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Abstract

With the development of online communications in the past decades, new privacy con-
cerns have emerged. A lot of research effort have been focusing on concealing rela-
tionships in Internet communications. However, most works do not prevent particular
network actors from learning the original sender or the intended receiver of a communi-
cation. While this level of privacy is satisfactory for the common citizen, it is insufficient
in contexts where individuals can be convicted for the mere sending of documents to
a third party. This is the case for so-called whistle-blowers, who take personal risks to
alert the public of anti-democratic or illegal actions performed by large organisations.

In this thesis, we consider a stronger notion of anonymity for peer-to-peer commu-
nications on the Internet, and aim at concealing the very fact that users take part in
communications. To this end, we deviate from the traditional client-server architec-
ture endorsed by most existing anonymous networks, in favor of a homogeneous, fully
distributed architecture in which every user also acts as a relay server, allowing it to
conceal its own traffic in the traffic it relays for others. In this setting, we design an
Internet overlay inspired from previous works, that also proposes new privacy-enhancing
mechanisms, such as the use of relationship pseudonyms for managing identities. We
formally prove with state-of-the-art cryptographic proof frameworks that this protocol
achieves our privacy goals. Furthermore, a practical study of the protocol shows that it
introduces high latency in the delivery of messages, but ensures a high anonymity level
even for networks of small size.

Keywords: Privacy, Anonymity, Network, Internet, Communications, Peer-to-Peer, Ho-
mogeneous, Cryptography, Provable Security, Homomorphic Encryption
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Résumé

L’avènement de l’ère digitale a changé la façon dont les individus communiquent à travers
le monde, et a amené de nouvelles problématiques en terme de vie privée. La notion
d’anonymat la plus répandue pour les communications sur Internet consiste à empêcher
tout acteur du réseau de connaître à la fois l’expéditeur d’un message et son destinataire.
Bien que ce niveau de protection soit adéquat pour l’utilisateur d’Internet moyen, il est
insuffisant lorsqu’un individu peut être condamné pour le simple envoi de documents à
une tierce partie. C’est le cas en particulier des lanceurs d’alerte, prenant des risques
personnels pour informer le public de pratiques illégales ou antidémocratiques menées
par de grandes organisations.

Dans cette thèse, nous envisageons un niveau d’anonymat plus fort, où l’objectif est de
dissimuler le fait même qu’un utilisateur envoie ou reçoive des données. Pour cela, nous
délaissons l’architecture client-serveur couramment utilisée dans les réseaux anonymes,
en faveur d’une architecture entièrement distribuée et homogène, où chaque utilisateur
remplit également le rôle de serveur relais, lui permettant de dissimuler son propre
trafic dans celui qu’il relaie pour les autres. Dans cette optique, nous proposons un
nouveau protocole pour les communications de pair à pair sur Internet. À l’aide de
récents outils de preuves cryptographiques, nous prouvons que ce protocole réalise les
propriétés d’anonymat désirées. De plus, nous montrons par une étude pratique que,
bien que le protocole induise une grande latence dans les communications, il assure un
fort anonymat, même pour des réseaux de petite taille.

Mots-clés: Vie privée, anonymat, réseaux, internet, communications, pair à pair, ho-
mogène, cryptographie, sécurité prouvable, chiffrement homomorphe
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Synopsis en Français

Ce synopsis est fourni en conformité avec la loi relative à l’emploi de la langue française
de 19941. Il reprend la structure de la thèse, et résume les chapitres un à un.

Introduction

L’avènement de l’ère digitale et d’Internet a profondément changé la façon dont les in-
dividus communiquent à travers le monde, et amené de nouvelles problématiques de vie
privée. Les sociétés se sont adaptées, et le parlement européen, dans ses directives de
1995 et 2002, a notamment reconnu la nécessité de la confidentialité et de l’anonymat
des communications. Les organisation et acteurs agissant en faveur du respect de la vie
privée mettent en avant la nécessité de cet anonymat pour la liberté d’expression, et, plus
généralement, pour le bon fonctionnement d’une démocratie. Cependant, si l’anonymat
est important pour le citoyen, c’est une nécessité pour certains individus. Dans cette
thèse, nous considérons un scénario où un informateur prend des risques personnels pour
communiquer à un journaliste des information révélant des actions illégales ou discrimi-
natoires menées par des instances gouvernementales ou de grandes organisations. Dans
ce cas, la protection de l’anonymat de l’informateur est cruciale. Le but de cette thèse
est de proposer un protocole permettant de protéger l’anonymat des communications
par Internet.

1 Contexte et Modèles

Contrairement à l’architecture client-serveur couramment utilisée dans le domaine des
réseaux anonymes sur Internet, nous nous proposons de construire un protocole sur un
réseau homogène. Alors que, dans l’architecture client-serveur, les individus utilisateurs
du réseau dépendent de serveurs relais fournissant l’anonymat en tant que service, dans
l’architecture homogène, les nœuds ne sont pas hiérarchisés. En effet, tous les nœuds du
réseau participent en tant qu’utilisateur (envoyant et reçevant des messages), et en tant
que relais. D’autre part, nous supposons que les connexions entre nœuds forment un
graphe de topologie connexe mais incomplet. C’est à dire que chaque nœud est connecté
à un petit nombre de voisins avec qui il peut échanger des messages directement. Pour
permettre à un nœud d’envoyer un message à un nœud non voisin, le protocole doit donc
organiser le relai du message dans ce graphe incomplet.

En terme de vie privée, le protocole vise à préserver la vie privée de ses utilisateurs,
même en présence de collusions de nœuds corrompus et d’un observateur global du réseau

1Translation: this synopsis is provided in a accordance to the French law on written academic produc-
tions of 1994.
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(capable de voir tous les messages transitant entre les nœuds du réseau). Cependant
l’adversaire est considéré passif. C’est à dire que les nœuds corrompus ne dévient pas
du protocole, mais essaient uniquement d’en apprendre le plus possible sur le réseau et
les autres nœuds en participant au relai des messages.

Le protocole vise à réaliser l’anonymat de l’envoyeur, l’anonymat du receveur, et à
résister aux attaques basées sur l’analyse de trafic. En vue de l’adversaire considéré, nous
définissons l’anonymat de l’envoyeur comme l’impossibilité même de détecter le fait qu’un
nœud envoie un message dans le cadre d’une communication. De même, l’anonymat
du receveur est défini comme l’impossibilité de détecter le fait qu’un nœud reçoive un
message. Ces propriétés sont donc plus fortes que la plupart des travaux existants, qui
ne visent qu’à cacher qui communique avec qui, mais considèrent acceptable de laisser
certains acteurs du réseau apprendre l’identité de l’envoyeur ou du receveur d’un message
(tant que les deux ne sont pas connues simultanément).

2 Outils cryptographiques

Ce chapitre est l’occasion de présenter les outils cryptographiques utilisés dans la thèse.
Premièrement, nous faisons usage du chiffrement, dans ses deux principales variantes :
le chiffrement à clé publique, et le chiffrement à clé secrète. Un chiffrement d’un message
m avec la clé publique pk est noté, Chiff(pk,m), alors que le chiffrement avec une clé
secrète k est noté {m}k. Nous faisons aussi usage de fonctions de hachage (le récent
standard de NIST nommé SHA-3, en l’occurrence), et du protocole d’échange de clé de
Diffie-Hellman.

Cependant, la particularité du protocole réside dans l’utilisation du chiffrement homo-
morphe et du re-chiffrement. Plus exactement, nous utilisons le schéma de chiffrement
homomorphe de Elgamal, qui permet notamment, à partir de deux chiffrés c1 = Chiff(pk,
m1) et c2 = Chiff(pk,m2), de calculer le chiffré c = Chiff(pk,m1 ·m2) du produit m1 ·m2.
Cette propriété permet en effet d’effectuer des calculs sur des données chiffrées. D’autre
part, le schéma de Elgamal supporte l’opération de re-chiffrement, qui permet de modi-
fier l’apparence d’un chiffré. Plus exactement cette opération prend en entrée un chiffré
c = Chiff(pk,m) et produit un chiffré c′ = Chiff(pk,m) méconnaissable de c, tout en
assurant la confidentialité du message m durant le processus. Cela permet en particulier
de modifier l’apparence d’un chiffré au cours de son relai à travers le réseau, de manière
à ce qu’il soit impossible de suivre sa progression (du moins, pas trivialement).

3 État de l’art

Avant de présenter notre protocole, nous passons en revue les travaux existants dans le
domaine des communications anonymes sur Internet. Dans la littérature, les protocoles
anonymes sont souvent répartis selon la latence qu’ils introduisent dans les communi-
cations (comparé à un simple paquet IP directement communiqué par l’envoyeur au
receveur). Nous rajoutons une troisième catégorie, identifiée aux protocoles homogènes,
i.e. ceux supposant une architecture homogène.
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Les protocoles à faible latence sont les plus efficaces et les plus populaires. Le pro-
tocole Tor, utilisé aujourd’hui par plus de deux millions d’individus, appartient à cette
catégorie. Cependant, ce sont aussi les protocoles les moins robustes aux attaques contre
l’anonymat. En effet, l’approche des protocoles à faibles latence consiste à intégrer tout
mécanisme protégeant l’anonymat des communicants tant que ceux-ci ne dégradent que
peu les performances du réseau. En conséquence, un protocole à faible latence ne se pro-
tège pas (ou très peu) contre les attaques basées sur l’analyse de trafic. Au minimum, un
protocole à faible latence se contente de modifier l’apparence des messages entre chaque
nœud relais pour empêcher leur traçage (en utilisant le re-chiffrement, ou, plus souvent,
le chiffrement en structure d’oignon). Mais, dans Tor en particulier, si le premier et le
dernier serveur relais sont corrompus, il est possible de complètement casser l’anonymat
(i.e. il est possible de savoir qui communique avec qui).

En comparaison, les protocoles à forte latence intègrent nativement une protection
contre l’analyse de trafic, mais sont moins efficaces. En effet, ces protocoles sont fait
pour des applications non interactives, comme l’échange d’emails, mais ne supportent
pas la consultation de sites web ou le transport d’une session ssh par exemple. Une des
principales approches pour résister à l’analyse de trafic est de fonctionner en intervalles
de temps discrets (appelées tours) : chaque nœud relais accumule les messages qu’il
reçoit pendant un tour, et les envoie tous d’un seul tenant et dans un ordre aléatoire
à la fin du tour vers le prochain nœud relais. Ce mécanisme est nommé mixage des
messages. Combiné avec la modification de l’apparence des messages à chaque nœud
relais, ce mécanisme rend le traçage des messages beaucoup plus difficile. Cependant, si
implémentés dans une architecture client-serveur, ces protocoles révèlent tout de même
l’identité des envoyeurs et des receveurs. C’est à dire que, comme dans les protocoles
à faible latence, seules les relations de communications sont dissimulées. D’autre part,
il existe une attaque spécifique aux protocoles employant le mixage de messages, per-
mettant dans certains contextes de retrouver exactement quel envoyeur communique
avec quel receveur. Il suffit pour cela d’observer, sur plusieurs tours, quels envoyeurs et
receveurs participent à chaque tour de mixage.

En vue de ces résultats et des objectifs en terme d’anonymat que nous avons posés,
nous nous tournons donc vers l’architecture homogène, dans laquelle l’observation des
envoyeurs et receveurs peut être empêchée, et où l’attaque mentionnée précédemment
ne peut être menée. La littérature sur les réseaux anonymes ne comporte que peu
d’exemples de protocoles homogènes. Le plus emblématique est le protocole Tarzan,
reposant sur un modèle de réseau similaire au nôtre : une architecture homogène et
un graphe de topologie incomplet. Les auteurs du protocole remarquent que, contre
un observateur global du réseau, une architecture homogène ne suffit pas en elle même
à empêcher la détection des envoyeurs et receveurs. Ils proposent, en complément, un
mécanisme basé sur l’utilisation de faux messages et la limitation du trafic des nœuds.
Ainsi, Tarzan fait un pas vers la réalisation de l’anonymat des envoyeurs tel que nous le
définissons. Cependant, c’est un protocole à faible latence, donc susceptible à l’analyse
de trafic, et qui ne protège pas les receveurs.
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4 Le protocole anonyme

Dans ce chapitre présentant la principale contribution de cette thèse, nous construisons
un protocole dans la continuation de l’état de l’art. Inspiré de Tarzan, il intègre égale-
ment des mécanismes adaptés des protocoles à forte latence afin d’empêcher l’analyse de
trafic. Plus précisément, nous menons une analyse poussée permettant d’implémenter
les mécanismes de faux messages et de limitation de trafic de Tarzan de manière plus
robuste. Puis, nous les intégrons avec l’idée de mixage des messages. Pour modifier
l’apparence des messages, nous mettons en avant une utilisation du re-chiffrement avec
le schéma de Elgamal. Le résultat est un protocole à forte latence et homogène, dans
lequel l’anonymat ne provient pas d’une entité centrale ou de serveurs de relais, mais de
la volonté des nœuds à s’entraider. En effet, par construction, plus un nœud fournit de
trafic à ses voisins pour camoufler leurs propres communications, plus ceux-ci peuvent
l’aider en retour.

Enfin, notre protocole s’adresse à des usagers nécessitant de fortes garanties d’anonymat,
et prêts à payer le prix de cet anonymat. Aussi, il ne permet pas d’accéder à des sites
web, mais supporte uniquement des communications entre pairs prenant activement part
au réseau. Cette application contraste avec les protocoles anonymes déployés et utilisés
activement aujourd’hui, qui visent à fournir un anonymat minimal pour tout usager
d’Internet, et qui sont principalement utilisés pour consulter des sites web externes au
réseau anonyme.

En plus de ces éléments, le protocole propose également un nouveau moyen de gérer
les identités des nœuds dans le réseau, en utilisant des pseudonymes de relation. C’est à
dire que chaque nœud a autant d’identités qu’il y a d’autres nœuds dans le réseau : un
nœud donné est désigné sous un pseudonyme différent par chaque autre nœud dans le
réseau. Le pseudonyme utilisé par le nœud X pour désigner le nœud Y est noté PSX→Y .
L’utilisation de ce type de pseudonymes a plusieurs avantages : ceux-ci permettent à un
receveur de rester anonyme même vis-à-vis de l’envoyeur (réalisant ainsi un équivalent
des services cachés de Tor), et réduisent l’impact d’une potentielle dé-anonymisation.
En effet, si un certain nœud corrompu X parvient à trouver l’identité de l’utilisateur
du réseau qui se cache derrière un pseudonyme PSX→Y , il ne peut pas diffuser cette
information à d’autres parties. Plus exactement, l’information « PSX→Y désigne en
fait Y » n’est d’aucune utilité pour les autres nœuds du réseau : les pseudonymes sont
construits pour être cryptographiquement sûrs, de sorte que les pseudonymes PSX→Y

et PSX′→Y utilisés par deux nœuds X et X ′ distincts pour désigner Y ne sont pas
chaînables entre eux.

L’utilisation de ces pseudonymes a un impact sur la construction du protocole. Pre-
mièrement, cela nécessite de recourir à une phase de découverte du réseau. C’est à
dire que, avant de communiquer, les nœuds doivent échanger des informations, afin
d’apprendre la topologie du réseau et les pseudonymes des nœuds qui le constituent.
Cette approche contraste avec la plupart des protocoles existants (dont Tor) : alors
que ceux-ci construisent des routes éphémères en partant de l’envoyeur, nous constru-
isons des routes durables en partant des receveurs. Cette approche permet d’obtenir des
routes partagées par plusieurs envoyeurs (chose impossible avec des routes éphémères).
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En outre, elle a l’avantage de ne pas nécessiter de serveur central qui, traditionnellement,
donne aux nœuds les informations à propos du réseau. Cette phase de découverte du
réseau est construite à partir de propositions de route, unité d’échange qui permet à un
nœud d’annoncer à ses nœuds voisins qu’il est capable de relayer les messages de ces
derniers vers un receveur. Ledit receveur est désigné par des pseudonymes pour rester
anonyme, et, plus généralement, les propositions de route sont construites de sorte à
donner le minimum d’information sur les routes (puisque ces informations permettraient
par la suite de monter des attaques contre l’anonymat). Cela est réalisé par l’utilisation
du chiffrement homomorphe, permettant de manipuler les informations sur les routes à
l’intérieur de chiffrés.

Une seconde conséquence découlant de l’utilisation de pseudonymes est la nécessité
d’introduire un mécanisme d’initialisation de communication. C’est à dire que, pour
permettre à un informateur de trouver un journaliste spécifique dans le réseau, il faut lui
permettre de traduire l’identité d’un individu en un pseudonyme valide dans le réseau,
afin ensuite de trouver une route vers ledit individu. La difficulté est cependant de
réaliser cette fonctionnalité sans briser ni les propriétés des pseudonymes, ni les propriétés
d’anonymat. La solution proposée consiste à utiliser un nœud intermédiaire, qui aidera
l’informateur à trouver le journaliste souhaité dans le réseau. Dans cette opération,
le nœud intermédiaire n’apprend pas l’identité du journaliste, tandis que l’informateur
n’apprend pas le pseudonyme du journaliste (et ainsi, ne brise pas l’anonymat fournit
par les pseudonymes).

5 Preuves de sécurité et de vie privée

Après avoir présenté notre protocole, nous l’étudions sous l’angle de la sécurité prouvable,
et prouvons formellement ses propriétés de vie privée et de sécurité. Dans un premier
temps, nous étudions les propriétés cryptographique des pseudonymes, montrant ainsi
qu’ils remplissent leur rôles et dissimulent l’identité des nœuds qu’ils désignent. Ensuite,
nous étudions le protocole dans son entièreté. Pour cela, nous utilisons deux frameworks
complémentaires : le framework de composition universelle (UC) et le framework AnoA.
Le premier permet de faire apparaître les propriétés de base du protocole et le transforme
en un objet plus facilement manipulable dans les preuves cryptographiques. Dans une
seconde phase, il est ainsi plus aisé de prouver e.g. l’anonymat des envoyeurs en util-
isant AnoA. Cette approche de preuve en deux étapes est courante dans les preuves de
protocoles anonymes. Ces derniers étant des objets complexes (en comparaison de petits
protocoles cryptographique), ce découpage permet de simplifier les preuves formelles.

Cependant, dans notre protocole, tout n’est pas prouvable par les outils que fournit
la cryptographie aujourd’hui. En premier lieu, aucune méthode connue ne permet de
prouver formellement la résistance à l’analyse de trafic. Ainsi, les mécanismes empêchant
l’analyse de trafic, tels que l’utilisation de faux messages et le mixage de messages, ne peu-
vent être inclus dans les preuves. Pour contourner cette difficulté, qui empêcherait toute
tentative de preuve, nous supposons qu’un observateur du réseau ne peut pas effectuer
d’analyse de trafic, mais que, si des nœuds corrompus sont présents dans le réseau, ceux-
ci en sont capables. A partir de cette hypothèse, l’approche pour les preuves d’anonymat
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de l’envoyeur et du receveur est d’abord de quantifier la probabilité que, sur une route,
il y ait au moins un nœud corrompu. Dans l’éventualité où aucun nœud corrompu ne
se trouve sur la route, l’anonymat peut être prouvé parfait. Dans le cas échéant, une
analyse est nécessaire pour quantifier la probabilité que ces nœuds corrompus retrouvent
l’envoyeur et/ou le receveur. Cependant, la complexité du protocole rend difficile une
analyse en profondeur avec les outils de preuve disponibles aujourd’hui. Nous choisis-
sons donc l’approche conservatrice, standard dans le domaine de la sécurité prouvable,
et supposons que la présence d’un ou plusieurs nœuds corrompus sur la route implique
un anonymat nul (i.e. que les nœuds corrompus trouvent systématiquement l’envoyeur
et le receveur avec probabilité 1).

Le résultat de ce chapitre est donc une sous approximation de l’anonymat réellement
fourni par le protocole. En effet, les preuves ne montrent pas que si un nœud corrompu
se trouve sur une route, l’anonymat des communicants utilisant cette route est immédi-
atement cassé. Au contraire, plusieurs éléments semblent indiquer que ce n’est pas le
cas, du moins en général (voir notamment le prochain chapitre). Cependant, prouver
ce fait semble demander des hypothèses fortes sur le réseau, et nécessite de modéliser la
forme du trafic (tâche pour laquelle aucune fondation théorique n’existe actuellement).
Les preuves proposées représentent cependant un premier pas vers une analyse formelle
complète du protocole.

6 Implémentation : performances et vie privée en pratique

Le chapitre précédent étudie le protocole sur le plan théorique. Celui-ci l’étudie sur
le plan pratique. Nous présentons une implémentation préliminaire du protocole, en
utilisant un simulateur à évènement discret. A savoir, l’implémentation est réalisée
en Python avec la librairie SimPy. L’idée est d’obtenir un code permettant de mener
des simulations du protocole, afin de mesurer ses performances, l’impact de ses divers
paramètres, et le niveau d’anonymat fourni en pratique.

Les résultats en terme de performances montrent des délais dans les communications
semblables à d’autres protocoles à forte latence proposés par le passé. La communication
d’un message d’un envoyeur (informateur) à un receveur (journaliste) prend en moyenne
15 minutes2. La découverte du réseau, elle, prend jusqu’à 24 heures. Cependant, cette
étape préliminaire n’est effectuée qu’une unique fois en début de vie du réseau. Des
mesures complémentaires montrent que ces latences dans les communications et la dé-
couverte du réseau s’expliquent principalement par les mécanismes mis en place pour se
prémunir contre l’analyse de trafic : le mixage et le fonctionnement en tours, ainsi que
les faux messages et la limitation du trafic des nœuds.

Pour mesurer l’anonymat, nous proposons une méthodologie adaptée de métriques
préexistantes, notamment en comblant leurs lacunes connues. L’idée est de mesurer, en
pratique, la probabilité qu’une collusion de nœuds corrompus sur une route devine cor-
rectement l’identité de l’envoyeur et/ou du receveur. Les résultats montrent que, même
avec 60% de nœuds corrompus dans le réseau, la probabilité pour les nœuds corrompus

2Coût amorti pour un message au sein d’une session de 40 messages.
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de deviner correctement l’identité de l’envoyeur ou celle du receveur est inférieure à 0.2.
Ces résultats sont valables pour un réseau de petite taille (100 nœuds), et l’anonymat aug-
mente avec le nombre de nœuds présents dans le réseau (à ratio de corruption constant).
En comparaison, une récente étude du protocole Tor montre que cette probabilité de
dé-anonymisation est atteinte pour seulement 0.33% de nœuds corrompus. Ces résultats
empiriques sont beaucoup plus optimistes que les résultats théoriques issus du précédent
chapitre, qui ne donnent qu’une sous approximation de l’anonymat effectif, et laissent
espérer qu’une future analyse formelle approfondie donnera des résultats satisfaisant.

Conclusion

Au cours de cette thèse, nous avons proposé un nouveau protocole préservant l’anonymat
des communications sur Internet, et avons validé ce travail à travers une approche
formelle ainsi qu’une étude pratique de ses propriétés. Ce protocole fournit un anony-
mat plus fort que la plupart des travaux passés, et montre des performances acceptables.
Dans de futurs travaux, plusieurs axes d’amélioration sont envisageables. En particulier,
il est nécessaire de considérer la sécurité contre des nœuds non plus passifs mais actifs
(i.e. des nœuds pleinement malveillants), et il est possible d’augmenter encore le niveau
de vie privée, en tentant de cacher le fait même qu’un nœud prenne part au réseau
anonyme.

Ce travail s’inscrit dans les débats actuels, ayant cours notamment depuis les révéla-
tions d’Edward Snowden en 2013. En vue du risque encouru par les lanceurs d’alerte
apparus dans les médias ces dernières années, notre protocole est une solution perme-
ttant de garantir que la communication de documents et d’informations sensibles par
ceux-ci ne seront même pas détectés. De plus, notre protocole est tout à fait adapté
à ce genre de scénario, et à une organisation basée sur une communauté d’activistes
défendant la vie privée. En effet, il suppose des utilisateurs prêts à dédier des ressources
non négligeables pour assister des informateurs, et fournit de l’anonymat même pour de
petits réseaux. Aussi, notre protocole est principalement fait pour des communications
entre pairs prenant activement part au réseau anonyme, contrairement aux protocoles
utilisés activement aujourd’hui, qui visent plutôt à fournir un anonymat minimal pour
tout usager d’Internet.
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Introduction

General Context

The advent of the digital age and of the Internet in the late twentieth-century has brought
new technologies that have deeply moved the way individuals communicate across the
world. These technical improvements have had great societal, political, and economical
consequences. In particular, in the last decades, privacy in online communications has
been rising as a major concern. Individuals now store and communicate over the Internet
massive amounts of personal information every day, that is processed by both public
and private actors. Societies have to adapt to these evolutions, and in particular ensure
the protection of personal data from theft, misuse, or disclosure. In this regards, the
European Union legal framework (Directives 1995/45/EC [Eur95], 2002/58/EC [Eur02],
soon to be replaced by 2016/679 [Eur16]) recognises that the protection of personal data
is a fundamental right, and declares that:

“Member States shall ensure the confidentiality of communications and the
related traffic data [...]. In particular, they shall prohibit listening, tapping,
storage or other kinds of interception or surveillance of communications and
the related traffic data by persons other than users, without the consent of
the users concerned.” (Directive 2002/58/EC, Article 5(1))

Not only the contents of communications (the data itself), but also the so-called meta-
data of these communications, are considered as personal data. Indeed, the identity of
communicants (i.e. individuals who take part in a communication) is an information
that can be as sensitive as the data they exchange. For instance, the fact that a web
user connects to the AA.com website is a sensitive information, that this user may not
want to see disclosed.

However, in recent years, many countries have been promulgating laws that go against
these principles. To take the case of France, new laws were voted in 2015 to extend the
surveillance capabilities of the police and intelligence agencies [Fre15]. More recently,
the United Kingdom passed the Investigatory Powers Bill, granting intelligence agen-
cies unprecedented capacities for mass surveillance, in particular on mobile communi-
cations [Uni16]. The situation in the United States is similar, as revealed in 2013 by
Edward Snowden. This former NSA contractor disclosed, with the help of the journal-
ists Glenn Greenwald and Laura Poitras, the mass surveillance programs carried out
by the NSA in the United States of America and around the world [Gre14]. In the
wake of this latter event (in particular), public debates have divided privacy advocates
and governments officials. While the former reject the mass surveillance of individuals
(preferring legitimate targeted surveillance), state bodies put forward the need for a
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trade-off between state security and individual privacy, especially in light of the context
of a looming terrorist threat. Yet, we advocate that privacy in communications is a
necessity, even for the citizen with “nothing to hide” [Sol07]. Indeed, mass surveillance
has the pervasive effect of modifying individuals’ behavior, or at the very least to hover
in their mind as they take actions in the virtual world. Ultimately, it can be argued
that mass surveillance endangers freedom of speech, critical thinking, and the formation
of different opinions, which are all fundamental concepts for democracy [Sol07; Gre14;
Rog15].

Motivating Use-Case

If privacy is indeed necessary for common citizens, it is utterly critical for individuals or
organisations residing in authoritarian regimes, or non-authoritarian ones that e.g. carry
out operations putting democracy at risk. In this thesis, we consider a scenario in which
an individual, hereby called an informant, deliberately breaks the law of the country
she inhabits, in order to divulge illegal or immoral practices (or, at least, immoral in
her opinion) carried out by her government or state officials. For that, we consider that
this informant is willing to communicate a set of resources to a journalist (or a human
rights organisation, or any party that can safely reach a greater public). This scenario
is of course inspired from the case of Edward Snowden, but also reflects the story of
other whistle-blowers such as Antoine Deltour in the so-called LuxLeaks case [Glo16],
or Chelsea Manning, who revealed torture practices of the US army in Iraq [Sle13].
Although, in all these examples, the general public deemed the actions of the whistle-
blowers as legitimate and contributing to the public good, they were prosecuted, and
convicted more often than not. In this thesis, we thus aim at protecting individuals in
constraining contexts.

Previous Works

In this context, we believe that technology can empower individuals and provide the
necessary privacy protections. Anonymity and privacy in Internet communications is
the subject of a large body of literature [Fre17]. Depending on the exact definition of
anonymity that is considered, the privacy guarantees differ from protocol to protocol.
Furthermore, there are several ways to achieve the same functionality. However, a com-
mon point to most works in anonymous networking is the base idea originally formulated
by Chaum in 1981 [Cha81]: to introduce indirections between the two communicating
users. That is, instead of Alice directly sending its messages to Bob, an anonymous
network relays Alice’s messages over several hops before delivering them to Bob.

This base idea, implemented in its most simple form, only conceals the identity of the
initiator of the communication (Alice, in the example) to the receiver at the other end
(Bob). However, many other stronger notions of anonymity were proposed over the years.
In particular, the now well-known Tor network [DMS04], currently serving over two mil-
lion users, conceals communication relationships (i.e. who communicates with whom),
even to network observers and relay nodes in the anonymous network. Tor belongs to
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the category of low latency protocols, which aim at minimizing the overhead introduced
by the indirections, so as to yield a network supporting interactive and latency-sensitive
applications such as web browsing. However, low latency protocols are, by construction,
susceptible to de-anonymisation of communicants through traffic analysis. In contrast,
high latency protocols, such as mixnets [DP04], are less efficient, but more robust to
de-anonymisation. Basically, to thwart traffic analysis attacks, mixnets tamper with the
flow of messages, by delaying them and/or changing the order in which they are deliv-
ered. However, both the Tor and mixnet approaches fail to ensure a level of anonymity
sufficient for the use-case considered in this thesis. Indeed, they are both based on a
client-server architecture, where the network users are merely clients using the anony-
mous network (composed of relay servers) as a service. As a consequence, the first relay
server automatically learns the identity of the initiator of any given communication, and
the last one learns the identity of the corresponding receiver. Said otherwise, these types
of networks only ensure that no single entity can know the initiator and receiver at the
same time, but do not prevent them from learning one of the two.

Although the level of anonymity provided by a client-server architecture may be suf-
ficient in many cases, the fact that the communicants’ identities can be uncovered is an
issue in our informant-journalist scenario. Actually, in this scenario, the very fact that
the informant is communicating should be concealed. To achieve this stronger version of
anonymity, a few works propose to depart from the client-server architecture, preferring
to endorse what we hereby denote as a homogeneous architecture, in which each node
is a client and a server at the same time [FM02]. That is, every node is a user of the
network, but also relays messages for other nodes. With additional mechanisms (or by
introducing some assumptions), in a homogeneous architecture, it is possible to prevent
the very detection of message sending (and receiving as well). Indeed, since every node
relays messages for other nodes, even the first relay after the initiator of a communication
can not deduce with certainty whether the latter is the actual sender of the messages,
or a simple relay.

However, in practice, existing protocols endorsing a homogeneous architecture present
other weaknesses, and do not provide the level of anonymity we aim for. In particular,
most of them are low latency ones, and thus fail to provide anonymity against traffic
analysis attacks.

Approach and Contributions

The work presented in this thesis is in continuation of previous works on homogeneous
networks. Our goal is to design a fully distributed Internet overlay, that ultimately
ensures anonymity of communicants and prevents the detection of the very fact that a
node communicates. Furthermore, these properties should hold even in the presence of
a global network observer, in the presence of (collusions of) corrupted nodes, and resist
to traffic analysis attacks. This level of anonymity is stronger than in past works aiming
at ensuring anonymity over the Internet.

To achieve these goals, we start from Tarzan, a homogeneous protocol proposed by
Freedman and Morris [FM02]. As the authors note, to prevent the detection of commu-
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nicating nodes against a global network observer, such an architecture is not sufficient.
Tarzan thus additionally proposes mechanisms based on the limitation of traffic rates,
and the sending of dummy messages (i.e. fake messages that do not actually contain any
data). We propose a stronger version of these mechanisms to achieve our desired level
of anonymity. The result is an anonymous network in which privacy does not stem from
central entities (or relay servers), but from the willingness of nodes to help each other
in staying anonymous. By design, the more a node helps its neighbors with cover traffic,
the more those can help it in return.

The protocol we propose introduces several other new mechanisms and defenses. First,
we adapt some techniques proper to mixnets into a homogeneous architecture, so as to
prevent the possibility of traffic analysis. Secondly, we propose and study the use of re-
lationship pseudonyms [PK01] in anonymous networking. That is, any given node in the
network is known by each other node under a different pseudonym. These pseudonyms
are designed to be cryptographically secure, implying that they conceal the identity of the
node they designate. One advantage of these relationship pseudonyms is that they ensure
a clear separation of knowledge between nodes. This can be seen as a measure of dam-
age control: if a malicious network actor de-anonymises a given node, the pseudonym’s
properties prevent her from sharing her knowledge with other malicious actors. Using re-
lationship pseudonyms for anonymous networking represents a drastic change in identity
management compared to previous work, and raises new challenges. One consequence is
that, contrarily to the more traditional construction of network routes on-the-fly (when
a new communication is initiated), the proposed protocol requires a phase of network
discovery, and builds long-lived routes. A third notable characteristic of the protocol
is its heavy use of homomorphic encryption, a cryptographic primitive that allows to
make computations on encrypted data. With this tool, we implement the computation
of information about the routes (and the computation of the pseudonyms) in a way that
limits the leaking of information about the nodes composing these routes.

Finally, we conduct a thorough formal study of the designed protocol, under the
angle of provable security. That is, based on the cryptographic properties of the various
primitives that we use, we prove that our protocol achieves the desired privacy properties.
Note that producing these cryptographic proofs is a contribution in itself, since the
formal study of fully-fledged anonymous protocols remains quite challenging with the
currently available tools. Finally, we implement a proof-of-concept version of the protocol,
and study its performances and practical anonymity. Results show that the protocol
introduces high latency, comparably to mixnets, but ensures strong anonymity even
for small networks (i.e. with a few hundred nodes). All these elements show that the
proposed protocol fits into our informant-journalist scenario.

Organisation of the Thesis

This thesis is made of six chapters. In Chapter 1, we present the context of the thesis. In
particular, we define terms pertaining to anonymous communications networks. Then,
we present the system and adversary models considered in this thesis, before detailing
and discussing the privacy properties we aim to ensure. Chapter 2 is an informal introduc-
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tion to existing cryptographic primitives that are used as building blocks in anonymous
networking, and in our protocol in particular. To review the existing works in private
communications, Chapter 3 expands on the elements presented in this introduction, and
distinguishes protocols according to the latency (high or low) they introduce, and to the
architecture (client-server or homogeneous) they assume. This chapter also proposes a
review of known attacks against privacy in anonymous networks, along with existing
counter-measures. Chapter 4 represent the core of this thesis, where we detail our new
protocol for strongly private communications over the Internet, and explain the role of
each component of the protocol. The two subsequent chapters study and analyse this
protocol. In Chapter 5, we prove that the protocol achieves the properties laid out in
Chapter 1. Finally, Chapter 6 presents a proof-of-concept implementation of the proto-
col, along with the results of network simulations aimed at studying its efficiency and
practical privacy. In the conclusion, we present a summary of our contributions in the
field of anonymous communications, and propose leads for further improvements. We
also summarise the new perspectives for anonymous communications that our work puts
in light, and the lessons learned.
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This chapter presents the general context of the thesis. First, the relevant techni-
cal terms and concepts are defined. With this terminology, the system and adversary
models are laid out. Finally, the privacy properties to be ensured in the anonymous
communication protocol are presented along with other side goals.

