊂ R

dx+1.

3: V2 = V(Ki(Ω)) ⊂ R
dx , V̂2 =

{[
v
ic

]
| v ∈ V2

}
⊂ R

dx+1.

4: Πi = conv
(
V̂1 ∪ V̂2

)
.

5: Solve the parametric linear programming problem:

z∗(x) = min
z

z s.t.
[
xT z

]T ∈ Πi. (5.24)

6: ℓi(x) = z∗(x).
7: End

Note that, unlike Algorithm 5.1, Algorithm 5.3 constructs a cascade of con-

vex liftings. Each convex lifting is defined for two successive controllable sets

(Ki−1(Ω), Ki(Ω)). This operation is carried out via steps 2–3, where the vertices

of Ki−1(Ω) are lifted to the same height e.g. (i − 1)c, whereas the vertices of

Ki(Ω) are lifted to a higher level e.g. ic. Subsequently, a convex lifting for this

pair of regions is computed via parametric linear programming at step 5. Such a

convex lifting is denoted by ℓi(x). This procedure is repeated till the last pair of

successive controllable regions (KN−1(Ω), KN(Ω)). Note also that through this

construction, the domain of a convex lifting ℓi(x) is restricted in Ki(Ω).
An important property of ℓi(x) is presented below.

Lemma 5.3.1 The convex liftings generated from Algorithm 5.3 i.e. ℓi(x) are

convex and continuous. Furthermore, for each i ∈ IN , one has ic ≥ ℓi(x) >
(i− 1)c for all x ∈ Ki(Ω)\Ki−1(Ω) and ℓi(x) = (i− 1)c for all x ∈ Ki−1(Ω).
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Proof: The proof for the first claim is directly deduced from Lemma 5.2.1.

For the second claim, consider an ℓi(x), for i ∈ IN . Also, let
{
X (i)

j

}
j∈I

N(i)

denote the polyhedral partition associated with ℓi(x). In an explicit form, ℓi(x) is

defined as follows:

ℓi(x) = (a
(i)
j )Tx+ b

(i)
j for x ∈ X (i)

j .

Clearly, there exists a j ∈ IN(i) such that X (i)
j = Ki−1(Ω), since Ki−1(Ω) corre-

sponds to a facet of Πi. It is well known that any x ∈ Ki−1(Ω) can be written as a

convex combination of the vertices of Ki−1(Ω), i.e.

x =
∑

v∈V(Ki−1(Ω))

α(v)v, α(v) ≥ 0,
∑

v∈V(Ki−1(Ω))

α(v) = 1.

This leads to the following for x ∈ Ki−1(Ω) :

ℓi(x) = (a
(i)
j )Tx+ b

(i)
j = (a

(i)
j )T

∑

v∈V(Ki−1(Ω))

α(v)v + b
(i)
j

=
∑

v∈V(Ki−1(Ω))

α(v)
(
(a

(i)
j )Tv + b

(i)
j

)

=
∑

v∈V(Ki−1(Ω))

α(v)(i− 1)c = (i− 1)c.

Also, due to the convexity of ℓi(x), for any x ∈ Ki(Ω) it can be observed that:

ℓi(x) = ℓi


 ∑

v∈V(Ki(Ω))

α(v)v




≤
∑

v∈V(Ki(Ω))

α(v)ℓi(v) =
∑

v∈V(Ki(Ω))

α(v)ic = ic.

To complete the proof, it is necessary to prove that ℓi(x) > (i − 1)c for all x ∈
Ki(Ω)\Ki−1(Ω). In fact, consider any s ∈ IN(i) , s 6= j, due to the properties of a

convex lifting defined in Definition 4.2.3:

(a(i)s )Tx+ b(i)s > (a
(i)
j )Tx+ b

(i)
j for x ∈ X (i)

s \Ki−1(Ω)

(a(i)s )Tx+ b(i)s = (a
(i)
j )Tx+ b

(i)
j for x ∈ X (i)

s ∩ Ki−1(Ω).
(5.25)

Note that ℓi(x) = (i − 1)c for all x ∈ Ki−1(Ω) and Ki−1(Ω) is full-dimensional,

lead to the fact that:

a
(i)
j = 0, b

(i)
j = (i− 1)c. (5.26)
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From (5.25) and (5.26), it follows that

ℓi(x) = (a(i)s )Tx+ b(i)s > (i− 1)c for all x ∈ X (i)
s \Ki−1(Ω). (5.27)

It is worth emphasizing that (5.27) holds true for all s ∈ IN(i) , s 6= j, meaning

ℓi(x) > (i− 1)c, for all x ∈ Ki(Ω)\Ki−1(Ω). The proof is complete. �

The following property is a direct consequence of Lemma 5.3.1

Lemma 5.3.2 For each i ∈ IN and 0 ≤ β ≤ 1, the following holds true:

ℓi(βx) ≤ βℓi(x) + (1− β)(i− 1)c, for any x ∈ Ki(Ω). (5.28)

Proof: Indeed, due to the convexity of ℓi(x) over Ki(Ω), it follows that:

ℓi(βx) = ℓi(βx+ (1− β)0) ≤ βℓi(x) + (1− β)ℓi(0). (5.29)

Note that 0 ∈ int(Ω), then 0 ∈ int(Ki(Ω)) for all i ∈ Ki(Ω). It can be deduced

that ℓi(0) = (i− 1)c. Therefore, (5.29) leads to the conclusion. �

5.3.2 Robust control design procedure

Based on the above construction, this subsection aims to present a so-called

cascaded convex liftings based method for robust control design for the linear

system (5.4). For ease of presentation, define the following augmented system:

xk+1 = A(k)xk +B(k)uk + wk

zk+1 = αkzk
(5.30)

where zk ∈ R denotes an auxiliary state variable, αk ∈ R+ denotes an auxiliary

control variable. Still, uk, xk, wk are subject to constraints (5.6) and [A(k) B(k)]
belongs to Ψ defined in (5.5).

Without loss of generality, the domain of attraction in this section is restricted

to KN(Ω). Define the following optimization problem:

[
α∗
k (u∗

k)
T
]T

= arg min
[αk uT

k ]
T
αk

s.t. ℓi(A(k)xk +B(k)uk + wk) ≤ αkzk, αk ≥ 0, uk ∈ U

∀ [A(k) B(k)] ∈ V(Ψ), ∀wk ∈ V(W).

(5.31)

First, an intermediate but important result is introduced below.

Theorem 5.3.3 Consider the system (5.30) and the optimization problem (5.31).

The followings hold true:
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1. if i = 1 and xk ∈ K1(Ω) then (5.31) is feasible for any finite zk ∈ R and

zk+1 = 0,

2. if zk ≤ 0 and xk ∈ Ki(Ω) then (5.31) is infeasible for all i ∈ IN\{1},
3. if 0 < zk ≤ (i− 1)c, i ≥ 2 and xk ∈ Ki(Ω) then α∗

k ≥ 1,

4. if zk > (i− 1)c and xk ∈ Ki(Ω) then zk+1 = (i− 1)c and α∗
k < 1.

Proof: 1. If i = 1, then for any xk ∈ K1(Ω) there exists u(xk) ∈ U such that

A(k)xk +B(k)u(xk) + wk ∈ Ω, ∀ [A(k) B(k)] ∈ Ψ, ∀wk ∈W.

Note also that

0 = ℓ1(A(k)xk +B(k)u(xk) + wk) ≥ ℓ1(A(k)xk +B(k)u∗
k + wk) ≥ 0.

Therefore, the optimization problem (5.31) is feasible only when α∗
k = 0 or zk = 0

leading to zk+1 = α∗
kzk = 0. Claim 1 is proved.

2. From the proof of Lemma 5.3.1, ℓi(x) ≥ (i− 1)c > 0 over Ki(Ω) and for all

i ∈ IN\{1}. Accordingly, if zk ≤ 0, constraint

0 < ℓi(A(k)xk +B(k)uk + wk) ≤ αkzk ≤ 0

is infeasible for all αk ≥ 0, leading to the infeasibility of (5.31). Therefore, claim

2 is proved.