1.1. Terminology

A communication protocol involves an heterogeneous collection of nodes that are willing
to communicate to each other. Some nodes may be clients, others may be servers,
some may be both at the same time. An anonymous communication protocol enables
communication between client nodes while ensuring some form of anonymity or privacy
to its users. The nodes taking part in anonymous communication protocol collectively
form an anonymous network.

Definition 1 (Anonymous Network). An anonymous network is a collection of nodes
running specific software in order to participate in an anonymous communication proto-
col.

Definition 2 (User). A user of an anonymous network is an entity (e.g. an individual,
group of individuals, or organisation) seeking to obtain anonymity or privacy from the
network.

Definition 3 (Client). A client in an anonymous network is a node run by a user.

Definition 4 (Server). A server in an anonymous network is a node enabling or aiding
clients in obtaining anonymity or privacy.

Any anonymous network assumes a topology graph, where nodes are vertices and edges
represent a direct communication link between two nodes. In this thesis, direct communi-
cation links are assumed bidirectional (i.e. the graph is undirected). This topology graph
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may be complete or partial, but is always connected. The direct communication links
between nodes are usually realised through an underlying, non-anonymous, pre-existing
network enabled by standard protocols such as TCP/IP or Ethernet. This latter network
is denoted the underlay.

Definition 5 (Underlay, Overlay). The underlay is the network on which the anony-
mous network is based, functioning with a standard communication protocol of its own.
Conversely, the anonymous network is sometimes denoted as a network overlay (e.g. an
Internet overlay).

The nodes directly accessible from a given node in the anonymous network’s topology
graph are its neighbors.

Definition 6 (Neighbors). The neighbors of a given node are the nodes with which it
has a direct communication link. That is, the nodes with which it shares an edge in the
topology graph.

Generally speaking, the goal of an anonymous network is to allow users to commu-
nicate anonymously, i.e. to conceal which sender sends messages to which receiver. To
do so, a typical technique, first presented in the seminal work of Chaum [Cha81], is to
introduce indirections on the path taken by a message. Thus, a message may be relayed
over several hops in the anonymous network, and can be seen either as a sequence of
link messages, or as one end-to-end message.

Definition 7 (Link & End-to-End Message). Messages generally designate any
data or bytes exchanged between nodes. A link message is a message from a node to one
of its neighbors in the topology graph. An end-to-end message is a message relayed over
several hops in the anonymous network, from its sender to its receiver. A link message
is said to carry a particular end-to-end message.

To avoid confusion between the action of sending an end-to-end message as the original
sender of a communication, and the action of sending a link message so as to relay the
end-to-end message it carries, the terms of end-sender and link-sender are introduced
(and similarly for receivers).

Definition 8 (End-sender, End-receiver, Relay). The original sender of an end-
to-end message is called an end-sender, performing the action of end-sending, while the
term link-sender designates the sender of a link message. Analogously, the distinction
is made between end-receiver and link-receiver. For a given communication, a relay is
a node participating in transporting messages from an end-sender to an end-receiver: it
link-receives and link-sends messages w.r.t. this communication.

The goal of an anonymous network is usually to protect end-senders and end-receivers,
the end users of a communication session.

Definition 9 (Communication Session). A communication session between an end-
sender S and an end-receiver R consists in the end-sending of a set of end-to-end mes-
sages by S to R.
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Note that a given node may be end-sender with regards to some communication session,
and end-receiver or relay with regards to another. When clear from the context, the term
sender is used indifferently to designate a link-sender or end-sender.

Depending on the semantics of its content, an end-to-end message is a payload or a
routing message. The former contains application-layer data, while the latter contains
routing information communicated among nodes in order to make the protocol work.

Definition 10 (Payload & Routing Message). A payload message is an end-to-end
message containing application data. A routing message is an end-to-end message con-
taining information necessary to make the anonymous communication protocol function.

Note that the goal of an anonymous network is to ultimately protect the exchange
of payload messages in communication sessions, the routing messages being a means to
this end. However, if observing routing messages can lead later to a breach in privacy,
routing messages must also be protected.

A given node has different identities depending on the observed network layer. For
instance, if the underlay network is the Internet, the node’s underlay identity is its IP
address. The user running the node determines its real-world identity. It may be an
individual, an organisation, or a company. Finally, a node may additionally have an
identity in the anonymous network, its anonymous network identity. The term address
is sometimes used as an alias for identity. Ultimately, what needs to be protected by
the anonymous communication protocol is the real-wold identity of the node, or more
accurately, the link between it and the node’s actions.

Definition 11 (Real-world, Underlay, and Anonymous network Identities).
The real-world identity of a client node is the identity of the user running the node. A
node also has an underlay identity, relevant to the protocol run in the underlay (e.g. its
IP or MAC address). Additionally, a node may have an anonymous network identity,
an identity only meaningful in the anonymous communication protocol.

1.2. System and Communication Model

In this work, the anonymous network is considered to run on top of the Internet, i.e. the
considered underlay network is the Internet. Anonymous communications thus take
place in the application layer of the standard OSI protocol stack [MR10]. Since an
anonymous network typically introduces indirections, it integrates a form of routing.
The overall network stack consequently comprises (at least) two levels of routing: one
with IP, and one in the anonymous network. As a result, for one logical hop in the
anonymous network layer, i.e. a link between two neighboring nodes in the anonymous
network’s topology graph, there may be several hops in the topological graph of the IP
layer. In the rest of the thesis, a hop designates a logical hop in the anonymous network.
Furthermore, for simplicity, the routing in the underlay network is considered completely
reliable (no packet loss, no interference).
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The nodes’ underlay identities can be considered as their IP addresses. Because an
IP address can often be linked to the identity of the user owning it, it is assumed that
finding one means finding the other.

Assumption 1 (Public linking of real-world and underlay identities). Real-
world and underlay identities are publicly linkable, and uncovering one means uncovering
the other.

With Internet as underlay, each node in the anonymous network can theoretically
communicate with any other node in one logical hop (ignoring middleboxes and NAT
traversal issues). However, in this work, it is assumed that the underlying topology
graph is connected, but sparse (i.e. highly incomplete). This base assumption allows
to port the results to any underlay providing a connected but incomplete graph, such
as wireless mesh networks [Zha+06], or any restricted route environment [EG11]. Also,
this is in accordance with some previous works in anonymous networks over Internet,
that reduce the direct neighborhood of each node to a small set of other nodes in order
to preserve its privacy [FM02; Cla+10].

Assumption 2 (Connected but incomplete topology graph). The underlying
topology graph is connected but incomplete.

How nodes choose their neighbors among the overall collection of nodes in the anony-
mous network is a research question in itself, and out of the scope of this work. This
design point is crucial, however, since a bias in a node’s view of the network may lead
the adversary place itself in advantageous situation. In this work, it will be assumed
that the neighbor selection mechanism ensures that each client node has at least one
non-adversary controlled node in its neighborhood.

Assumption 3 (Honest neighbor). Every client node has at least one honest neighbor,
i.e. a neighbor not controlled by the adversary.

This work considers an open, fully distributed system, that any client node may join or
leave at any time. There is no hierarchy among the nodes, and in particular, every node
relays messages for its neighbors, meaning that each node uses the network to obtain
privacy in its own communications, and helps other doing so as well. This is defined as
the homogeneous architecture, as opposed to the more traditional client-server one that
can be found in the literature.

Definition 12 (Client-Server & Homogeneous Architectures). In a client-server
architecture, client nodes only assume the role of end-senders and end-receivers, and
servers are the relay nodes providing an anonymity service to the clients. In a homoge-
neous architecture, all nodes are simultaneously client and server, and assume the role
of end-sender, end-receiver and relay.

Note that in a homogeneous architecture, end-receivers are always part of the anony-
mous network, so the communications are limited to nodes inside the anonymous network
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(contrarily to most client-server architectures that allow communication towards e.g. a
plain web server that does not run specific software).

Lastly, to construct the protocol, this work assumes that there is no central server
of any kind, and no trusted third party such as key servers of certificate authorities.
Likewise, no a priori secure or private communication channels are assumed among the
nodes.

1.3. Adversary Model

In the anonymous communications literature, there are several possible adversary models.
These models can be described according to a combination of three criteria.

Internal/External An internal adversary takes part in the anonymous network, runs
a node, and potentially acts as sender, relay or receiver. An external adversary
is outside the anonymous network and can only eavesdrop communications.

Active/Passive A passive adversary can be generally described as trying not to be
detected. If it is internal, it follows the protocol, if it is external, it merely observes
communication links. An active adversary may deviate from the protocol, or try
to replay or inject messages or tamper with messages it intercepts (even if it is
external). Also, the active category of adversary includes behaviors, where a node
acts in an arbitrary manner, without any particular attack strategy or goal. Also,
an active adversary is sometimes denoted malicious, while a passive one may be
called semi-honest.

Local/Global/Collusive A local adversary is restricted to a portion of the anony-
mous network. That is, it can only directly observe or affect a small region of the
topology graph. A local internal adversary is a node controlled by the adversary
(i.e. a corrupted node), while an external one observes a limited portion of the
anonymous network (e.g. a couple of links). A global adversary is not limited in
this sense. In particular, a global external adversary is able to observe all links
and messages in the network. In between lies collusive adversaries, which can be
described as a collection of two or more local adversaries sharing information and
mounting coordinated attacks.

Assumption 4 (Adversary model). The adversary is considered as a combination of
global external passive and collusive internal passive adversaries working collaboratively.

In the rest of this thesis, the adversary is considered as a powerful entity, infiltrating
the anonymous network by running its own nodes or corrupting others, and recording all
activities and all messages flowing through the entire network. However, corrupted nodes
follow the protocol specification. This is a common model in the literature on anonymous
communications, where the goal is to defend against the very network operators and
governmental institutions.

The global external adversary can also be modeled by stating that all link messages
going through the network are sent to it, or posted on a public bulletin board. This
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adversary model has occasionally been deemed unrealistic in the past [Syv09]. Yet, the
wide-spread eavesdropping capabilities of large entities have been demonstrated with the
“Great Firewall of China” [Wal01], the FBI’s carnivore system [Ste+00] and the PRISM
program [Gre14].

The collusion of internal adversaries is not explicitly bounded in this work: it can grow
to almost being a global adversary, as long as Assumption 3 is respected. The semi-honest
model for internal adversary is quite weak, since in practice corrupted nodes are likely
to cheat in order to achieve their goals. This choice of model is motivated by the fact
that there is no existing methodology to systematically prove resistance against denial-
of-service, byzantine or arbitrary attacks in complex communication protocols. Indeed,
the ever new attacks on the Tor protocol, even after more than ten years of deployment,
attests it: there may be an infinite number of ways to tamper with the protocol, and no
way to check against them all. Considering passive adversaries provides a better basis
for the security and privacy analysis in a first stage. In the future works section of our
conclusion chapter, we put forward some modifications to the protocol that allow to
resist several active attacks.

Finally, from a cryptographic perspective, the traditional probabilistic polynomial
time (PPT) adversary model is employed [Gol01]. That is, the adversary has large
but limited computational power. She can run algorithms which complexity is at most
polynomial in the size of their inputs.

Assumption 5 (Limited computing power adversary). The cryptographic adver-
sary A is considered as a PPT Turing machine.

1.4. Privacy Properties and Goals

This section presents the privacy properties a strongly private anonymous communica-
tion protocol should ensure. These formulations are intuitive and informal. Their formal
statements are presented, in Chapter 5. Additionally, this section more generally defines
the goals relative to the efficiency and functionality of the protocol, and clarifies what it
does not aim to achieve.

1.4.1. Privacy Properties

At the highest level of abstraction, the goal is to conceal who communicates with whom,
as well as the very fact that a node does communicate. That is, even though it is
not possible to conceal the fact that there are communications, the protocol aims at
concealing who are the end nodes of communication sessions.

To formalise these goals, the notions of anonymity and unlinkability as defined by
Pfitzman and Köhntopp [PK01] are used.

Definition 13 (Anonymity [PK01]). Anonymity of a subject means that the subject
is not identifiable within a set of subjects, the anonymity set.
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Definition 14 (Unlinkability [PK01]). Unlinkability of two or more items of interest
[...] from an attacker’s perspective means that within the system [...], the attacker cannot
sufficiently distinguish whether these items of interest are related or not.

The authors definition of anonymity recalls that, ultimately, an end-sender or end-
receiver can only be at best anonymous among all the users of the anonymous network.
Unlinkability is another notion extensively used in the literature on privacy. It is more
versatile, allowing to define more privacy notions (actually, anonymity can be defined
in terms of unlinkability [PK01]). Here, the items of interest are mainly the nodes’
real-world identities and the end-to-end payload messages. With this terminology, five
properties are defined.

Property 1 (Sender Anonymity (SA)). The adversary can not identify the end-
senders of payload messages in the network within a subset or the set of all nodes.

Property 2 (Receiver Anonymity (RA)). The adversary can not identify the end-
receivers of payload messages in the network within a subset or the set of all nodes.

Property 3 (Session Unlinkability (SU)). The adversary can not correlate link
messages from different communication sessions, in particular between the same end-
sender and end-receiver.

Property 4 (Message Unlinkability (MU)). The adversary can not correlate link
messages based on their bit pattern or from the cryptographic information they contain
(or that is associated to them). In particular, she can not link messages from the same
session (MU-session) nor link messages carrying the same payload message as its relayed
through the network (MU-tracing).

Property 5 (Traffic Analysis Resistance (TAR)). The adversary can not perform
traffic analysis of any form, including timing-based analysis.

SA and RA are the main privacy goals, in the sense that they are the properties a
user of the anonymous network would expect. They are standard properties, but in this
work, we aim at a strong variant of them. Indeed, most work only aim at traditional no-
tion of relationship anonymity, defined as the impossibility of de-anonymising both the
end-sender and the end-receiver at the same time. Comparatively, SA alone or RA alone
implies relationship anonymity. Secondly, it is important to note that, in the considered
adversary model with a global network observer, SA means that it is not even possible
to observe the action of end-sending a message (and likewise for RA and end-receiving).
In the terms of Freedman and Morris, sending activity is not observable [FM02]. Actu-
ally, in the present adversary model, sender anonymity is arguably equivalent to sender
unobservability (a term also defined by Pfitzman and Köhntopp [PK01]), and likewise
for receiver anonymity. This definition of anonymity as unobservability can also be
found, in particular, in the Tarzan protocol [FM02], and more recently in the Pung
protocol [AS16].

The SU property is somewhat related to SA and RA, but not implied by them. It
requires that different sessions between the same end-sender and end-receiver are not
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linkable, and in particular that messages exchanged between a specific pair of nodes
do not carry any distinctive mark. This would otherwise provide the adversary with
material to infer information on the communicating nodes, based e.g. on the frequency
of their exchanges. The MU and TAR properties both aim at modeling the impossibility
for the adversary to gain an advantage for breaking the other properties by tracing
or recognising messages. They are not equivalent, but complementary: the first is a
cryptographic property, the second is a abstract, network level property. The separation
is made because formally proving traffic analysis resistance is uneasy (as discussed in
Chapters 3 and 5). Here, at least the MU property can be formally studied so that
cryptographically speaking, traffic analysis can be shown impossible. Lastly, note that
the distinction is made between MU-session and MU-tracing: the former requires that
messages from the same communication session to be unlinkable by a given relay node,
and the latter that a payload message can not be traced by two different relays on the
message’s path. All the above properties can be found in past literature. In particular,
SU and MU are seemingly equivalent to the no session linkage and no packet correlation
properties of the HORNET protocol [Che+15].

In Chapter 5, these privacy properties are reformulated using the cryptographic notion
of indistinguishability. For instance, SA is formulated as the (near) impossibility of
distinguishing between a run of the system where message m is sent to receiver R by
sender S0 from a run where m is sent to R by sender S1.

According to the informant-journalist scenario discussed in the introduction, these
properties provide strong anonymity to the informant, even against the journalist. The
goal is to allow bi-directional communications between the two parties, without the jour-
nalist nor any internal or external network actor learning the identity of the informant.
In this regards, SA and RA conceal the very fact that the informant communicates.
More accurately, SA (resp. RA) ensures that no message can be attributed as having
been end-sent (resp. end-received) by the informant, even by the journalist itself. Then,
SU prevents the linking between communication sessions of the same informant and
journalist. Meaning that if one session is de-anonymised, the anonymity of the others
remains. TAR, MU-tracing, and MU-session prevent the tracing of the message and
reconstruction of the communication pattern between the informant and the journalist,
which could then lead to a breach of SA or RA (as exposed in Section 3.4, which reviews
the existing threats to privacy in anonymous networks). Lastly, because the network
is homogeneous and no asymmetry is introduced between nodes, the journalist actually
enjoys the same privacy guarantees as the informant, with the exception that an infor-
mant initiating a communication with a journalist, of course, knows the identity of the
said journalist.

1.4.2. What the Protocol Does and Does Not Achieve

Aside from the privacy goals, the protocol aims at being completely decentralised and
distributed. It is above all made for non-latency sensitive communication among nodes.

However, the protocol makes no effort to prevent against denial-of-service attacks (e.g.
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refusing to relay), or to hide participation in the anonymous network. Also, making
the protocol efficient is a secondary goal compared to ensuring the privacy properties.
Some essential design points of a routing protocol, such as congestion and bandwidth
management are merely discussed and accounted for, but not included in the design.

1.5. Summary

This chapter laid out the foundations of this thesis, from the terminology it uses to the
privacy properties it aims for. The chapter also details the context and the assumptions
on the system and possible attacks under which the protocol should run. The goals
in terms of privacy can be qualified as strong, since, as shown in Chapter 3, they are
stronger than the usual properties ensured in the anonymous communication protocols
literature.
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The aim of this chapter is to introduce the cryptographic primitives, the building blocks
with which the protocol is built. This chapter is rather informal from a cryptographic
point of view. In particular, the formal definitions of security notions, such as the
semantic security of encryption schemes, are not given here. Instead, they are deferred
to Chapter 5, just before presenting the security proofs.

Before all, preliminary notions of algebra and provable security in general are very
briefly recalled. Then, the concepts of public- and symmetric-key encryption are pre-
sented, followed by the description of four primitives: the SHA-3 hash function, the
Diffie-Hellman key-exchange, the Elgamal homomorphic encryption scheme, and univer-
sal re-encryption. Each primitive is abstractly presented, along with its functionalities
and security properties. The notion of universal re-encryption, less present in the litera-
ture, is presented in more details.

2.1. Preliminaries

As a preamble, the mathematical and cryptographic notations employed throughout
the thesis are described succinctly. Then, the principle of hard problems and provable
security in cryptography is recalled, along with the main hard problem used in this work,
the Decisional Diffie-Hellman (DDH) problem.

2.1.1. Notations

Table 2.1 lists various mathematical and cryptographic symbols used throughout this
thesis.
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Symbol Description Example

← Assignment of a result to variable c c← Enc(pk,m)

:= Definition of a function or term f(x, y) := x2

←$ Uniform choice of an element in a set x←$ N

‖ Concatenation operator m1‖m2

· Product of two numbers or group elements
(omitted when clear from context)

x = y · z

|S| Number of elements in a set, or bit-size of a number |N|, |x|

Table 2.1. – Mathematical and Cryptographic Notations

This work makes extensive use of groups and subgroups, and in particular multiplica-
tive, abelian, and cyclic groups [Sho09]. Denoted G, a group is hereby characterised
by a generator g and an order |G|. The product symbol “·” is used for multiplication
between group elements, and although all operations take place within a modulo n for
some n ∈ N, the term “mod n” is often omitted and implicit from context. The mul-
tiplication of e1 ∈ G by e−1

2 , the inverse of e2 ∈ G, is sometimes noted with a division
symbol e1/e2.

2.1.2. Cryptography and Hard Problems

Cryptographic constructions rely directly or indirectly on the assumption that some
problem is hard to solve. For instance, the Rabin encryption scheme relies on the as-
sumption that factoring large numbers is hard [MOV96, Section 8.3]. A problem is
considered hard if there exists no known efficient algorithm that solves it, i.e. when
it can take several years even for extremely powerful machines to solve it. Formally,
a problem is assumed hard if it can not be solved by any known polynomial time algo-
rithm, i.e. when there exists no PPT adversary that solves the problem. This is captured
by the security parameter λ: a problem is hard when it takes at least O

(

2λ
)

time to
solve, i.e. time exponential in λ. The current recommendation is a security parameter
of λ = 128 bits [Gir15].

In this work, the problem we are mainly interested in is the Decisional Diffie-Hellman
problem. It consists in the following: for a given group G = 〈g〉 and elements ga, gb,
gc ∈ G, with a, b←$Zq, to distinguish whether c = ab or c←$Zq. Intuitively, saying
that the DDH problem is hard means that even if ga and gb are known, the term gab

can not be computed, and actually looks random. In the rest of this thesis, “the DDH
assumption” refers to the assumption on the hardness of the DDH problem.

The DDH problem is assumed hard in various groups [Bon98]. The most suitable way
to instantiate G for this thesis, is to take a subgroup of prime order q of the multiplicative
group Z∗p where p = 2q + 1. For λ = 128, it is advised to set |p| ≈ 2048 and |q| ≈ 2001.

1These are the values recommended by the ANSSI (the French National Cybersecurity Agency). Other
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With a suitable generator g (such that ∃e ∈ Z
∗
p, g = e2 mod p 6= 1), the group can

be described as G = 〈g〉 =
{
gi mod p | i ∈ Zq

}
. In the rest of the thesis, the term G

denotes this specific group (unless stated otherwise). More details on how the group G

can be instantiated and how elements are drawn from it can be found in Appendix A.

2.2. Public Key and Secret Key Encryption

Encryption [Gol04, Chapter 5] is the most common cryptographic primitive for ensuring
confidentiality of data (or meta-data). Encryption schemes can be divided in two generic
categories: public key encryption (PKE), and secret key encryption (SKE). These cate-
gories are also referred to as asymmetric and symmetric encryption.

The main difference between PKE and SKE is conceptual. The former uses pairs of
keys (pk, sk) with a public and a secret (or private) part. Anyone can encrypt data using
the public part of the key, producing ciphertexts that only the owner of the private key
can decrypt. In SKE, there is only one key k, kept secret to typically two entities, used
both to encrypt and decrypt. While PKE schemes are mainly based on number-theoretic
(or, more largely, mathematical) problems, most well known SKE schemes are based on
block or stream ciphers. It is known that SKE schemes are much more efficient (for the
same security level λ), but less flexible than PKE schemes. In particular, SKE requires
the communicating parties to share a common symmetric key before any communication
can take place (by agreeing, or exchanging one), while the public key in a PKE scheme
allows one to straight away encrypt and send data to other parties. As a result, it is
common to perform encryption in a hybrid way: to take advantage of the efficiency of
SKE, the data is encrypted with a symmetric key k, and the latter is sent encrypted
under the public key of the recipient.

This work uses PKE extensively, and SKE in specific occasions. Below is a generic
description of a PKE scheme, under its probabilistic form.

Definition 15 (PKE scheme). Given a plaintext space P, a ciphertext space C, a
key space K = (Kpk × Ksk), and a random coins space R, a probabilistic PKE scheme
consists of (at least) the following three operations:

Key Generation: KeyGen(1λ) : {0, 1}∗ → (Kpk ×Ksk)
A probabilistic polynomial time algorithm outputting a key pair (pk, sk) achieving
the level of security specified by the security parameter λ, where pk denotes the
public key whilst sk denotes the private key.

Encryption: Enc(pk,m, r) : Kpk × P ×R → C
A deterministic polynomial time algorithm that, given a public key pk and a plain-
text m, outputs a ciphertext c encrypting m with the randomness r.
Alternatively: Enc(pk,m) : Kpk × P → C can be described as a probabilistic algo-
rithm, where r is internally and randomly sampled.

organisations may recommend slightly different values [Gir15].
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Decryption: Dec(sk, c) : Ksk × C → P
A deterministic polynomial time algorithm that, given a private key sk and a
ciphertext c, outputs m if c← Enc(pk,m) and sk is the private key corresponding
to pk.

A SKE scheme also roughly follows the same description, except that it only handles
one secret key k. For short, symmetric encryption of plaintext m with k is denoted {m}k.
Additionally, the randomness r used by a SKE scheme is called initialisation vector (IV)
and, contrarily to a PKE scheme, can safely be made public and sent along with the
ciphertext it relates to.

A PKE (or SKE) scheme achieves semantic security, a notion also known as indis-
tinguishability under chosen plaintext attacks (IND-CPA), if, given a ciphertext, the
adversary can not learn anything about the underlying plaintext. More formally, this is
captured by the impossibility for the adversary to distinguish whether a ciphertext c is an
encryption of m0 or m1 when m0 and m1 are known and chosen by the adversary herself.
IND-CPA is the notion of security used in this work. However, there exists stronger no-
tions, such as indistinguishability under chosen ciphertext attacks (IND-CCA) security,
where the adversary is given additional capacities. Namely, it is given the opportunity
to decrypt any ciphertexts she wants except of course the challenge ciphertext c, as this
would immediately tell her if it is an encryption of m0 or of m1.

2.3. Cryptographic Hash Functions

A hash function h(x) : {0, 1}∗ → {0, 1}n is a deterministic function efficiently map-
ping an input x of arbitrary length to an output of fixed n-bit length. A cryptographic
hash function exhibits additional properties, such as the well known preimage resistance,
2nd-preimage resistance, and collision resistance properties [MOV96; RS04], that (infor-
mally) prevent from inverting the function, or finding two inputs that hash to the same
value (the latter is called a collision).

Hash function are commonly used to ensure data integrity of messages sent over un-
trusted communication channels. But they can also be used to design key derivation
functions (KDF) (to derive keys from a shared secret), or pseudo-random functions
(PRF) (to produce unpredictable sequences of bits) [MOV96].

In this thesis, the SHA-3 hash function [NIS14] is used as a KDF to derive many keys
from a single secret, and as a PRF to transform algebraically related inputs into (seem-
ingly) unrelated data. SHA-3 is based on the Keccak function [Ber+11], which realises
preimage resistance, 2nd-preimage resistance and collision resistance. More accurately,
the security of Keccak is stated in comparison to a truly random function, which implies
that it realises all three properties, and makes it suitable to be used as KDF and/or
PRF.
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2.4. Key Agreement

The most used method for generating common secrets, in particular over the Internet,
is the Diffie-Hellman key agreement (DHKA), or Diffie-Hellman Handshake [DH76]. It
typically involves two parties X and Y , that exchange elements from a group in which
the DDH assumption holds. With the group G defined in Section 2.1.2, the protocol is
executed as follows. X sends A = ga ∈ G for a←$ Zq, then Y answers with B = gb ∈ G

for b←$Zq, and they finally compute secret = Ba = Ab ∈ G. Since the DDH assumption
holds in G, it is ensured that only X and Y know the secret, and that it constitutes a
suitable random seed that can be fed e.g. to a KDF or PRF.

In this thesis, the DHKA and a KDF are used to generate many secrets shared by two
neighboring nodes. It is known that this basic, unauthenticated version of the DHKA is
subject to a man-in-the-middle attack. However, this attack is not part of the passive
adversary model considered in this work. Furthermore, the use of an authenticated
version of the DHKA requires e.g. to assume that parties possess public keys certified
by a trusted authority [Gol04]. However, in this thesis, we aim at avoiding the reliance
on such a central entity, and prefer a fully distributed architecture.

2.5. Homomorphic Encryption (HE)

Traditional encryption transforms a plaintext into a random-looking bit-string which can
not be of any use to anyone without the corresponding decryption key. A homomorphic
encryption (HE) scheme differs in that it allows one to apply transformations to a cipher-
text, which map to known and predictable transformations on the underlying plaintext,
without leaking information on the latter. That is, in a HE scheme, there exists a homo-
morphism from the ciphertext space C to the plaintext space P. For instance, in some
HE scheme such as Paillier’s, the multiplication of two ciphertexts Enc(m1) · Enc(m2)
results in a ciphertext Enc(m1 +m2) encrypting the addition of their plaintexts [Pai99].
The applications of HE include electronic voting, private information retrieval, secure
multi-party computation, and more generally, the protection of privacy in cryptographic
protocols [Rap06]. The most direct application, however, is the secure delegation of com-
putation, without the need to reveal the data on which the computation is performed.
For instance, it is possible for a device with low computation power to delegate heavy
computations to the cloud. For that, the device encrypts its data with a HE scheme,
sends it to the cloud, which performs the computations and send the result back. The
cloud never learns details about the data it processed, only its nature (e.g. it knows how
it is encoded, and has the knowledge of how to handle it).

Initially described by Rivest et al. [RAD78], HE subsequently attracted a lot of a
attention. A major milestone was passed with the first fully homomorphic encryption
scheme proposed by Gentry in 2009 [Gen09], which is capable of evaluating any function
(that would be normally computable on clear data) on encrypted data. However, even
though great advances have been made in the recent years, fully HE remains impractical
as of today. In this thesis, we resort to simple, less powerful schemes that only allow a
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restricted set of operations.
The flexibility given by HE comes at the cost of reduced security. Indeed, HE schemes

are at best IND-CPA secure, and by definition can not achieve IND-CCA security. This
is mainly due to the malleability of the ciphertexts, and to the fact that learning the de-
cryption of one ciphertext Enc(m) means getting information about all other ciphertexts
that are known to encrypt a function of the plaintext m. In practice, if this downgrade
in security poses a serious threat, one can use authentication of plaintexts or ciphertexts
via integrity-checking tools, such as message authentication codes, or another layer of
traditional encryption on top of the HE scheme.

The Elgamal HE scheme

In this work, HE is used in particular to privately compute anonymous network identities.
Because its homomorphic properties are adapted to our needs, we use the Elgamal PKE
scheme [Elg85]. This scheme works over any group in which the DDH assumption holds,
but it is presented here for the specific group G considered in this work. The presentation
below features the KeyGen, Enc, Dec operations proper to PKE schemes.

– KeyGen(1λ): Given G described by g and q, pick a random x ∈ Zq and compute
h = gx ∈ G. Output (pk, sk) = (h, x).

– Enc(pk,m, r): For m ∈ G and a random r ∈ Zq, output c = (gr,m · hr) ∈ G
2.

– Dec(sk, c): Let c = (c0, c1). Compute and output

c1

cx
0

= m
hr

(gr)x
= m

gxr

gxr
= m mod p

The Elgamal scheme is semantically secure under the assumption that the DDH is in-
tractable in the group G. Under the same assumption, the Elgamal additionally satisfies
the key-privacy property, ensuring that it is impossible for the adversary to distinguish
which key among two or more candidate keys was used to encrypt some ciphertext.
This notion is also called indistinguishability of keys under chosen plaintext attacks
(IK-CPA) [Bel+01].

The scheme allows the following homomorphic operations2, for m,m′ ∈ G, ciphertexts
c = (c0, c1) = Enc(pk,m, r) and c′ = (c′0, c

′
1) = Enc(pk,m′, r′), and α ∈ [0, |G| − 1]:

(1) Multiplication: multiplication of the plaintexts underlying two ciphertexts
CtxtMult(c, c′) := (c0 · c

′
0, c1 · c

′
1)

= (gr+r′
,m ·m′ · hr+r′

)

= Enc(pk,m ·m′, r + r′)

2Other operations are possible, but here are listed only the relevant ones for this thesis.
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(2) Plaintext multiplication: multiplying an underlying plaintext by an other plaintext
PlainMult(c,m′) := (c0, c1 ·m

′)

= (gr,m ·m′ · hr)

= Enc(pk,m ·m′, r)

(3) Scalar exponentiation: exponentiating an underlying plaintext
ScExp(c, α) := (cα

0 , c
α
1 )

= (grα,mα · hrα)

= Enc(pk,mα, rα)

(4) Key Homomorphism: for (pk′, sk′) = (h′, x′)
KeyMult(sk′, c) := (c0, c1 · c

x′

0 )

= (gr,m · (h · h′)r)

= Enc(pk · pk′,m, r)
The inverse operation is simply KeyDiv(sk′, c) := (c0,Dec(sk′, c)). For short, the
operation Dec is used to denote KeyDiv throughout the thesis, since the latter can
actually be seen as a partial decryption.

Notice how the last operation, KeyMult, actually shows that the Elgamal scheme
supports encryption under multiple keys. That is, a plaintext m can be encrypted as
c← Enc(pk1 ·pk2 · · · · ·pkn,m). It can either be decrypted in one sitting, with Dec(

∑

i ski,
c), or in multiple steps using Dec(ski, c). Since G is abelian, the order of keys do not
need to be respected when decrypting in multiple steps (e.g. Dec(sk5,Dec(sk3, c)) is the
same as Dec(sk3,Dec(sk5, c))).

2.6. Universal Re-encryption (URE)

This work makes heavy use of re-encryption and universal re-encryption as a means to
modify the appearance of ciphertexts, and ultimately prevent the tracing of messages in
the network. This section first presents standard re-encryption, and then the notion of
universal re-encryption.

2.6.1. Re-Encryption

Re-encryption, in a probabilistic PKE scheme, consists in changing the random coins r
embedded in a ciphertext c = Enc(pk,m, r), while leaving the plaintext m untouched.
Indeed, recall that in a probabilistic PKE scheme, for the same public key, a single
plaintext m has many possible different encryptions depending on the value of r. The
motivation behind re-encryption is changing the appearance of a ciphertext in such a
way that it is unrecognisable, even given information on the original ciphertext.

The Elgamal scheme, as most HE scheme, supports re-encryption. The re-encryption
of ciphertext c = Enc(pk,m, r) = (c0, c1) = (gr,m ·hr) into c′ is performed, given pk = h,
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by sampling r′←$Zq and computing:

c′ = (c0 · g
r′
, c1 · h

r′
)

= (gr+r′
,m · hr+r′

)

= Enc(pk,m, r + r′)

Intuitively c′ is unrecognisable because r′ is uniformly random, thus gr′
and hr′

are
uniformly random as well and act as a mask for c0 and c1 respectively. Note that the
plaintext m does not need to be known to the entity carrying out the re-encryption.

In anonymous networking, the main application of re-encryption is to modify the
appearance of messages as they travel through an anonymous network, to prevent their
tracing3. It is actually one of the alternatives to the more common technique of onion
routing (see Chapter 3). However, to re-encrypt messages transiting in the network,
the knowledge of pk = h is necessary, in order to multiply the second component of c
with hr′

. This can be an issue, because a public key can act as a global identifier in the
anonymous network, which we want to avoid in this work (see Chapter 4 for details). The
use of public keys in re-encryption can be avoided by resorting to universal re-encryption
(URE).