4. Again, from Lemma 5.3.1, ℓi(xk) ≥ (i− 1)c for all xk ∈ Ki(Ω). As defined

before, for any xk ∈ Ki(Ω), there exists u(xk) ∈ U such that

A(k)xk +B(k)u(xk) + wk ∈ Ki−1(Ω), ∀ [A(k) B(k)] ∈ Ψ, ∀wk ∈W.

Also, it can be observed that

(i−1)c = ℓi(A(k)xk+B(k)u(xk)+wk) ≥ ℓ(A(k)xk+B(k)u∗
k+wk) ≥ (i−1)c.

Therefore, ℓ(A(k)xk +B(k)u∗
k +wk) = (i− 1)c for all [A(k) B(k)] ∈ Ψ and for

all wk ∈W. Accordingly, since (i− 1)c = α∗
kzk = zk+1, then zk > (i− 1)c leads

to α∗
k < 1. Claim 4 is completely proved.

3. Since (i − 1)c = α∗
kzk = zk+1, if 0 < zk ≤ (i − 1)c, then clearly α∗

k ≥ 1.
The proof for claim 3 is complete. �

It is worth emphasizing that the choice of a suitable initial condition for zk is

also of importance for the feasibility of the optimization problem (5.31). This

formulation will be the basis in the cascaded convex liftings based method. Apart

from the aim to design robust control for the linear system (5.4), it is also impor-

tant to show that zk will serve as a Lyapunov candidate. Accordingly, to prove
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Algorithm 5.4 Cascaded convex liftings based design procedure

Input: Convex liftings {ℓi(x)}i∈IN and an unconstrained robust control: uk =
Kxk and KN(Ω).
Output: A robust control u∗(xk) and α∗

k.

1: If k = 0 then Initialize z0 = Nc and any x0 ∈ KN(Ω).
2: If k ≤ N − 1 then Solve the following optimization problem:

[
α∗
k (u∗

k)
T
]T

= arg min
[αk uT

k ]
T
αk

s.t. ℓN−k(A(k)xk +B(k)uk + wk) ≤ αkzk, αk ≥ 0, uk ∈ U,

∀ [A(k) B(k)] ∈ V(Ψ), ∀wk ∈ V(W).

(5.32)

3: u∗(xk) = u∗
k.

4: Else u∗(xk) = Kxk.
5: End

6: k ← k + 1, Return to step 2.

strict decrease of zk is a critical step. From four different initial conditions for

zk in Theorem 5.3.3, the last inclusion turns out to fulfill this requirement. This

aspect will be clarified in the sequel.

Based on the construction of cascaded convex liftings in Algorithm 5.3 and the

above results, the design procedure is summarized in Algorithm 5.4.

The following theorem clarifies that the control law designed from Algorithm

5.4 guarantees closed-loop stability.

Theorem 5.3.4 Consider the linear system (5.4) subject to constraint (5.6) and

model uncertainties (5.5). The control law computed from Algorithm 5.4 ensures

robust stability in the sense of Lyapunov. Moreover, zk serves as a Lyapunov

function.

Proof: It is important to prove that zk+1 < zk for 0 ≤ k ≤ N − 1. Indeed, for

any x0 ∈ KN(Ω), according to claim 4 in Theorem 5.3.3:

z0 = Nc > (N − 1)c = ℓN(A(0)x0 +B(0)u∗(x0) + w0) = α∗
0z0 = z1,

∀ [A(0) B(0)] ∈ Ψ, ∀w0 ∈W.
(5.33)

Similar to this inclusion, it can also be proved that

zk = (N − k)c > (N − k − 1)c = zk+1 for all 0 ≤ k ≤ N − 1.
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Otherwise, for k ≥ N zk = 0 due to the fact that xk ∈ Ω. Therefore, zk serves as

a Lyapunov candidate, meaning closed-loop stability in the sense of Lyapunov. �

Remark 5.3.5 Note that the initial condition for z0 in Algorithm 5.4 aims to fulfill

the condition of claim 4 for all i ∈ IN . Clearly, any z0 ≥ Nc is also possible.

Figure 5.13: The maximal robust posi-

tively invariant set Ω and K10(Ω).
Figure 5.14: Cascaded convex liftings.

5.3.3 Illustrative example

To illustrate this cascaded convex liftings based method, consider again the

double integrator system (5.22) subject to constraint (5.23). Unconstrained con-

trol law is chosen as: uk = [−0.6514 − 1.3142] xk. Associated with this uncon-

strained control, the maximal robust positively invariant set Ω computed by the

algorithm proposed in Gilbert and Tan [1991] and K10(Ω) are presented in Fig-

ure 5.13. Also, the cascade of convex liftings computed by Algorithm 5.4 with

c = 1 is shown in Figure 5.14. Finally, Figure 5.15 illustrates the dynamics of

zk along the state depicted by the blue curve, proving that zk tends to 0 after 10
steps. In other words, optimal control laws designed by Algorithm 5.4 ensure

robust stability in the sense of Lyapunov.

5.4 Inverse optimality to improve robustness in con-

strained control

This section presents an idea for use of inverse optimality for control design

of constrained linear systems. Although, the control design does not provide a
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complete methodology for tuning, it points to new open problems and promising

advantages in control design.

Again the linear system (5.4) is considered. It is assumed to be affected by

model uncertainties Ψ as in (5.5) and subject to constraints (5.6).

The idea for design procedure is summarized as follows:

1. Compute a robust unconstrained control law uk = Kxk which can cope

with polytopic uncertainties (5.5) and the given bounded additive distur-

bances.

2. Choose a nominal system [A B] ∈ Ψ.

3. Use this nominal system and robust unconstrained control uk = Kxk to

compute weighting matrices Q,R for a nominal MPC.

4. Use [A B] and these matrices Q,R to solve a nominal MPC problem and

obtain explicit solution.

5. Analyze the robustness of the resulted control law.

The first step can be computed as in Subsection 2.4.1. For a given nominal

system

xk+1 = Axk +Buk,

where (A, B) ∈ Ψ is controllable and a given stabilizing control law uk = −Kxk,
an inverse optimality problem aims to find a positive semidefinite Q ≥ 0 and a

Figure 5.15: Dynamic of zk along the state.
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positive definite R > 0 such that uk = −Kxk minimizes the following quadratic

infinite criterion:

JQ,R =
∞∑

k=0

xT
kQxk + uT

kRuk. (5.34)

To solve this problem, Larin [2003] proposed a formulation by using linear matrix

inequalities, this formulation is recalled as follows:

min
λ,S,Y,R,P

λ

s.t:

P ≥ 0

ATPA− P −KTRK −KTBTPBK ≤ 0[
Y S
ST I

]
≥ 0

Y ≤ λI

S = RK +BTPBK − BTPA.

(5.35)

The matrices Q,R, P stem from the Riccati equation:

ATPA− P −KTRK −KTBTPBK +Q = 0.

In fact, the resolution of (5.35) amounts to an approximation of the solution in-

stead of the exact one. The Riccati equation is not directly solved but the error

between the left and the right hand side is minimized. The second LMI in (5.35)

relies on the assumption that Q ≥ 0. From the solution of the Riccati equation:

K = (BTPB +R)−1BTPA,

it follows that S has to be zero, so this LMI problem aims at minimizing λ in

order to ensure that S is as close as possible to zero by the relationship: λI ≥
Y ≥ SST ≥ 0.

Based on the resolution of inverse optimality, the fourth step is to use these

inclusions to design a PWA control law which can guarantee model uncertainties

and bounded additive disturbances in a subset of the state space. The usual design

procedure is recalled here with a prediction horizon N ∈ N>0 with respect to the

nominal system chosen at step 2:

min
u

J(xk,u) = min
u

N−1∑

i=0

(xT
k+i|kQxk+i|k + uT

k+i|kRuk+i|k) + xT
k+N |kPxk+N |k,
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subject to

xk+i|k ∈ X, uk+i|k ∈ U, ∀ 0 ≤ i ≤ N − 1,

xk+N |k ∈ Xf ,

where Q,R are the solution from the LMI problem (5.35), Xf denotes the terminal

constraints set to ensure stability for the nominal system and the optimization

argument is defined as follows:

u =
[
uT
k|k . . . u

T
k+N−1|k

]T
.