2.6.2. Universal Re-Encryption

The notion of URE was proposed in 2004 by Golle et al. [Gol+04], along with an example
of URE-enabled scheme. A URE-enabled scheme exhibits a UReEnc operation in addition
to KeyGen, Enc, and Dec. This operation does not necessitate nor leak information on
the public key of re-encrypted ciphertexts. The authors also propose a new notion
of security, suitable for schemes supporting URE, named universal semantic security
under re-encryption (USS). It is based on the traditional notion of semantic security of
PKE schemes, and additionally requires that re-encrypted ciphertexts are unrecognisable
from their original ciphertext. More precisely, USS states that an adversary knowing
pk0, pk1,m0,m1, r0, and r1 should not be able to distinguish UReEnc(Enc(pk0,m0, r0))
from UReEnc(Enc(pk1,m1, r1)).

In the same work, Golle et al. present an extension of the Elgamal scheme support-
ing the UReEnc operation, hereby called URE-Elgamal. In this scheme, a plaintext is
encrypted as a pair of Elgamal ciphertexts: the first one encrypts the plaintext, and the
second is an encryption of the identity element of the group G (i.e. an encryption of one).
An encryption of one cone in the (standard) Elgamal scheme has the following properties:
(i) anyone can generate new re-encryptions of the ciphertext cone without knowledge of
the public key that encrypted it; and (ii) given solely an encryption of one, anyone can
re-encrypt any ciphertext using the homomorphic properties of the scheme. These two
properties thus allow the re-encryption of any ciphertext, without public keys.

3Jakobsson however uses it to build a verifiable mixnet, i.e. a network that detects malicious behavior
from relay servers [Jak99].
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More precisely, the UReEnc operation of Golle et al. is defined as follows, on input
C = (Enc(pk,m, r),Enc(pk, 1, rone)) = ((c0, c1), (cone0, cone1)):

UReEnc(C) :=
(

(c0 · cone
s
0, c1 · cone

s
1), (cone

s′

0 , cone
s′

1 )
)

with (s, s′)←$Z
2
q

=
(
Enc(pk,m, r + rone · s),Enc(pk, 1, rone · s′)

)

The authors prove the USS property of the URE-Elgamal scheme, based on the IND-
CPA and IK-CPA property of the plain Elgamal scheme. The drawback of the con-
struction, however, is its inefficiency. Indeed, a plaintext of n bits becomes 4n bits of
ciphertext (against only 2n bits for plain Elgamal), and re-encryption requires 4 modular
exponentiations and two multiplications.

Several works make use of the URE-Elgamal scheme, to change the appearance of
messages and prevent their tracing [Gol+04; GKK04; Lu+05; HLF12]. The advantage
of URE over standard re-encryption in this regards, is that it does not require a (public)
key distribution at the initialisation of the network. The first anonymous network using
URE is from Golle et al. (in the same work), who propose a straightforward application
of the scheme to construct a protocol in the bulletin board model (a public structure
where any party can read or write), yielding a rather theoretical protocol. The same year,
Gomułkiewicz et al. [GKK04] (surprisingly) used URE to build an onion routing protocol.
Note that the privacy guarantees of the works of Gomułkiewicz et al. [GKK04] and Lu et
al. [Lu+05] have actually been broken by Danezis [Dan06], but the attacks exhibited do
not pertain to URE itself but rather to a misuse of the technology. More recently, URE
has been used in an anonymous network construction by Huang et al. [HLF12]. The
authors actually make use of standard and universal re-encryption alternatively. The
former for ciphertexts encrypted under the public keys of relay servers of the network, and
the latter for ciphertexts encrypted under the receiver’s public key pkR, thus preventing
the relays from learning pkR, and ultimately deducing the identity of the receiver.

In this thesis, it is the latter approach that is chosen: all messages are encrypted under
the receiver’s public key, URE is used to change their appearance, and relay nodes do not
learn the receiver’s public key nor identity. In practice, the UReEnc operation is broken
down into several functions, which are used individually on a need-basis. Indeed, by the
way the protocol is designed, full URE-Elgamal ciphertexts are not always necessary:
in many occasions, messages do not need to embed an encryption of one, as nodes will
already have a suitable one available. As a result, bandwidth is saved, and the workload
for re-encryption is reduced. The atomic functions are described in detail in Chapter 4.
In their use, care is taken to reproduce the UReEnc operation so that the USS security
defined by of Golle et al. [Gol+04] still holds.

2.7. Summary of Cryptographic Tools

In this chapter, the four main cryptographic primitives that will be used to design
the protocol have been presented, recalling necessary mathematical and cryptographic
notions beforehand.
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The main assumption on which the security of the primitives rely is the hardness of
the DDH problem, since the DHKA, the Elgamal scheme, and the URE constructions
all rely on it. Also, all three primitives work in the same group G. As a matter of fact,
most of the operations and elements constitutive of the protocol will lie in G.
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This chapter presents the state of the art in privacy-preserving communication proto-
cols, using the terminology introduced in Chapter 1. The aim is, ultimately, to show how
the work in this thesis builds on pre-existing ones, and to review the potential threats
against the SA, RA, SU, MU and TA privacy properties in anonymous networking.

Several sub-domains in privacy-preserving communication protocols co-exist: direct
messaging [Cha+16], file sharing [Cla+01], those focused on electronic mail [Mol+03],
the electronic voting protocols [MN10], and the multi-purposes protocols [DMS04]. The
focus in this thesis is on direct messaging protocols, that allow any two entities to directly
communicate any kind of data over the Internet. Consequently, and to narrow the scope
of this survey, only the protocols having this explicit goal are presented.

Then, the literature on privacy-preserving direct messaging protocols distinguishes
two general categories, based on the latency they introduce in the delivery of messages:
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high and low latency protocols. These categories are sometimes respectively identified
to mixnet and onion routing [Cha+16]. However, there are many exceptions to this
categorisation. For instance, some onion routing protocols introduce high latency [GT96;
DDM03; Mol+03; SSH08], which can be confusing. Hereby, a categorisation in three
classes is proposed. The first consists in low latency systems (not necessarily associated
with onion routing), which includes the well known Tor protocol [DMS04]. The second
is focused on high latency systems, and in particular on the mixnets. The last category
relates to (high or low latency) homogeneous networks (as defined in Chapter 1), which is
of particular relevance since the protocol proposed in this work considers a homogeneous
architecture.

These three categories however share a common base idea for providing anonymity. It
is better explained by coming back to the most basic and simple way to obtain anonymity
on the Internet: using a proxy. A proxy is an intermediary server that makes the
request on behalf of a client, thus concealing its identity. However, using only one proxy
means completely relying on its honesty. The proxy knows the sender and receiver
(e.g. the client and the web server requested), and may keep records of past requests
or divulge them. Thus, it is common to use several such intermediaries. This is the
most common approach to anonymous networking, and the base idea of all anonymous
networks presented in this chapter.

The chapter begins with three sections, one for each identified protocol category. Af-
ter a description of the category, a representative protocol is described, along with its
claimed anonymity properties. Then, Section 3.4 reviews existing attacks on anonymous
networks, that directly or indirectly participate in breaching privacy (mainly by finding
senders or receivers). As attacks are described, their impact on each protocol category
is studied. This survey of attacks aims at highlighting the necessary safeguards and
mechanisms to ensure SA, RA, SU, MU and TAR. The last section concludes and places
the present work in the continuation of existing ones.

3.1. Low Latency Networks

The most efficient and practical privacy-preserving protocols on the Internet are low
latency ones [BG03; DMS04; Che+15; AS16; I2P]. Most low latency networks seek to
realise relationship anonymity, stating that it is impossible uncover the communication
relations, i.e. de-anonymise end-senders and the end-receivers at the same time. The
specificity of low latency network, is above all to aim at introducing these indirections
with minimal overhead compared to a direct sender-receiver communication. That is,
the trade-off between efficiency and privacy is tilted in favor of efficiency here. As a
result, low latency protocols support time-sensitive applications such as live chats and
web browsing. This explains the popularity of such protocols over high latency ones
among the general public. For instance, the Tor [DMS04] and I2P [I2P] protocols are
deployed over the Internet and fully operational.
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3.1.1. Building Blocks and Properties of Low Latency Networks

Low latency networks are usually based on the client-server architecture. As such, net-
work edges are observable: SA and RA do not hold. Indeed, the first relay server (or an
external observer of the link between it and the sender) detects the sending activity of
S, and breaks SA as defined in Section 1.4.1. The same applies to the last relay server
and RA. On the other hand, the client-server architecture puts little burden on users,
and allows them to contact receivers outside of the anonymous network (e.g. a regular
web server).

Note that even though none of SA nor RA holds, relationship anonymity may still hold.
It is only necessary to have (at least) one honest relay, and to prevent non-neighboring re-
lays from recognising messages as they travel down the relay servers. More generally, the
tracing of messages must be prevented. However, the specificity of low latency protocols
is to prevent traffic analysis only up to a point, as long as it does not impact efficiency too
much. In view of the MU/TAR separation made in Section 1.4.1, this class of protocols
only aims at a form of MU. In particular, most protocols encrypt messages, and change
their appearance at each hop. This last point is usually performed either by decrypting
and re-encrypting at each relay server [Cha81], using onion encryption [DDM03], using
(universal) re-encryption [Gol+04], or simply using random bit-strings as masks [DG09].
In addition, some works ensure that all link messages are of the same size, to prevent
tracing based on size.

However, network-level traffic analysis (corresponding to TAR), based on timing or
traffic shape for instance, is usually not prevented at all. The rationale being that the
cost of integrating such protection is either prohibitive for the user experience, or simply
too costly compared to the security guarantees it brings. As a result, in most low latency
protocols, corrupting the first and last relays of a communication is enough to completely
break anonymity, and uncover which end-sender and end-receiver communicate together.
This may even be possible without corrupting end relays, but merely by observing the
first link (between sender and first relay) and the last link (between last relay and
receiver) of the communication.

Finally, note that low latency networks do usually (implicitly) ensure a form of SU
(or variants of it), in order to realise relationship anonymity. The usual adversary model
of low latency networks is weaker than the one considered in the present work, mostly
in that the external adversary is assumed local or collusive but not global. Also, they
achieve their anonymity goals only under the assumption that no traffic analysis is
possible, or equivalently, assuming that the first and last relays (and links) are not
corrupted.

3.1.2. Description of Tor

As a study case, we present the Tor protocol [DMS04] and its claimed anonymity. It is
the most successful anonymous protocol to date, serving today more than two millions
users. Tor runs over the Internet without restrictions on the topology graph (any Tor
node can directly contact any other), and based on a client-server architecture. Server
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nodes are called onion routers (OR). Anyone may freely run an OR, or join the network
as a user. Users rely on existing ORs to create a circuit and tunnel their connections to
a receiver out of the anonymous network, such as a web server. In practice, a circuit is
always made of three ORs chosen by the user. They are called the entry, the middle, and
the exit nodes. It is assumed that the sender knows the ORs and their certified public
key. For that, Tor provides directory servers, a small set of trusted servers responsible
for publishing information on the network to all nodes. The circuit construction by
the sender consists in distributing the circuit identifiers to the chosen ORs. The circuit
construction is telescopic, and depicted in Fig. 3.1. For compactness, a case with only two
ORs is shown. Circuit construction with a third OR is easily deduced. Communications
between pairs of nodes are assumed to work over a secure TLS connection to counter
external adversaries. In Fig 3.1, Enc designates RSA encryption, {m}k designates AES
encryption of message m with key k, and h the SHA-1 hash function.

Alice (sender) OR1 OR2 Bob (website)

create(cid1),Enc(pkOR1 , g
a)

created(cid1), gb, h(k = gab)

relay(cid1),
{

extend, OR2,Enc(pkOR2 , g
a′

)
}

k

create(cid2),Enc(pkOR2 , g
a′

)

created(cid2), gb′
, h(k′ = ga′b′

)
relay(cid1),

{

extended, gb′
, h(k′)

}

k

relay(cid1),{{data, Bob, ”HTTP request”}k′ }k

relay(cid2),{data, Bob, ”HTTP request”}k′

HTTP request

HTTP response

relay(cid2),{data, ”HTTP response”}k′

relay(cid1),{{data, ”HTTP response”}k′ }k

Figure 3.1. – Circuit Construction in Tor (inspired from [DMS04, Fig. 1])

For a circuit over two ORs, the construction takes two steps. First, the sender and OR1

exchange create and created routing messages effectively realising a DHKA to obtain an
AES key k. This key agreement is authenticated from the point of view of the sender
(i.e. it can check that the key is shared with the OR it expects), since the first half is
encrypted with OR1’s certified public key, and the value of the key is confirmed by h(k).
In this first phase, the sender also communicates the circuit identifier cid1 it chose to
OR1.

In the second phase, another DHKA is carried out between the sender and OR2 to
agree on a key k′, withOR1 acting as relay. For that, the sender gives a relay message with
cid1 to OR1, and a nested extend message encrypted with k (which OR1 can decrypt).
The extend message instructs OR1 to send a create message to OR2, with a circuit
identifier cid2 of its choice, identifying the circuit link between OR1 and OR2. cid2 is
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completely independent of the value of cid1. OR2 answers to OR1 as if the latter was
the original sender, and OR1 forwards its answer back to Alice in an extended message
nested within a relay message. Note that OR1 can not disturb the DHKA or perform a
man-in-the-middle attack on the DHKA, without Alice (the sender) noticing it.

Once the circuit is built, the sender can start sending data to e.g. a web server in
this example. For that, the sender creates a relay message for cid1, accompanied with a
doubly encrypted data packet: the outer layer of encryption is with k, and the innermost
with k′. OR1 handles the message as follows: by cid1, OR1 knows that it must use k to
decrypt the nested message, replace, cid1 by cid2, and forward to OR2. Each OR on the
route acts in the same way, and the last, OR2 in this example, gets the data command,
instructing to send a HTTP request to the server named Bob. More generally, any IP
packet can be tunneled through Tor, not only HTTP ones. When OR2 gets the HTTP
response, it sends it back encrypted under k′ to OR1 with cid2. OR1 re-encrypts it with
k, and forwards it to the sender, which can decrypt the two layers of encryption and get
the HTTP response.

There is a possibility in Tor to communicate with receivers inside or outside the
network, without even knowing its IP address. This mechanism is called hidden services,
and allows a receiver to be contacted via an anonymous address, not publicly linked to its
real-world identity. For that, a receiver builds a reverse circuit using ORs it choses, and
keeps it alive. In that circuit, the OR farthest to the receiver is its rendez-vous point.
Its IP address is published in directory servers, along with the receiver’s anonymous
address. When a sender wants to contact that receiver, it queries the directory servers,
gets the rendez-vous point, and creates a circuit towards it. The sender then starts
sending message containing a specific command and the receiver’s anonymous address,
essentially instructing the rendez-vous point to forward those message into the circuit
built by the receiver. Hidden services are thus implemented by joining two circuits, one
from the sender, and one from the receiver.

Finally, the protocol uses fixed length messages, provides ways to manage, open, or
destroy circuits, and to manage message flows.

The nested encryptions structure in the above description is generally called an onion,
and protocols based on onions are called onion routing protocols. Onion routing is a way,
as URE, to modify the appearance of messages at each hop in a cryptographically robust
manner. Generally, the onion is created by the sender, and a layer is peeled off by each
of the nodes on the route. The Tor onion structure has the particularity of not growing
in size with the number of hops the message makes. Indeed, data is encrypted in place,
and since with AES, a plaintext of n bits produces a ciphertext of n bits, encrypting a
plaintext multiple times always results in n bits1. However, many onion routing protocols
exhibit onions structures that grow in size, such as in Mixminion [DDM03], because at
each layer, they embed routing information for each relay server on the route.

Tor solely aims at relationship anonymity. It exhibits the inherent vulnerabilities of

1IVs are not sent along the ciphertexts: Tor actually uses AES in counter-mode, always initialising the
IV to zero.
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low latency networks. As the authors note since the early design stages of the proto-
col [DMS04, Section 7], corrupting entry and exit relays, or observing the edges of the
network allows to re-link senders and receivers.

Additionally, various elements of design in the protocol degrade privacy to increase
performances. In particular, the OR selection made by users is biased towards nodes
with most bandwidth. This allows a powerful attacker with large resources to place itself
at strategic points in circuits. In the same idea, directory servers constitute targets of
choice for an adversary willing to advertise false information on ORs. Alternatively,
simply observing which user queries which directory server can help track users based
on their assumed view of the network [DDM03, Section 7].

3.1.3. Concluding on Low Latency Networks

Low latency protocols are well suited for a use by a broad public, and to provide
anonymity for the masses [Lin16b]. Indeed, although it provides somewhat weak anonymity,
it is sufficient for regular web users simply concerned for their privacy in their everyday
use of Internet. The protections put in place are not extremely robust, but are enough
to dissuade the adversary in investing resources to mount an attack against such targets.

In view of the privacy features we target in this work, however, this level of anonymity
is not sufficient. First, because network edges are observable, and secondly because
traffic analysis (in particular, possible even for external adversaries) allows to re-link
end-sender and end-receiver activities, and completely breach privacy.

3.2. High Latency Networks and Mixnets

Historically proposed prior to low-latency systems, mix networks, or mixnets [GT96;
DDM03; Mol+03; SSH08; DG09; Hoo+15; Kwo+15; Cha+16] were introduced by
Chaum in 1981 [Cha81]. This seminal work has inspired a long line of contributions
in all types of anonymous networking. Mixnets also rely on the client-server architec-
ture, but their main difference with low latency protocols is that mixnets aim, by design,
at preventing the TAR version of traffic analysis. For that, each relay server, called
a mix, in addition to changing the appearance of messages, carefully re-orders them
and/or adds random delays during the forwarding. Some mixnets also make use of
dummy messages, fake messages with random payloads that are indistinguishable from
actual messages. The idea with dummy messages is to introduce noise and perturb the
adversary’s traffic analysis.

Usually, mixnets aim for relationship anonymity, against a global eavesdropper or a
collusion of nodes. SA and RA are usually not achieved by mixnets, due to the client-
server architecture that allows observation of network edges, i.e. the first relay or an
observer of the first link breaks SA (and likewise for RA). Mixnets however do ensure
MU and TAR both, and usually realise a form of SU as well.

Re-ordering and delaying messages to ensure TAR comes with a great cost in la-
tency. Mixnet thus do not support applications such as web browsing, SSH connections
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or more generally any applicative protocol sensitive to gaps in message flows. Con-
sequently, the main application for mixnets are email communications (the so-called
remailer [DDM03]). Such mixnets have been deployed and are still active today. For
instance, the Mixmaster and Mixminion protocols run between 20 and 30 mix nodes,
and are still used on a daily basis [Moc06].

Before delving into the detailed description of mixnets and their characteristics, note
that those do not represent the only type of high latency network. In particular, a
approach common to some recent works [CBM15; AS16] consists in having senders drop
their messages on a central (not necessarily trusted) server. Receivers must then retrieve
the messages that are meant to them. To conceal which sender communicates with which
receiver, this latter task can be done by having the server broadcast all messages to all
receivers, who can then select the ones that are meant to them. Another solution is to use
private information retrieval, a generic cryptographic primitive that (in this application)
allows receivers to retrieve messages from the server, without the latter actually learning
which ones. These approaches get around the issue of traffic analysis, since there is no
actual flow of messages. However, the remainder of this section solely focuses on mixnet.
Firstly, because the described approaches only works with a client-server architecture,
which we do not use, and also because this thesis adopts several techniques proper to
mixnets.

3.2.1. The Different Types of Mixnets and Their Properties

There are several to many ways to implement a mixnet. To characterise a mixnet, there
are two main criteria: the way each single mix in the network functions, and the way
the mixes are arranged together.

Different Types of Mixes Globally, the internal functioning of a single mix depends on:
(i) the way it re-orders messages, (ii) whether it produces dummy messages or not and
how, and (iii) on the way it changes the appearance of messages. The first criterion is the
most crucial. We distinguish between batched and continuous mixes. The former type
of mix retains the messages it receives until its firing condition is fulfilled (e.g. until it
has at least a certain number of messages, or until some time-based condition is fulfilled),
and then sends them all or a portion of them in a random order. The interval between
two firing of the batched mix is called a round. In periods of low traffic, this means
that a message may be retained at a mix for a few hours, and up to twenty four hours
or more [MD05]. To avoid these situations, continuous mixes simply retain messages
for a random delay independent for each message. There are several variants of batched
mixes [SDS02] and continuous mixes [Dan04]. Batched mixes mainly differ by their
firing condition. Among them are pool mixes, with complex firing conditions, and which
do not always forward all the messages received in a previous time frame. Continuous
mixes mainly differ by the random distribution used to sample the messages’ delays.
Note that, in a given mixnet, all mix nodes are of the same type, and follow the same
behavior. A mixnet can not be a heterogeneous collection of several types. By extension,
the mixnet itself is thus said batched or continuous. The second criterion distinguishes
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mix nodes based on dummy messages. Dummy messages can either be sent as a link
message between two neighboring mixes, or as an end-to-end message (e.g. from the
first to the last mix on the route). The first ones can be used to conceal the number of
actual link messages exchanged between two mixes from an external observer, while the
latter one can be used to thwart end-to-end traffic analysis of sessions flows. Each policy
of dummy messages puts a burden on the network, and consumes bandwidth. Finally,
in all mixnet implementation, mixes pad messages to a constant size, and change their
appearance, roughly in the same manner as in low latency networks (usually, using some
cryptographic primitive). Combining all these three criteria, many variants of mixes
were proposed along the years, most of which are referenced in a taxonomy by Dias and
Preneel written in 2004 [DP04], only slightly outdated.

Different Network Organisations Given a specific implementation of a mix, there are
then several ways to combine mixes together, and thus several topological organisations
for mixnets [DSS04]. The most common and widely studied is the cascade, where all
mixes form a single line, and users have no choice but choosing the first mix of the line
as their first relay. In this setting, it is known that, as long as one of the mix server in
the cascade is honest, senders and receivers can not be linked together. A second type
of network, called stratified, consists in several cascades. This offers more flexibility to
the users, since they can choose between different cascades, based for instance on their
trust in the mixes composing each of them. Finally, the highest flexibility is offered by
free-route mixnets, where user may, as in Tor, choose freely the sequence of mix servers
for their messages. Free-route mixnets are also the least studied, because more complex
to formalise than simple cascades.

Secondly, a mixnet can function in a synchronous or asynchronous manner. In the
former case, which mainly applies to networks with batched mixes, all the mixes in the
network are synchronised and are at any time in the same round (i.e. they fire and send
messages all at the same time). In the latter case, each mix functions independently,
may process its messages as soon as received and fire independently from the other
mixes. Note that a cascade mixnet is, by definition, synchronous. Synchronicity mainly
has an impact on the security (or privacy) of free-route mixnets: although it is agreed
that asynchronous free-route networks are not secure, synchronous ones are deemed
acceptable [DSS04]. The rationale being that in asynchronous free-route networks, each
mix node processes a heterogeneous collection of messages that are different distances
away from their receiver and sender. And this may give away information on the length
of the route, and on senders and receivers.

Overall, a thorough comparison of all solutions and a clear statement of the con-
sequences of each design choice is still needed, and would require a substantial effort
from the whole community. In particular, there is no existing formal or cryptographic
framework able to produce proofs concerning the traffic analysis resistance of mixnets.
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3.2.2. Description of cMix

One of the most recent mixnet to date is the cMix protocol [Cha+16]. It is a cascade
synchronous batched mixnet. Although it is not said explicitly, the firing condition of the
mix seems to be based on a threshold on the number of incoming messages (a so called
threshold mix). The protocol requires a setup phase, in which mix nodes must interact
altogether. Indeed, the protocol makes use of the Elgamal scheme as a multi-party
homomorphic scheme, using what Section 2.5 of this thesis calls the key homomorphic
property of the scheme. Each mix node Mj independently generates a key pair (pkj ,

skj). Then, they all collaborate to produce a system public key mpk = g
∑

j
skj =

∏

j pkj .
Later in the system, there will be ciphertexts encrypted under mpk, which necessitate
all the keys skj (and thus the collaboration of all mix nodes) to be decrypted.

The system model of cMix also includes a network handler , that receives the users’
messages and manages them. Prior to any communication, each user Xi must perform
a DHKA with each mix node Mj in the cascade, and derive multiple secret keys ki,j .
Consequently, when Xi wants to send a message mi, it submits mi ·

∏

j k
−1
i,j to the network

handler, i.e. Xi blinds its message with the product of all the keys it shares with the
mix nodes. When the network handler has enough messages to fill a batch, it starts a
round and notifies the mix nodes.

A round is divided in a pre-computation phase and a real-time phase. The former can
be performed asynchronously in prevision of future rounds, and involves expensive public
key operations. The latter realises the actual forwarding of batches of messages, and
simply consists in (component-wise) multiplications of vectors. Indeed, cMix represents
batch of messages as a vector in which each slot corresponds to one message sent by one
particular user. The shuffling of messages is performed as a permutation on the elements
of this vector: abstractly, messages of users are input in a vector M = (m1, . . . ,mn),
and the output of the network is π(M), the vector M on which the permutation π was
applied. Permutation π is the result of the composition of the individual permutation
πj of each mix node Mj.

The pre-computation phase for one message batch unfolds as follows, assuming the
batch has n slots. First, each mix node Mj samples two random numbers ri,j and si,j

for each slot. Each Mj then communicates to the network handler

Enc(R−1
j ) := (Enc(mpk, r−1

1,j ), . . . ,Enc(mpk, r−1
n,j))

We abuse the Enc notation: for short, Enc(R−1
j ) denotes the component-wise encryption

of vector R−1
j = (r1,j , . . . , rn,j). Then, for ⊙ the component wise product of vectors, the

network handler computes

Enc(R−1) := Enc(R−1
1 )⊙ · · · ⊙ Enc(R−1

m ) = (Enc(mpk, r−1
1,1 · r

−1
1,2 · · · · · r

−1
1,m), . . . )

This value is sent back to the first mix node M1. In a second step (still in the pre-
computation phase), each mix node in order permutes the vector Enc(R−1) with a
randomly sampled secret permutation πj , and multiplies the result by Enc(S−1

j ) =
(Enc(mpk, s−1

1,j ), . . . ,Enc(mpk, s−1
n,j)). The result is the vector Enc((π(R) ⊙ S)−1) with
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each component independently encrypted under mpk. This result is sent to the network
handler. Lastly, each mix node commits (using a commitment scheme) to its decryption
shares of vector Enc((π(R)⊙S)−1). This last step is used to prevent active attacks, and
check that the permutations in the pre-computation and real-time phase match.

Now, the real-time phase starts from a (full) vector of blinded user messages,

M ′ := M ⊙K−1 = (m1, . . . ,mn)⊙ (
∏

j

k−1
1,j , . . . ,

∏

j

k−1
n,j)

First, each mix node sends ri,j · ki,j to the network handler (the keys are masked by
the randomness of the ri,j values). With these values, the latter transforms M ′ into
M ′′ := M ⊙ R, i.e. the messages that were blinded by keys ki,j in M ′ are now blinded
by ri,j values in M ′′. Then, the actual shuffling of messages takes place on the vector
M ′′: all mix nodes, beginning by M1, permute M ′′ with πj (the same as in the pre-
computation phase), and multiply in the vector Sj = (s1,j, . . . , sn,j). The last mix node
sends the result, π(M ⊙ R) ⊙ S to the network handler. At this point, each mix node
sends to the network handler its decryption share of vector Enc((π(R)⊙ S)−1) obtained
in the pre-computation phase. The crucial point is that, now, the network handler can
compute

π(M) =
(
π(M ⊙R)⊙ S

)
⊙

(
π(R)⊙ S

)−1

The network handler can then publish the shuffled vector of messages e.g. if a broadcast
channel application is envisioned. Alternatively, messages can include a receiver address,
and the network handler delivers each message to its respective receiver. Finally, cMix
allows answers from receivers, realising what Chaum initially called anonymous return
channels [Cha81]. The processing of answer messages m′i work similarly to the forward
path, where each mix node uses π−1

j the inverse of the permutation used on the forward
path.The cMix protocol also supports application where the same permutation is used
twice or more. This enables more complex communication patterns.

The authors claim to achieve relationship anonymity2 against an active adversary that
observes the whole network, and that corrupts all but one mix node and two users. This
is a strong security level, that authors prove with formal security arguments. However,
the analysis only takes one round into account. It would be interesting to study the
consequences of re-using the same permutation over several rounds (and their return
phase), since repeated use of the same random permutation may leak information about
it. Concerning usability, note that a lot of constraints are put on the users: they must
wait for the input batch to fill before their message is processed, and for the batch of
answer messages to fill up for the return of receivers’ answers as well. And there is no
upper bound on the time it can take for a batch to fill up. Also, if it is not always the
same user that uses the same slot in the batch, a mechanism must be put in place for
mix nodes to know which key ki,j to use in the real-time phase.

2The authors actually claim sender anonymity, but it does not correspond to the same notion as in
this work.
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3.2.3. Concluding on High Latency Networks

Mixnets provide more robust anonymity than low latency protocols, but are less easy to
use. These protocols can be considered as suited for those ready to give up some usability
and efficiency to gain in privacy. In practice, Mixnets were used before the advent of
Tor, mainly by so-called cypherpunk and early privacy-aware individuals. Today, it is
still used for email exchanges, in minor proportions compared to Tor.

In relation with the informant-journalist scenario, mixnets are still not enough, though.
SA and RA can be broken by internal or external adversaries. In particular, observable
network edges allow the global observer to detect any sending and receiving activities.
Furthermore, mixnets (especially synchronous ones) have an inherent flaw, that leads to
high probability of complete anonymity breach (i.e. to re-linking senders and receivers).
The idea is based on observing which senders and receivers participate in given rounds.
By intersecting the sender sets and receiver sets over many rounds, communication
relationships may be found. The attack is described in more details in Section 3.4.3.
Note that the authors of cMix attest that their protocol may be vulnerable to this
attack, but it is left out of the formal security analysis.

3.3. Homogeneous Networks

A solution to circumvent the fundamental limits on anonymity provided by mixnets is
to deviate from the client-server architecture in favor of a homogeneous network organi-
sation. That is, a network where all nodes are client and server at the same time. This
allows them to conceal their traffic and their actions as senders/receivers in the traffic
they relay for other nodes, and prevent the edges of the network from being observ-
able. In the initial presentation of mixnets by Chaum [Cha81], each user was actually
assumed to run its own mix node. This idea was questioned, for the burden it puts on
low power users, and because at the time, the anonymity provided with the client-server
architecture was assumed roughly the same as in the homogeneous architecture.

3.3.1. Properties of Homogeneous Networks

In this survey, homogeneous networks are defined only by the fact that they use a
homogeneous architecture. A protocol in this category can otherwise be a low or high
latency one.

The base idea, and advantage of homogeneous networks is well formulated by Benett
and Grothoff [BG03], using an analogy with a simple web proxy. In this setting, it is
the users of the proxy who supposedly obtain anonymity, but it can be seen in another
manner. In the words of the authors, “the only entity which can then proceed with
reasonable anonymity by using the proxy service is the actual operator of the proxy
service (if they use the service from within)” [BG03].

Another argument in favor of homogeneous network is its natural capacity of scaling.
Having each node act as sender and relay at the same time charges users with more
work, but then instead of a handful of server handling the load of many peers, many
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peers serve many peers. Also, homogeneous networks are naturally peer-to-peer and
fully distributed, which means that they resist better to legal attacks (since there is no
central authority to blame or take down), make it harder for an adversary to corrupt
large portions of the network, and do not necessitate trust in some directory servers.

There seem to be only a handful of existing homogeneous networks. To the best
of our knowledge, only three are relevant and related to direct messaging. The first
protocol to actually use the homogeneous architecture, with the explicit idea of hiding
senders among relays is Crowds [RR98]. Subsequent protocols, Tarzan [FM02] and
MorphMix [DDM03], ensure similar properties, but in a more robust manner. Still,
Crowds, Tarzan and MorphMix are designed to communicate with receivers outside the
anonymous network. The exit edge of the network is thus observable, and the last relay
node breaks RA. Crowds does not prevent traffic analysis at all and is a low latency
network. Although Tarzan and MorphMix do not completely reject message re-ordering
techniques, it is not explicitly included in their designs. In definitive, all three protocols
are thus considered in this thesis as low-latency ones. However, designing a homogeneous
high latency protocol is not impossible per se.

3.3.2. Description of Tarzan

Abstractly, Tarzan [FM02] is close to Tor: it works as an Internet overlay, senders chose
their sequence of relays and build circuits in a telescopic manner (contrarily to Crowds
and MorphMix, who let each relay decide of the next hop), and circuit identifiers are
used between each pair of nodes on the tunnel. Also, an onion structure carries the
messages and allows it to change of appearance at each hop.

Tarzan explicitly aims at ensuring SA, by realising what the authors call relay homo-
geneity, i.e. have sender act as relay as well, to conceal their own end-sent messages in
the traffic they relay. The authors note, however, that this property is not sufficient to
conceal sending activity. Indeed, by counting a sender’s incoming and outgoing packets
a simple local adversary can see that a node received k messages during a given time
frame, and emitted k + 1 messages, meaning that one of the k + 1 messages were end-
sent by that node. This is a breach of the SA property as defined in Section 1.4.1: even
though it remains to know which one of these k + 1 messages is originated by the node,
this reveals that the node is sending something.

To counter this, at the core of Tarzan is the system of mimics: each node only has a
few other nodes (e.g. 6) with whom it is authorised to directly exchange link messages
with. The mimic relationship is symmetric: if X is Y ’s mimic, then Y is X’s mimic as
well. In this sense, a node’s mimics can be considered as its neighbors in an incomplete
topology graph. The idea in Tarzan, is that each node keeps a steady message flow
with all its mimics, thus protecting these links against traffic analysis (a method also
known as link padding [DDM03]). Namely, dummy link messages are used when a node
does not have any real messages to send (i.e. to end-send or relay) at that time; and
a node refrains from sending (end-sending or relaying) too many real messages over a
short period of time. These two techniques respectively prevent a node from appearing
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as a clear sink and source of traffic. For this to work, link encryption ensures that
dummy and real messages are indistinguishable, so that an external observer can not
tell whether a message outgoing from a node is end-sent, relayed, or a dummy. To ensure
that messages always follow a path only made of protected links, a node must choose
the relays of its circuits according to mimic relationships. That is, an end-sender must
chose its first relay among its mimics only, its second relay among the first relay’s own
mimics, and so on. The last relay then sends the message to the designated receiver,
such as a web server out of the Tarzan network.