Accordingly, the first input u∗
k = u

∗(1 : du, ·) is applied to the system. Let upwa(x)
denote this explicit optimal controller defined over a feasible region X . It can be

observed that the control law associated with the central region i.e. the region

containing the origin, is in the form uk = −Kxk where K is the unconstrained

robust control law gain computed at step 1. Therefore, there exists a subset of this

central region over which this unconstrained control law is able to cope with the

model uncertainties Ψ and the given bounded additive disturbances. The maximal

robust positively invariant set associated with this control law is a candidate for

this subset. A computation for this invariant set has been presented in Algorithm

2.1. Further, the control law upwa(x) computed from the inverse optimality proce-

dure, possesses a robustness margin which can be readily computed as in Chapter

3. These observations are stated in the following theorem.

Theorem 5.4.1 Given system (5.4), upwa(x) is the piecewise affine regulator, ob-

tained as the solution of a nominal MPC with weighting parameters obtained via

inverse optimality, then there exists at least one realization
[
Ā B̄

]
∈ Ψ such that

the feasible set X is positively invariant and it contains a local region Xrob which

is positively invariant for all [A(k) B(k)] ∈ Ψ and all wk ∈W.

Proof:
[
Ā B̄

]
denotes the nominal system by which upwa(x) is synthesized. Ac-

cordingly, upwa(x) can stabilize this nominal system in the feasible region X . The

set of these realizations for which upwa(x) can stabilize is defined as robustness

margin and is computed in Section 3.3.

For the second claim, it is known that there always exists a robust positively in-

variant set associated with a stabilizing control law. Particularly, the unconstrained

control law is designed at step 1 to cope with the given polytopic uncertainties and

bounded additive disturbances. �

It is worth recalling that this design can only improve the robustness of a PWA

controller designed from a nominal MPC problem in a subset of central region.

This has potentials to be completed with a re-tuning of the designed control law

by adjustment of the nominal system [A B] , used in this design procedure. The
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main open problem is to find criteria for the characterization of the nominal sys-

tem at step 2 such that the robustness margin of the resulted explicit controller is

maximal. Also, as applied to many different systems, inverse optimality should

be exploited to design robust control for linear system affected by polytopic un-

certainties and bounded additive disturbances.



Chapter 6

Conclusions

This thesis has discussed certain topics related to implementation and design of

PWA control laws.

6.1 Contributions

Implementation of PWA control laws:

— The first chapter of this thesis has discussed characterization and compu-

tations of the robustness and fragility margins for a given continuous PWA

control law. Two different approaches have been presented for these com-

putations. These margins were obtained as polyhedra. With respect to

PWA controllers’ implementation, these margins provide valuable tools

for the evaluation of PWA controllers under finite precision arithmetic

while closed loop stability is still guaranteed.

— The second chapter aims at finding solution to inverse parametric lin-

ear/quadratic programming problem. This solution was presented relying

on convex liftings concept. Some advantages of this solution can be out-

lined as follows:

— Implementing online the recovered optimization problem was shown

to be useful to reduce online optimization time in comparison with the

original optimization problem. This implementation can avoid sub-

stantial memory to store state space partition and control law gains.

— The construction of a convex lifting is also of help to solve the point-

location problem without storing the state space partitions. Accord-

ingly, one can implement this convex lifting and the given PWA con-

troller. The point-location problem reduces to a simple evaluation i.e.

determine the maximal value among the affine functions composing

this convex lifting at the current state. The index of this affine func-

tion is later used to find corresponding affine controller to be evaluated.

153



Chapter 6. Conclusions 154

This allows the PWA controllers to be implemented into low-cost plat-

forms.

Linear model predictive control

— Based on the result of inverse parametric linear/quadratic programming

problem via convex liftings, a theoretical result in the case of linear model

predictive control has been proved. Accordingly, it has been shown that

any continuous PWA controller can be equivalently obtained via a linear

MPC problem with the control horizon at most equal to 2 prediction steps.

Design of robust controllers

Two methods to design robust control laws have been put forward for linear sys-

tem affected by bounded additive disturbances and polytopic model uncertainties.

— Robust control design based on convex liftings has been shown to be sim-

ple and able to design both implicit and explicit controllers. Such a convex

lifting has been shown to be a control Lyapunov function defined over the

maximal λ−contractive set for a 0 ≤ λ < 1. Also, this methods has been

shown to ensure the recursive feasibility and robust stability in the sense

of Lyapunov.

— Robust control design based on a cascade of convex liftings has been char-

acterized. This method extends the feasible region to the N−steps control-

lable set known not to be contractive. Accordingly, an auxiliary variable

has been presented to emulate a Lyapunov function. Namely, this auxiliary

is non-negative, strictly decreasing for N first sampling instants and stays

at 0 afterwards.

6.2 Future works

For future work, some directions can be outlined as follows:

Robust control based on convex liftings

Convex liftings have been shown to be control Lyapunov function defined over a

contractive set. Also, a cascade of convex liftings, but not convex, has been of use

to design robust control over the N−steps controllable set. Some open ideas can

similarly be exploited:

— Construct a convex lifting defined over the N−steps controllable set as a

control Lyapunov function. Many studies have focused on this problem by

separating the N−steps controllable set into a convexly liftable partition

and searching for a stabilizing PWA controller defined over this partition

with respect to a chosen control Lyapunov function. However, these meth-

ods cannot guarantee the feasibility since they did not exploit the property

of the N−steps controllable set. Similar to a convex lifting defined over

a contractive set, this Lyapunov candidate should ensure the feasibility of
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the method. Later, such a convex lifting should be of use to design both

implicit and explicit robust controllers.

— Based on the same methodology, such a control Lyapunov function should

be constructed over an ellipsoidal contractive region and of use to design

robust control.

— Output feedback control can also be studied based on these convex liftings

based methods.

Piecewise affine systems

Applying the above convex lifting based methods for generic piecewise affine

systems can also be exploited.

Model predictive control

Nonlinear model predictive control has reached a certain maturity in numerical

solvers. However, its geometric properties have not been studied yet at the same

level of understanding as linear MPC. In case of linear model predictive control,

it is shown that geometrical properties of linear constrains can be exploited to

find so-called explicit controllers. Another particular class of constraints should

also be exploited i.e. mixed linear and quadratic constraints. Their geometrical

properties should be applied to MPC.
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This chapter aims at presenting some extensions of the results presented in Chap-

ter 4. These are mostly extracted from Nguyen et al. [2015b,d].

7.1 Applications to parametric linear/quadratic pro-

gramming problems

The aim of this subsection is to present the main results related to paramet-

ric linear/quadratic programming problems which can be subsequently related to

control design problems. The definition of a parametric linear/quadratic program-

ming problem was introduced in Section 4.3.1.

Recall that a parametric linear programming problem can be written in the fol-

lowing form:

u∗(x) = argmin
u

CTu s.t. Gu ≤ W + Ex, (7.1)
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where u ∈ R
du , x ∈ R

dx denote the decision variable and the parameter, re-

spectively. It is shown in Gal [1995] that the optimal cost function CTu∗(x) is a

continuous, convex PWA function. We recall this result below.

Theorem 7.1.1 The optimal cost function of (7.1) i.e. CTu∗(x), is a continuous,

convex, PWA function.

Proof: The proof is based on Theorems IV-3 and IV-4 in Gal [1995]. �

Suppose optimal solution to (7.1) is denoted as follows

u∗(x) = Hix+Gi for x ∈ Xi.

It is worth emphasizing that CTu∗(x) is not a convex lifting defined over the

associated partition, in many cases. Accordingly, one cannot directly use this

optimal cost function for efficient implementation of PWA controller defined over

this partition to avoid the storage of the state space partition, as advocated in

Baotic et al. [2008]. More precisely, the key point is to write a continuous, convex,

real-valued PWA function in an equivalent form as follows:

CTu∗(x) = CT (Hix+Gi) if x ∈ Xi,

= max
j∈IN

CT (Hjx+Gj).
(7.2)

In case CTu∗(x) is a convex lifting for the cell complex {Xi}i∈IN , efficient im-

plementation of PWA controller associated with this cell complex is summarized

in Algorithm 7.1.

Otherwise, if there exist two regions (Xi,Xj), i 6= j, (i, j) ∈ I2N such that

(CTHi, C
TGi) = (CTHj, C

TGj),

(Hi, Gi) 6= (Hj, Gj),

Algorithm 7.1 Efficient implementation of PWA controllers

1: Store (Hi, Gi) and (CTHi, C
TGi)

2: At each sampling time, measure the state x
3: Find the index i ∈ IN such that:

CTHix+ CTGi = max
j∈IN

CT (Hjx+Gj).

4: Inject controller u = Hix+Gi.
5: Return to step 2.
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Algorithm 7.1 is not applicable. To illustrate the singularity of this case, consider

the following parametric linear programming problem:

min
z

z



0.3310 −0.7486
0.1286 0.6497
−0.0738 −0.5372
−0.4472 0
−0.1881 0
−0.2703 0.2899
−0.2872 0.2482
−0.1881 0
−0.0823 −0.5171
−0.2448 −0.1599




[
z
u

]
≤




−0.0152
0.0132
−0.7892

0
0.9407
0.8250
0.7993
−0.9407
−0.7973
−0.7950




x+




0.5743
0.7491
−0.2884
−0.8944
−0.2822
−0.4029
−0.4659
−0.2822
−0.3002
−0.5315




.
(7.3)

Optimal solution to the parametric linear programming problem (7.3) is presented

below:

[
z∗(x)
u∗(x)

]
=





[
−5

−2.1908

]
x+

[
1.5

−0.1039

]
for X1 = {x ∈ R | −0.3 ≤ x ≤ −0.1}

[
0

1.4692

]
x+

[
2

0.2621

]
for X2 = {x ∈ R | −0.1 ≤ x ≤ 0}

[
0

4.9723

]
x+

[
2

0.2621

]
for X3 = {x ∈ R | 0 ≤ x ≤ 0.1}

[
5

−2.6842

]
x+

[
1.5

1.0278

]
for X4 = {x ∈ R | 0.1 ≤ x ≤ 0.2}

[
5

0.7461

]
x+

[
1.5

0.3417

]
for X5 = {x ∈ R | 0.2 ≤ x ≤ 0.3} .

The optimal cost function is shown in Figure 7.1, whereas optimal solution to (7.3)

is visualized in Figure 7.2. Notice that this optimal cost function is not a convex

lifting for the associated cell complex since the same affine function z∗(x) = 2,
is defined over two neighboring regions [−0.1 0] and [0 0.1] . Note also that if

one implements Algorithm 7.1, Step 3 results in either i = 2 or i = 3, while

controllers associated with X2,X3 are different. In this case, clearly this algorithm

can return different values of controllers at the current state. Accordingly, the

given PWA controller is not properly implemented. It is worth emphasizing that

optimal solution of (7.3) is not unique.

We will prove next that if the uniqueness of the optimal solution to a parametric

linear programming problem is fulfilled, then the optimal cost function represents

a convex lifting for the associated cell complex.
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Figure 7.1: The optimal cost function

of the parametric linear programming

problem (7.3).

Figure 7.2: Optimal solution to the

parametric linear programming problem

(7.3).

Theorem 7.1.2 If the optimal solution to a parametric linear programming prob-

lem is unique, then the associated parameter space partition admits affinely equiv-

alent polyhedra.

Proof: As per Theorem 7.1.1, the optimal cost function of (7.1) is a continuous,

convex, PWA function defined over the associated partition. Thus, it suffices to

prove that such a case like (7.3) cannot happen. More precisely, we will prove that

if the optimal solution to (7.1) is unique, then the existence of two regions Xi,Xj,
i 6= j, (i, j) ∈ I2N such that

(Hi, Gi) 6= (Hj, Gj), (CTHi, C
TGi) = (CTHj, C

TGj),

is impossible.

In fact, suppose the converse situation takes place. Consider x1 ∈ int(Xi),
x2 ∈ Xj and a scalar α ∈ [0, 1] . Due to the convexity of CTu∗(x), advocated in

Theorem 7.1.1, we can see that

CTu∗(αx1 + (1− α)x2) ≤ αCT (Hix1 +Gi) + (1− α)CT (Hjx2 +Gj). (7.4)

If we choose α close to 1 such that αx1 + (1− α)x2 ∈ Xi, then

CTu∗(αx1 + (1− α)x2) = CT (Hi(αx1 + (1− α)x2) +Gi). (7.5)

Note also that according to the assumption (CTHi, C
TGi) = (CTHj, C

TGj), it

follows that:

αCT (Hix1 +Gi) + (1−α)CT (Hjx2 +Gj) = CTHi(αx1 + (1−α)x2) +CTGi.
(7.6)
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Also, since Hix1 + Gi, Hjx2 + Gj satisfy the constraint set in (7.1), so does

α(Hix1 +Gi) + (1− α)(Hjx2 +Gj). According to (7.4), (7.5), (7.6), α(Hix1 +
Gi)+ (1−α)(Hjx2 +Gj) is also an optimal solution to (7.1). Due to the unique-

ness of the optimal solution to (7.1), we obtain the following:

Hi(αx1 + (1− α)x2) +Gi = α(Hix1 +Gi) + (1− α)(Hjx2 +Gj),

leading to:

Hix2 +Gi = Hjx2 +Gj. (7.7)

It is worth emphasizing that (7.7) holds true for all x2 ∈ Xj. Since (Hi, Gi) 6=
(Hj, Gj), the set of x ∈ R

dx satisfying Hix + Gi = Hjx + Gj represents a

polyhedron of dimension lower than dx, whileXj is a full dimensional polyhedron

in R
dx . This is clearly contradictory. Therefore, the initial hypothesis is not true.

In other words, in case the optimal solution to (7.1) is unique, the optimal cost

function CTu∗(x) describes a convex lifting for the associated cell complex, thus

leading to the existence of an affinely equivalent polyhedron. �

As mentioned previously, the parameter space partition, associated with the op-

timal solution to a parametric quadratic programming problem, is not convexly

liftable in many cases. However, based on the lifting properties, a result related to

parametric linear/quadratic programming problem can be stated as follows:

Corollary 7.1.3 Any parameter space polyhedral partition associated with opti-

mal solution of a parametric linear/quadratic programming problem can be sub-

divided such that the internal boundaries of the initial partition are preserved and

the convex liftability of the new cell complex is guaranteed.

Proof: The proof is straightforward from Theorem 4.4.10. �

7.2 Inverse parametric linear programming for con-

tinuous set-valued maps

This section presents some additional results of inverse parametric linear/quadratic

programming problem for the class of continuous piecewise affine set-valued

maps. Accordingly, some auxiliary notations about set-valued analysis need to

be recalled.

Let X, Y be two metric spaces, a set-valued map is denoted by F : X ❀ Y i.e.

mapping each point of X to a subset of Y. Also, the definition of the graph of F
denoted by Graph(F ), is defined as follows:

Graph(F ) := {(x, y) ∈ X × Y | y ∈ F (x)} .
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A set-valued map F : X ❀ Y is called upper semicontinuous at x ∈ X if for any

open neighborhood U of F (x) i.e. F (x) ⊂ U , there exists an open neighborhood

M of x such that F (x′) ⊂ U for all x′ ∈ M. Moreover, F is called lower

semicontinuous if for any open set N ⊂ Y and N ∩ F (x) 6= ∅, there exists an

open neighborhoodM of x such that F (x′) ∩ N 6= ∅ for all x′ ∈ M. Finally, F
is called continuous if it is both upper semicontinuous and lower semicontinuous.

Based on these notions, a piecewise affine set-valued map is defined as follows.