The protection of mimic links is designed carefully in Tarzan, so as to minimise the
observable changes in traffic pattern between two mimics, whether real messages need
to be exchanged or not, at high or low rates. Performances are also taken into account.
The most secure solution would be for mimics to exchange messages at constant periodic
interval, in the same manner as a heartbeat. Although this unconditionally hides the
traffic rate of a node at all times, it poses very severe constraints on the nodes and
the network as a whole. Also, Tarzan aims at reasonable latency, allowing web surfing.
Therefore, Tarzan constraints the outgoing traffic of a node to be loosely equal to its
incoming traffic, and to be distributed among its mimics. More formally, for a node X
with k mimic Mi, define TI(Mi) as the incoming rate of traffic from Mi to X. Similarly,
define TO(Mi) as the outgoing rate, from X to Mi. Let TI = {TI(Mi) | ∀Mi} be the
multiset of incoming traffic rates, and f be the 33rd percentile function. Then, the
relations between incoming and outgoing traffic of node X are determined by the two
following equations:

∀ Mi, f(TI) ≤ TO(Mi) ≤ max(TI) + ǫ (3.1)

∀ Mi,∀ circuit c, f(TI) ≥ TO(Mi on circuit c) (3.2)

The first equation is a protection against external adversaries (who can not distinguish
real from dummy messages), and the second against internal ones (who are able to
make the distinction). The lower bound in eq. (3.1) states that a node must maintain
a minimal amount of traffic (real or dummy) towards each of its mimics. The upper
bound is what limits nodes in their sending rate: nodes can not suddenly decide to
augment their traffic rate arbitrarily. It is allowed to have high outgoing traffic rates
only if one of its mimics provides a high incoming rate. The second equation limits the
sending of real messages (not taking dummy messages into account) in specific circuits.
This prevents the corrupted next relay of the circuit from detecting X as sender, while
allowing sending at reasonable rate even when a 3rd of X’s mimics are slow. More
abstractly, these equations mean that mimics provide cover traffic to each other; that
a node can redistribute high incoming traffic rates from one mimic to any other mimic;
and that a node with k mimics may have a total outgoing rate k times greater than
its incoming rate, by sending out to each k mimics at rate max(TI). This last point
implies that an adversary corrupting two or more of a node’s mimics can detect this
traffic amplification, and possibly infer when a node is end-sending or not.

Finally, Tarzan provides a way to learn about all the other nodes in the network
though a simple gossip protocol. Mimics are then chosen deterministically (and in a
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verifiable manner, to detect malicious nodes) from the set of all nodes. Note also that
Tarzan, like the work, in this thesis, works over the Internet but effectively assumes
an incomplete topology graph. This is motivated by the need to protect links used to
exchange messages, and the cost of such a protection: the number of links to protect in
a n node complete topology graph is n2, while it is only 6n with the mimics mechanism
(if each node has 6 mimics).

The protocol aims at achieving SA in the same version as in the present work, and
at thwarting traffic analysis. The latter goal is hard to assess, but seems only par-
tially achieved. In particular, Tarzan does not use traditional mixnet-based message
re-ordering techniques, and the onion structure varies in size depending on the position
of the relay in the tunnel (letting each relay estimate their position in the tunnel, con-
trarily to Tor). Indeed, material for per-hop integrity checking is included at each layer
of the onions. The author study the anonymity of senders with a methodology inspired
from Crowds. That is, they estimate the confidence (or probability) p of the adversary
in finding the initiator of a circuit, based in particular on the information that she has
from the size of the onions. To have probable innocence, meaning p < 1/2, the authors
conclude there must be less than 40% of corrupted nodes [FM02, Fig. 7]. However, this
analysis is informal (from a cryptographic point of view), and implies strong assumptions
on the adversary (see Sections 5.1.2.a and 6.4 for further discussion on this point).

Lastly, note that Tarzan is not subject to the same attack as mixnets, since the entry
edge of the network is not observable. If the protocol may realise SA in a robust manner
because traffic analysis is still possible, it at least makes a step towards it: instead of the
first relay always breaking SA, as in Tor and cMix, Tarzan introduces some uncertainty
in the detection of senders.

3.3.3. Concluding on Homogeneous Networks

Ensuring relay homogeneity is what realises the homogeneous architecture. But its
implementation seems to put a lot of load on users, and to consume bandwidth, because
of the need of dummy messages and controlled traffic rates. A homogeneous high latency
protocol is likely to be even less efficient than a mixnet, but can still be easier of use.
In particular if the synchronous cascade approach of cMix is rejected in favor of a more
flexible mixnet design. Although this gain in flexibility translates in a loss of security
and privacy (meaning that traffic analysis may become easier), we argue that relay
homogeneity can fill this gap, by making traffic analysis much harder, especially for
external adversaries.

Taking a step back, the particularity of homogeneous networks lies in the active par-
ticipation of all users in order to achieve the anonymity that it provides as a whole. On
the other hand, non-homogeneous networks are meant to provide anonymity as a service,
and do not require much from the user (apart from patience with regards to the added
latency). A homogeneous network is thus a sort of solidarity network, and is in this
sense designed for a public ready to spend resources for the community as a whole. It
is suited for our journalist-informant scenario, and this is the network architecture used
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in this thesis.

3.4. Review of Known Attacks

During the description of low, high, and homogeneous networks, several attacks were
mentioned or referenced. This section reviews existing attacks in more details. The aim
is to obtain a clear view of the threats to anonymity, and of possible defenses. Because a
passive adversary model is considered, only passive attacks are listed here. The list here
is obviously not exhaustive, be it only because new attacks are discovered on a daily
basis.

Passive attacks against anonymity properties mostly rely on observations, collection
of information, and analysis of this information. The goal often comes down to linking
a (link or payload) message with a particular end-sender or end-receiver. In this sense,
most attacks are related to traffic analysis. Analysis can be based on individual messages,
or on full sessions (that is, on the flow of messages in communication sessions or in
connection-based protocols such as TCP). Roughly, the sources of information to the
adversary are: the appearance of messages, the timing between messages, and their
number. These information sources may not suffice by themselves. Typically, a more
advanced attack consists in observing many3 messages and/or nodes, and by intersecting
the information gathered from these observations. This allows to carry out statistical
analyses, and to check assumptions, e.g. on communication relations. The goal being,
eventually, to break SA, RA, or even completely re-link senders and receivers. Although
this generic description is valid for many attacks, there are of course some network-level
or cryptographic attacks that use different methodologies.

This section begins with a description of what can be learned by simply looking at the
appearance and bit pattern of messages. The rest of the section describes more advanced
attacks, taking place at the system or network level. In particular, we present the
inherent flaw of non-homogeneous mixnets, which allows to re-link senders and receivers.
The last parts focuses on advanced flow-based timing analysis and traffic fingerprinting
attacks. In conclusion of this section, Table 3.1 summarises which of the Tor, cMix and
Tarzan protocols are vulnerable to which attacks, and reviews the privacy goals of this
thesis in light of what was learned.

3.4.1. Attacks based on Appearance of Messages

The most basic source of information that the adversary has is the appearance of mes-
sages, meaning their bit pattern, the information they contain, and all cryptographic
material that may be associated to them. Either as a network observer or a corrupted
node, a message’s appearance can in particular allow its tracing, and ultimately lead to
finding the end points of communications.

Firstly, the most trivial breach of privacy is when the message contains information in
the clear about the route or communicants. The worst case being when the identity of

3Polynomially many, to be more accurate.
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the end-sender or end-receiver appears, as in the Crowds protocol, where the receivers’
identity is visible to all relay nodes on the path. Another, less trivial case, is when mes-
sages carry information on the route length, on the location of the relays that process
it on the route, or on the number of passed or remaining hops. Access to such infor-
mation can bring quite a lot of information to the adversary. In particular, Berthold
et al. [BPS01] show how this can greatly degrade privacy in asynchronous free-route
networks. Most anonymous protocols are of course designed to carry in clear only the
minimum necessary for the protocol to work. External observers in particular, often do
not get any information.

Then, another trivial issue arises when a message does not change of appearance as it
is relayed. Whether the message is encrypted or not, if its appearance is the same from
one end of the route to the other, its tracing is trivial. In Crowds again, relay nodes
do indeed all see the exact same data (encryption is only used between relays). In most
anonymous protocols, the appearance of messages is thus changed, even from the point
of view of the relays. This is performed using, e.g. onion encryption or URE.

Still, those changes of appearance may be predictable in some way. In particular, in
mixnets based on onion routing, if the exact same message with the same onion structure
is sent on the same path on two occasions (i.e. in two different batches), it will follow the
exact same sequence of transformations, and thus be easily spotted and traced. A typical
solutions is for relay nodes to discard any already seen messages. Another solution is to
use URE: because of its probabilistic nature, the same incoming message (i.e. the same
ciphertext) will yield a different re-encrypted outgoing message each time.

However, another threat arises with URE, that can be described as recognising a
message based on its encrypted contents. In a protocol where messages are simply
encrypted under the end-receiver’s public key, and re-encrypted at each hop, a corrupted
end-receiver (coupled with a network observer) can perfectly trace all messages meant to
itself. For that, it needs only to decrypt the ciphertexts in the messages, and access its
contents, that stays constant from the end-sender to the end-receiver. A simple counter-
measure is to add link encryption, making the attack only possible to corrupted relays
working with Bob. Alternatively, messages can be encrypted under a key other than the
end-receiver’s, or under a product of public key. For instance, in the already mentioned
protocol by Huang et al. [HLF12], a cascade mixnet that uses the URE-Elgamal scheme,
a message m for end-receiver R going through mix nodes Mj , j ∈ [1, k], is encrypted by
the end-sender as c = Enc(pkR ·

∏

j pkj,m). Each mix node on the path then partially
decrypts and re-encrypts the ciphertext, so that its comes out of the network encrypted
solely under pkR).

Independently from the contents and appearance, messages can be distinguished or
traced based on their sizes. More exactly, there are two dimensions: different end-senders
could provide different sized messages, or messages’ size could change as they evolve in
the network. The first possibility is especially devastating in a batched mixnet: in the
worst case, if messages constituting a batch have different sizes, the whole purposes of
shuffling is defeated, and each message in the batch can be traced trivially. The second
possibility can be illustrated with the onion structure of the Tarzan protocol, which
diminishes in size at each hop of the circuit. This leaks information to relay nodes on
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the length of the circuit, and/or on its own position in the circuit (thus coming back to
the problem of leaked hop count). Therefore, anonymous protocols often require that
all messages have the same size, or at least split long messages into fixed-size units (e.g.
512 bytes in Tor). Then, to ensure constant size of the messages as they travel, protocols
either use a fixed-size data structure (e.g. Tor encrypts data in-place); or, add padding
to always match the maximum size of the message on the route. For instance, Mixminion
uses a onion structure that grows in size, but adds padding that even relay nodes can
not distinguish from actual (encrypted) data.

Summing up, an anonymous protocol should at least include the basic elements of
design that: conceal most of the information carried by messages, change appearance of
messages at each hop (preferably in a probabilistic way), and ensure uniform size of all
messages. These should hold both for network observers and (corrupted) relay nodes.

3.4.2. Network Discovery and Relay Selection Attacks

In anonymous networks, homogeneous or not, users must be able to learn about other
nodes in the network. In many protocols, they then choose the relays they want to use
based on their view of the network. There are potential pitfalls in this process: users
may choose corrupted relays, and users may have a biased view of the network and the
nodes therein.

Choosing one or a few corrupted relays does not automatically mean a breach of
privacy, since anonymous networks take into account and include defenses against this
scenario. However, a protocol such as MorphMix, who lets each relay select the next
hop, is subject to route capture: if at some point, a corrupted relay is selected, it is
likely that the message will then be routed only through other corrupted relays from
the same collusion. Against this, MorphMix includes a collusion detection mechanism,
based on the idea that corrupted nodes within a collusion appear more often together
in anonymous tunnel than honest nodes. Another threat arises when the adversary is
able to place itself in a position where its relays are more likely to be selected by users.
For instance, Tor’s standard relay selection biases the users’ choices towards relays with
high bandwidth. While it is good for efficiency and for the functioning of the network as
a whole, it is likely that the adversary has the required resources to run powerful onion
routers, and capture users’ circuits. Recent works show improved anonymity guarantees
for more uniform choices of relays [BMS16].

A second type of threat arises when the user has partial or out-dated information on
the network [DS08]. More generally, when different users have different views of the
network, the adversary can exploit these discrepancies to partition and distinguish users.
In a protocol using directory server [DDM03; DMS04], it may be the case that a server S
is listed only on directory server D but not on others. The adversary can thus attribute
messages forwarded by S only to users that have queried D, degrading privacy [DDM03,
Section 7]. The same attack applies if users download only a fraction of the directories.
Another example, applied to completely distributed networks with no directory servers,
can be found in an early design of Tarzan, where nodes learned only a random fraction
of nodes in the network. Consequently, the circuit built by individual users could be
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attributed to them based on the uniqueness of the information they had learned [DC06;
DS08].

To remedy to the above attacks, Tarzan opted for a full network discovery, at the
expense of decreased efficiency and scalability. For protocols based on directory servers,
all directories should at least have the same information at all times, and ideally, users
should always download the whole directories (to hide which nodes they are interested
into). This is the design of directory servers in Mixminion [DDM03] as well as in
Tor [nic12]. Additionally, because directory servers are a target of choice for the adver-
sary, they should be well secured, and monitored (e.g using a reputation mechanism).

3.4.3. Limits of the Mixnet Model

Section 3.2 made a reference to a fundamental flaw of mixnets, especially synchronous
ones. That is, mixnets are subject to an attack that allows a complete re-linking of
senders and receivers.

The first version of this attack, hereby called the long term intersection (LTI) attack,
is due to Kesdogan et al. [Kes+06]. The authors demonstrate the maximal theoreti-
cal anonymity mixnets can provide using information theory. Their main result states
that an adversary observing the senders and receivers at the edges of the network, can
theoretically perfectly re-link all senders and receivers across all communications, even
if the mixnet is considered a perfectly secure black box. This result is mainly appli-
cable to batched synchronous mixnets, where the mixnet functions in separate rounds.
This mixnet variant was believed the most robust, since attacks had previously been
found against the other types of mixnets, asynchronous ones [DSS04] and continuous
ones [Dan04]. Now, the situation is not as clear, since each mixnet variant has its own
weaknesses.

This theoretical result rests on the fact that not every sender and receivers participate
in each round: sender and receiver anonymity sets differ from round to round, and by
intersecting them, the actual mapping between senders and their respective receivers
(the receivers it has communicated at least once in the system) can be completely found.
It is possible to prevent this, by having all senders send a message in every single batch
round, and by broadcasting the output of the mix to all receivers, making sender and
receivers sets always maximal. But this solution is totally impractical: for payload
messages of 4KB and n = b = 10, 000 users, each receiver is given 400, 000MB [Kes+06,
Section 2.2].

The result of Kesdogan et al. is only theoretical because it assumes a computation-
ally unbounded adversary having access to all the observations it could ever need. But
several practical attacks were proposed, broadly following the idea of intersecting obser-
vations. A good history and comparison of practical attacks can be found in [PTO14].
In a nutshell, the first attack [KAP02] was computationally expensive (requiring to solve
a SAT instance), assumed very simple sender behavior, and simple batching strategies.
Following works made weaker assumption, always increasing the accuracy of the attack,
and considering more realistic sender behavior, and more robust batching strategies.
Latest developments study the effect of pool-based batching strategies (where a message
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may stay in the mix for more than one round) [PTO14] and dummy messages [OTP14]
using a least square errors (LSE) approach, which is the most efficient one to date.
This approach consists in the adversary making assumptions on the sender-receiver re-
lationships, under the form of probability vectors. After observations, is retained the
probability vector that minimizes the difference, in the sense of LSE, between (i) the
observed output messages on one hand, and (ii) the combination of the observed input
messages with the assumption of the adversary on the other hand. The attack does not
need to enumerate all hypotheses, rather to start from one hypothesis, and from there,
progress towards a local optimum.

Generally, results show ([KAP02, Claim 1], [Dan03b, Equation (4)], [Kes+06, Sec-
tion 5.3], [PTO14, Section VI.C]) that the success of attacks for a fixed sender behavior
and batching strategy, depends on: the number r of rounds observed, the total number
of users n, the batch size b, and the number m of receivers each sender communicates
with. As r augments, the attack’s results get more accurate (and are completely ac-
curate when r → ∞). Also, the attack gets easier when n augments, b decreases, or
m decreases. As an example, the practical attack studied by Kesdogan et al. [Kes+06]
needs no more than 600 observations for its attack to succeed, for n = 200, 000 users,
batch size b = 100, and m = 40. Also, the sender behavior plays a role: discrepancies
among senders behaviors helps the attack. Notably, a sender that communicates much
more than the others is easier to target [OTP14, Fig. 2]. But the LSE approach works
for any behavior that can be probabilistically modeled. The batching strategy is also
a factor. It seems that pool-based mixes resist better, and that the longer a message
may stay in the pool of a mix, the harder it is to link senders and receivers [PTO14,
SectionVI.D] (at the cost of longer latency in delivery of course).

Because all the above attacks assume that it is possible to observe senders and receivers
post or get their messages from the network, they can not be carried out when SA or RA
is ensured. This is the idea used in Tarzan and homogeneous protocols more generally,
and put forward in this thesis.

3.4.4. Detecting End-Sending and End-Receiving Activities

In a non-homogeneous network, observing the network edges allows to detect end-sending
and end-receiving activities trivially. However, even homogeneity is not sufficient in itself,
as already noted in the analysis of Tarzan (Section 3.3.2). If the adversary can observe
all the links of a given node, she can see the numbers ni and no of incoming and outgoing
messages of a node during a given time frame. And if ni > no or ni < no, the adversary
concludes that the node end-sent or end-received at least one message. This is a breach
of the SA and RA properties as defined in this thesis.

Typically, a protocol prevents these breaches of privacy not only by endorsing a homo-
geneous architecture, but also by introducing dummy messages. As in Tarzan, the idea
is to blind the ni and no values and making them an unreliable source of information for
the adversary. Of course, for that, dummy messages must be indistinguishable from real
messages. However, in Tarzan, dummy messages are (meant to be) differentiable from
real messages by relay nodes, and thus have limited effect on internal adversaries. In
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the worst case, when a node is surrounded by corrupted nodes, the types of dummy link
messages are completely ineffective [Boh+04]. This last fact is one of the reasons to be
of Assumption 3, that every node has at least one honest neighbor. Alternatively, some
works use dummy end-to-end messages, indistinguishable from real messages even for
relay nodes (only the end-receiver makes the difference). The cost of end-to-end dummy
is greater than simple link ones, and their effectiveness is questionable, in particular in
view of the advanced timing and traffic fingerprinting attacks described next.

3.4.5. Timing Analysis

Timing analysis, in the general sense, may be the most complex and less understood
class of attacks in anonymous networks. Yet, it is recognised as an important threat,
allowing ultimately to re-link senders and receivers [Dan04; MD05]. It is most effective
against low latency protocols, but can also be applied to continuous mixnets. It efficiency
against batched mixnets is limited, although not null [Zhu+04].

Timing analysis is based on the assumption that a message entering a node at time t
will leave it at a predictable time t+ ǫ. This principle can also be ported to a sequence
of nodes, or even by looking at messages entering and leaving the network (if it is not
an homogeneous one). More generally, timing analysis is conducted on communication
sessions and flows of several messages, by looking at inter-message intervals: in a low
latency network with no message re-ordering of any kind, if two messages leave some
upstream node X with δ time difference, they will with high probability arrive at down-
stream node Y with time difference δ ± ǫ for a small ǫ. To carry out a timing analysis,
the adversary must be able to observe messages. It is easier to do so is she has cor-
rupted nodes in the network, but in some cases a simple network observer is enough, in
particular, when no dummy messages are used or when network edges are observable.

Practical attacks do not directly use the inter-message intervals, but divide the time
into fixed-size windows and counts the number of message observed during each win-
dow [Lev+04; SW06]. Shmatikov and Wang [SW06] study the possibility of correlating
sparse flows (that is, link a given flow entering the network, with an exiting flow) in low
latency networks. Sparse flows have the particularity of alternating noticeable bursts of
traffic and low traffic rate (e.g. TCP of HTTP connections). Results show that nearly
all flows can be correctly re-linked by the adversary. In addition, Levine et al. [Lev+04]
make the experience with a steady traffic rate, and show that, although the traffic does
not present significant bursts as in the previous attack, it is still possible to successfully
correlate flows. Of course, these attacks are more accurate as the number observed of
messages in flows increases. Danezis [Dan04] extends the attack to continuous mixnets,
where each message is independently delayed a random amount of time. In this case,
the observed inter-message interval is not the same at the entry and exit of the network,
since random delays are introduced. However, the attack still works, because δ′ is a
predictable function of δ, that can be estimated from the probability distribution of the
random delays added and the number of relays on the paths. Again, it is possible to
correlate a large portion of entry and exiting flows.

The presented attacks work because flows conserve their timing signature as they
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traverse the network. And the more sparse the flow is (with silent phases interleaved
with sudden bursts of traffic), the more unique its signature is, and the easier timing
analysis gets. Therefore, defenses against timing attacks mainly consists in disturbing
that timing signature of flows. One way to do so is to use batched mixnets, perturbing
timing signatures in less predictable ways than continuous ones. For works aiming
at low latency, other ideas include defensive dropping [Lev+04], where some dummy
messages are relayed on several hops and dropped randomly at some point, or adaptive
padding [SW06], where messages are inserted opportunistically in between bursts in the
flow. Note that homogeneous networks are not subject to end-to-end traffic analysis
since network edges are not observable, but leaves the possibility of timing analysis by
corrupted nodes along the same (portions of) routes.

3.4.6. Traffic Fingerprinting and Application Layer Information Leak

The last class of traffic analysis reviewed in this chapter is traffic fingerprinting. It is an
advanced attack, akin to timing analysis, but based on multiple criteria to detect the
signature of a flow. It additionally uses metrics such as the number of messages, their
order, their size, or any other elements that characterises a flow, in addition to timing
information. Such a collection of characteristics is hereby called the fingerprint of a
flow. In particular, there may be a lot of information that leaks from the application
layer. Indeed, even if the contents of application message is encrypted and/or sanitized
of sensible information about the end-sender for instance, the fingerprint of a SSH flow
often greatly differs from a HTTP flow; and the flow for a specific web page will be
different than that of another page (depending, notably, on the additional resources
such as images that needs to be downloaded). This type of attack is a real threat, in
particular to low latency networks and continuous mixnets. Several attacks on the Tor
network have been shown effective in practice [Jua+15; Gha16]

There are many practical attacks in the literature, summed up by Ghaleb [Gha16,
Section 2.1], each with different strategies. Most often, attacks are based on machine
learning, where a classifier must be trained on a set of known flows. Then, it is given a
flow from some anonymous protocol, and makes a guess. In Tor, this idea is most often
applied to distinguishing which web pages are visited by users, an attack called website
fingerprinting [Jua+15], that exploits the differences in web pages sizes and resources.
The relations between HTTP flows can also be leveraged by the adversary: she can use
the fact that when some web page, say, www.example.com/index.html, is visited, the
page www.example.com/about.html will be visited shortly after.

It is interesting in this thesis to look at how traffic fingerprinting performs against high
latency networks, such as batched mixnets. Zhu et al. [Zhu+04] are among the few works
that study traffic fingerprinting of batched mix nets with several batching strategies
(including the pool-based ones). The authors show that, it is possible to distinguish a
FTP flow from a flow of dummy messages. With more than 20, 000 messages in the flow,
the probability of distinguishing approaches 1. However, these experiments considers an
extremely simple scenario, with solely one mix node, and only two flows going through it.
Also, the parameters of the batching mechanism is extremely low: batches are of roughly
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b = 10 messages, and the firing condition consists in flushing the mix node every t = 0.01
seconds. This explains why the studied network is able to handle a FTP flow, normally
incompatible with high latency networks. In comparison, one of Mixminion’s practical
implementations uses a time interval of the order of the minute e.g. t = 15min [Mat11].
In definitive, this study mainly shows that low batching parameters leads to insecure
mixnets, and inspires care: batched mixnets may still leak a small amount of information
on flows.

Several counter-measures were proposed [Gha16, Section 3.3], in the same idea of
defenses against timing analysis: disturb the flows’ fingerprints. Most works aim at
doing so while introducing the least latency as possible in the delivery of messages.
The BuFLO mechanism [Gha16, Section 3.3] proposes to make all flows look the same
(at the cost of some latency and bandwidth), while traffic morphing tries to prevent
website fingerprinting by altering flows to imitate another web page. Also, Juarez et
al. [Jua+15] re-use the adaptive padding technique from Shmatikov and Wang [SW06].
Serjantov and Murdoch [SM05] propose to tackle the base assumption made by almost
all traffic analysis attacks (including timing ones) that all messages of a flow go through
the same path. By splitting messages from a same flow, they show that anonymity can
be improved. However, we note that splitting flows is hard to achieve for connection-
based protocols, such as TCP, which are sensible to messages order and latency. But it
is possible for direct messaging, where a flow is simply a large message split into chunks.

3.4.7. Concluding Remarks on Attacks

All the above attacks were presented in a generic manner. However, it is important to
remember that most of them apply to specific types of networks, or are based on explicit
assumptions. For instance, the LTI attack works only if network edges are observable.
Also, attacks can generally be made even more effective if the adversary has some a
priori knowledge, or already suspects that some entities are communicating.

Table 3.1 intends to summarise which of the presented protocols (Tor, cMix and
Tarzan) are vulnerable to which attacks. A “✔” means the protocol resists the attack,
“✗” that it does not. The “?” for the LTI attack w.r.t. Tor denotes an uncertainty.
Indeed, this attack mainly applies to batched mixnets, but may also work on (non-
homogeneous) low latency networks, by considering time windows instead of batches.
More generally, this table is informal, and a thorough study of each attack applied to
each of the three protocols would be needed to validate it.

Taking a step back, these attacks show that preventing (advanced) traffic analysis in an
efficient manner is still an open problem. To do so while maintaining low latency seems
near-impossible, and even mixnets, which abandon some efficiency to gain robustness,
may not be immune to traffic analysis. In particular, the guarantees brought by dummy
messages and message re-ordering mechanisms are uncertain (in particular, they can
not be formally proved, as of today), while the burden they put on the network may be
high [DP04; DMS04; OTP14]. Shamatikov and Wang rightfully remark that any defense
is ultimately vain if flows follow different statistical distributions, by stating that “even
small statistical differences between packet flows can be detected if the observation time
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Enc. Contents ✔ ✔ ✔
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Size ✔ ✔ ✗
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v Senders ✗ ✗ ✔

Receivers ✗ ✗ ✗

Relay Selection ✗ ✔ ✔

LTI ? ✗ ✔

Timing Analysis ✗ ✔ ✗

Traffic Fingerprinting ✗ ✔ ✗

Table 3.1. – Vulnerabilities of Presented Protocols

is long enough” [SW06, Section 5.1]. In this light, the possibly only robust defense
would consist in sending messages at a constant rate (and send dummy messages when
no real messages need to be sent), and thus make all flow have the exact same fingerprint.
Actually, this design may be the only one that is provable in the cryptographic sense, as
resisting against any PPT adversary. But this trivial solution is much too costly, even for
high latency networks. The idea, as in the whole field of computer security, is ultimately
to find a middle ground, where the time, resources, and number of observations needs
to the adversary is high enough compared to the envisioned use of the network.

In view of all these attacks, where do the SA, RA, SU, MU and TAR properties stand?
Clearly, all attacks ultimately aim at breaking SA and RA. And for that, they tackle SU,
MU and/or TAR. Ensuring SU prevents, in particular, the traffic fingerprinting attack
based on the linking of several HTTP flows (the one for the web page, plus the ones for
its linked resources). More generally, it segregates the knowledge the adversary acquires
about each session or flow. The review of attacks also makes the differences between MU
and TAR appear more clearly. MU essentially relates to the attacks based on the bit
pattern of messages (described in Section 3.4.1), while all the others relate to TAR. This
seems to imply that MU is ensured by cryptographic means and can often be formally
studied and proved, while TAR can not.

3.5. Summary: Where this Thesis Stands

This survey of existing privacy-preserving protocols, and of the different attacks on
anonymous network, puts in light some leads to further improve network users’ privacy.
It appears firstly that ensuring SA and RA, in the strong sense given in this thesis, is
not usually among the primary goals of existing constructions. Yet, for our envisioned
informant-journalist application in particular, it is crucial to prevent the observation of
end-sending and end-receiving activities. From the example of the Tarzan protocol, it
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appears that realising SA and RA implies a homogeneous architecture, and the use of
dummy messages and controlled traffic rates. However, Tarzan’s mimics mechanism does
not seem strict enough, since it still allows a node to suddenly augment its end-sending
rate, making it easy to detect end-senders for the adversary. We propose an adaptation
of this mechanism that abstractly aims at making each node appear as if it was only ever
relaying traffic for other nodes, even in the presence of corrupted neighbors and external
observers.

Secondly, in order to allow the journalist to communicate with the informant without
learning her identity, we have seen Tor’s hidden services solution, that makes use of
pseudonyms and rendez-vous points. In this thesis, the informant’s anonymity w.r.t.
the journalist is ensured by mechanisms inspired from both these techniques.

Lastly, from the review of existing threats to privacy, it appears that ensuring the
TAR property in a robust, formally verifiable manner is extremely challenging or even
impossible. Yet, timing analysis and traffic fingerprinting are serious threats, since
they are stepping stones towards breaching SA and RA. Still, there is hope. Overall,
past works indicate that the most traffic analysis-resistant networks are the pool-based
mixnets, that come with complex firing conditions [Mol+03], and where batches com-
ing out of a mix node are not solely composed of messages that recently entered the
mix, but of potentially any message received by the mix since the start of the network.
Also, the most serious attacks, timing analysis and traffic fingerprinting, often make the
assumption that both edges of the network are observable, which is not possible in a
homogeneous network where SA and RA are ensured. However, the challenge here is to
adapt pool-based mixing to the setting of fully distributed, homogeneous networks.
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This chapter presents our homogeneous protocol ensuring sender anonymity (SA),
receiver anonymity (RA), message unlinkability (MU), session unlinkability (SU) and
traffic analysis resistance (TAR) over the Internet. The security of the protocol is anal-
ysed and proved in Chapter 5, while Chapter 6 presents a prototype implementation of
the protocol, and studies its practical performances and privacy guarantees.

At a high level, the protocol is an adaptation of Tarzan [FM02] to the mixnet setting,
preventing the very detection of the actions of end-sending and end-receiving. It differs
from usual sender-built circuits, since instead of building circuits on-the-fly and when
needed, circuits are long-lived and built in a proactive manner. That is, the protocol
comprises a topology dissemination phase, where the nodes learn about their extended
neighborhood, and ultimately every other node. Also, the protocol consists in a shift in
terms of identity management: to enable end-receivers to be anonymous even w.r.t. to
end-senders, nodes are identified in the network with relationship pseudonyms [PK01].
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The chapter is organised as follows. The first section is a didactic overview of the
protocol, effectively summing up the whole chapter. The overview also presents the mo-
tivations and consequences of using relationship pseudonyms. Building on the overview,
and following a similar outline, the complete protocol presentations spans over Sec-
tions 4.2 to 4.5. Section 4.2 begins by presenting the routing tables as obtained after the
topology dissemination phase, and Section 4.3 details how these tables are used, and the
cryptographic processing of messages by nodes. Section 4.4 is devoted to the description
of the dummy messages, controlled traffic rates and message message re-ordering mecha-
nisms, that play an important role in ensuring SA, RA, and TAR. Section 4.5 describes
in details the topology dissemination, and the construction of routes and routing tables.
Section 4.6 presents the final building block, oriented communications, where an infor-
mant anonymously contacts a journalist by leveraging the properties of the pseudonyms.
Finally, Section 4.7 summarises some of the interesting properties of the protocol, and
concludes

4.1. Overview

This section is a summary and an introduction to the full protocol description. It is
organised as the whole chapter, and acts as a condensed version of it.

The protocol works over the Internet, and is based on a homogeneous architecture.
It assumes a sparse underlying topology graph [Dan03a] (an incomplete but connected
graph), where each node knows only its direct neighbors’ IP address. How this underlying
topology graph is constructed is out of the scope of this work.

The protocol belongs to the high latency category, for it aims at TAR and uses re-
ordering techniques for that, under the form of pool-based mixing. It can be described
as a restricted-route mixnet [Dan03a] (i.e. not a cascade, but not a free-route network
either), and functions in an asynchronous manner. The routes are long-lived circuits
built starting from end-receivers. A circuit relates to only one end-receiver, but several
end-senders share the same circuit. Neither end-senders, relays, or end-receiver know
which nodes are part of a given circuit: the insider’s knowledge is limited to the previous
and next hop. The protocol encrypts messages under a product of public keys (including
the end-receiver’s public key), uses URE to change the appearance of messages, dummy
messages to prevent the observation of the network edges, and controlled traffic rates
to protect against corrupted neighbors. Last but not least, nodes designate each other
using pseudonyms instead of their IP addresses or real-world identities.

Relationship Pseudonyms

The protocol proposes a shift from traditional identity management, by making nodes
designate each other with relationship pseudonyms [PK01]. Therefore, in a network of n
nodes, each node has n−1 anonymous network identities; and nodes X and Y designate
the same end-receiver node R under two completely different and unlinkable pseudonyms.
This design choice, along with the goals of SA, RA, MU, SU and TAR, greatly impacts
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the way the protocol is built, and implies the need to introduce mechanisms that are
non-standard w.r.t. previous works.

This choice is motivated by the need for nodes to be reachable while staying anonymous
even from the end-senders. In the considered informant-journalist scenario, this enables
the informant to receive messages from the journalist, while remaining anonymous even
to the latter. In terms of functionality, these pseudonyms can be seen as a stronger
version of Tor’s hidden services, where the end-sender does not know the real-world
identity of the end-receiver it is communicating with.

Relationship pseudonyms provide better anonymity than traditional ones, which im-
plies that a node is known by every actor in the network under the same unique
pseudonym. It is the case with the pseudonyms used by receivers hiding behind hid-
den services in Tor, or those used by Bitcoin walled addresses [Nak08]. Indeed, with a
traditional pseudonym, all the actions of a given node can be linked together. Ultimately,
this allows profiling and easier de-anonymisation [CKK05]. On the other hand, relation-
ship pseudonyms make coordinated attacks from several actors in the network harder to
carry out. Additionally, once a traditional pseudonym is de-anonymised by the adversary
A, the latter can publicly announce the linking between the pseudonym and real-world
identity. With relationship pseudonyms, it is not that simple, since the relationship
pseudonym used by A is meaningful only to herself: announcing publicly who is hiding
behind that pseudonym does not give information to other nodes. Of course, relation-
ship pseudonyms do not prevent de-anonymisation in themselves. Rather, they limit the
consequences of de-anonymisation. Actually, endorsing relationship pseudonym is a way
to attest that some nodes will inevitably be de-anonymised at some point, despite the
best efforts put in the design of the protocol, and to introduce a form of damage control.
Indeed, even provably secure protocols are subject to de-anonymisation (in particular,
by attacks out of their model). For instance, even though mass de-anonymisation of Tor
user is still believed impossible, targeted ones are largely achievable.