Given a polyhedral partition {Xi}i∈IN of a polyhedron X ⊆ R
dx , a set-valued

map F : X ❀ Y ⊆ R
du is called piecewise affine if over each region Xi in the

given polyhedral partition, Graph(F |Xi
) is a polyhedron, where F |Xi

represents

set-valued map F restricted in Xi. Mathematically, if the graph of F over Xi is

written in the following form:

Graph(F |Xi
) := {(x, y) ∈ Xi × Y | Giy ≤ Wi + Eix} ,

then F |Xi
can be defined as follows:

F |Xi
(x) := {y ∈ Y | Giy ≤ Wi + Eix} , for x ∈ Xi.

If F is a continuous PWA set valued map, then for any pair of neighboring regions

(Xi,Xj) :
F |Xi

(x) = F |Xj
(x) for x ∈ Xi ∩ Xj.

Recall that we aim to find an optimization problem such that the given PWA set-

valued map is a subset of the set of optimal solutions to this recovered optimization

problem. In case of continuous PWA set-valued maps, it is possible to prove that

the set of optimal solution to the recovered optimization problem coincides with

the given continuous PWA set-valued map. Similar to the recovery of a PWA

function, it is assumed that the given partition {Xi}i∈IN is convexly liftable. For

ease of presentation, let ℓ(x) : X → R denote a convex lifting for the given

partition i.e.

ℓ(x) = aTi x+ bi for x ∈ Xi. (7.8)

Define the following set:

V =
⋃

i∈IN

V(Graph(F |Xi
)), R =

⋃

i∈IN

R(Graph(F |Xi
)),

V[xT uT z]T =

{[
v

z(v)

] ∣∣∣∣
v ∈ V,

z(v) =
[
aTi 0Tdu

]
v + bi if v ∈ V(Graph(F |Xi

))

}

R[xT uT z]T =

{[
r

ℓ̂(r)

] ∣∣∣∣
r ∈ R,

ℓ̂(r) =
[
aTi 0Tdu

]
r if r ∈ R(Graph(F |Xi

))

}

Π = conv(V[xT uT z]T )⊕ cone(R[xT uT z]T ).

(7.9)
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Then, a solution to inverse optimality problem for the class of continuous PWA

set-valued maps can be stated in the following theorem.

Theorem 7.2.1 Given a convexly liftable partition {Xi}i∈IN of a polyhedronX ⊆
R

dx over which a continuous PWA set-valued map Fpwa : X → Y ⊆ R
du is

defined, Fpwa is the image via the orthogonal projection onto R
du of a subset of

the optimal solutions to the following optimization problem:

min
[uT z]T

z such that
[
xT uT z

]T ∈ Π, (7.10)

where Π is computed from (7.9).

Proof: The proof is similar to the one of Theorem 4.5.17. �

Note that it is also possible to prove that the given continuous PWA set-valued

map coincides with the image via the orthogonal projection onto R
du of the set

of optimal solutions to the above recovered optimization problem. This proof

needs further developments and does not enter in the mainline of this thesis. For

simplicity, we only state a weaker version of this result.

7.3 Recognition of AW Voronoi diagrams and AW

Delaunay decompositions

As presented in Subsection 4.4.1, a polyhedral partition admits a convex lifting,

should be an additively weighted Voronoi diagram or an additively weighted De-

launay decomposition. Motivated from these necessary and sufficient conditions,

it is important to recognize them. More specially, identifying suitable sites and

associated weights will also be of interest in specific applications.

7.3.1 Additively weighted Voronoi diagrams

The present subsection aims to recall the definition of an additively weighted

(AW) Voronoi diagram. Let ρ(s, x) denote the Euclidean distance between two

points x, s ∈ R
d, then the additively weighted distance between x and s with

respect to a weight w ∈ R of the point s can be described by: ρ2(s, x) − w.

Moreover, given a set of N points denoted by S = {s1, . . . , sN} ⊂ R
d, a point x

belongs to the Voronoi domain of the site si ∈ S with the weight wi if and only if:

ρ2(si, x)− wi ≤ ρ2(sj, x)− wj, ∀j ∈ IN .
An example is illustrated in Figure 7.3 wherein the sites have been coordinated

respectively at C1 = [−1; 2], C2 = [2; 1], C3 = [−2; 1], C4 = [−2;−1], C5 =
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Figure 7.3: An additively weighted Voronoi diagram.

[−1; 1] and their weights are w1 = 0.5, w2 = 0.75, w3 = 1.5, w4 = 0.25, w5 = 2,
respectively. Note also that the hyperplane separating two neighboring regions is

orthogonal to the line connecting their associated sites as seen in this example.

We use (C, r) to denote a circle centered at C with the radius r. Consider a point

x0 ∈ P4, then the distance from x0 to the intersection of (C4,
√
w4) and a line

through x0 tangent to (C4,
√
w4) is smaller than the one from x0 to the intersection

of (C3,
√
w3) and a line through x0 tangent to (C3,

√
w3).

As an inverse problem, given a polyhedral partition {Xi}i∈IN of a polyhedron

X ⊂ R
d, the question is whether or not this partition is an additively weighted

Voronoi diagram. Suppose it is, then each region Xi in this partition has to be a

Voronoi domain of a site denoted by si with respect to an additive weight wi. This

constraint can be mathematically described as follows:

ρ2(si, x)− wi ≤ ρ2(sj, x)− wj, ∀x ∈ Xi and ∀j ∈ IN . (7.11)

Further, there exist N sites si associated with N weights wi such that constraint

(7.11) holds true ∀i ∈ IN . Therefore, the goal is to find such si and wi for every

i ∈ IN . The weights wi are not necessarily positive, they can admit negative

values. If these weights are identical, then this partition is called Voronoi diagram.

Moreover, these sites si do not necessarily lie in the interior of their corresponding

Voronoi domains. Still, the notion of additively weighted Voronoi diagram is a
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Si

Sj

Sk

Xi

Xj

Xk

H0

Fi

Fij

xo

Figure 7.4: An illustration of a polyhedral partition not satisfying the facet-to-

facet property.

simple generalization of power diagram studied in Aurenhammer [1987c]. In

fact, power diagram requires that the weights wi have to be strictly positive, it can

trivially be seen that if a strictly negative, small enough constant, denoted by c, is

added to two sides of (7.11), such that c−wi and c−wj are strictly negative, then

the condition for a partition to be a power diagram is also fulfilled (see details in

Aurenhammer [1987c, 1991]).

7.3.2 Recognition of AW Voronoi diagrams

Based on the properties of an additively weighted (AW) Voronoi diagram, this

subsection aims to present an algorithm to verify whether the given partition of a

polyhedron is an additively weighted Voronoi diagram. It can be observed that a

polyhedral partition of a polyhedron, not satisfying the properties of a cell com-

plex, is not an additively weighted Voronoi diagram. This observation is stated

via the following proposition.

Proposition 7.3.1 If a polyhedral partition of a polyhedron does not satisfy the

properties of a cell complex, then it is not an additively weighted Voronoi diagram.

Proof: Suppose a given polyhedral partition {Xi}i∈IN of a polyhedron X , does

not satisfy the facet-to-facet property, but is an additively weighted Voronoi dia-

gram. Then, there exists at least a pair of neighboring regions denoted by Xi,Xj

such that their intersection is a strict subset of one of their facets (an illustra-

tion can be found in Figure 7.4). Without loss of generality, we suppose that
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Fij = Xi ∩ Xj ⊂ Fi ∈ F(Xi). Xi and Xj are two Voronoi domains with two

sites si, sj and weights wi, wj , then inclusion (7.11) holds. Note also that the

hyperplane denoted byH0 containing Fij can be described by:

2(sTi − sTj )x = sTi si − sTj sj + wj − wi. (7.12)

Similarly, there exists another Voronoi domain neighbor to Xi denoted by Xk with

a site sk and a weight wk such that: Fik = Xi ∩ Xk ⊂ Fi, then the hyperplane

separating these two Voronoi domains can be described by:

2(sTi − sTk )x = sTi si − sTk sk + wk − wi. (7.13)

Clearly, the hyperplanes described by (7.12) and (7.13) are identical due to the

fact that both of them contain Fi. It can be seen that every x ∈ H0 satisfies:

ρ2(x, sj)− wj = ρ2(x, si)− wi,

ρ2(x, si)− wi = ρ2(x, sk)− wk.
(7.14)

Now, consider a point xo ∈ Fik ⊂ H0 but xo /∈ Xj , then from (7.14) one can

obtain:

ρ2(xo, sj)− wj = ρ2(xo, sk)− wk. (7.15)

Note however that xo ∈ Xk but xo /∈ Xj , therefore

ρ2(xo, sk)− wk < ρ2(xo, sj)− wj. (7.16)

(7.15) and (7.16) are evidently contradictory. �

To recognize an additively weighted Voronoi diagram, an algorithm is required.