In this work, the relationship pseudonym (or anonymous network identity) used by
node X to designate end-receiver node R is denoted PSX→R. These pseudonyms are
designed to be cryptographically secure, meaning at the very least that the real-world
identity of R can not be found from PSX→R, and two corrupted nodes X and Y should
not be able to compare their pseudonyms, i.e. PSX→R should be unlinkable to PSY→R.
Section 4.5.2 provides a more detailed definition of pseudonyms. To the best of our
knowledge, the use of relationship pseudonyms as defined in this work is new in secure
messaging, although they have been studied as part of various privacy-enhancing identity
management frameworks [CKK05; AG12].

There are consequences to this choice of identity management on the design of the
protocol. Firstly, particular care is taken to avoid using any network-wide identifier ,
i.e. the protocol avoids to use any piece of data that would be used by the whole network
to designate the same node. In particular, the public key of a node is considered as a
network-wide identifier. Thus, the advertising and direct use of public keys must be
avoided or circumvented. Also, circuits can not be built by end-senders that freely
choose their relays, since they do not know the IP address of the end-receivers they want
to address. Rather, circuits must be built starting from the end-receiver, during a phase
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of topology dissemination.

Routes and Routing Tables

Every anonymous network protocol has routing tables, even if they are implicit. In the
Tor protocol, for instance, nodes store mappings 〈(ORprev, cidprev), (ORnext, cidnext)〉,
often accompanied with various cryptographic tokens. The packets abstractly consist in
a circuit identifier and some (encrypted) payload data. The circuit identifiers cid are
what allow the relay node to know where to send a message next.

In this work, routing tables additionally contain the pseudonym of the end-receiver
that circuits lead to. This pseudonym is not used for relaying messages, but for end-
sending. Indeed, different nodes do not designate a given end-receiver with the same
pseudonym, thus it is not possible to route messages based on pseudonyms. Note that,
even though we aim at concealing the IP address of end-receivers, it is unavoidable to
make the IP address of the next hops appear in the clear in order for the protocol to
function as an Internet overlay.

In definitive, routing tables entries and packets in this protocol, in their simplest form,
respectively consist of:

〈(IPprev, cidprev), PSX→R, (IPnext, cidnext)〉 and 〈cidnext, data〉

Sending, Relaying, and Receiving Messages

Routing tables are used by nodes in their activities as end-sender, relay, and end-receiver.
But several mechanisms are put into place to ensure SA, RA, SU, MU and TAR.

Firstly, to (partially) ensure MU, and TAR, link encryption and URE are used. That
is, similarly to several existing works, circuit identifiers are encrypted with a SKE key
shared by neighbors, obtained by a DHKA run at network setup. This prevents ex-
ternal adversaries from knowing which messages belong to which circuit. While circuit
identifiers change at each hop, the payload does not. The payload is thus encrypted sep-
arately from the circuit identifier, and its appearance is changed using URE. Although
URE does not seem to integrate well with the traditional client-server architecture, in a
homogeneous setting, it has several advantages over onions structures. It allows to sim-
ply encrypt payload a m under some (product of) public key(s), and have relay nodes
re-encrypt the ciphertext at each hop, without even needing to know these public keys.
In regards of the pseudonyms, it also avoids the advertisement of public keys. However,
URE is used in a manner that differs from past works. Indeed, the presence of a topology
dissemination phase allows nodes to learn adequate encryptions of one, thus removing
the burden of always sending full URE-Elgamal ciphertexts (i.e. a single Elgamal cipher-
text is routed through the network, instead of two). Also, to prevent the URE-specific
attack presented in Section 3.4.1, payloads are actually encrypted under a product of
public keys, and each relay node on the route divides out its own key.

More specifically, during the topology dissemination, each node X obtains a ciphertext
coneX→R = Enc(pkZ1 · pkZ2 · . . . ṗkR, 1) towards each node R, i.e. the value 1 encrypted
under the product of all the keys of nodes along the route between X and R. With this,
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X can encrypt a payload m by leveraging the homomorphic properties of the Elgamal
scheme. Namely, it computes PlainMult(coneX→R,m). With the same ciphertext coneX→R,
X can also re-encrypt any ciphertext that it relays for other end-senders. Note that
encryptions of one, contrarily to public keys, do not constitute a network-wide identifier,
since there are many possible encryptions of one for any given public key.

The above elements of design mainly participate in ensuring MU. To ensure TAR, mes-
sages are additionally re-ordered during their forwarding, using techniques from mixnets.
Here, we chose to use timed dynamic pool from Mixmaster [Mol+03], for its robustness
to traffic analysis. However, instead of maintaining one global pool of messages, a node
maintains one pool for each of its neighbors. Consequently, every tP seconds, a node
checks if all its pools have enough messages in them, and if so, fires the mix by sending
a random fraction of each pool to the corresponding neighbor.

Finally to ensure SA and RA, in addition to endorsing a homogeneous architecture,
dummy messages and controlled traffic rates are used, similarly to Tarzan. Here, how-
ever, we pose more constraining rules, aimed at making a node appear to link-send as
many messages as it link-receives, i.e make every node appear only as a relay of traf-
fic. Basically, this translates into compensating the excess of link-received messages by
sending out one dummy message to each neighbor. And similarly for the excess of link-
received messages. Ultimately, we show that these constraints prevent the detection of
sending and receiving activities even when only one neighbor of the node is honest.

There is one question left, however: for a given informant Alice that wants to commu-
nicate with a specific journalist Bob, how does the informant find a route towards that
journalist? Indeed, the informant’s routing tables contain no information linkable to the
real-world identity “Bob”. Said otherwise, routing tables leaves only the possibility of
completely anonymous communications, where end-senders and end-receivers have no
idea who they are communicating with. This may be sufficient for some applications
such as anonymous file sharing or online gaming, but not for the informant-journalist
scenario. Thus, the protocol also enables oriented communication, a way for Alice to
contact Bob specifically, by leveraging the properties of pseudonyms and the way they
are constructed. The proposed solution is for Alice and Bob to use an indirection node
I in the network: Alice has the real identity of Bob, and interacts with I to compute I’s
pseudonym towards Bob. During the interaction, care is taken to separate the knowledge
between Alice and the indirection node, so that neither Alice nor the indirection node
can link Bob to its pseudonym(s).

Constructing the Routes

Abstractly, topology dissemination is quite standard: as in every self-discovering network,
nodes start by advertising their presence, and when they learn about other nodes, spread
their knowledge. That is, a node X knowing a route towards some other node advertises
it to its neighbor, essentially meaning “I can relay towards this end-receiver”, even if X
may not know the actual identity of this end-receiver. Such an advertisement is hereby
called a route proposal (one route is advertised at a time), and each node begins by
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self-proposing. At the outcome of the topology dissemination, nodes may have several
routes towards the same end-receiver, and thus several routing table entries for a same
pseudonym PSX→R. Additionally, at network initialisation, each pair of neighbor nodes
perform a DHKA and derives keying material to later encrypt circuit identifier and
diverse routing information.

During a route proposal, several tasks are carried out: (i) the exchange of a circuit
identifier, (ii) the communication of the adequate encryption of one coneX→R used to
encrypt payloads, and (iii) the computation of the pseudonym PSX→R, used by X
to designate end-receiver R. This pseudonym computation actually consists in a two-
round (three-message) exchange, where X and R run a secure multi-party computation
(SMPC). Each node X may encounter several route proposals for the same end-receiver
R, and must always obtain the same pseudonym PSX→R. Thus, pseudonyms can not be
simply generated and handed over by the end-receiver R. Instead, the value of PSX→R

is determined by a secret of X, srcX , and a secret of R, dstR, respectively representing
the identity of X as end-sender, and that of R as end-receiver.

Because the end-receiver must be involved in pseudonym computations, messages must
make a return trip between X to R for a route proposal to be completed. This is similar
to the telescopic construction of circuits in Tor, with the difference that the construction
starts from the end-receiver. This is depicted in Fig. 4.1, where R first self-proposes
to X (solid lines in the figure), requiring communications only between X and R since
they are direct neighbors in the topology graph. Then, X proposes this route towards R
to Y (dashed lines in the figure), and must act as an intermediary node helping Y and
R compute PSY→R. This process goes on, effectively using the already existing routes
to extend them by one more hop. Note that, in the example, payload messages will
eventually then flow from Y towards R, i.e. in the opposite direction compared to the
propagation of the route proposals.

RXY... (1)
(2)

(2)

(3)(3)

(3)

Figure 4.1. – Propagation of Route Proposals Relating to End-Receiver R

The circuits are built so that each node only knows its previous and next hop: even
the end-receiver does not know the sequence of nodes constituting the circuit, nor its
length. More generally, to ultimately prevent the adversary from breaking SA and RA,
the topology dissemination phase is made as oblivious as possible, in order to conceal
the constructed routes. For that, route proposals fulfill several security properties. In
particular, self-proposals and relayed ones are indistinguishable. Also, routing messages
involved in route proposals are actually mixed and re-ordered along with payload and
dummy messages, preventing in particular the tracing of the return trip during the
computation of pseudonyms.

This concludes the overview of the protocol. In the remainder of this chapter, the
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complete protocol presentation builds on this overview. It roughly follows the same out-
line (routing tables, messages processing, and construction of routes), with the exception
that oriented communications are presented last, once all the other components of the
protocol have been described.

4.2. Routes and Routing Tables

The present section first reviews the keying material shared among neighboring pair of
nodes. In a second time, it presents the contents of the routing table of a node in small
example network.

4.2.1. Neighborhood Management

Since the protocol works over the Internet, any pair of nodes can theoretically be neigh-
bors, since any node can directly communicate with any other (specific restrictions due
to e.g. NAT set aside). However, we deliberately restrict the direct communication
partners of nodes, and assume that the underlying topology graph is connected but in-
complete. More exactly, the topology graph is considered sparse, in the terminology of
Danezis [Dan03a], which means that nodes only have a few neighbors compared to the
total number of nodes in the network. There are two main reasons for this. Similarly to
Tarzan, the protocol uses dummy messages to conceal sending and receiving behavior.
But using dummy messages on all n2 links of the complete graph would be too costly.
Secondly, this avoids nodes to disclose their IP addresses and their participation in the
network to all other nodes, as noted by Clarke et al. [Cla+10]. Indeed, in a protocol
where all nodes learn about all others, it is extremely easy to check the participation of
a particular individual in the network: it is sufficient to run a node. In our case, each
node only learns about the presence of a few (e.g. log n) other nodes. Similarly as in
a variant of Freenet [Cla+10], a node can for instance only connect to trusted nodes,
realising a friend-to-friend network, and thus protecting the node’s real-world identity.
How these neighbors are selected in practice is out of the scope of this thesis.

Note that the attack against Tarzan, which relies on the fact that a node only builds
circuits using the few other nodes it knew, does not apply here. Indeed, in the present
protocol, nodes do not select their routes, they are constructed by the network as a
whole.

At the start of the network, each node performs a DHKA with each of its neighbors.
This assumes that all nodes agree on a specific group G. For simplicity, we assume
that the description of G (i.e the terms q and g) are publicly known. From the shared
secret, they derive cryptographic materials. Namely, using a secure KDF, nodes generate
two symmetric keys kXYi and kYiX (one for each direction on the link) suitable for a
block cipher such as AES, along with the necessary IVs. During the network lifetime,
neighbors then perform a new DHKA periodically, and generate new keying material.
This prevents the long-term compromise of link keys.
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4.2.2. Routing Tables

During topology dissemination, a node X (not necessarily neighbor to node R) generally
receives and possibly accepts several route proposals towards each node R. It also
proposes several routes towards R as well. The nodes’ routing tables at the outcome of
topology dissemination differ depending on which node proposed, accepted, or refused
which route proposals: the route proposal mechanism is probabilistic (see Section 4.5.4).
A concrete example of constructed routes is depicted in Fig. 4.2 and Fig 4.3. The first
figure depicts an example network centered around a node X and its neighbors Yi, and
the second shows the routing tables entries of node X, regarding end-receiver R only.
There are two entries, meaning that X has two different routes towards R. In Fig. 4.2,
the routes are depicted along with the circuit identifiers. The plain arrows correspond
to the first route, and the dashed ones to the second. Note that the routes shown are
only those towards R, and represent one configuration among many possible outcomes
of topology dissemination in the example network.

X
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Y4

Y5
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2

cid3

ci
d 4

cid
1

cid
′
1

cid
5

Figure 4.2. – Example Network

Prev. hop PS cone cprop Next Hop
Y2, cid2

Y3, cid3

Y4, cid4

PSX→R Enc(pkY1,Z1,R, 1) Enc(pkY1,Z1,R, dstR) Y1, cid1

Y1, cid
′
1 PSX→R Enc(pkY5,Z2,R, 1) Enc(pkY5,Z2,R, dstR) Y5, cid5

Figure 4.3. – Routing Table of Node X towards R

This example actually contains a lot of information. We will first look at each term
in X’s routing table, then analyse the depicted routes. The next subsection shows how
tables are used for sending, relaying and receiving messages.

4.2.2.a) Terms in the Routing Tables

The previous hop and next hop fields are quite self-explanatory. The nodes are denoted
with capital letters, e.g. Y , and can be understood as their IP address or their real-world
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identity (since the two are assumed publicly linked in Assumption 1). When X receives
a link message with a circuit identifier present in a previous hop field, it must forward
accordingly to the node and with the circuit identifier of the corresponding next hop
field. There can be several previous nodes (and circuit identifiers) for a given routing
table entry, but there can be only one next hop. That is, forwarding is deterministic:
once a message is sent on a route, the path it is going to take in the underlying topology
graph is fully determined. This avoid issues with routing loops, as described in the next
paragraph. The PS field contains the pseudonym used by X to designate end-receivers.
It is used along with the next hop field in its activities as an end-sender. The true utility
of pseudonyms appears later, during the realization of oriented communications (see
Section 4.6). The cone field is the encryption of one used to encrypt payload messages
that X sends, and to re-encrypt the ones X relays. It is encrypted under a product
of public keys, where pkZ1,...,Zn is a shorthand for pkZ1 · pkZ2 · . . . · pkZn . The nodes
Z1, Z2, . . . , Zn are the nodes on the route between X and R. The first of the two entries,
for instance, relates to a route going through Y1, Z1 and R, and thus cone is encrypted
under pkY1 · pkZ1 · pkR. Lastly, the cprop field stores a ciphertext only used during the
topology dissemination, for X to make route proposals towards R. It encrypts dstR, a
value secret to R and used to compute pseudonyms that nodes use to designate R.

Note that, even though the routing table entries in the example relate to end-receiver
R, the IP address or identity of R never appears in them. Actually, X does not know
that these entries relate to R.

4.2.2.b) Routes Depicted in The Example

There are two main routes in the example. The one corresponding to the first routing
table entry is drawn with plain arrows, the other with dashed ones. The route relating
to the first entry of X’s routing table starts with either Y2, Y3, or Y4, goes through X,
and then Y 1, Z1 and finally arrives to R. The second one starts with Y1, goes through
X, Y5, Z2 and finally R. Additionally, a third route is depicted, showing that Y4 also
has a second route that directly reaches R through Y5 and Z2.

Circuits are unidirectional, meaning that payload messages are only meant to flow
from X to R (but as we will see, it is necessary to let some routing messages go up the
circuits). Circuits are also shared by nodes that compose them. Indeed, X may use its
first routing table entry, and send its own messages to R through Y1 and cid1. But this
link X

cid1−−→ Y1 may also be used by X to forward messages that e.g. Y3 sends to R via
X. Consequently, Y1 can not know if a message on this link, with this circuit identifier,
comes from X or from upstream nodes on the circuit (here, Y2, Y3, or Y4). Abstractly,
this participates in achieving SA and MU-session: circuits do not relate to one specific
end-sender (and thus do not relate to any end-sender-receiver pair neither). In addition,
nodes do not know who is part of the circuit, apart from their previous and next hops.

In the example network, X is not the only node with several routes towards R. Y4

can reach R through sequence X-Y1-Z1, or through Y5-Z2. And Y1 has a direct route
via Z1, but also an indirect one via X, Y5 and Z2. This shows that constructed routes
may not always be the shortest ones. Also, in the example, X can reach R through Y1
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with cid1, and vice-versa (with cid′1). This kind of situation is allowed in the network,
and does not create routing loops, since circuits are separated and unidirectional.

4.3. Sending, Relaying, and Receiving Messages

With their routing tables, nodes have all the elements to send and relay messages. This
section describes how nodes process messages from a cryptographic point of view, whereas
the message re-ordering and use of dummy messages is the focus of the next one.

4.3.1. Link Message Format

The packet format of a link message carrying a payload message m for end-receiver R
and meant to go through relay nodes Z1, Z2, . . . , Zn is as follows:

〈{payload‖cid}k ,Enc(pkZ1,...,Zn,R,m1),Enc(pkZ1,...,Zn,R,m2)〉 (4.1)

That is, a packet begins with a header consisting of an AES encryption of a circuit
identifier accompanied by a payload flag, and two Elgamal ciphertexts. All link messages
between any two nodes have this form, meaning each and every single message part of
the protocol (including link messages that carry routing information). This means that
all link messages have the same size and random-looking appearance (allowing to later
batch them and shuffle them together). The flag here has value payload, but is also
used to signal routing information or dummy messages. The header is constructed to
always be λ = 128 bits long, i.e. one AES block. The symmetric key k used to encrypt
the header is the link key for the direction of the link message (e.g. kXY for a link
message sent by X to its neighbor Y ). Every message contains two Elgamal ciphertexts.
Indeed, on several occasions, a second ciphertext is needed: for some routing messages,
the second ciphertext is an encryption of one to perform (universal) re-encryptions; and
during oriented communications, the first ciphertext contains the session identifier (that
allows to link all payload messages in the session). If there are cases where a second
ciphertext is not needed, an encryption of random data should still be included.

It is known that the Elgamal scheme can only encrypt group elements, i.e. elements
from G. To encrypt a piece of data m ∈ {0, 1}∗ with the Elgamal scheme, an encoding is
necessary to transform m into a group element. Yet, this encoding is known to degrade
(or even take away) the homomorphic property of the scheme. In this work, this is
not an issue: the homomorphic properties of the scheme are necessary only for routing
messages. Thus, the protocol is built so that all plaintexts involved in routing messages
are directly taken in G. More information on this matter can be found in Appendix A.

4.3.2. Creating and Processing a Message

This section describes how a node encrypts a given payload message, and how it is then
processed and relayed to its end-receiver. For that, we define the following primitives,
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for c = Enc(pk,m, r) and cone = Enc(pk, 1, rone):

ReEncone(cone) := ScExp(cone, r′) with r′←$ Zq

= (cone
r′

0 , cone
r′

1 )

= Enc(pk, 1, rone · r′)

ReEncnopk(cone, c) := CtxtMult(c,ReEncone(cone))

= (c0 · cone
r′

0 , c1 · cone
r′

1 )

= Enc(pk,m, r + rone · r′)

Encnopk(cone,m) := PlainMult(ReEncone(cone),m)

= (grone·r′
,m · hrone·r′

)

= Enc(pk,m, rone · r′)

The Encnopk operation leverages the PlainMult homomorphic operation of the Elgamal
scheme, and allows a node to encrypt a plaintext using an encryption of one, and without
a public key. The ReEncone and ReEncnopk are actually the atomic operations realised in
the UReEnc primitive. Indeed, the latter can be expressed as:

UReEnc(C = (c, cone)) =
(
ReEncnopk(cone, c),ReEncone(cone)

)
(4.2)

In contrast with other protocols that use URE, the UReEnc primitive is split . Indeed,
in the present protocol the topology dissemination phase allows to distribute the encryp-
tions of one. As a result, in the protocol, an Elgamal ciphertext does not always need to
be accompanied with an encryption of one (as it would be in the URE-Elgamal scheme).
In addition to saving bandwidth, this optimisation also allows nodes to generate many
re-encryptions of one in an asynchronous and pre-emptive manner, so that they need
only to perform one CtxtMult operation during the actual forwarding of messages.

With these primitives, given a payload message m = m1‖m2 and a end-receiver’s
pseudonym PSX→R, X proceeds in the following way to send m in the example network
of Fig 4.2. First, it selects one of its two routing table entries for PSX→R at random.
Let’s assume that X chooses its second routing table entry. For this case, Fig. 4.4
describes the sequence of link messages from X to R. The involved Elgamal ciphertexts
are processed as follows. First, X gets the ciphertext coneX→R = Enc(pkY5,Z2,R, 1) from
its routing table entry, and computes:

c1 ← Encnopk(coneX→R,m1)

c2 ← Encnopk(coneX→R,m2)

X sends these ciphertexts to Y5. Upon receiving them, Y5 finds coneY5→R = Enc(pkZ2,R, 1)
by a table lookup on previous hop (X, cid5). It then partially decrypts c1 and c2, and
re-encrypts them:

c′1 ← ReEncnopk(coneY5→R,Dec(skY5 , c1))

c′2 ← ReEncnopk(coneY5→R,Dec(skY5 , c2))
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Y5 then forwards the ciphertexts to Z2, and the process repeats until it reaches R. The
partial decryption carried out by relay nodes can clearly be seen, ensuring that at the
last hop, the Elgamal ciphertext are simply encrypted under R’s public key. This partial
decryption and re-encryption of relay nodes is very similar to the processing that Huang
et al. [HLF12] apply in their own protocol.

X → Y5 : {payload‖cid5 }kXY5
, Enc(pkY5,Z2,R,m1)

︸ ︷︷ ︸

c1

, Enc(pkY5,Z2,R,m2)
︸ ︷︷ ︸

c2

Y5 → Z2 : {payload‖cid′ }kY5Z2
, Enc(pkZ2,R,m1)

︸ ︷︷ ︸

c′
1

, Enc(pkZ2,R,m2)
︸ ︷︷ ︸

c′
2

Z2 → R : {payload‖cid′′ }kZ2R
, Enc(pkR,m1), Enc(pkR,m2)

Figure 4.4. – Sequence of Link Messages from X to R

In terms of security, the above processing of messages participates in ensuring MU-
tracing (and RA to some extent, since R’s public key is never used). First note that,
although it does not appear explicitly, the management of the IVs for the AES encryp-
tions ensures that all link messages between neighboring nodes always exhibit a different,
random-looking header, by using a different IV for each message. Then, for the Elgamal
ciphertexts, note that care is taken to re-encrypt the cone ciphertext before every use,
thus effectively emulating the UReEnc primitive, and allowing to re-use Golle et al.’s USS
security property. This intuitively means that ciphertexts change at each hop in such a
way that they are not recognisable, even by the end-sender X. Then, because plaintexts
are encrypted under a product of public key (similarly to Huang et al. [HLF12]), rather
than solely under pkR, the protocol resists the re-encryption specific attack described
in Section 3.4.1. Finally, by the probabilistic nature of the Elgamal scheme, there are
many encryptions of one for a given (product of) public key(s); and because Elgamal
ciphertexts do not leak which key(s) they are encrypted under since the scheme ensures
key-privacy, encryptions of one do not act as a network-wide identifier.

4.4. Messages Re-Ordering, Dummy Messages, and

Controlled Traffic Rates

The previous section only presents the cryptographic processing of messages, and how to
ensure MU. This section is complementary: it presents countermeasures against network-
level attacks, ultimately seeking to ensure TAR, SA, and RA. This is performed by a
conjunction of three tools: message-reordering, dummy messages, and controlled traffic
rates.

These three tools are interdependent, and must be presented together. In particular,
as noted by Diaz and Preneel [DP04], the policy for producing and emitting dummy
messages has to be designed in conjunction with the message re-ordering mechanism.

62



4.4. Messages Re-Ordering, Dummy Messages, and Controlled Traffic Rates

Moreover, as in the Tarzan protocol, the controlled traffic rate mechanism goes hand
in hand with the production of dummy messages as cover traffic for a node’s neighbors.
Here, message re-ordering is performed using a variant of the timed dynamic pool strategy
used by the Mixmaster protocol [Mol+03], but adapted to the homogeneous, fully dis-
tributed setting. On the other hand, dummy messages and controlled rates are inspired
from the Tarzan protocol, but are adapted to provide more robust security guarantees.

This section first presents a thorough analysis leading to strict rules that a node must
follow to ensure SA and RA, using dummy messages and controlled traffic rates. In a
second time, we present how to implement these rules in accordance with the message
re-ordering mechanism.

To avoid confusion, the following definition formally makes the distinction between
real and dummy messages. Recall also Definition 8 which makes the difference between
sender and end-sender (and likewise for receivers). These terms are used extensively in
what follows.

Definition 16 (Dummy and Real Messages). A dummy message is a link message
carrying no payload nor routing information, and not meant to be relayed further than
the link on which it is sent. A real message is defined in opposition, as a link message
carrying a payload or routing message which is meant for a specific end-receiver.

A dummy message from node X to its neighbor Y consists in the following, for r1,
r2←$G: 〈

{dummy}kXY
,Enc(pkX , r1),Enc(pkX , r2)

〉

4.4.1. Dummy Messages and Controlled Traffic Rates for SA and RA

One of the features ensuring the security of the protocol is that nodes conceal their own
traffic (messages they end-send or end-receive) within the traffic of their neighbors. This
realises a homogeneous architecture. Yet, a homogeneous architecture is not enough.
First, because the protocol does not make any assumption on the traffic load in the
network, it is possible that a node X does not get any traffic from its neighbors for
a certain period of time, and thus no cover traffic. Then, even if there is a lot of
traffic passing through X, a network observer can still count its incoming and outgoing
messages, and breach SA and/or RA, as exposed in Section 3.4.4.

This section shows how to ensure SA and RA, by preventing the observation of end-
sending and end-receiving activities. For that, we present an analysis of the threats
posed by network observers and by (collusions of) corrupted neighbors, and how dummy
messages and controlled traffic rates can protect against them. These two kinds of
adversaries call for different approaches: a global observer sees all links a node has with
its neighbors, but can not distinguish a dummy message from a real one; while corrupted
neighbors do not see all the links of a node, but they detect dummy messages that it
sends to and receives from them. This section progresses in incremental steps, building
up towards a solution that ensures SA and RA against both types of adversaries at the
same time.
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4.4.1.a) A First Step With Network Observers

We first assume that the adversary is only a global network observer. For a given target
node X, this means that every incoming and outgoing link message of X, to or from
any neighbor, is visible to the adversary (even though they are protected by encryption).
It is assumed that end-sending is detected by the adversary when the number of (real)
incoming messages of X, noted I, is lower than the number of its outgoing messages
O. Conversely, end-receiving is detected when I > O. The goal is thus that, from the
adversary’s point of view, I seems to be equal to O, i.e. to make X appear as a simple
relay pipe.

First of all, note that, without any particular addition to the protocol, I and O can
be made equal, if X end-sends a message when and only when it end-receives one. This
however puts extreme constraints on the nodes and on the network as a whole, and is
highly impractical.

To provide more flexibility, dummy messages are used. By the properties of the AES
and Elgamal schemes, observers can not distinguish between dummy and real messages.
Thus, to perturb their observations of the numbers I and O, nodes can send dummy
messages. But there must be a specific strategy in the sending of these dummy messages,
a policy that makes I and O appear equal. In particular, simple strategies such as
randomly sending dummy messages from time to time, or sending one every t seconds
exactly, are not so useful. Indeed, a basic statistical analysis can be enough for the
observer to work around such simple policies. Consequently, the dummy message policy
must instead depend on past and future values of I and O.

Hereby, in accordance with the message re-ordering mechanism presented later, we
divide time into discrete time intervals, corresponding to the batching rounds. The goal
of the dummy message policy thus becomes that, in each round and for each node, I = O
from the point of view of the adversary. Against mere network observers, and without
taking corrupted neighbors into account, this means that in round r: (i) a node can
end-send only if it received at least one dummy message from one neighbor in the same
round, and (ii) a node must send one dummy message to one neighbor when it end-
receives in round r. In point (i), the controlled traffic rates mechanism begins to appear:
a node must retain messages it wants to end-send until some condition is satisfied. To
be complete, the policy should include a third point, briefly mentioned earlier: (iii) a
node can also end-send if it end-received in the same round.

There is one pitfall that immediately poses a problem in this basic policy. An ini-
tialisation issue arises: which node X will send the first dummy message(s), that will
allow its neighbor(s) to end-send? More generally, how to prevent the network from
stalling because no node emits dummy messages to any neighbor? This means that the
policy must ensure that each node provides enough dummy messages to its neighbors.
This idea is included in our final solution, built up in subsequent sections. Before pre-
senting it, however, the next section considers the impact of corrupted neighbors on the
observations and comments made so far.
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4.4.1.b) Considering Corrupted Neighbors

Against corrupted neighbors, dummy messages have a limited impact, since those can
trivially differentiate them from real messages. In the worst case, when a node is sur-
rounded by a collusion of corrupted neighbors, dummy messages are entirely useless, and
the only strategy that makes I and O look equal to the adversary is point (iii) of the
above policy: X systematically end-sends a message when, and only when, it end-receives
one.

In addition, when considering corrupted neighbors, the policy proposed above may
actually reveal more information than no policy at all. Indeed, if X follows it to the
letter and sends dummy messages only on a need basis, corrupted neighbors obtain a
easy way of detecting when a node end-receives. Indeed, a node that end-receives can be
distinguished from one that simply relays a message based on the fact that the former
one is the only one sending out dummy messages. This calls for a more complex policy,
in particular where the emission of dummy messages does not depend on the actual
end-sent or end-received messages from the point of view of the adversary.

Since the issue seems to be that X can be detected as end-receiver if it sends a dummy
message to a corrupted neighbor , a naïve approach would be to consider that X has at
least one honest neighbor, and reformulate points (i) and (ii) of basic policy as: (i) X
can end-send only if it received at least one dummy message from an honest neighbor ,
and (ii) X must send one dummy message to an honest neighbor when it end-receives.
This works, because dummy messages exchanged between X and its honest neighbors
are indistinguishable from real ones, even for corrupted neighbors. In a sense X’s honest
neighbors act as a relief valve where it gets or dumps cover traffic. This is the reason
why we make Assumption 3, that a node has at least one honest neighbor.

But things are not that simple: X does not know which of its neighbors are honest.
Assumption 3, only states that one neighbor is honest, but not which one. This means
that X has to assume simultaneously that each node may be corrupt. More exactly, a
more conservative version of Assumption 3 is to consider that the neighborhood of X is
partitioned in a least two collusions that do not share knowledge between them. This
allows X to use dummy messages sent to or received from one collusion to fool the other.
And since X is not aware of this partition, it must assume that every possible partition
holds simultaneously, and use a policy that ensures SA and RA in every case1.

In what follows, we formalise the problem and build up towards an applicable solution,
that each node can individually apply.

4.4.1.c) With Formalism and Known Honest Neighbors

The neighbor set of X is denoted n. In a first time, we assume that X knows that n

is partitioned in two subsets: honest neighbors h ⊆ n, and corrupted neighbors c ⊂ n.
The corrupted nodes are assumed to collude together and share their observations and

1Alternatively, to actually increase its chances of not being surrounded by one big collusion of corrupted
nodes and realise Assumption 3, X can mount a reverse Sybil attack, i.e. run several nodes with
different identities, and connect with them in the underlying topology graph.
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knowledge together and with a global network observer. First, the term I is refined
according to the nature of the messages (real or dummy), and to their provenance (honest
or corrupted neighbors). That is:

I = Idum + Ireal = Ih + Ic

Additionally, to denote, say, dummy messages received from honest neighbors, the term
Ihdum is used, combining subscript and superscript notations. The same notations are
defined for outgoing messages O.

Ultimately, the aim is to make nodes in c and the global observer believe that Oreal =
Ireal, even though X does end-send and end-receive messages. This formally translates
into the following equations to be respected in each round r. They respectively corre-
spond to points (i) and (ii) expressed in the previous section. Point (iii) also appears
implicitly.

Oc
real ≤ Ireal + Ihdum (4.3)

Icreal ≤ Oreal +Oh
dum (4.4)

Put together, these relations are equivalent to eq. (4.5), showing that node X can
adjust the difference between its outgoing and incoming packets in the margin provided
by the traffic to and from its honest neighbors.

−Oh ≤ Oc
real − I

c
real ≤ I

h (4.5)

4.4.1.d) With Formalism and Known Neighbor Collusions

A conclusion from this first naïve analysis is that X can end-send and end-receive as
many real messages as it wants through its honest neighbors. However, two issues arise:
a heavy use of honest neighbors as relief valve will be detected, and, anyway, X does
not know which of its neighbors are honest and can not rely on this strategy. To make a
step towards lifting assumption that X knows which neighbors are honest and which are
corrupted, we model the neighborhood of X as a partition of collusions C = {c1, c2, . . .},
such that ∪ici = n and ci ∩ cj = ∅ for i 6= j. That is, there are no honest nodes; only
groups of corrupted nodes sharing knowledge within their collusion, but not with other
collusions. Now, if X knows the partition C it can go around the collusions, using the
dummy messages sent to and received from one collusion to fool the others. For that,
there must be at least two collusions in the partition C. This can be seen as a variant of
Assumption 3. In this setting, eq. (4.5) must hold for each collusion in C:

∀ ci ∈ C : −On\ci ≤ Oci
real − I

ci
real ≤ I

n\ci (4.6)

4.4.1.e) With Formalism and Unknown Neighborhood

Finally, let us lift the assumption that X knows the collusion partition of its neighbor-
hood. The only safe option for X is to act as though all possible collusion partitions
were simultaneously in effect. That is, it must enforce eq. (4.6) for each possible par-
tition. However, if X has k neighbors, there are

∑

i∈[2,k] i · S(k, i) such equations to
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enforce, where S(k, i) are the Stirling set numbers. Indeed, for each possible partition
C containing i collusions, there are i equations to respect. And by definition, there are
S(k, i) partitions of size i. This is clearly an impractical policy to implement: heuristics
must be used. The first simplification that can be made is to take into account only
the worst case collusion partitions. That is, partitions of size two, where all but one
neighbor are in the same collusion. There are k such partitions, one per neighbor, and
X must thus respect 2k equations. This is a great improvement, but still impractical to
enforce. To further simplify the problem, we examine these equations in the case of SA.

Example 1 (Example for SA and k = 3 neighbors). Let X be a node with k = 3
neighbors Y1, Y2, and Y3. To ensure SA (only), X must verify the following 6 equations
derived from eq. (4.3) corresponding to SA:

For C1 = {{Y1} ,{Y2, Y3}} : OY2,Y3

real ≤ Ireal + IY1
dum OY1

real ≤ Ireal + IY2,Y3

dum

For C2 = {{Y2} ,{Y1, Y3}} : OY1,Y3

real ≤ Ireal + IY2
dum OY2

real ≤ Ireal + IY1,Y3

dum

For C3 = {{Y3} ,{Y1, Y2}} : OY1,Y2

real ≤ Ireal + IY3
dum OY3

real ≤ Ireal + IY1,Y2

dum

To simplify the system, it is possible to replace all the Idum terms with the minimum
of all of them, denoted min(Idum), without violating any of the relations. A value
min(Idum) = n means that, in the current round, X received at least n dummy messages
from each neighbor. Secondly, since Oreal = OY1

real +OY2
real +OY3

real, X can simply ensure
that Oreal ≤ Ireal + min(Idum). We successfully reduced the system to one simple
constraint to ensure SA. Proceeding in the same manner for RA shows that it is sufficient
for X to ensure Oreal +min(Odum) ≥ Ireal.