This algorithm is based on the properties of an additively weighted Voronoi di-

agram shown in the preceding subsection and is presented in the sequel. It is

shown in Aurenhammer [1987c] that given a set of finitely discrete points with

their associated weights, there exists a unique decomposition which satisfies the

properties of an additively weighted Voronoi diagram. Conversely, given an ad-

ditively weighted Voronoi diagram, there may exist different sets of discrete sites

with different sets of additive weights satisfying property (7.11). An algorithm for

this recognition is presented in Algorithm 7.2.

As discussed before, an additively weighted Voronoi diagram does not need

positive weights. However, to avoid the complication in implementing the cost

function (7.19), the constraints wi ≥ 0, ∀i ∈ IN can be added, then the cost

function f =
∑

i∈IN
wi replaces (7.19). Note that Algorithm 7.2 restricts to poly-

topic partitions. For polyhedral partitions, it is shown in Subsection 4.4.2.2 how

to find a polytopic partition such that their convex liftability is equivalent.
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Algorithm 7.2 Recognition of weighted Voronoi diagram

Input: A polytopic partition {Xi}i∈IN of a polytope X ⊂ R
d.

Output: Is {Xi}i∈IN an additively weighted Voronoi diagram? If yes, what are

appropriate sites si and weights wi?

1: Register all pairs of neighboring regions of {Xi}i∈IN .

2: For each pair of neighboring regions (Xi,Xj) with (i, j) ∈ I2N :

— Add for every v ∈ V(Xi ∩ Xj):

2(sTj − sTi )v = sTj sj − sTi si + wi − wj. (7.17)

— Add for every u ∈ V(Xi) and u /∈ V(Xi ∩ Xj):

2(sTj − sTi )u < sTj sj − sTi si + wi − wj. (7.18)

3: Choose a cost function:

f =
∑

i∈IN

|wi|. (7.19)

4: Solve the minimization problem of cost function (7.19) subject to constraints

(7.17) and (7.18).

5: If this problem is feasible, then {Xi}i∈IN is an additively weighted Voronoi

diagram. Otherwise, it is not.

Practically, the strict inequality (7.18) can be transformed into inequality con-

straint to adapt to an optimization problem by adding a softening constant a > 0
on the left-hand side. Then, (7.18) can be relaxed as follows:

2(sTj − sTi )u+ a ≤ sTj sj − sTi si + wi − wj. (7.20)

This constant needs to be small enough to ensure that the constraints are not strin-

gent. A value close to the numerical tolerant error may be appropriate. Step 5 of

this algorithm can be explained via the following theorem.

Theorem 7.3.2 A given cell complex {Xi}i∈IN of a polytope X ⊂ R
d is an addi-

tively weighted Voronoi diagram if and only if the optimization problem minimiz-

ing the cost function (7.19) subject to constraints (7.17), (7.18) is feasible.

Proof: =⇒ If {Xi}i∈IN is an additively weighted Voronoi diagram, then con-

straints (7.17) and (7.18) are clearly fulfilled. Therefore, the minimization prob-

lem with the cost function (7.19) subject to (7.17), (7.18) is feasible.

⇐= Conversely, if this minimization problem is feasible, we need to prove that

{Xi}i∈IN is an additively weighted Voronoi diagram. In fact, consider a region Xi
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Xi = Xkt

Xkt−1

Xk = Xk1

Xk2

Hkt

Hkt−1

Hk1

Hk2

x

Figure 7.5: An illustration for the proof of Theorem 7.3.2.

and its neighboring regions Xi1 , . . . ,Xini
where ij ∈ IN and j ∈ Ini

, it is clear

that for any pair (Xi,Xij):

ρ2(x, si)− wi ≤ ρ2(x, sij)− wij , ∀x ∈ Xi, ∀j ∈ Ini
, (7.21)

and the hyperplane which separates the halfspace containing Xi and the one con-

taining Xij , has the description:

Hij :=
{
x | 2(sTi − sTij)x = sTi si − sTijsij + wij − wi

}
.

We show now that ρ2(x, si) − wi ≤ ρ2(x, sk) − wk, ∀k ∈ IN , ∀x ∈ Xi. Con-

sider a region Xk with the site sk and a weight wk, for any point x ∈ Xi there

exists a number of regions Xk1 , . . . ,Xkt such that Xk1 = Xk,Xkt = Xi and

Xkj ,Xkj+1
, ∀j = 1...t− 1 are neighbors such that the hyperplane separating them

separates the whole space into two halfspaces: the first halfspace containing Xkj ,

the other containing Xkj+1
and x (an illustration is presented in Figure 7.5). Then

it is clear that:

ρ2(x, skj)− wkj ≥ ρ2(x, skj+1
)− wkj+1

, (7.22)

and this inclusion holds true for all j = 1...t − 1. Therefore, ρ2(x, sk1) − wk1 ≥
ρ2(x, skt)−wkt , in other words, ρ2(x, sk)−wk ≥ ρ2(x, si)−wi. This completes

the proof. �



7.3. Recognition of AW Voronoi diagrams and AW Delaunay decompositions 169

Figure 7.6: Result of Algorithm 7.2 for the partition in Figure 7.3.

To illustrate Algorithm 7.2, consider again the example in Figure 7.3. Algo-

rithm 7.2 returns the following results:

s =

[
−1.5667 2.9833 −3.0833 −3.0833 −1.5667
3.0083 1.4917 −1.5417 1.4917 1.4917

]
,

w =
[
0 0 1.7442 0 0

]
.

This result is also presented in Figure 7.6.

7.3.3 Additively weighted Delaunay decompositions

Additively weighted (AW) Delaunay decomposition, considered as a general-

ization of Delaunay triangulation, is in fact the dual partition of an additively

weighted Voronoi diagram (see Rybnikov [1999]). A vertex of an additively

weighted Delaunay decomposition is a weighted point with an additive weight.

Let S ⊂ R
d be a set of discrete points and w(·) : S → R be a real-valued function

associated with the points in S, then a polytope P is called a Delaunay cell if:

— V(P ) ⊂ S,

— there exists a point denoted by c(P ) ∈ R
d and r(P ) ∈ R such that

ρ2(v, c(P ))− w(v) = r(P ), ∀v ∈ V(P )

— ∀s ∈ S, s /∈ V(P ), ρ2(s, c(P ))− w(s) > r(P ).
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Figure 7.7: An additively weighted Delaunay decomposition.

An illustrative example can be found in Figure 7.7 where the given points

and their weights in Figure 7.3 are reconsidered. The sites corresponding to

the Delaunay cells P1, P2, P3, P4 have the coordinates O1 = [−1.75, 2.25],
O2 = [0.7083, 2.25], O3 = [0.7083,−1.5417], O4 = [−1.75,−0.3125] and their

associated radii R1 = 0.125, R2 = 2.4809, R3 = 7.3785, R4 = 0.2852. Note also

that the circles in this figure are centered at O1, O2, O3, O4 with the radii equal

to the root of R1, R2, R3, R4. It can be observed that the distance between point

[−2, 1] and a point, at which circle (O1, R
0.5
1 ) and a tangent line through [−2, 1]

to this circle intersect, is the root of the weight of point [−2, 1], according to the

Pythagorean theorem. The same argument holds true for points [−1, 1], [−1, 2].
Conversely, given a polytopic partition {Xi}i∈IN of a polyhedron X ⊂ R

d,

a question needs to be answered whether or not this partition is an additively

weighted Delaunay decomposition. If yes, there exist a set of N discrete sites

denoted as C ⊂ R
d, a set of corresponding radii R ⊂ R, and a real-valued function

w :
⋃

i∈IN
V(Xi) → R such that for each region Xi with its corresponding site

ci ∈ C and a radius ri ∈ R:

— ρ2(v, ci)− w(v) = ri, ∀v ∈ V(Xi),
— ρ2(u, ci)− w(u) > ri, ∀u ∈

⋃
i∈IN
V(Xi), u /∈ V(Xi).