In definitive, in order to guarantee both SA and RA without any assumption on the
neighborhood other than Assumption 3, each node must ensure that:

−min(Odum) ≤ Oreal − Ireal ≤ min(Idum) (4.7)

Taking a step back, the traffic rates equation (4.7) says that X must neither send nor
receive too many real messages. Here, “real messages” designate both relayed and end-
sent/end-received messages. More specifically, each node must maintain an equilibrium
between link-sent and link-received real messages: in a given round, it must link-send
approximately as many real messages as it link-received, up to the bounds provided
by its link-sent and link-received dummy messages in this same round. We call these
bounds the dummy budgets. The sending dummy budget is the lower bound in eq. (4.7),
equal to the minimum over the number of dummy messages that the node received from
each neighbor in that round. It is the minimum over all neighbors that is considered,
because, to protect from every neighbor, X has to adapt to the margins (in terms of
dummy messages) given by the most restricting neighbor. The receiving dummy budget
is defined in a similar manner, according to the minimum over all neighbors of sent
dummy messages.

Note that eq.(4.7) implies that if X is a simple relay node (neither end-sending nor
end-receiving), it does not need to send nor receive dummy messages. Yet, as explained
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earlier, nodes should not send dummy messages only on a need basis. More generally,
the dummy message and controlled traffic rate policy must be implemented to respect
eq. (4.7), while keeping in mind all that has been learned in our analysis. We show next
how a node can proceed to enforce the equation in practice.

4.4.2. Integration With Pool-Based Batching

This section shows how the dummy messages and the controlled traffic rates policies can
be implemented in conjunction with the message re-ordering mechanism.

4.4.2.a) Batching With Timed Dynamic Pools

Existing literature indicates that pool-based mixes are the most resistant to traffic anal-
ysis (see Section 3.4) [BPS01; SDS02]. We choose to use the already well-tested timed
dynamic pool of Mixmaster [Mol+03], also known as a Cottrell mix [SDS02]. A node
implementing this batching strategy places all link messages that need to be sent (i.e. re-
layed or end-sent) in a pool P. The system is parameterized by a time interval tP , a min-
imal number of messages in the pool nPmin, and a fraction fP . Every tP seconds, if there
are nP messages in the pool, the node randomly selects and sends n := min(nP −nPmin,
nP · fP) messages from the pool.

In this thesis, we propose to use a variant of this mechanism, in which a node maintains
one separate pool per neighbor. This facilitates the implementation of the dummy
message policy described in the previous section (which needs to have a per-neighbor
control on dummy messages). Also, this design choice allows to ensure that, in every
round, each neighbor gets the same number of link messages (regardless of whether
they are real or dummy ones). This prevents against attacks on asynchronous free-route
mixnets [BPS01] (the present network is indeed asynchronous, and not a cascade). The
latter constraint can be formalised as OYi = OYj for all neighbors Yi, Yj at each round r.

Therefore, each node X maintains one pool PYi per neighbor Yi. When X must send
or relay a message to Yi (be it a real or dummy one), it places it in PYi . Every tP seconds,
X sends out messages if all pools have enough messages in them. More exactly, let nPYi

be the number of messages in pool PYi . At each round, X randomly picks n messages
from each pool, and sends them in a random order, for n defined as:

n := min
i

(min(nPYi
− nPmin, nPYi

· fP)) (4.8)

4.4.2.b) Producing Dummy Messages

With this batching strategy, dummy messages are inserted into pools, according to the
following policy. At the beginning of each round, X inserts a dummy message in a
random fraction fdum of neighbor pools (e.g. fdum = 1/3). Additionally, rounds in
which n is equal to zero according to eq. (4.8), X still sends one dummy message to each
neighbor. This very basic policy has the advantage of respecting the lessons learned from
our analysis. That is, dummy messages are not sent deterministically and on a need basis,
since the policy is completely independent from the end-sent and end-received messages.
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And secondly, the network is prevented from stalling, since each node regularly provides
neighbors with dummy messages: each pool gets a dummy every 1/fdum rounds on
average, and when a node can not fire its pools, it still sends out dummies.

4.4.2.c) Traffic Rates Constraints in Practice

There is an apparent inconsistency between the batching strategy on the one hand, and
the need to respect the traffic rate equation (4.7) on the other hand. Indeed, the latter
dictates that messages should be randomly selected from pools, whilst the former requires
that, at each round, the batch of selected messages fulfill certain constraints. To resolve
this, we relax the constraints on the traffic rates, conserve the random sampling from
pools, but apply a post-processing to the obtained batches.

In practice, a node X can ensure the traffic rate equation at each round in the following
way. At the beginning of each round, X counts the number of real and dummy link
messages received during the last round, and deduces Ireal, and IYi

dum for each neighbor
Yi. It processes the messages according to the protocol, possibly placing in its neighbors’
pools new real messages to end-send or relay. At the end of the round, from Ireal and
min(Idum), X can deduce the set of solutions to the traffic rates equation, where Oreal

and min(Odum) are considered as variables, denoted x and y. The set of solutions is
S = {(x, y) | y ∈ [0, Ireal] , x ∈ [Ireal − y, Ireal +min(Idum)]}. Then, X samples a batch
of messages from the neighbor pools. If the sampled batches contain a number of real
and dummy messages that fit into S, then X can safely send them. Otherwise, we resort
to a post-processing of the batches. We distinguish two cases: (i) either Oreal is too
high to fit into any of the solutions in S (meaning X is trying to send too many real
messages), (ii) either Oreal or min(Odum) are too low.

In case (i), to decrease Oreal, X chooses a real message at random from the batches,
replaces it by a dummy message, and repeats the process until the batches fit into the
solutions. In case (ii), the situation is not so simple. The simplest approach would be
to either increase Oreal by taking other real messages from the pools, or to increase
min(Odum) by adding in the batches one additional dummy message for each neighbor.
The latter case is to be avoided, for a reason already discussed: a node that sends many
(dummy) messages in a round is easily detected by the adversary as a node that (end-
)receives many messages. We also reject the approach of augmenting Oreal by manually
selecting real messages in the pools, for several reasons: this strongly tampers with the
probabilistic nature of the random batch sampling mechanism, it implies that a node
can be easily forced to send out all its real messages stored in its pools (a neighbor only
needs to send many real messages to it in one round), and it simply fails when there are
no more real messages in the pools.

In order to address case (ii) properly, we choose to relax the traffic rates constraints
on several rounds, and to use end-to-end dummy messages (i.e. payload messages that
encrypt only an e2e-dummy flag) as a last resort. That is, to allow a node to handle a
sudden surge in incoming traffic (a high Ireal value), when case (ii) appears, a node is
allowed not to respect the traffic rate equation straight away. Instead, it can postpone
the resolution of these constraints to a latter round r+ ∆r, for some parameter ∆r. For
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that, it keeps track of unresolved constraints for the last ∆r past rounds. In most cases,
since all end-senders respect eq. (4.7) and thus send their messages at rather low rates, a
high Ireal value in round r is likely to be naturally absorbed over ∆r rounds. When that
is not the case, i.e. when the constraint from round r−∆r is still unresolved, we resort
to end-to-end dummy messages. That is, X replaces dummy messages in the batches
with end-to-end dummy ones, that look like real messages to X’s neighbors and more
generally, to all nodes except its end-receiver. X sets the cid value of an end-to-end
dummy message to that of a random next hop in its routing table, effectively meaning
that X chooses a random end-receiver for that end-to-end dummy message.

4.4.2.d) Concluding Remarks

The proposed approach ensures TAR, SA, and RA in our adversary model. While
message ordering alone is sufficient to ensure TAR, it is all three tools together (the
dummy messages, the traffic rates, and the message re-ordering) that protect SA and
RA. Indeed, the message re-ordering system, as proposed in this thesis, mixes together
end-sent and relayed messages. It is the advantage obtained from the adaptation of
mixnet techniques into a homogeneous network architecture, bringing uncertainty to the
adversary when trying to perform advanced traffic analysis based on flow fingerprints
(as described in Chapter 3). This element of design, to the best of our knowledge, is
not present in the literature. In comparison, the Tarzan protocol [FM02] does not use
message re-ordering. The thorough analysis conducted in Section 4.4.1 also shows that,
contrarily to our protocol, Tarzan’s dummy messages and traffic rates policy fails to
ensure SA against a collusion of corrupted neighbors

However, the provided security comes at a great cost in terms of delivery latency.
This cost is measured in Chapter 6. Also, as the authors of Tarzan note, having nodes
wait for dummy messages from neighbors facilitates DoS attacks: it is sufficient for one
corrupted neighbor of X to refrain from sending any dummy messages to greatly limit the
end-sending rate of X. This is however an active attack, not included in the adversary
model. It is also easily detectable, and the misbehaving node can be discarded from the
network.

4.5. Constructing the Routes

So far, we have presented routing tables, how they are used, and how the message
forwarding mechanism is designed. It remains to explain how the nodes actually acquire
the necessary information to fill their routing table, such as the pseudonyms and the cone

ciphertexts. This section bridges that gap, by fully presenting the topology dissemination
phase, in which nodes make route proposals to learn about each other, build circuits, and
compute pseudonyms.

This section abstractly defines how topology dissemination is carried out in the pro-
posed protocol. In a second time, it presents the construction of pseudonyms and the
route proposal mechanism in detail. Finally, it discusses the route proposal policy, which
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determines which routes are built among all the possible paths in the network, and
according to which characteristics.

4.5.1. Ideas and Aim of Topology Dissemination

The topology dissemination in the proposed protocol is quite standard in essence, since
it is essentially a gossip protocol, in which each node exchanges information about the
network with its neighbors. It begins at network startup, where each node X has only a
view of its direct neighborhood, and ends when each node learned about all other nodes
in the network. More exactly, during topology dissemination, long-lived circuits are built
starting from the end-receivers, and are extended towards the edges of the network. This
methodology contrasts with the standard sender-initiated circuits commonly found in
anonymous protocols such as Tor [DMS04] or Tarzan [FM02]. In the present protocol,
we use static circuits shared by several nodes, i.e. each node in the circuit (except the
end-receiver) is potentially an end-sender, and also a relay for the upstream nodes in
the circuit. However, a given node X that is part of some circuit c does not know the
identities of the other nodes that are in c, except for its previous and next hop (even if
X is the end-receiver itself).

However, one main difference between this protocol and a standard network discovery
protocol lies in the fact that nodes do not actually learn the IP address of nodes more
than one hop away from them; instead, they learn a pseudonym. Also, for privacy to hold,
most of the information usually exchanged during a standard network discovery protocol
(such as the exact length of a route) is concealed to nodes. To compute pseudonyms,
nodes share their knowledge of the network with other nodes only one route at a time
(rather than exchanging e.g. a list of reachable IP addresses along with a hop count
metric as in RIP). More exactly, we say that a node actually proposes to its neighbors
to relay their messages towards some anonymous end-receiver, by extending an already
existing circuit by one hop. Thus, route proposals are the atomic information exchange
operation at the heart of the topology dissemination.

4.5.1.a) Definition of Route Proposals

The main goal of a route proposal is to create and extend routes, thus allowing nodes to
learn about (the pseudonyms of) other nodes in the network, along with all the necessary
information to end-send and relay payload messages towards them.

Definition 17 (Route Proposal, Proposer, Proposee). Nodes build and extend
routes via route proposals. The notation RP(X↔Y→R) denotes a route proposal by node
Y (the proposer), to its neighbor X (the proposee), towards end-receiver R, meaning
that Y offers X to relay its messages towards R.

In practice, a route proposal consists in a short interaction between the proposer, the
proposee, and the end-receiver, that consists in the exchange of routing messages. At
the outcome of this interaction, the route is extended by one hop: Y notes in its routing
tables that it must relay X’s messages towards R (by adding X and a circuit identifier
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cid as previous hop in the adequate entry); and X creates a new entry in its routing table,
with Y and the same cid as next hop. Additionally, the proposee learns the pseudonym
PSX→R that it is going to use to designate the end-receiver (but not its identity or IP
address), and an encryption of one, denoted coneX→R, under the appropriate public key(s)
in order to encrypt and re-encrypt messages for R.

It is necessary to involve the end-receiver in the process of route proposals, in order
to compute the pseudonym. Indeed, if a given proposee X gets two different route
proposals towards the same end-receiver R in two different moments of the lifetime of
the network, it must get the same pseudonym PSX→R. This allows X to know the
number of routes it has towards the same end-receiver, and to later contact R as an
end-sender. A consequence of the need to solicit the end-receiver in a route proposal
is that routing messages must be relayed (back and forth) over the route between the
proposer and the end-receiver: a return trip is necessary. This is performed by using
circuits in a reverse fashion, similarly to how Tor routes the answers of receivers back to
users. Note however that the proposer and proposee of any route proposal are always
neighbors.

At the initialisation of the network, or upon joining it, each node knows only one
route and one end-receiver: itself. Thus, the first action that a node R performs in the
network is a self-proposal. After this self-proposal, one route is created between R and
each of its neighbors (routes of length one). Then, its neighbors relay this proposal, thus
extending the routes, and making R known (under its different pseudonyms) by more
nodes. Then, the 2-hop neighbors of R relay it, etc. A route proposal is relayed in this
way, and propagates from R to the edge of the network.

Definition 18 (Self-Proposal, Relayed Proposal). A self-proposal RP(X↔R→R) is
a route proposal in which the end-receiver is also the proposer. A relayed proposal is
defined as any route proposal that is not a self-proposal.

Of course, proposees are allowed to decide whether they accept or refuse route pro-
posals, based on several characteristics (e.g. the number of routes it already knows). If
they refuse it, the circuit is not extended. Similarly, when a proposee accepts a route
proposal, it can choose to relay it to its own neighbors or not. These decisions of node X
depend on various pieces of information, and are captured by the route proposal policy.

Definition 19 (Route Propocal Policy). Proposees make the decision to accept or
refuse a route proposal, and to relay it further or not, according to the route proposal
policy. This term encompasses both the information that the proposee has access to, and
the (probabilistic) decision process that takes place based on this information.

It is the route proposal policy that determines when the propagation of route proposal
stops, i.e. when the network reaches a stable state, and no more route are proposed. A
sound route proposal policy must make sure that this happens only after all nodes learn
about each other. The route proposal policy is discussed in more details in Section 4.5.4.

72



4.5. Constructing the Routes

4.5.1.b) Privacy Properties of Route Proposal

Aside from these functional goals, the mechanism of route proposal must refrain from
providing the adversary with elements allowing her to ultimately break SA, RA, or SU,
or MU. More exactly, although these anonymity properties must be ensured for actual
communications (i.e. for payload messages), it is still necessary to ensure some form of
privacy for route proposals as well (i.e. for routing messages). Indeed, if the building of
circuits was completely open and observable by the adversary, then this would give her
a considerable advantage to later breach the privacy of communications.

As such, the route proposal mechanism must ensure the following properties against
the considered adversary:

Route Proposal Homogeneity: A self-proposal RP(X↔R→R) and a relayed pro-
posal RP(X↔Y→R) towards the same end-receiver R must be indistinguishable,
except for the proposer and the end-receiver.

Route Proposal Indistinguishability: A route proposal RP(X↔Y→R) towards end-
receiver R must be indistinguishable from a route proposal RP(X↔Y→R′) towards
a different end-receiver R′, except for the end-receiver itself.

Propagation Untraceability: Route proposals RP(X↔Y→R) and RP(X ′↔Y ′→R) to-
wards the same end-receiver R, appearing at different places and/or times in the
network, must be unlinkable.

Return Trip Untraceability: Link messages involved in a given route proposal must
be unlinkable, in the sense of MU-tracing.

The first property ensures that proposees receiving a route proposal can not conclude
whether the proposer is the end-receiver or not. If that were the case, RA would be
directly broken: neighbors of R (who know its IP address) would know which circuits,
and which messages, are flowing towards R. The second property is complementary. It
ensures that relayed route proposals do not leak information on the IP address or real-
world identity of the end-receiver it relates to. The third means that it is impossible to
follow the propagation of the route proposals related to a particular end-receiver, and
thus from inferring the routes built. The last one simply requires messages involved in
the round trip from proposer to end-receiver (in the case of a relayed proposal) to be
untraceable, in the same idea as MU-tracing for payload messages. This is also to avoid
the created routes from being observable.

All four are defined w.r.t. the bit pattern of link messages (and the cryptographic
material they carry) involved in route proposals. That is, these properties are formulated
independently from TAR, in the same way as MU in Section 1.4.1, and for similar reasons
(i.e. the impossibility to prove these properties in presence of traffic analysis attacks, as
further discussed in Chapter 5).

4.5.2. Pseudonyms: Form and Computation

Pseudonyms, in order to be meaningful, must ensure certain properties. They must be
secure, abstractly meaning that they conceal the real-world identity of the end-receiver
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they designate. Also, every time X receives a route proposal towards R, X should obtain
the same pseudonym PSX→R. This last point calls for a deterministic computation of
PSX→R, from values specific to R and X.

In practice, the pseudonym of node X towards end-receiver R is defined as follows:

PSX→R = h(dstRsrcX ) (4.9)

Where h : G →{0, 1}n is the SHA-3 hash function, the terms dstR ∈ G and srcX ∈ Z∗q

are values generated by (and secret to) R and X respectively, and G is the same group
used in the Elgamal scheme. More exactly, for any given node X, srcX and dstX are
long-lived values, that can be regarded as its identifiers as end-sender and end-receiver
in the network.

This way of computing pseudonyms achieves the following security properties: (i) for
R′ 6= R, PSX→R′ 6= PSX→R with high probability (preventing X from mistaking an end-
receiver for another); (ii) it is not possible for X to recover dstR from PSX→R (which
would ultimately allow X to impersonate R); and (iii) for two nodes X and X ′, it is
impossible to know that PSX→R and PSX′→R actually designate the same node, and
thus impossible to reduce relationship pseudonyms to simple pseudonyms. Respectively
denoted uniqueness, one-wayness, and indistinguishability, these properties are formally
defined and proved in Chapter 5. They mainly rely on the properties of the hash function
used, i.e. that SHA-3 can be used to produce outputs indistinguishable from a truly
random function. Additionally, note that, because this way of computing pseudonyms
does not rely on the end-receiver’s IP address or real-world identity, it is impossible for
nodes to make the link between pseudonyms and real-world identities.

The computation of PSX→R during a route proposal consists in a three-message se-
cure multi-party computation (SMPC) protocol between X and R. During the process,
however, X does not learn dstR and R does not learn srcX . For that, the homomorphic
properties of the Elgamal ciphertext are leveraged. All network considerations left aside,
if there exists a direct and secure communication channel between X and R, this is real-
ized by the sub-protocol depicted in Fig. 4.5, using the ScExp operation of the Elgamal
scheme.

Intuitively, this short SMPC protocol is secure (meaning that srcX and dstR stay secret
to their respective owner) by the IND-CPA property of the Elgamal scheme. Chapter 5
provides a formal proof. Its actual realisation inside the network, and in particular,
when X and R are not neighbors, is described in the next section.

4.5.3. Route Proposals in Details

This section details the functioning of route proposals, beginning with self-proposals,
and then describing relayed ones. It also shows how the SMPC protocol from Fig. 4.5
can be ported into the network, and finally shows how the route proposal mechanism
fulfills the properties listed in Section 4.5.1. For simplicity, the details on the decision
of accepting and refusing route proposals are only treated in the next section.
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R X

Input: dstR Input: srcX

c1 ← Enc(pkR, dstR)

c2 ← Enc(pkR, 1) c1, c2

c← ReEncnopk(c2, ScExp(c1, srcX))

c = Enc(pkR, dstR
srcX )

PSX→R = h(Dec(skR, c)) PSX→R

Figure 4.5. – Two-party Computation of PSX→R

4.5.3.a) Self-Proposals

When R self-proposes, it sends a link message to all its neighbors. Each of them an-
swers, since they can not know from this first message whether they need this route or
not. Thus, a self-proposal RP(X↔R→R) takes place between R and each of its neighbors
X. Concretely, a route proposal RP(X↔R→R) for one particular X consists in a three
message exchange, depicted in Fig. 4.6. It realises the SMPC from Fig. 4.5, with the fol-
lowing differences: it uses well-formed link messages (with an encrypted flag rtprop and
a circuit identifier cid), it introduces a key pktmp

X , the pseudonym PSX→R is encrypted
in the last message, and there are two additional Elgamal ciphertexts Enc(pkR, pk

tmp
X )

and Enc(pktmp
X , 1). The flag informs the correspondents that this link message relates

to a route proposal. The cid is randomly chosen by R among circuit identifiers not
already in use between R and X (note that a different cid can be chosen for each neigh-
bor). This term identifies both the newly-formed link, and the ongoing route proposal.
The flag and the cid value are encrypted with the keys kXR and kRX , generated from
the initial DHKA performed at network setup. Then, because R can not simply send
PSX→R in the clear over the network in the last message, and because R does not know
X’s public key, a key pktmp

X is introduced . This is a temporary public key, generated
by X specifically for this route proposal. In the second message, X sends it encrypted
under pkR (using PlainMult(c2, pk

tmp
X )) . R subsequently answers with an encryption of

PSX→R under pktmp
X . For reasons that will become clear with the explanation of relayed

proposals, R also sends an encryption of one under pktmp
X .

At the outcome of the route proposal, if X accepts the route, the following entry is
created in X’s routing table, where the ciphertexts c1 and c2 are denoted by cpropX→R and
coneX→R, to mark the fact that those are ciphertexts used by X w.r.t. a route towards
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m1 : {rtprop‖cid}kRX
Enc(pkR, dstR)
︸ ︷︷ ︸

c1

Enc(pkR, 1)
︸ ︷︷ ︸

c2

m2 : {rtprop‖cid}kXR
Enc(pkR, dstR

srcX )
︸ ︷︷ ︸

c

Enc(pkR, pk
tmp
X )

m3 : {rtprop‖cid}kRX
Enc(pktmp

X , PSX→R
︸ ︷︷ ︸

P S

) Enc(pktmp
X , 1)

RX

m1
m2
m3

Figure 4.6. – Messages Involved in a Self-Proposal RP(X↔R→R)

R.
Prev. hop PS cone cprop Next Hop
∅ PSX→R Enc(pkR, 1) Enc(pkR, dstR) R, cid

︸ ︷︷ ︸

coneX→R

︸ ︷︷ ︸

cpropX→R

X does not tell R whether it accepts the route or not. Therefore, R always adds
(X, cid) as previous hop in its routing entry corresponding to itself. If necessary, R can
discard this previous hop if it stays unused for a long period of time.

4.5.3.b) Relayed Proposal

Once X has accepted a proposal, it may relay it (according to the route proposal policy).
Assume that X does so. It thus now assumes the role of proposer. Node X begins by
sending a link message to all its neighbors. Let X ′ be one of these neighbors. The relayed
proposal RP(X ′↔X→R) is carried out similarly to a self-proposal, the main difference
being that the interaction between proposee X ′ and end-receiver R must be relayed
back and forth by X (and, more generally, by every node between proposer and end-
receiver). Also, the ciphertexts are now encrypted under a product of public keys, that
are accumulated or removed during the return trip.

The proposal by X of the route it just learned to one of its neighbors X ′ consists in
the exchange depicted in Fig. 4.7.

The first difference between a relayed proposal and a self-proposal is that X sends a
first message with ciphertexts c′1 and c′2 for dstR and 1 encrypted under pkX,R := pkY ·pkR.
The node X obtains these by running the KeyMult operation with skX on the ciphertexts
cpropX→R and coneX→R learned during R’s self-proposal. Additionally, X must re-encrypt
the ciphertexts so as to realise propagation untraceability, i.e. so that (c1, c2) can not be
linked to (c′1, c

′
2) (except by X itself obviously). To summarise:

c′1 ← KeyMult(skX ,ReEncnopk(coneX→R, cpropX→R))

c′2 ← KeyMult(skX ,ReEncone(coneX→R))
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m1 : {rtprop‖cid′ }kXX′
Enc(pkX,R, dstR)
︸ ︷︷ ︸

c′
1

Enc(pkX,R, 1)
︸ ︷︷ ︸

c′
2

m2 : {rtprop‖cid′ }kX′X
Enc(pkX,R, dstR

srcX′ )
︸ ︷︷ ︸

c′

Enc(pkX,R, pk
tmp
X′ )

m3 : {rtproprelay‖cid‖rcid}kXR
Enc(pkR, dstR

srcX′ ) Enc(pkR, pk
tmp
X,X′)

m4 : {rtproprelay‖cid‖rcid}kRX
Enc(pktmp

X,X′ , PSX′→R
︸ ︷︷ ︸

P S

) Enc(pktmp
X,X′ , 1)

m5 : {rtprop‖cid′ }kXX′
Enc(pktmp

X′ , PSX′→R
︸ ︷︷ ︸

P S

) Enc(pktmp
X′ , 1)

RXX ′

m1
m2 m3

m4m5

Figure 4.7. – Messages Involved in a Relayed Proposal RP(X ′↔X→R)

The main characteristic of a relayed proposal is the return trip from X to R. In
the example, this return trip only takes two link messages (the third and fourth one in
Fig. 4.7), but in general, it takes 2l link messages, where l is the number of hops (in
the topology graph) between the proposer and the end-receiver. The implementation of
the return trip while ensuring privacy poses two main challenges, that the exchange in
Fig. 4.7 solves.

(i) The need to use circuits in a reverse way (with the fourth message).
Although using circuits in this fashion is trivial in e.g. Tor, where nodes have a
one-to-one mapping from previous to next hops, in the present protocol, a node
may have several previous hops. And in particular, when X makes a proposal, it
must concurrently handle one proposal towards R for each of its neighbors. When
X receives the fourth message from R, it thus needs a reverse circuit identifier rcid
value to be able to know that the message relates to an ongoing proposal with X ′

specifically. This value is generated by X and repeated by R on the way back. In
the general case, when there are l hops between proposer and end-receiver, each
of the l relay nodes will independently generate its own rcid value.

(ii) The need to avoid the tracing of ciphertexts in the return trip (and in particular,
of the encrypted PSX→R on the way back from R to X ′) so that return trip
untraceability holds.
For this, we again use URE and the technique of encryption under a product
of public keys. Note that on the way forward (from X ′ to R), ciphertexts are
encrypted under a product of public keys (here, pkX · pkR) so that an adversary
controlling R and thus knowing skR can not trace them; while on the way back,
it is to prevent tracing by X ′ that they are encrypted under a product of public
keys (here, pktmp

X · pktmp
X′ ).
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In more detail, the cryptographic operations performed by X (and all relay nodes
on the return trip in the general case) are as follows. On the way forward, given
c1 := Enc(pkX,R, dstR

srcX′ ) and c2 := Enc(pkX,R, pk
tmp
X′ ),

(1) Generate (pktmp
X , sktmp

X )← KeyGen(1λ)

(2) Compute c′1 ← ReEncnopk(coneX→R,Dec(skX , c1))

(3) Compute c′2 ← ReEncnopk(coneX→R,Dec(skX ,PlainMult(c2, pk
tmp
X )))

Send the resulting ciphertext to R (as depicted in line 3 of Fig. 4.7). On the way
back, given c1 := Enc(pktmp

X,X′ , PSX′→R) and c2 := Enc(pktmp
X,X′ , 1),

(1) Compute c′2 ← ReEncone(Dec(sktmp
X , c2))

(2) Compute c′1 ← ReEncnopk(c2,Dec(sktmp
X , c1))

Send the resulting ciphertext to X ′ (as depicted in line 4 of Fig. 4.7). Notice the
use of temporary public keys: they accumulate in a ciphertext on the way forward
with a PlainMult operation; R then uses pktmp

X · pktmp
X′ to encrypt PSX′→R; and on

the way back, relay nodes run Dec with their temporary secret key, ensuring that
X ′ gets the ciphertext back encrypted solely under pktmp

X′ .

Ultimately, if X ′ accepts the route, X adds (X ′, cid′) as previous hop in its entry
towards R, and X ′ adds the following entry to its routing table:

Prev. hop PS cone cprop Next Hop
∅ PSX′→R Enc(pkX,R, 1) Enc(pkX,R, dstR) X, cid

︸ ︷︷ ︸
coneX′→R

︸ ︷︷ ︸
cpropX′→R

4.5.3.c) Security of Route Proposals Against Traffic Analysis

In the described route proposal mechanism, route proposal homogeneity, route proposal
indistinguishability, propagation untraceability, and return trip untraceability are ful-
filled. Propagation and return trip untraceability have already been discussed extensively.
Route proposal homogeneity is ensured since, from the point of view of the proposer,
the exact same cryptographic material and link messages are sent and received. Route
proposal indistinguishability is also ensured, because by the security properties of the
Elgamal scheme, the proposer and proposee get no information on R. In particular, note
that, when X relays the proposal in Fig. 4.7, although it knows that R is the next hop,
it can not be sure that it is the end-receiver. Lastly all four properties hold against
a global network observer, intuitively because, all an observer sees are link messages
carrying random-looking data.

All these claims are formally proven in Chapter 5. That is, it is shown that these
four properties are ensured cryptographically, in accordance with their definition in Sec-
tion 4.5.1.b. However, without any additional protection, they clearly do not hold under
traffic analysis attacks. In particular, a self-proposal can be distinguished from a relayed
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one since it has no return trip and thus takes much less time. Here, we briefly give addi-
tional measures to thwart traffic analysis attacks aimed at downgrading the security of
route proposals. These measures are however not included in formal proofs for reasons
exposed in the next chapter.

To prevent traffic analysis attacks on the return trips, we actually include routing
messages in the message re-ordering mechanism presented in Section 4.4.2. Meaning
that all messages that X wants to send as part of a route proposals are not simply sent
to neighbors, but placed in its pools along with dummy and payload messages. As a
result, payload and routing messages are mixed together (this is possible since, by design,
they are of the exact same form). This makes actual communications indistinguishable
from route proposals for network observers, and also has the advantage of providing
nodes with further cover traffic. On the downside, this means that the completion of
topology dissemination (i.e. making each node learn about each other) can take very
long. This is however the price to pay: intuitively, the topology dissemination has to be
slow in order for it to be stealthy and avoid being subject to traffic analysis attacks.

Applying message-reordering on route proposal messages contributes directly to pro-
tecting return trip untraceability, but it also helps thwart basic timing analysis attacks
on route proposal homogeneity, since it introduces latency in the return trip. Analo-
gously, this helps regarding route proposal indistinguishability, in the sense that it does
not let the adversary easily distinguish two relayed route proposals based on her esti-
mated distance to different end-receivers (in terms of hops). Lastly, it helps regarding
propagation untraceability. Indeed, when a node decides to relay a proposal, it places
the adequate link messages in its pools, and the batching strategy delays the actual
relaying for some time (and a different time for each neighbor).

Lastly, there is a particular threat to route proposal homogeneity: if a node X joins
a network where topology dissemination has already been completed, it will begin by
self-proposing, and be trivially detected by its neighbors. Since these neighbors see the
IP address of X, and know that it is the end-receiver, they ultimately break RA. This
phenomenon also appears in the Crowds protocol [RR98], and can be solved in a similar
manner, by having all or a subset of nodes around X also begin a new cycle of route
proposals under a new identity (with a new dst value). This allows the newcomer to
blend in this subset.

4.5.4. The Route Proposal Policy: Accepting or Refusing the Routes

In traditional routing protocols, nodes often learn several possible routes to every other
node, but select only one or a few of them, e.g. based on performance metrics such as
the length of the route, or the bandwidth it offers. Nodes also are careful not to create
routing loops, in which a message could get stuck, indefinitely going in circle through
the same set of nodes. In the present protocol, this is the role of the route proposal
policy.

This work does not propose a concrete policy. But the present section discusses how
information and metrics on the routes may be communicated to the proposee, and how
based on these information, it can decide to accept or refuse a proposal, and relay it or
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not.
Note that we do not undermine the importance of the route proposal policy, which

is essential to ensure that topology dissemination does not stop before every node learn
about every other. It also plays an important role in the security of the protocol. First
because it must avoid revealing too much information on circuits so as not to breach
privacy properties. Secondly, it must not be simplistic: in particular, deterministic
policies must be avoided, because given a topology graph, they will always yield the
same circuits. Lastly, because in terms of privacy, some routes are preferable to others:
shortest paths may make the network more efficient, but are easy to infer for anyone
aware of (portions of) the topology graph.

4.5.4.a) Decision Process

The described protocol already provides nodes with one basic piece of information: by
the properties of pseudonyms, nodes can count the routes they have towards a given
(anonymous) end-receiver. The policy can dictate that a node should not have more
than e.g. three routes towards the same end-receiver. A proposee would thus refuse
a route proposal towards a pseudonym for which it has already 5 routing table entries.
However, recall that proposees only get PSX→R at the very end of the route proposal.
It can thus make its choice only a posteriori. After the accept/refuse decision, the policy
should also say whether the node should relay the proposal. This can be based on a
simple coin flip, or on the number of recently received proposal for a given end-receiver
for instance.

To communicate other information about the route, the sub-protocol corresponding to
route proposal must be extended: additional messages must be sent, to carry information
on the circuits. To minimize the information leak on routes, we employ the following
measures: this information is concealed in Elgamal ciphertexts, homomorphic operations
are used to process it, and eventually, a proposee only obtains a yes/no answer on
whether it should accept the route, and another on whether it should relay it or not.
This approach makes it possible to let the proposee choose its own route-selection criteria,
and yet reveals only two bits of information. In practice, this approach is realised by
designing a specific SMPC protocol between proposee and end-receiver for each type of
information to be communicated on circuits.

4.5.4.b) Privately Communicating Information on Routes

Before giving a generic methodology for taking into account any metric or information
about the route, we give a concrete example of SMPC focused on the hop count metric.

The most basic metric characterising a route is its length l, and routing protocols
must limit it to some number lmax of hops. We show how to extend route proposals
with additional messages in order to allow proposees to obtain a boolean indicating if
the route is longer than lmax or not. This corresponds to a private range test protocol,
for which SMPC constructions already exist [Pen+06]. Hereby, we propose a basic
construction that integrates well with route proposals. First of all, when R self-proposes,
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it communicates a ciphertext cℓ = Enc(pkR, g
1) (since at that time, the route is only one-

hop long). This ciphertext is meant to be treated similarly to cone and cprop, i.e. encrypted
under the product of all relay nodes’ keys, re-encrypted, and included in all relayed
versions of the proposal. Additionally, a node that relays a proposal performs c′ℓ =
PlainMult(cℓ, g) = Enc(gl+1) in order to update the route length. In the general case, a
proposee X receiving a proposal from Y towards R receives cℓ = Enc(pkY,...,R, l), which
it uses in the following way to know if l > lmax, for a value of lmax publicly fixed.
X begins by computing CtxtMult(Enc(pkY,...,R, lmax), c−1

ℓ ) = Enc(pkY,...,R, g
lmax−l). This

latter ciphertext is sent back to R along with the ciphertext for dstRsrcX . R then receives
the ciphertext, can decrypt it, and gets glmax−l. It answers with cb ← Enc(pktmp, gb),
where b = 1 if glmax−l ∈

[

g0, glmax−1
]

, and b = 0 otherwise. The ciphertext cb travel
back to X similarly to the one encrypting PSX→R. X can decrypt it, and accepts the
route only if gb = g.