Therefore, this question is equivalent to whether there exist such sites ci with

radii ri and a function w(·) satisfying the above conditions. This question will be

clarified in the next subsection.
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7.3.4 Recognition of AW Delaunay decompositions

This subsection’s goal is to present an algorithm to answer the certification

problem of whether or not a given partition represents an additively weighted

(AW) Delaunay decomposition.

We will answer this certification problem via the feasibility of an optimization

problem. This optimization problem will be explicitly constructed and solved via

bi-linear programming. Notice that if a given polytopic partition of a polytope

fulfills the properties of an additively weighted Delaunay decomposition, then it

has to be a cell complex. This comment is formally stated and proved via the

following proposition.

Proposition 7.3.3 Any polytopic partition of a polytope not satisfying the prop-

erties of a cell complex is not an additively weighted Delaunay decomposition.

Proof: Given a polypotic partition {Xi}i∈IN in R
d, suppose this partition is not a

cell complex but is an additively weighted Delaunay decomposition. From this as-

sumption, there exists at least a pair of neighboring regions denoted Xi,Xj whose

facet-to-facet property does not hold. Denote also Fij = Xi ∩ Xj , Fi ∈ F(Xi),
Fj ∈ F(Xj) such that Fij ⊂ Fi or Fij ⊂ Fj , the sites of these two regions

are denoted by ci, cj , with the corresponding radii ri, rj , respectively. Due to the

properties of an additively weighted Delaunay decomposition, one has:

ρ2(v, ci)− w(v) = ri, ∀v ∈ V(Xi)

ρ2(v, cj)− w(v) > rj, ∀v ∈
⋃

t∈IN

V(Xt), v /∈ V(Xj).
(7.23)

Similarly,

ρ2(v, cj)− w(v) = rj, ∀v ∈ V(Xj),

ρ2(v, ci)− w(v) > ri, ∀v ∈
⋃

t∈IN

V(Xt), v /∈ V(Xi).
(7.24)

From (7.23) and (7.24), if V(Xi) ∩ V(Xj) = ∅ then the hyperplane:

H0 =
{
x | 2(cTj − cTi )x = cTj cj − cTi ci + ri − rj

}
(7.25)

strictly separates Xi and Xj , it is contradictory to the fact that Xi and Xj are

neighbors. Therefore, there exists at least a common vertex v ∈ V(Xi) ∩ V(Xj).
It can be observed that Fi, Fj, Fij ⊂ H0.

Now, consider a vertex u ∈ V(Fij), such that either u ∈ V(Xi), u /∈ V(Xj),
or u ∈ V(Xj), u /∈ V(Xi). Without loss of generality, suppose the former case

happens, then the following holds true:

ρ2(u, ci)− ri = w(u) < ρ2(u, cj)− rj. (7.26)
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Algorithm 7.3 Recognition of weighted Delaunay diagram

Input: A polytopic partition {Xi}i∈IN of a polytope in R
d.

Output: Is {Xi}i∈IN an additively weighted Delaunay decomposition? If yes,

what are appropriate sites ci, radii ri and weights w(·)?
1: For each region Xi, add equality constraints:

ρ2(v, ci)− w(v) = ri, ∀v ∈ V(Xi). (7.28)

2: Register all pairs of neighboring regions of {Xi}i∈IN .

3: For each pair of neighboring regions (Xi,Xj) with (i, j) ∈ I2N , add:

ρ2(v, ci)− w(v) > ri, ∀v ∈ V(Xj), v /∈ V(Xi) (7.29)

4: Choose a cost function e.g.

f =
∑

v∈
⋃

i∈IN
V(Xi)

|w(v)| (7.30)

5: Solve the problem minimizing the cost function (7.30) subject to constraints

(7.28) and (7.29).

6: If this problem is feasible, then {Xi}i∈IN is an additively weighted Delaunay

decomposition. Otherwise, it is not.

Nevertheless, Fij ⊂ H0 implies u ∈ H0, it leads to:

ρ2(u, ci)− ri = ρ2(u, cj)− rj. (7.27)

It is clear that (7.26) and (7.27) are contradictory. This completes the proof. �

To recognize an additively weighted Delaunay decomposition, an algorithm

needs to be presented for practical purposes. Notice that if the given cell complex

is an additively weighted Delaunay decomposition, then there may exist different

real-valued functions w(·) associated with the vertices of this cell complex, sites

ci and different radii ri, i ∈ IN corresponding to each Delaunay cell such that

the properties of an additively weighted Delaunay decomposition are fulfilled.

However, showing the existence of a function w(·), a set of sites ci and a set of

radii ri, i ∈ IN is enough for a conclusion. Moreover, function w(·) and radii

ri are not necessarily positive, they can get values in the real field. Algorithm

7.3 answers the certification question by providing, if there exists, such a feasible

function w(·), such a set of points ci and such a set of radii ri.
It is remarked that w(·) does not necessarily take non-negative values over

the set of vertices of {Xi}i∈IN , however to simplify the cost function, one can

add the constraints w(x) ≥ 0, ∀x ∈ ⋃i∈IN
V(Xi). Thereby, the cost function
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f =
∑

x∈
⋃

i∈IN
V(Xi)

w(x), is equivalent to (7.30). Moreover, constraints (7.29)

represent strict inequalities which can cause numerical errors for optimization

solvers, therefore, a strictly positive constant denoted by a needs to be added on

the right-hand side of (7.29) in order to adapt to an optimization problem subject

to constraints, then constraints (7.29) are equivalent to ρ2(x, ci)−w(x) ≥ ri + a.

Note however that this constant a needs to be chosen small enough such that the

set of constraints is not over-stringent. A tolerant error may be preferable in this

case.

The following theorem can serve as a clarification of Algorithm 7.3.

Theorem 7.3.4 A given polytopic partition {Xi}i∈IN of a polytope in R
d is an

additively weighted Delaunay decomposition if and only if the optimization prob-

lem minimizing the cost function (7.30) subject to constraints (7.28) and (7.29) is

feasible.

Proof: =⇒ If the given polytopic partition is an additively weighted Delaunay

decomposition, then it is clear that there exist a set of sites ci ∈ R
d, a set of radii

ri ∈ R, i ∈ IN and a real-valued function w(·) :
⋃

i∈IN
V(Xi) → R satisfying

constraints (7.28) and (7.29). Therefore, the problem minimizing (7.30) subject

to constraints (7.28) and (7.29) is feasible.

⇐= Conversely, if the problem minimizing (7.30) subject to constraints (7.28) and

(7.29) is feasible. Thus, constraints (7.28) and (7.29) hold true. We need to prove

that any v ∈ ⋃t∈IN
V(Xt), v /∈ V(Xi), fulfills: ρ2(v, ci) − w(v) > ri. Suppose

v ∈ V(Xk), i 6= k ∈ IN .
Similar to the proof of Theorem 7.3.2, from (7.28), (7.29), there exists a number

of regions Xi1 , . . . ,Xini
of X such that:

— Xi1 = Xi, Xini
= Xk,

— (Xij ,Xij+1
), j ∈ Ini−1 are neighbors,

— the separating hyperplane Hj of (Xij ,Xij+1
), splits the whole space into

two halfspaces: the first one containsXij , the second one contains v,Xij+1
.

— v /∈ Hj for at least a j ∈ Ini
.

Note thatHj can be described as follows:

Hj = {x | 2(cTij+1
− cTij)x = cTij+1

cij+1
− cTijcij + rij − rij+1

}.