This small protocol reveals only one bit of information to X, but possibly leaks to
R the exact distance of the proposee. This is deemed acceptable, because circuits do
not correspond to a unique end-sender: payload message received by R incoming on a
particular circuit may have been end-sent by any of the nodes in the circuit.

More generally, any metric or information can be communicated to the proposee fol-
lowing the same ideas as in the hop count example: an initial value is encrypted and
included in self-proposals, the information is then (homomorphically) accumulated as
route proposals propagate, proposees homomorphically process ciphertexts, and obtain
a simple yes/no answer by collaborating with the end-receiver R (the only party able to
fully decrypt and get the piece of information). There is often the choice between using
a very efficient SMPC protocol that leaks information to R (but not to X), and using
a more complex one that ensures that both X and R learn only one bit of information.
For better privacy, the latter approach should be favored.

The more complex the route proposal policy is, the more it costs in terms of number
of transmitted messages on the return trip between proposee and end-receiver. Indeed,
each piece of information must be included in a different ciphertext in the initial message
of route proposals. However, note that X can sometimes reduce all these ciphertext to
one unique ciphertext encrypting gb before sending it to R, by homomorphically applying
an adequate boolean formula. If not, this can be done by R, saving at least bandwidth
for the way back of the return trip.

4.5.4.c) Routing Loops

An important component of a routing protocol is the prevention of routing loops in
the forwarding process. However, to the best of our knowledge, there is no existing
privacy-preserving solution to test the presence of loops applicable to the present pro-
tocol. Indeed, the data structure to store information on nodes that are already on the
route must: (i) be of constant size (to avoid leaking the length of the route), (ii) fit
into one or a few Elgamal ciphertexts, and (iii) be manipulable through homomorphic
operations (so as to insert an element in the structure, and test membership). Previous
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works [Don+09; Boc+12] proposed the use of a bloom filter. However, this structure can
not be manipulated by homomorphic operation unless its bits are encrypted separately.
The same goes with the use of polynomials to represent set operations [KS05]: their
coefficient must be separately encrypted, yielding too many ciphertexts to handle in a
route proposal. More generally, and to our knowledge, no such (efficient) data structure
exists and no existing SMPC protocol can appropriately prevent the formation of routing
loop.

However, this is actually not an issue in the present protocol. Indeed, by the way
routing tables are constructed and used, messages can not be stuck indefinitely in a loop.
That is, a circuit may indeed go twice through a same node, but even so, messages do
not get stuck in an infinite loop, thanks to the unidirectional use of circuits. We choose
to tolerate such loops. Although they clearly impacts efficiency, they also brings more
privacy, at least compared to a route proposal policy that builds shortest routes.

4.6. Oriented Communications: Alice Contacts Bob

This section presents the final building block of the protocol, that enables what is called
oriented communication. It can be seen as an extension of the protocol, since the lat-
ter can fully function without this final block. Indeed, given what has already been
presented, nodes can communicate with anonymous end-receivers that they know under
their pseudonyms. This is sufficient for applications in which individuals simply look
for a communication partner, but not for one in particular (in an online game, or a
file-sharing application for instance). It is also sufficient for a use of the network in a
Tor fashion with some nodes acting as exit nodes. The latter application however implies
a client-server architecture in which RA can not be ensured (and also necessitates exit
policies preventing misuse of the anonymity provided by the network, which is an issue
in itself).

Still, in view of the informant-journalist scenario, the functionality provided by the
protocol is not sufficient: an informant Alice must be able to open a bi-directional
communication channel with a specific journalist Bob of its choice (while remaining
anonymous to Bob). This mode of communication is hereby called oriented. As they
are, routing tables do not contain information that could help Alice in this endeavor.
This section fills that gap. It also analyses the SA, RA, SU, MU and TAR properties
w.r.t. oriented communication sessions, showing that the informant and journalist obtain
the desired anonymity.

4.6.1. Intuition

What oriented communications must essentially achieve is to translate “Bob” into Bob’s
pseudonym(s) in the network. The simplest solution would be for Bob to publish its
(possibly certified) anonymous receiver identity, dstB. With this, Alice can compute
PSA→B = h(dstBsrcA) and contact Bob. This however consists in a breach of RA: every
nodeX, when sending or relaying a message towards PSX→B, will know that the message
is directed to Bob. A slightly better solution would be to communicate dstB only to
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Alice. In this case, only Alice breaks RA towards Bob. Still, we reject this solution
for the infringement to privacy it implies. Instead, we propose a solution based on the
use of an indirection node I, a regular network node (not necessarily trusted), making
the junction between Alice and Bob. This approach, somewhat inspired from rendez-
vous points in past works (including Tor) [DMS04; Nez+09], tilts the privacy/efficiency
trade-off in favor of privacy.

The solution relies on a secret sharing scheme applied to Bob’s dstB value. In the
class of secret sharing schemes of interest here [Sha79], a secret value v is split into two
shares. Given one share, nothing can be learned about the secret, but with two shares,
that value can be recovered. Here, Bob gives one share of dstB to I, and the other to
Alice. Through yet another SMPC protocol, Alice and I compute PSI→B, allowing I
to find a route towards Bob. Alice then routes each payload message meant for Bob
towards I, which then forwards it on one of its routes towards PSI→Bob. As a result,
Alice knows the real-world identity of Bob (but not PSAlice→B), and I knows PSI→B

(but not Bob’s real-world identity). That is, the knowledge is divided, and no one party
can make the connection between real-world and anonymous network identities. The
solution additionally requires a setup step, during which Alice and Bob exchange some
information. That is, Bob must communicate the shares to Alice in some way, one of
which is encrypted so that only I can access it.

An implication of the proposed solution is that two levels of routing, and two kinds
of routes appear: the simple routes, built during topology dissemination, and the full
oriented communication routes, consisting of two simple routes, respectively denoted the
first and second leg. This also means that there are two levels of SA and RA. So far,
the described protocol provides SA and RA for end-senders and end-receivers of simple
routes. However, the ultimate goal of the protocol is to provide SA and RA for end
communicants of oriented communication sessions. We will see that privacy of simple
routes realises privacy of the oriented communication routes.

4.6.2. Detailed Description

Hereby, Alice and Bob are assumed to respectively run node A and B in the network.
Bob constructs the two shares of dstB by sampling the first share sh1←$G, and setting
the second share to sh2 = dstB/sh1 ∈ G. One share reveals nothing on dstB, since G is
cyclic, and for i = 1 or 2, {e · shi | e ∈ G} = G, meaning that, given a share shi, dstB
could still be any element of G.

The choice of I must be made by Alice. It can not be made by Bob, since Bob
would consequently be unable to communicate the identity of I to Alice, because of
the indistinguishability of pseudonyms. Alice chooses I by selecting a random entry
EA→I = 〈PrevHops, PSA→I , coneA→I , cpropA→I , NextHop〉 in her routing table. Note
that Alice choses the indirection node, but actually does not know its identity or IP
address.

Alice and Bob then make contact in some way: Alice gives coneA→I to Bob, who
answers with sh1 and Encnopk(coneA→I , sh2) = Enc(pkZ1,Z2,...,I , sh2) (where Z1, Z2, . . .
are the relay nodes between Alice and node I). Additionally, Alice must communicate
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an oriented communication identifier ocomid, and shared key k to Bob (the latter will
be used to conceal the payload data from the node I). This preliminary exchange can be
performed outside of network, as proposed in the existing protocols such as MIAB and
Pung [IKV13; AS16]. But it can also be performed by exceptionally using the anonymous
network in a client-server fashion, for Alice to contact some (web) server publicly known
to be run by Bob. The advantage of the latter option is that the anonymous network
ensures Alice’s privacy even for this preliminary exchange, but reveals that someone
wants to contact Bob.

Regardless of the method used for the interaction between Alice and Bob, once Alice
has sh1 and Enc(pk...,I , sh2), she can engage in a SMPC protocol with I, denoted the
oriented communication initialisation. The goal in this interaction is for I to obtain
PSI→B . In the process, neither Alice nor I learns dstB as long as they do not collude.
The SMPC is run inside the network. In particular, Alice and I communicate using the
circuits built during topology dissemination. That is, Alice sends end-to-end payload

messages in order to contact I. However, for I to answer, simple payload messages
are not sufficient: I does not know route towards Alice, nor her pseudonym PSI→A.
Therefore we use a construction similar to the return trip in route proposals, with reverse
circuit identifiers rcid. That is, I can answer through the reverse route that Alice uses.

We in fact decide to re-use the rtproprelay routing messages in exactly the same
way as in route proposals. This makes the oriented communication initialisation look
like a return trip part of a route proposal, and makes oriented communications harder
to detect. Figure 4.8 depicts how this is achieved. The first part presents the sequence
of end-to-end messages that realise the oriented communication initialisation (where I
obtains PSI→B), and the second part is the actual sending of payload data m, flowing
from Alice to I and then from I to Bob. For conciseness and clarity, many details are
omitted. Although Alice and I are not necessarily neighbors, the role of relay nodes
between them is not represented; cryptographic operations carried out by Alice and I
are referenced by markers and described below the figure; and messages are given with
a generic end-to-end message notation 〈type,Enc(data1),Enc(data2)〉, where type ∈
{payload, rtproprelay}. The ciphertexts in these messages implicitly undergo the same
processing as described earlier in this chapter (see Section 4.3.2 for payload messages,
and Section 4.5.3.b for rtproprelay ones).

The initialisation of an oriented communication thus requires nine end-to-end messages
in the network, and the sending of each payload mi requires two end-to-end messages
each. Notice how, in each end-to-end messages, the two Elgamal ciphertexts Enc(data1),
Enc(data2) are put to use. All messages sent by Alice consist of a first ciphertext contain-
ing control data (the ocomid and a counter), allowing I to link and re-order messages
(indeed, messages are expected to arrive out of order, by the message re-ordering mecha-
nism); and only the second ciphertext carries data directly useful to the computation of
PSI→B . Likewise, because I can only answer Alice using the reverse route, it can send
only one useful ciphertext at a time: it must answer with rtproprelay messages, and
such messages must contain an encryption of one in the second ciphertext.

The operations carried out by nodes at markers (1), (2), (3), and (4) in Fig. 4.8 are
as follows, knowing that Alice starts with sh1, csh2 = Enc(pkZ1,Z2,...,I , sh2):
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(1)
m0 : payload, Enc(ocom‖ocomid‖0), Enc(pkocom

A )
m1 : payload, Enc(ocom‖ocomid‖1), csh2

m2 : payload, Enc(ocom‖ocomid‖2), Enc(csh1 [0])
m3 : payload, Enc(ocom‖ocomid‖3), Enc(csh1 [1])
m4 : rtproprelay(rcid), Enc(ocom‖ocomid‖4), Enc(pktmp

A )
m5 : rtproprelay(rcid′), Enc(ocom‖ocomid‖5), Enc(pktmp

A )
(2)

m6 : rtproprelay(rcid), Enc(c[0]), Enc(1)
m7 : rtproprelay(rcid′), Enc(c[1]), Enc(1)

(3)
m8 : payload, Enc(ocom‖ocomid‖8), Enc(PSI→B)

Initialisation

Payload sending

(4)
m8+i : payload, Enc(ocom‖ocomid‖8 + i), Enc({mi}k)
m′8+i : payload, Enc(ocom‖ocomid‖8 + i), Enc({mi}k)

A

I

B

. . . . . .

(1) m0, .
. . ,m

5

(2) m6,m
7

(3) m8,{
m8+i} i (4) {

m ′
8+i

}

i

Figure 4.8. – Messages Involved in an Oriented Communication Initialisation

(1) Alice generates (pkocom
A , skocom

A )← KeyGen(1λ) and (pktmp
A , sktmp

A ) ← KeyGen(1λ).
She encrypts all plaintexts, including pkocom

A and pktmp
A , using the Encnopk(coneA→I ,

·) operation, as any plaintext meant to be sent towards I. Note that csh2 already
encrypts sh2 under the adequate (product of) public key(s), and can be sent as is
(after a re-encryption). Then, Alice doubly encrypt the other share sh1: once under
pkocom

A (to prevent I from learning it), and once again to be sent in the circuit.
That is, Alice computes csh1 ← Enc(pkocom

A , sh1). An Elgamal ciphertext being
made of two group elements, but only being able to encrypt one at a time, Alice
then separately encrypts the first and second components of csh1 (noted csh1 [0]and
csh1 [1]) using Encnopk(coneA→I , ·). All six messages are then sent on the same circuit
towards I.

(2) Having received pkocom
A , pktmp

A,Z1,Z2,..., sh2, and csh1 , I computes:

(c[0], c[1]) := c← ReEncpk(pkocom
A ,PlainMult(ScExp(csh1, srcI), shsrcI

2 ))
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The node I sends back c[0] and c[1] encrypted under pktmp
A,Z1,Z2,... in two distinct

rtproprelay messages along the reverse route, as though those messages were part
of a route proposal return trip. This is why Alice must send two rtproprelay mes-
sages in the first place: to give the opportunity to I to send back two rtproprelay

messages, each containing a piece of c.

(3) Alice receives and decrypts c = (c[0], c[1]) = Enc(pkocom
A , dstB

srcI ), hashes the
result to get PSI→B, and sends it back to I in a regular payload message, still
using the same circuit as before.

(4) Once I knows PSI→B , Alice starts sending payload data, under the form of several
|q|-bit chunks mi that fit into Elgamal ciphertexts. These are encrypted first with
k, the key shared between Alice and Bob (to conceal the payload from I), and
then with Encnopk(coneA→I , ·), and sent to I again with the same circuit.
When I receives a message with a counter greater to 8, it knows it is payload data.
It selects an entry towards PSI→B in its routing table, and simply relays payload
messages to B (all messages are sent on the same circuit to B).

The solution described here only allows to build a unidirectional route from Alice to
Bob. To answer, Bob can however use reverse route on the whole route (from B back
to I back to A). We suggest, however, that this reverse route only be used for Bob
to obtain shares of Alice’s dstA value, so that Bob can then make a separate oriented
communication initialisation. This ensures a clear separation between Alice’s messages,
and Bob’s answers to them.

4.6.3. Analysis

The correctness of the SMPC is straightforward, since shdstI
1 · shsrcI

2 = dstB
srcI . Cryp-

tographically speaking, security holds because dstB is a generator of G (as any element
of G \ {1}), and assuming that Alice and I do not collude. More specifically, by the
IND-CPA property of the Elgamal scheme, the security of the secret sharing, the DL
problem, I does not learn anything except PSI→B , and Alice can not recover dstB nor
srcI . The formal security proof can be found in Chapter 5.

The oriented communication mechanism as a whole leaks almost no information to the
concerned parties (Alice, Bob, and I), nor to observers and relay nodes. In particular,
Alice stays anonymous, even to Bob (though Bob is not anonymous to Alice, of course). I
only learns that someone wants to communicate with PSI→B . Relay nodes can not know
whether the rtproprelay messages correspond to a route proposal or to an oriented
communication initialisation (note that two different rcid values are used for the two
rtproprelay messages). Relay nodes do detect communications by the presence of
payload messages, but they can not however know whether those are payload messages
on the first leg (between Alice and I) or on the second one (between I and Bob). This
makes it harder for corrupted nodes to infer their own location on the route.

As mentioned previously, the oriented communications consist in another level of rout-
ing. It is on this level, and on oriented communication routes, that the SA, RA, SU,
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MU, and TAR must ultimately be ensured. The construction of oriented communica-
tion achieves (almost) all of them. SU holds simply because two sessions between the
same Alice and Bob do not share any common data. Even the indirection node I differs
from session to session. SA (for Alice) and RA (for Bob) hold, because these properties
already hold on each leg of the full oriented communication route, and because the ori-
ented communication initialisation conceals the identity of Bob to I. Similarly, TAR and
MU hold on each leg. However, they do not completely hold on the full route, because
of the position of the indirection node. Indeed, I clearly breaks MU-session, since it can
link together all messages using the ocomid. Likewise, MU-tracing can be broken by a
corrupted Alice and/or Bob colluding with a corrupted indirection node, since the en-
crypted payloads {m}k are seen by Alice, Bob and I, and are not changed of appearance
on the route. The TAR property is also impacted, since I is able to re-order messages.
These infringements to the MU and TAR properties are however deemed acceptable, for
they do not seem to lead to a breach of SA or RA. In particular, an adversary controlling
Bob and I and breaking MU-tracing does not learn much information: for all she know,
any node in the network could still be the end-sender, since any node in the network can
reach I.

In addition to I fully breaking MU-session, note that all exchanged messages between
Alice and I go through the same circuit and the same relay nodes (and likewise for
the second leg, between I and Bob). Although this design choice further degrades MU-
session, the formal analysis in Chapter 5 shows that it yields better anonymity overall.
If necessary, MU-session can be emulated by Alice by initialising several communication
sessions with Bob, with different indirection nodes, and to split the flows of data she
needs to send over several channels (as suggested by Serjantov and Murdoch [SM05]).

Finally, note that oriented communications can take a substantial amount of time to
be carried out, because all the messages during the oriented communication initialisation
are delayed, as any other message, by the message re-ordering mechanism.

4.7. Summary and Discussion

In this chapter, a new Internet overlay protocol for strongly private communications
was presented. Combining several existing mechanisms, and introducing new ones, the
chapter details how SA, RA, MU, SU, and TAR are achieved. This last section further
explains how each protocol component participates in realising these properties. Before
concluding, it also presents various interesting properties of the protocol.

Privacy

Table 4.1 summarises all the privacy-enhancing mechanisms or properties of the protocol,
and specifies which of SA, RA, MU-session, MU-tracing, or TAR they participate in
achieving. If the mechanism is protecting only against external adversaries (and not
internal ones), a partial tick “/” is used. The SU property is not included in the table,
since it is simply ensured by the absence of common elements across sessions. Also,
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each mechanism listed in the table is accompanied with a reference to its corresponding
section number in the thesis, where the reader may find the relevant details.

SA RA
MU

TAR
sess. trac.

Homogeneous Architecture (4.1) X X /
Dummy Messages (4.4.1) / / /
Traffic Rates (4.4.1) X X X
Pseudonyms (4.5.2) X
Shared Circuits (4.2.2.b) X X X
Re-encryption (4.3.2) X X
Message re-ordering (4.4.2) X
Split flows (4.6.3) X X

Route Prop.
(4.5.1.b, 4.5.3.c)

(4.5.3.c)

Homogeneity
Indistinguishability
Propagation Untrac.
Return Trip Untrac.
Batching w/ payload

X
X
X X
X X
X X

Table 4.1. – Which Mechanism Ensures Which Privacy Property?

Abstractly, the protocol conceals almost everything from all network entities. Exter-
nal adversaries only see random-looking data, from the topology dissemination to the
sending of payload data. The knowledge of internal adversaries (corrupted nodes) is
limited to the IP address of their neighbors, and the previous and next hop of each
circuit they are part of. Additionally, by the relay homogeneity and the use of dummy
messages and controlled traffic rates, a corrupted node can not know for sure if the pre-
vious hop is the sender or not, and if the next hop is the receiver or not. Pseudonyms,
with the procedure initialising oriented communication, are the key to ensure RA, along
with the security properties of route proposals. Oriented communications are designed
to allow Alice to stay completely anonymous to Bob. MU-tracing is mainly ensured
by re-encryption at each hop. MU-session holds first by the shared circuits: a relay
can never know if two messages in the same circuit come from the same sender. The
possibility to split flows of data over several oriented communication sessions also par-
ticipates in ensuring MU-session. The TAR property, being very broad, is realised by
a collection of mechanism. Roughly, all that participates in MU is also useful for TAR.
Dummy messages, and the homogeneous architecture also thwart attacks from external
adversaries, and traffic rates attacks from internal ones. But the main key to TAR is
of course the message re-ordering mechanism adapted from mixnets. Finally, the whole
design of route proposals is eventually aimed at concealing the end-receiver of circuits,
and preventing the adversary from inferring the circuits created (and thus ultimately
protecting MU-tracing). And the fact that routing and payload messages are batched
and re-ordered together can only improve resistance to traffic analysis.

Table 4.1 however presents security mechanisms and their role in an informal manner.
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As discussed in the next chapter, not all the elements in that table appear in formal
proofs (and in particular, TAR can not be proven).

Compared to previous works, note that cascade mixnets often claim relationship
anonymity is ensured as long as there is only one non-corrupted node on the path
between sender and receiver. In the present protocol, SA, RA, and thus relationship
anonymity can hold even if all relay nodes are corrupted. Indeed, in the general case, a
collusion of corrupted nodes can not even know that it occupies the full path. This is
also a property of Crowds and Tarzan, and of homogeneous networks in general.

Conclusion and Insight

In this chapter, we proposed a new Internet overlay for strongly private communications.
Building upon existing protocols, Tarzan and mixnets in particular, it ensures unobserv-
able communications in a fully distributed network. For that, we adapted the message
re-ordering mechanism from mixnets into a peer-to-peer, homogeneous network architec-
ture. Inspired by Tarzan’s mimics system, we conducted a thorough analysis showing
that, by introducing dummy messages and controlling the nodes’ traffic rates, it is pos-
sible to prevent the detection of end-sending and end-receiving activities, even from a
global network observer and collusions of corrupted nodes. We additionally proposed a
new way to manage anonymous network identities, showing how relationship pseudonyms
can allow end-receivers to remain anonymous even to end-senders. The protocol addition-
ally proposes a cryptographically secure implementation of these pseudonyms, leveraging
the homomorphic properties of the Elgamal scheme. Finally, the protocol was designed
without anchoring trust into a particular central authority or a group of central servers.
Indeed, privacy stems not from such central entities, but from the willingness of nodes
to help each other in staying anonymous. By design, the more a node helps its neighbors
with cover traffic, the more those can help it in return.

The resulting protocol is complex, and mainly aimed at users willing to pay a high
price in efficiency and latency to obtain very strong privacy guarantees. The protocol is
also less flexible than plug’n’play protocols that build circuits on demand, such as Tor,
which is now bundled in browsers and allows users to start using the network immediately
after joining it. Indeed, in the proposed protocol, before starting communications, a user
joining the network must make itself known, and learn about other nodes in the network
using route proposals. Additionally, every (oriented) communication session must be
preceded by an initialisation requiring a secret token from the end-receiver. On the other
hand, in contrast to protocols constructing circuits on demand, the proposed approach
allows to build circuits shared by many senders, thus participating in preventing traffic
analysis and ultimately ensuring strong sender anonymity.

In the next chapters, the security of the cryptographic components of the protocol is
formally proven, and its practical efficiency studied.
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The presented protocol invokes the security properties of various tools, and makes
security claims, but in an informal way. This chapter gathers all the formal treatment
of the protocol and its properties. Namely, it formally studies the security and privacy
guarantees of the protocol, according to the principles of provable security.

In a first time, Section 5.1 introduces the relevant cryptographic proof frameworks
(mainly, the UC and AnoA frameworks), and presents the approach and methodology to
carry out our formal analysis of the protocol. Section 5.2 then informally summarises the
results of the analysis. Then, Section 5.3 presents the formal security definition of the
cryptographic schemes used in the protocol, such as the Elgamal scheme and hash func-
tions. Finally, Sections 5.4, 5.5, and 5.6 respectively study the security of pseudonyms,
of the route proposal mechanism and its properties, and of the whole protocol along with
the sender anonymity (SA), receiver anonymity (RA), session unlinkability (SU), and
message unlinkability (MU) properties. Each of these properties are formally defined,
and proven. Only the traffic analysis resistance (TAR) property is not studied.

Due to the length of the proofs, this chapter provides only proof sketches, and the full
proofs are placed in Appendix B.
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5.1. General Methodology

This first section presents the cryptographic frameworks used as base for our analysis. It
then discusses the difficulties encountered in the formal treatment of the protocol (and in
particular, what can and can not be proved with the current state of provable security),
and how we overcome them. Finally, this section summarises all the assumptions on
which our analysis relies.

Table 5.1 describes the notations and symbols used throughout the chapter, that are
not previously defined in this thesis.

Notation Description Example
c
≡ Computational Indistinguishability [Gol01] {X(n)}∀n

c
≡ {Y (n)}∀n

A Cryptographic adversary

F UC Ideal Functionality

Sim UC Simulator

E UC Environment

Ch AnoA Challenger

f(x, ·) Function with a fixed first argument

Af Oracle access to function f for the adversary AO, Af(x,·)

Ω Set of all nodes in the network

Ωc, Ωh Subset of corrupted (resp. honest) nodes

Table 5.1. – Cryptographic Notations for Formal Proofs

5.1.1. Cryptographic Proof Frameworks

Following works on Tor [Bac+12; BMS16] or on the recent mixnet cMix [Cha+16] for
instance, the proofs are made in two steps. The first step consists in proving that the
protocol realises an ideal functionality using the UC framework [Can13]. In a second
time, this ideal functionality is then further analysed, to prove properties such as SA
and RA. This is done with the AnoA framework [Bac+13], or with a custom security
definition depending on the property to prove.

5.1.1.a) The UC Framework

In provable security, the main way to formally express the security of a cryptographic
protocol (as opposed to a primitive) is using the real vs. ideal paradigm. For an in-depth
introduction to this concept, the reader may refer to a tutorial by Lindell [Lin16a]. The
basic idea of this proof methodology is to prove that there exists no PPT distinguisher
between a real execution in which an adversary A interacts with a protocol Π, and
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an ideal execution in which a simulator Sim (also called the ideal adversary) interacts
with an ideal functionality F. The latter is the idealisation of protocol Π, and is meant
to capture its security properties. An ideal functionality F is usually devoid of crypto-
graphic operations, and explicitly specifies the information that an actual adversary gets
by interacting with the protocol in a real-world scenario.

The UC framework [Can13], is directly inspired from this proof methodology. Its
specificity, compared to the so-called standard model [Lin16a], is to allow to prove se-
curity under concurrent composition of protocol instances. That is, while the standard
model only guarantees security under sequential composition, a protocol proved secure
with the UC framework ensures that, even if several protocol instances run concurrently,
one protocol instance can not be used to attack another. To achieve universal compos-
ability, the UC framework transforms the distinguisher from the standard model into
an interactive distinguisher. The latter is called the environment, and denoted E . It
is responsible for giving the protocol inputs to the adequate parties, and receives their
outputs. It is not allowed to interact with the parties in any other way, meaning in
particular that it can not play a corrupted party in the protocol. However E controls
the adversary A, which itself can interact with nodes and play a role in the protocol.
A can be considered as E ’s proxy in the protocol. This seemingly trivial change to the
standard model actually has crucial implications for the proofs. Indeed, while in the
ideal execution in the standard model, the simulator is free to act as it will, in the ideal
execution of the UC framework, the simulator must carry out the instructions of the
environment just like A would (since otherwise, E would be trivially able to distinguish
between the real and ideal executions). This can also be explained in terms of quantifiers:
while in the standard model, the proofs must hold such that “for all A, there exists a
simulator Sim” that makes the ideal execution indistinguishable from the real one, in
the UC framework the proof must hold such that “there exists a simulator Sim such
that for all A”. This implies in particular that in the UC framework, it is not possible to
rewind of the adversary, a technique largely used e.g. in security proofs of zero-knowledge
proofs schemes. Lindell’s tutorial [Lin16a, Section 10.1] gives a good explanation of the
differences between the standard model and the UC framework [Lin16a].

In addition to providing security under concurrent composition, the UC framework is
very flexible. It allows to express many types of adversary (static, adaptive, semi-honest,
or malicious, in particular), and many system models [CSV16]. It also comes with a
composition theorem that allows a modular approach to proofs of complex systems: if a
protocol uses one (or several) sub-protocols, the security of the sub-protocol(s) can be
proved first and independently; and to prove the larger protocol, one can then safely
use the sub-protocol’s ideal functionality, arguably simpler than the corresponding sub-
protocol. On the downside, the UC framework is also extremely complex. The interested
reader may refer to the full paper [Can13], or to the simpler variant of the UC frame-
work [CCL15], which was designed so as to make the UC framework easier to understand
and use.

In addition to the elements already presented, the UC framework comes with specific
terms, that we define here. The UC framework models parties of the protocol as in-
stances of interactive turing machines (abbreviated ITI for ITM Instance), with input,
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output, and communication tapes (the latter is dedicated to the receiving of protocol
messages). The real and ideal executions are meticulously defined as an executing sys-
tem of ITIs, with rules on which ITI can write on which tape of given ITIs. When an ITI
writes in the input tape of another ITI and provides input to it, it is said to use the latter
as subroutine. The real execution is denoted ExecReal

Π,A,E , and involves the environment
E , a protocol Π, and the adversary A. The ideal execution is denoted ExecIdeal

F,Sim,E , and
involves E , a simulator Sim (also called the ideal adversary), and an ideal functionality
F. In the real execution, each party in Π is represented by one ITI, and exchanges
messages with the other parties’ ITIs. In the ideal execution, those parties are replaced
with dummy parties, which are simple interface, that merely pass the inputs they receive
from E to F and vice-versa (the dummy parties thus use the ideal functionality as sub-
routine). The information available to the real execution adversary A, in the restricted
model considered in this thesis, is basically all that is written on any tape of corrupted
parties’ ITIs, and all messages exchanged between ITIs (including those of honest par-
ties). However, A can not see the (subroutine) input/outputs that parties give to other
ITIs that they use as subroutine. The information available to the simulator Sim in the
ideal execution is all that is written on the tapes of corrupted (dummy) parties’ ITIs,
and what F explicitly leaks. However, Sim does not see the inputs that honest dummy
parties give to F.

In the UC framework, a protocol Π is said secure if it UC-realises an ideal functionality
F, which corresponds to the requirement:

∃Sim s.t. ∀A,
{

ExecReal
Π,A,E(z)

}

∀z∈{0,1}∗

c
≡

{

ExecIdeal
F,Sim,E(z)

}

∀z∈{0,1}∗

where z represents the input that the environment Sim receives (it can be considered
as its source of randomness, from which E generates all other inputs). Finally, when,
in a real execution, a sub-protocol Πsub is replaced by a (sub-)ideal functionality Fsub

used as subroutine by parties in the larger protocol, the proof is said to stand “in the
Fsub-hybrid model”.

5.1.1.b) Analysis of the Ideal Functionality

Usually, proving that a protocol Π UC-realises an ideal functionality F is enough of a
proof in itself. For simple and short protocols, F allows to immediately see what is
learned by the adversary (since the information learned by the adversary is explicitly
specified), and the protocol’s security properties appear clearly. However, for network
communication protocols (and more generally, for complex and large protocols), the
ideal functionality often remains too large for the security properties of the protocol
to be trivially deduced from it (although F is generally simpler than Π). Thus, it is
common, at least in networking protocols, to further study the ideal functionality in
order to put in evidence the security and anonymity properties of the protocol [Bac+12;
BMS16; Cha+16]. Note that the analysis could be conducted directly on the protocol Π,
thus skipping the UC framework step. However, ideal functionalities are usually simpler
than the protocol they model, and being devoid of (almost) all cryptographic operations,
allow for a crypto-free analysis.
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The base idea to analyse an anonymous network protocol or a protocol’s ideal func-
tionality is to let the adversary choose two possible neighboring runs of the network. A
random one among them is chosen, and the protocol is then run with A controlling the
corrupted parties. Finally, A is asked to guess which of the two runs was picked [HM08;
Bac+13]. For instance, for SA, the adversary would choose two different end-senders
S0 and S1, a message m, and an end-receiver R. For a random b←$ {0, 1}, the sender
Sb is then asked to send m to R. A must guess which of S0 or S1 sent the message.
In our literature research, we found two existing tools that allow the formalisation of
this security definition: the AnoA framework [Bac+13], and a framework by Hevia and
Micciacio [HM08]. The latter does not take into account corrupted nodes, and expresses
privacy w.r.t. computational indistinguishability. On the other hand, the AnoA frame-
work models node corruption, and allows for a quantitative characterisation of anonymity,
with possibly non-negligible advantage. Indeed, as pointed out by the authors of AnoA,
in the presence of corrupted nodes, the adversary necessarily has a non-negligible ad-
vantage in breaking privacy properties. The Tor and cMix protocols were analysed with
the AnoA framework [Bac+13; Cha+16]. Because we want to carry an analysis of the
protocol in the presence of corrupted nodes, we also choose the AnoA framework.

More precisely, in this thesis, we use two methods. For high-level properties such as
SA, RA, and SU, the AnoA framework [Bac+13] is used (as discussed next, for other
properties we use a custom security definition). This framework uses security definitions
inspired from the notion of differential privacy. Formally, in AnoA, a ideal function F
(or, more generally, any kind of protocol) is said to be (ǫ, δ)-α-ind-cdp w.r.t. adjacency
function α if for all PPT adversary A,

Pr
[

ACh(F,α,0) = 0
]

≤ eǫ · Pr
[

ACh(F,α,1) = 0
]

+ δ (5.1)

This equation formalises a setup in which A interacts with a challenger Ch (here, rep-
resented as an oracle of A), which itself runs F. The challenger is given as input the
ideal functionality F, the adjacency function α, and a bit b ∈ {0, 1}. The function α
models the security property to prove. For instance, the adjacency function for SA, in
its most simplistic form, takes as input r0 = (S0, R,m), r1 = (S1, R,m) and b, and out-
puts (Sb, R,m). The terms r0 and r1 are called the challenge rows1. Ultimately, if the
inequality (5.1) holds, this implies that A has only a small (but possibly non-negligible)
probability of distinguishing a run with r0 from a run with r1. Finally, we note that the
AnoA framework is flexible, and allows more complex α functions and various adversary
models. We give more details on how the model considered in this thesis is formalised
into the AnoA framework in Section 5.6.3.b (page 128), which deals with the proof of
the SA, RA, and SU properties.

For route proposal properties, and for the MU property, we propose and use a custom
security definition (which we describe in Section 5.5.3). Indeed, these properties can not
be simply expressed with the AnoA framework. The next section discusses this point,
and explains the rationale behind the custom security definition that we propose.