As a consequence, the halfspace containing v can be described by:

H+
j = {x | 2(cTij+1

− cTij)x ≥ cTij+1
cij+1

− cTijcij + rij − rij+1
}.

v ∈ H+
j , satisfies:

2(cTij+1
− cTij)v ≥ cTij+1

cij+1
− cTijcij + rij − rij+1

.
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It leads to: ρ2(v, cij)− rij ≥ ρ2(v, cij+1
)− rij+1

.
Due to v /∈ Hj for at least a j ∈ Ini

, and the above inclusion holding for every

j ∈ Ini
, we can conclude that ρ2(v, ci)− ri > ρ2(v, ck)− rk = w(v). �

To illustrate Algorithm 7.3, consider again the partition in Figure 7.7. Algo-

rithm 7.3 returns the set of vertices and their associated weights as follows:

V =

[
−2 −2 −1 −1 2
1 −1 2 1 1

]
, w =

[
0 0 0 0 0

]
.

Also, the sites ci and their corresponding radii are presented below:

c =

[
−1.5 0.5 0.5 −1.5
1.5 1.5 −1 0

]
, r =

[
0.5 2.5 6.25 1.25

]
.

These results are also presented in Figure 7.8. The red circles are (c1,
√
r1),

(c2,
√
r2), (c3,

√
r3), (c4,

√
r4).

Note that the numerical examples in this section are carried out in the envi-

ronment of YALMIP and MPT 3.0 Herceg et al. [2013], Lofberg [2004]. Also,

FMINCON is of use for the numerical examples.

Note also that the optimization problems in Algorithms 7.2, 7.3 are subject to

bi-linear constraints. These constraints may also be non-convex. Therefore, they

are quite computationally demanding. If the goal is only to determine whether or

not a given partition is convexly liftable, one should use Algorithm 4.1.

Figure 7.8: Result of Algorithm 7.3 for the partition in Figure 7.7.
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Title : Explicit robust constrained control for linear systems : analysis, implementation and design 

based on optimization 
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Abstract : Piecewise affine (PWA) feedback 

control laws have received significant attention 

due to their relevance for the control of 

constrained systems, hybrid systems; equally 

for the approximation of nonlinear control. 

However, they are associated with serious 

implementation issues. Motivated from the 

interest in this class of particular controllers, 

this thesis is mostly related to their analysis and 

design. 

 

The first part of this thesis aims to compute the 

robustness and fragility margins for a given 

PWA control law and a linear discrete-time 

system. More precisely, the robustness margin 

is defined as the set of linear time-varying 

systems such that the given PWA control law 

keeps the trajectories inside a given feasible 

set. On a different perspective, the fragility 

margin contains all the admissible variations of 

the control law coefficients such that the 

positive invariance of the given feasible set is 

still guaranteed. It will be shown that if the 

given feasible set is a polytope, then so are 

these robustness/fragility margins. 

 

The second part of this thesis focuses on 

inverse optimality problem for the class of 

PWA controllers. Namely, the goal is to 

construct an optimization problem whose 

optimal solution is equivalent to the given 

PWA function. The methodology is based on  

convex lifting: an auxiliary   dimensional 

variable which enhances the convexity 

characterization into recovered optimization 

problem. Accordingly, if the given PWA 

function is continuous, the optimal solution to 

this reconstructed optimization problem will be  

shown to be unique. Otherwise, if the 

continuity of this given PWA function is not 

fulfilled, this function will be shown to be one 

optimal solution to the recovered problem. 

 

In view of applications in linear model 

predictive control (MPC), it will be shown that 

any continuous PWA control law can be 

obtained by a linear MPC problem with the 

prediction horizon at most equal to 2 

prediction steps. Aside from the theoretical 

meaning, this result can also be of help to 

facilitate implementation of PWA control laws 

by avoiding storing state space partition.   

 

Another utility of convex liftings will be shown 

in the last part of this thesis to be a control 

Lyapunov function. Accordingly, this convex 

lifting will be deployed in the so-called robust 

control design based on convex liftings for 

linear system affected by bounded additive 

disturbances and polytopic uncertainties. Both 

implicit and explicit controllers can be 

obtained. This method can also guarantee the 

recursive feasibility and robust stability. 

However, this control Lyapunov function is 

only defined over the maximal λ contractive 

set for a given       which is known to be 

smaller than the maximal controllable set. 

Therefore, an extension of the above method to 

the   steps controllable set will be presented. 

This method is based on a cascade of convex 

liftings where an auxiliary variable will be used 

to emulate a Lyapunov function. Namely, this 

variable will be shown to be non-negative, to 

strictly decrease for   first steps and to stay at   afterwards. Accordingly, robust stability is 

sought. 
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Titre : Commande robuste, explicite pour des systèmes linéaires: analyse, implémentation et synthèse 

fondée sur l'optimalité.  

Mots clés : optimalité inverse, fonctions affines par morceaux, marges de robustesse/ fragilité 

Résumé : Les lois de commande affines par 

morceaux ont attiré une grande attention de la 

communauté d'automatique de contrôle grâce à 

leur pertinence pour des systèmes contraints, 

systèmes hybrides  également pour 

l'approximation de commandes non-linéaires. 

Pourtant, leur mise en œuvre est soumise à 

quelques difficultés. Motivé par l'intérêt à cette 

classe de commandes, cette thèse porte sur leur 

analyse, mise en œuvre et synthèse. 
 La première partie de cette thèse a pour but le 

calcul de la marge de robustesse et de la marge 

de fragilité pour une loi de commande affine par 

morceaux donnée et un système linéaire discret. 

Plus précisément, la marge de robustesse est 

définie comme l'ensemble des systèmes 

linéaires à paramètres variants que la loi de 

commande donnée garde les trajectoires dans de 

la région faisable. D'ailleurs, la marge de 

fragilité comprend toutes les variations des 

coefficients de la commande donnée telle que 

l'invariance de la région faisable soit encore 

guarantie. Il est montré que si la région faisable 

donnée est un polytope, ces marges sont aussi 

des polytopes.  

La deuxième partie de ce manuscript est 

consacrée au problème de l'optimalité inverse 

pour la classe des fonctions affines par 

morceaux. C'est-à-dire, l'objective est de définir 

un problème d'optimisation pour lequel la 

solution optimale est équivalente à la fonction 

affine par morceaux donnée. La méthodologie 

est fondée sur le convex lifting, i.e., un variable 

auxiliaire, scalaire, qui permet de définir un 

ensemble convex à partir de la partition d'état de 

la fonction affine par morceaux donnée. Il est 

montré que si la fonction affine par morceaux 

donnée est continue, la solution optimale de ce  

problème redéfini sera unique. Par contre, si la 

continuité n'est pas satisfaite, cette fonction 

affine par morceaux sera une solution optimale 

parmi les autres du problème redéfini. En ce qui 

concerne l'applications dans la commande 

prédictive, il sera montré que n'importe quelle 

loi de commande affine par morceaux continue 

peut être obtenue par un autre problème de 

commande prédictive avec l'horizon de 

prédiction au plus égal à  . A côté de cet aspect 

théorique, ce résultat sera utile pour faciliter la 

mise en oeuvre des lois de commandes affines 

par morceaux en évitant l'enregistrement de la 

partition de l'espace d'état.  

Dans la dernière partie de ce rapport, une 

famille de convex liftings servira comme des 

sfonctions de Lyapunov. En conséquence, ce 

"convex lifting" sera déployé pour synthétiser 

des lois de commande robustes pour des 

systèmes linéaires incertains, également en 

présence de perturbations additives bornées. 

Des lois implicites et explicites seront obtenues 

en même temps. Cette méthode permet de 

guarantir la faisabilité récursive et la stabilité 

robuste. Cependant, cette fonction de Lyapunov 

est limitée à l'ensemble   contractive maximal 

avec une constante scalaire            qui est 

plus petit que l'ensemble controllable maximal. 

Pour cette raison, une extension de cette 

méthode pour l'ensemble controllable de    

pas, sera présentée. Cette méthode est fondée 

sur des convex liftings en cascade où une 

variable auxiliaire sera utilisée pour servir 

comme une fonction de Lyapunov. Plus 

précisément, cette variable est non-négative, 

strictement décroissante pour les   premiers pas 

et égale toujours à    après. Par conséquent, la 

stabilité robuste est guarantie. 
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