1The term row stems from the literature on differential privacy in databases.
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5.1.2. Approach and Assumptions

With the presented tools, the definitions and proofs of security and anonymity properties
are divided in the following way. Firstly, pseudonyms are proven secure, using traditional
indistinguishability-based definitions. Secondly, the route proposal mechanism is studied.
It is expressed as a protocol Πrtprop, and shown to UC-realise an ideal functionality
Frtprop. The latter is then analysed to prove the route proposal homogeneity, route
proposal indistinguishability, propagation untraceability, and return tric untraceability
properties of the route proposal mechanism. (see Section 4.5.1.b, page 73). In a third
time, the entire protocol Π is described as pseudo-code, using Frtprop as subroutine. It
is then proved to UC-realise an ideal functionality F. Finally, this latter functionality is
analysed, to prove the SA, RA, SU, and MU properties. We choose this two-step analysis
of the protocol (first, the route proposal mechanism Πrtprop, and then the entire protocol
Π) in order to be able to study the route proposal properties with Frtprop, and to reduce
the complexity of proving the whole protocol in one large proof of UC-realisation.

The remainder of this section details what can and can not be proved with the tools
we consider to use, and how we work around the issues that arise. It also discusses our
custom security definition, and details the assumptions on which all proofs rely.

5.1.2.a) What Can and Can Not be Proved

In the realm of formal proofs, it is widely admitted that, with today’s knowledge, there
are elements and properties of network communication protocols that can not be proved.
That is, some elements of design, such as dummy messages or message re-ordering strate-
gies, are difficult to take into account in formal proofs. There are also properties for which
a proof methodology is yet to be discovered (if it exists).

The most straightforward example is the impossibility to prove resistance to traffic
analysis [SW06]: it seems that any non-trivial protocol will always allow the adversary to
trace messages, if given enough (polynomial) time. Some works choose to exclude these
elements that are of a non-cryptographic nature from the model and the proofs, stating
that e.g. traffic analysis attacks should be handled by orthogonal mechanisms [DG09].
Other works take a conservative approach (as it is standard in provable security), and
consider the worst-case assumption. That is, they make the assumption that the adver-
sary is able to perform traffic analysis, and in particular, can perfectly trace message.
It is the case of the formal treatment of onion routing [CL05] and of the Tor proto-
col [Bac+12].

In this thesis, the security of the protocol relies largely on the impossibility to perform
traffic analysis (contrarily to low latency protocols). Ensuring TAR is the role of the
message re-ordering, dummy messages, and controlled traffic rates mechanisms. However,
in light of the above remarks, it is not possible to formally prove that these mechanism
achieve the desired level of protection. As a result, if we were to choose a conservative
approach, we would assume that they do not offer any protection at all. Therefore, the
global network observer in our considered adversary model would be able to perfectly
trace all messages, which amounts to stating that the protocol provides no anonymity
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whatsoever. On the other hand, if we were to choose to make the (strong) assumption
that the protocol perfectly resists traffic analysis, we obtain security guarantees that
are possibly too optimistic. For the sake of obtaining proofs as close to the actual
anonymity provided by the protocol, we propose a middle ground between these two
extremes. Namely, we assume that internal adversaries can perform traffic analysis, but
not external ones. This boils down to assuming that the dummy messages and controlled
traffic rates mechanisms of the protocol prevent network observers from distinguishing
real from dummy messages, and thwarts the observation of messages exchanged between
neighbors. This chosen approach translates into an assumptions, formalised in the UC
framework under an ideal functionality Flink, presented in the next section.

This settles the question of TAR. Another element that arguably participates in the
security of the protocol is the concurrency among network events, e.g. among route pro-
posals, or oriented communications. Informally, the fact that several events happen in
parallel in the network provides cover traffic, and introduces uncertainty in the adver-
sary’s observation. However, this element can not be included in the formal proofs either.
To illustrate this issue, the most straightforward example is that of the route proposal
homogeneity property, which states that it should be impossible to distinguish a self-
proposal from a relayed one. This property is formalised by running the network either
with Y self-proposing to a (possibly corrupted) proposee X, either with Y proposing to
X a route towards R. Let us assume in a first time, for the sake of the argument, that
there is no concurrency among network event, as it is the case for the analysis of Tor
with the AnoA framework [Bac+13], and thus there is only one route proposal occurring
in the network at any time. Then, distinguishing the self-proposal from the relayed one
is trivial for the adversary, since only the latter necessitates a return trip. Indeed, if,
during the challenge route proposal, the adversary sees that one of its corrupted nodes
Z is solicited as part of a return trip, it can be sure that a relayed proposal was executed.
Now, let us assume that there are always several route proposals being carried out at the
same time, which can also be modeled in the AnoA framework, and which better reflects
a real-world scenario. Then the situation is not as favorable to the adversary. Indeed,
if, during the challenge, a corrupted node Z is solicited as part of a return trip, she can
not know for sure whether this return trip relates to the challenge route proposal, or to
some other route proposal happening in parallel. In a thorough proof, this uncertainty
of the adversary should be quantified, or at least over-approximated. However, there
is no formal foundations for such an analysis, not in AnoA, nor in any other existing
framework, to our knowledge.

To overcome this difficulty, we choose to largely over-approximate the adversary’s
advantage: since the impact of the presence of one (or several) corrupted nodes can not
be accurately quantified, it is considered that it fully breaks the property (i.e. that it
gives a probability 1 for the adversary to break the property). For instance, for RA,
we consider that, if there is a corrupted node on the second leg of the challenge session,
the adversary finds the receiver with probability 1. The benefit of this approach is that
it yields results that hold even against a very strong adversary, able to control all the
traffic in the network (i.e. even when there is no concurrency among network events).
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On the other hand, this only gives a lower bound on the actual anonymity provided by
the protocol.

On top of these difficulties, the MU property, as well as the return trip untraceability
property of route proposals, can not simply be expressed with the AnoA framework
(and any other existing framework, to our knowledge). Indeed, AnoA is mainly suited
to express high level properties, pertaining to communication sessions (such as SA, RA,
and SU), but not to express more fine-grained properties that necessitate to formulate
challenges that do not apply on full sessions, but on messages, or parts of routes.

Another (orthogonal) issue arises for the formalisation of the route proposal properties.
Indeed, even if we set aside the issue of corrupted relay nodes in the above example about
the route proposal homogeneity property, there is another pitfall. For instance, the
adversary may know, from past interactions in the network, that the corrupted proposee
X, before the challenge, has n1 routes towards Y , and n2 6= n1 routes towards R. Thus,
at the end of the challenge, when X learns either PS = PSX→Y or PS = PSX→R, X
can see that it previously had n1 or n2 routes towards this pseudonyms PS, and deduce
whether Y was self-proposing or not. More generally, route proposal properties must
be studied by taking into account all the previous route proposal the adversary was
involved in, and what she has learned through them. We do not know of a way to take
into account all past actions of the adversary, nor the side-channel information in the
example of route proposal homogeneity. Therefore, in a first step, we aim at proving
these properties outside of the network dynamics, and without taking these elements
into account.

In light of these remarks, we propose in Section 5.5.3 a custom security definition
based on adversarial views, and use it to prove the MU property, and the properties of
route proposals. This definition is designed to address all the above mentioned issues.
That is, it circumvents the issue regarding the corrupted relay nodes’ impact on the
adversary’s advantage (by allowing to model challenges in which the corrupted relay
nodes are the same in both cases, i.e. whether b = 0 or b = 1). Secondly, it allows the
expression of more fine-grained challenges, on portions of routes rather than on entire
communications. Finally, it allows to analyse a route proposal out of the dynamics of
the network, thus avoiding the need to take into account all the information that the
adversary may have obtained from past route proposals.

5.1.2.b) Assumptions

Here, we summarise all the cryptographic and network assumptions made throughout
the chapter. Generally, the adversary is considered PPT, and can eavesdrop all com-
munication links, and/or corrupt an arbitrary fraction of the network. The adversary is
considered passive (or semi-honest), and static (as opposed to adaptive), meaning that
the set of corrupted node is fixed at the beginning of the network lifetime and does not
change afterwards. Appendix B.2 expands on how these adversary models translate into
the UC framework. Our results rely on the assumption that the pseudonym indistin-
guishability property, and the IND-CPA, IK-CPA, and USS properties of the Elgamal
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schemes hold. Ultimately, this means that our proofs rely on the hardness assumption
of the DDH problem, and on assumption that the hash function used is indistinguish-
able from a random function. All these cryptographic properties and hard problems are
presented in Section 5.3.

Additionally, when proving the security of the full protocol, with oriented communi-
cations, it is assumed that end-senders and indirection nodes do not collude, so that
the adversary does not learn the dst value of honest nodes. Also, it is assumed that
route proposals essentially consist in the computation of a pseudonym, and do not leak
information such as the route length or identity of the nodes on the route. Without loss
of generality, it is also assumed that there is an upper bound lmax on the length of the
created route.

The assumption presented in the previous section, on the impossibility for external
adversaries to perform traffic analysis, translates into an ideal functionality Flink in
the UC framework. This ideal functionality abstracts the dummy messages policy, the
controlled traffic rate, and the message re-ordering mechanisms. That is, in the real UC
execution, nodes do not exchange messages, but only communicate by input/outputs,
using Flink as subroutine. As a result, UC proofs are said to stand in the Flink-hybrid
model. This assumption itself is studied in Appendix B.7, which presents a protocol that
arguably UC-realises Flink under strong assumptions on the traffic load. On the other
hand, it is assumed that corrupted nodes can perform traffic analysis. For instance, on
a route of the following form:

(S cid1−→ Z1
cid2−→ Z2

cid3−→ Z3
cid4−→ Z4

cid5−→ R)

if Z1 and Z4 are corrupted, it is assumed that they are able to know that they are on the
same route. That is, when Z1 sends a message to Z2 with cid2, it knows that the message
will arrive to Z4 from Z3 and with cid4. Note however that, although the receiver R is
situated just after the corrupted node Z4, this does not mean, in the general case, that
Z4 knows that R is the receiver: for all it knows, R could be another relay towards a
receiver further down the road.

5.2. Summary of Results

This section summarises the results of the formal analysis of the protocol. First, we show
that the route proposal mechanism UC-realises the ideal functionality Frtprop (defined in
Fig. 5.6 on page 110), and then that the full protocol UC-realises the ideal functionality
F (defined in Fig. 5.10 on page 125). Without further analysis, a simple inspection of
Frtprop and F immediately shows that external adversaries do not get any information
whatsoever about route proposals nor about oriented communications. This is in partic-
ular due to the fact that proofs stand in the Flink-hybrid model. Therefore, we are able
to show that all properties (SA, RA, SU, MU, and route proposal properties) perfectly
hold against any PPT external adversary.

Against corrupted nodes (i.e. internal adversaries), the situation is more complex.
Firstly, it can be noted that both ideal functionalities leak dstsrc values to end-senders
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and/or end-receivers. This is due to the way pseudonyms are computed. Indeed,
Frtprop implicitly contains the sub-protocol from Fig. 4.5 (on page 75) that computes
the pseudonyms during route proposals; and, similarly, F implicitly contains the sub-
protocol from Fig. 4.8 (on page 85) that computes the pseudonyms during oriented com-
munication initialisations. The ideal functionalities show that, during a route proposal,
a (corrupted) end-receiver R learns dstRsrcX w.r.t. proposee X, and during an oriented
communication initialisation, a (corrupted) end-sender S learns dstRsrcI w.r.t. the end-
receiver R and the indirection node I. Another remark that can be made by inspecting
the ideal functionalities, is that (corrupted) relay nodes do not learn information from
the link messages they relay. More exactly, they do not learn information from the mes-
sages themselves. However, the very fact that a corrupted node is solicited to relay a
message, on a specific route (with a specific cid value and next hop node) does indirectly
reveal information. As already discussed in the previous section, quantifying the advan-
tage this information provides to the adversary is far from trivial, and not possible with
the tools at hand.

These general remarks do not however prevent the proofs of the protocol properties
to be carried out, since we work around these shortcomings. With the approach and
assumptions described in Section 5.1.2, the proof of each property results in a quan-
tification of the probability that the adversary breaks that property. This probability
depends in particular on the number of corrupted nodes in the network. Namely, the
result for each property is as follows:

– Sender anonymity (SA) holds with probability equal to
(|Ω|−lmax

|Ωc|

)
/
( |Ω|
|Ωc|

)
, which

corresponds to the probability that the first leg of the oriented communication is
devoid of corrupted nodes.

– Receiver anonymity (RA), holds with the same probability as SA (up to a negligible
additive factor, however), which corresponds to the probability that the second leg
of the oriented communication is devoid of corrupted nodes.

– Session unlinkability (SU) holds with probability
(|Ω|−2lmax+1

|Ωc|

)
/
( |Ω|
|Ωc|

)
, which corre-

sponds to the probability that both legs are devoid of corrupted nodes.

– Message unlinkability (MU) is divided into MU-session and MU-tracing, as defined
in Chapter 1 (on page 13). We do not make an attempt at proving MU-session,
because it seems that it is trivially broken by the adversary. More accurately,
we were not able to find a meaningful formal definition of MU-session that is not
trivially broken by A. To prove MU-tracing, we express it in two ways, depending
on whether the challenge consists in tracing messages on the first or second leg of
an oriented communication route. It appears that MU-tracing for the second leg
holds perfectly (up to a negligible probability), and with probability

(|Ω|−2
|Ωc|

)
/
( |Ω|
|Ωc|

)

for the first leg. This discrepancy is due to the privileged place that the indirection
node occupies in oriented communications.

– Finally, the four route proposal properties are proven to hold perfectly (up to a
negligible probability).
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In these results, every negligible factor that appears is due to the leaking of pseudonyms
or encryptions of one to the adversary. In all cases, these informations give a negligible
advantage negl(λ), by the indistinguishability of pseudonyms and the IK-CPA property
of the Elgamal scheme. Additionally, note that we are able to show that the route pro-
posal properties hold perfectly only because we formally define these properties in a way
that nullifies the impact of corrupted nodes, and because our custom security definitions
takes route proposals out of context. Although this approach significantly reduces the
impact of the results, this is a first step towards proving these properties in more general
cases.

In a network with |Ω| = 1000 nodes and a maximum route length of lmax = 10 hops,
these results lead to the following probabilities for SA, RA, SU, and MU-tracing to hold.
When there are |Ωc| / |Ω| = 1% of corrupted nodes in the network, SA and RA hold
with probability 0.9, SU holds with probability 0.83, and MU-tracing (on the first leg)
holds with probability 0.98. However, these figures decrease rapidly when the ratio of
corrupted nodes augments. Indeed, when |Ωc| / |Ω| = 10%, SA and RA hold only with
probability 0.35, and SU with probability 0.13. However, these results compare well with
those of a recent analysis of the Tor network [BMS16]. The authors of the study show
that, with only 20 corrupted Tor servers among the 6000 ones in the network at the
time 2, which means a corruption ratio of c/n ≈ 0.33% < 1%, SA and RA respectively
hold with probability ≈ 0.85 and ≈ 0.75. Chapter 6 further illustrates these results, and
completes them with an empirical quantification of anonymity, inspired from a (non-
formal) methodology proposed by the authors of Tarzan.

5.3. Formal Security Definition of Cryptographic

Assumptions

Before describing the proofs, the cryptographic assumptions and hard problems used in
this work must be formally defined. In particular, the definitions of the semantic security
(IND-CPA), key-privacy (IK-CPA), and universal semantic security (USS) properties are
presented. Recall that the group G is defined for primes p and q such that p = 2q+ 1, as
the subgroup of Zp

∗ of order q. Appendix A provides more details on the construction
of G.

5.3.a) The Decisional Diffie-Hellman and Discrete Logarithm Problems

The DDH problem consists, given g, ga, gb, gc ∈ G4, with a, b←$Zq, in distinguishing
whether c = ab or c←$ Zq. Solving this problem in polynomial time is believed impossible
in the subgroup G considered in this work. The hardness assumption of the DDH
problem is denoted in short as the DDH assumption.

2https://metrics.torproject.org/networksize.html
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5.3.b) IND-CPA Security of PKE Schemes

Semantic security is one of the most basic security definitions in cryptography. The
Elgamal scheme is proven IND-CPA under the DDH assumption [TY98]. The generic,
game-based indistinguishability definition is as follows.

Definition 20 (Indistinguishability under Chosen Plaintext Attacks (IND-CPA)).
Let (KeyGen,Enc,Dec) be a PKE scheme, and λ ∈ N. The scheme is said to ensure the

IND-CPA property if the function Adv
ind-cpa
A (λ) is negligible for any PPT adversary A,

where

Adv
ind-cpa
A (λ) :=

∣
∣
∣Pr

[

Expind-cpa
A (λ) = 1

]

− 1/2
∣
∣
∣ (5.2)

with Expind-cpa
A (λ) depicted in Fig. 5.1.

Expind-cpa
A (λ)

(pk, sk)← KeyGen(1λ, pp) ; b←$ {0, 1}
(st,m0,m1)← A(pk)
b∗ ← A(st,Enc(pk,mb))
return b = b∗

Expuss
A (λ)

pp← Setup(1λ) ; b←$ {0, 1}
(pk0, sk0)← KeyGen(1λ, pp)
(pk1, sk1)← KeyGen(1λ, pp)
(st,m0,m1, (r0, rone0), (r1, rone1))← A(pk0, pk1)
For i ∈ {0, 1}:
ci ← Enc(pki,mi, ri), conei ← Enc(pki, 1, ronei)
c′i ← ReEncnopk(conei, ci)

b∗ ← A(st, cb, c1−b)
return b = b∗

Expik-cpa
A (λ)

pp← Setup(1λ) ; b←$ {0, 1}
(pk0, sk0)← KeyGen(1λ, pp)
(pk1, sk1)← KeyGen(1λ, pp)
(st,m)← A(pk0, pk1)
b∗ ← A(st,Enc(pkb,m))
return b = b∗

Figure 5.1. – IND-CPA, IK-CPA, and USS Security Games

5.3.c) Key-Privacy of PKE Schemes

Key-privacy [Bel+01] is a property of to PKE scheme which is orthogonal to IND-CPA
security. Abstractly, ciphertexts of a scheme satisfying key-privacy do not leak informa-
tion about the public key under which they are encrypted. This property only makes
sense for public keys that are based on the same public parameters. For instance, in
the Elgamal scheme, that would be public keys belonging to the same group G. Thus,
to formulate key-privacy, we add Setup, a fourth operation to the description of PKE
schemes, that inputs 1λ and outputs public parameters pp, that are then fed to KeyGen3.
Generally, pp is assumed to be publicly known to any entity in the system. The general
definition of key-privacy, formally denoted IK-CPA, is as follows.

3In a scheme description without the Setup operation, KeyGen implicitly generates its own public
parameters on-the-fly.

102



5.3. Formal Security Definition of Cryptographic Assumptions

Definition 21 (Indistinguishability of Keys under Chosen Plaintext Attacks
(IK-CPA)). Let (Setup,KeyGen,Enc,Dec) be a PKE scheme with a common key gener-
ation procedure Setup, and let λ ∈ N. The scheme is said to ensure the IK-CPA property
if the function Adv

ik-cpa
A (λ) is negligible for any PPT adversary A, where

Adv
ik-cpa
A (λ) :=

∣
∣
∣Pr

[

Expik-cpa
A (λ) = 1

]

− 1/2
∣
∣
∣ (5.3)

with Expik-cpa
A (λ) depicted in Fig. 5.1.

5.3.d) Universal Semantic Security of URE

Universal semantic security informally states that a ciphertext can not be recognised
after it has been re-encrypted. In the case of the Elgamal scheme for instance, univer-
sal semantic security actually stems from the IND-CPA and IK-CPA properties. The
security game Expuss

A (λ) defining USS actually look like a merger of the IND-CPA and
IK-CPA games. Here, the notion is presented according to the definition by Golle et
al. [Gol+04], but specifically adapted to the Elgamal scheme.

Definition 22 (Universal Semantic Security under Re-Encryption (USS)). Let
(Setup,KeyGen,Enc,Dec,ReEncnopk) be the Elgamal PKE scheme augmented with the
ReEncnopk operation (defined in Section 4.3.2), and let λ ∈ N. The Elgamal scheme
is said to ensure the USS property if the function Advuss

A (λ) is negligible for any PPT
adversary A, where

Advuss
A (λ) := |Pr[Expuss

A (λ) = 1]− 1/2| (5.4)

with Expuss
A (λ) depicted in Fig. 5.1.

5.3.e) Hash Functions

The Keccak function family, and in particular the SHA-3 hash function, has its security
defined by comparison to a truly random function Rand, which returns truly random
number (but always the same number for the same input). Defining the security of hash
functions in this way is different from modeling the hash function as a random oracle.
Indeed, contrarily to the random oracle model (ROM), here, the function Rand is directly
accessible to the adversary, and can not be programmed in reduction proofs [Fis+10],
thus better modeling real-world setups.

The authors of Keccak define the security of their function in the following way
(adapted from [Ber+11])

Definition 23 ( Hash Function Indistinguishable from a Random Function ).
A hash function h : {0, 1}∗ → {0, 1}n is indistinguishable from a random function Rand

if the function Adv
h /Rand
A (λ) is negligible for any PPT adversary A, where

Adv
h /Rand
A (λ) :=

∣
∣
∣Pr

[

AO(λ)→ 0
∣
∣
∣O = h

]

− Pr
[

AO(λ)→ 0
∣
∣
∣O = Rand

]∣
∣
∣

103



5. Security and Privacy Proofs

The above definition is used to prove a part of the security of pseudonyms. How-
ever, the more standard notions of preimage and collision resistance are also used, and
presented below for the sake of completeness. Note that the above definition of indis-
tinguishability from a random function implies all three following properties (definitions
are adapted from [RS04]):

Definition 24 (Hash Function Properties).

Preimage resistance

Adv
h−pre
A (λ) := Pr

[

h(x) = h(x′)
∣
∣
∣x←$ {0, 1}∗;x′ ← A(1λ, h(x))

]

≤ negl(λ)

2nd preimage resistance

Adv
h−2ndpre
A (λ) := Pr

[

x 6= x′ ∧ h(x) = h(x′)
∣
∣
∣x←$ {0, 1}∗;x′ ← A(1λ, x)

]

≤ negl(λ)

Collision resistance

Advh−coll
A (λ) := Pr

[

x 6= x′ ∧ h(x) = h(x′)
∣
∣
∣ (x, x′)← A(1λ)

]

≤ negl(λ)

5.3.f) Secret Sharing

This thesis makes use of a custom and extremely simple secret sharing scheme, which
was already presented in Chapter 4. It consists, given e ∈ G, in splitting e into two
shares sh1←$ G and sh2 = e/sh1. The reconstruction of e from the shares involves a
single group multiplication.

Adapting the definition from generic secret sharing scheme [MOV96], the present
scheme is said secure if given only sh1 or only sh2, no information (in the sense of infor-
mation theory) is learned about e. Clearly, this scheme is correct and secure w.r.t. the
above definition since in G, for any given e1, {e1 · e2 | e2 ∈ G} = G, and thus given one
share and no information on the other, the secret could be any group element.

5.4. Security of Pseudonyms

The first protocol component that is studied in this chapter are the pseudonyms. As
explained in Section 4.5.2, the pseudonyms must ensure the uniqueness, one-wayness,
and indistinguishability properties. This section defines them formally and proves that
our implementation of pseudonyms guarantees them. Note that the security of the
protocols computing the pseudonyms (e.g. during a route proposal) is not treated in this
section, but in following ones.

The following theorem defines the three properties for the proposed pseudonym im-
plementation.

Theorem 1 (Security of Pseudonyms). Let G be a publicly known group where
the DDH assumption holds, and h : G → {0, 1}n be a public hash function satisfying
Definition 23 with n polynomial in λ. Denote by f : Z

∗
q × G → {0, 1}n the function

computing the pseudonyms, i.e. which on input (src, dst) returns h(dstsrc).
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The following properties hold for any PPT adversary A with direct (public) access to
f(·, ·):

– Uniqueness: ∀ src ∈ Zq∗,

Adv
ps−uniq
A (λ) := Pr[f(src, dst1) = f(src, dst2) | dst1, dst2←$G ] ≤ negl(λ)

– One-wayness: ∀ src ∈ Z
∗
q,

Adv
ps−ow
A (λ) := Pr

[

f(src,Af(·,dst)(1λ, src)) = f(src, dst)
∣
∣
∣ dst←$G

]

≤ negl(λ)

– Indistinguishability: ∀ src ∈ Z∗q

Adv
ps−ind
A (λ) :=

∣
∣
∣Pr

[

Expps−ind
A,src (λ) = 1

]

− 1/2
∣
∣
∣ ≤ negl(λ)

with Expps−ind
A,src defined in Fig. 5.2.

Expps−ind
A,src (λ)

dst0, dst1←$ G ; b←$ {0, 1}
Let PS1 := f(src, dstb) and PS2 := f(src, dst1−b)
b∗ ← Af(·,dst0),f(·,dst1)(1λ, src, PS1, PS2)
return ⊥ if f(src, dst0) or f(src, dst1) was called by A
Otherwise, return b∗ = b

Figure 5.2. – Pseudonym Indistinguishability Security Game

Intuitively, uniqueness states that, for any nodes X,R,R′ such that R 6= R′, PSX→R

is different from PSX→R′ with all but negligible probability. This ultimately prevents
X from mistaking an end-receiver for another, and ensures the good functioning of
the routing in the network. One-wayness ensures that dstR can not be recovered from
a pseudonym, and ultimately that a node can not impersonate another node (as end-
receiver). Indistinguishability implies that a pseudonym does not leak any information on
the end-receiver it designates, or rather on the dst value of the end-receiver it designates.

The one-wayness property is modeled by giving A oracle access to f(·, dst), allowing
her to compute pseudonyms for the challenge dst value. Note that this modeling is
stronger than simply givingA one pseudonym f(src, dst). This accounts for the fact that
several corrupted nodes can collude to attack one specific pseudonym, or equivalently
that the adversary can have polynomially many pseudonyms that she knows designate
the same end-receiver. This is a worst-case scenario, since it implicitly assumes that
corrupted nodes in the collusion were already able to link these pseudonyms together in
some way. Likewise, in the pseudonym indistinguishability game, A has access to two
oracles f(·, dst0) and f(·, dst1), to represent a scenario in which each corrupted node

105



5. Security and Privacy Proofs

Xi ∈ {X1, . . . ,Xn} (for a polynomial n) already know that f(srcXi , dst0) and f(srcXi,
dst1) designates respectively R0 and R1. The definition states that, even in this case, if
a new corrupted node Xn+1 comes in with f(src, dst0) and f(src, dst1), it can not know
which value designates which end-receiver. Finally, note that the properties hold for all
src value in Z∗q , meaning that any src value A can choose will not give her a better than
negligible advantage.

Proof Sketch 1 (Theorem 1). For a full proof, see Appendix B.1. Each property is proven
independently. Although all three properties can be proved under the assumption that h

is indistinguishable from Rand, when possible, we simply considered it as a hash function
with e.g. collision resistance. The versatility of the Keccak function family allows this.

– Uniqueness is trivially proven based on the assumption that the hash function used
is collision resistant.

– We show that if there exists an adversary A successfully outputting dstA such that
f(src, dstA) = f(src, dst), then it is possible to construct an adversary B that
distinguishes h from a random function Rand. Note that intuition would suggest
that one-wayness can be proved from assuming the preimage and 2nd preimage
resistance of the hash function, the reduction fails because it is not possible to
construct an adversary B that successfully binds its own challenge h(x) with A’s
and at the same time answer A’s oracle queries consistently. This is because the
proof does not take place in the random oracle model. Alternatively, it is possible
to prove that indistinguishability implies one-wayness.

– Indistinguishability is trivially proven under the assumption that the hash function
is indistinguishable from a random one. Intuitively, pseudonym indistinguishabil-
ity holds because dstsrc is passed through a function that destroys all algebraic
properties between (pairs of) pseudonyms.

5.5. Security of the Route Proposal Mechanism

In Section 4.5.1.b, four properties for the route proposal mechanism were put forward:
route proposal homogeneity, route proposal indistinguishability, untraceable route pro-
posal propagation, and untraceable return trip. The present section defines them more
formally, and proves them. First, the topology dissemination phase is given in pseudo-
code Πrtprop, then modeled as a UC ideal functionality Frtprop. Then, Πrtprop is shown to
UC-realise Frtprop. Finally, based on a study of the information an adversary gets from
Frtprop, the four properties are proved with a custom security definition.

5.5.1. Modeling Πrtprop into an Ideal Functionality Frtprop

Prior to describing Πrtprop, we present the two ideal functionalities that it uses as sub-
routines: Flink and Freg. They are respectively described in Figures 5.3 and 5.4. Their
pseudo-code, and more generally, the pseudo-code of all protocols and ideal function-
alities in this chapter, is written in the message-state paradigm, as it is standard for
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describing network protocols in the UC framework [Bac+12; Cha+16]. That is, pseudo-
codes in this chapter feature entry points corresponding to the receiving of messages,
inputs, or subroutine outputs. These entry points are marked by the upon keyword.

1 : The functionality Flink is responsible for delivering link messages.

2 : upon input (link-send, sid, Y,m) from party X :

3 : Output (link-rcvd, sid,X,m) to party Y .

Figure 5.3. – The Link Message Functionality Flink

1 : The functionality Freg is responsible for delivering key pairs consistently across all com-
ponents of the protocol.

2 : upon input (keys, sid,X) from party P :

3 : if T [X ] = ⊥ then set T [X ]← KeyGen(λ).

4 : if P = X or (P is the adversary and X ∈ Ωc) or P is Frtprop then

5 : Output T [X ] to party P .

Figure 5.4. – The Register Functionality Freg

The functionality Flink is used by nodes to exchange messages, instead of using their
communication tapes as they would normally do in the UC framework. That is, Flink ab-
stracts the AES link encryption, dummy messages, controlled traffic rates, and message
re-ordering, and models the assumption of the impossibility to observe link messages for
external adversaries. This assumption is broken down in Appendix B.7, by attempting
to UC-realise the Flink ideal functionality. A node X uses Flink by giving it link-send

subroutine inputs, with sid the session identifier of the protocol Πrtprop of which node X
is part, and Y the neighbor of X to which the message m must be sent. Upon such an
input, Flink simply gives a link-rcvd subroutine output to party Y , specifying the message
m and the identity of X, letting Y know that the message is from its neighbor X (also,
this models the fact that, in an Internet overlay, a node knows the IP address of its
neighbors).

Functionality Freg is responsible for delivering key pairs. It is necessary in order to
then compose Frtprop with the full ideal functionality F, and its role will thus be made
clear in the modeling of the full protocol in Section 5.6. The functionality Freg answers
requests of the form (keys, sid,X), where sid is again the session identifier of Πrtprop, and
X specifies which party’s keys are requested. The functionality maintains a table T of
already generated keys, to answer consistently if the key pair of given party is requested
more than once. Note that Freg only answers to request for X’s key pair if the request
comes from the party X itself, or from the adversary if X is corrupted. Freg also answers
request from the ideal functionality Frtprop: the latter needs these keys, in particular, to
be able to output encryptions of one coneX→R.

Functionalities Flink and Freg being defined, Fig. 5.5 (page 108) describes Πrtprop, the
protocol for the topology dissemination phase. More specifically, it describes the pseudo-
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1 : upon input (setup, sid, srcX , dstX ): // Init. node

2 : Store srcX and dstX ; Query Freg and store (pkX , skX )

3 : upon input (proposer, sid, (Y, cid), P SX→R, (Y ′, cid′)): // Propose a route

4 : if P SX→R = h(dstX
srcX ) then // Self-proposal

5 : Send 〈rtprop‖cid, c1, c2〉 to Y , where c1 ← Enc(pkX , dstX ) and c2 ← Enc(pkX , 1)
6 : else // Relayed proposal

7 : Retrieve (routing-table-entry, P SX→R, cpropX→R, coneX→R, (Y ′, cid′))
8 : Send 〈rtprop‖cid, c1, c2〉 to Y

9 : upon receiving message 〈rtprop‖cid, c1, c2〉 from Y : // Proposer ↔ Proposee

10 : if cid is unknown then // Proposee, 1st step

11 : Generate (pktmp
X

, sktmp
X

)← KeyGen(1λ), and send
〈

rtprop‖cid, c′
1, c′

2

〉
to Y ,

12 : where c′
1 ← ReEncnopk(c2, ScExp(c1, srcX)) and c′

2 ← Encnopk(c2, pktmp
X

)

13 : Store (proposee, (Y, cid), cprop := c1, cone := c2, (pktmp
X , sktmp

X ))
14 : elseif cid relates to a proposal made by X then // Proposer, 2nd step

15 : Retrieve the information related to the ongoing route proposal with cid
16 : if the proposal is a self-proposal then

17 : Compute P SX→Y = h(Dec(skX , c1)) and pktmp
Y = Dec(skX , c2)

18 : Send
〈

rtprop‖cid, c′
1, c′

2

〉
to Y , where c′

1 ← Enc(pktmp
Y

, P SX→Y ) and c′
2 ← Enc(pktmp

Y
, 1)

19 : else
20 : Set c2 ← PlainMult(c2, pktmp), and c′

i ← ReEncnopk(coneX→R, Dec(skX , ci)) for i ∈ {1, 2}
21 : Sample rcid ←$ {0, 1}∗ and store (relay, (X, cid), null, rcid, (Y ′, cid′))

22 : Send
〈

rtproprelay‖cid′‖rcid, c′
1, c′

2

〉
to Y ′

23 : elseif ∃ stored (proposee, (Y, cid), cprop, cone, (pktmp
X , sktmp

X )) then // Proposee, 2nd step

24 : Get P SX→R = Dec(sktmp
X , c1), and store (routing-table-entry, P SX→R, cprop, cone, (Y, cid))

25 : Output (proposee, P SX→R, ReEncone(cone), (Y, cid))

26 : upon receiving 〈rtproprelay‖cid‖rcid, c1, c2〉 from Y : // Return trip

27 : if ∃ 〈(Y, cid), _, coneX→R, NextHops〉 ∈ RT then // Relay fwd

28 : if NextHop = (Y ′, cid′) and rcid is unknown then

29 : Sample rcid ←$ {0, 1}∗, (pktmp, sktmp)← KeyGen(1λ)
30 : Store (relay, (Y, cid), rcid, sktmp, rcid′, (Y ′, cid′))
31 : Set c2 ← PlainMult(c2, pktmp), and c′

i ← ReEncnopk(coneX→R, Dec(skX , ci)) for i ∈ {1, 2}

32 : Send
〈

rtproprelay‖cid′‖rcid′, c′
1, c′

2

〉
to Y ′

33 : elseif NextHop = ∅ then // End-rcvr reached

34 : Compute P S = h(Dec(skX , c1)), and get pktmp = Dec(skX , c2)
35 : Set c′

1 ← Enc(pktmp, P S) and c′
2 ← Enc(pktmp, 1)

36 : Send
〈

rtproprelay‖cid‖rcid, c′
1, c′

2

〉
to Y

37 : elseif ∃ stored (relay, (Y ′, cid′), rcid′, sktmp, rcid, (Y, cid)) then // Relay back (or

38 : Set c′
2 ← ReEncone(Dec(sktmp, c2)), c′

1 ← ReEncnopk(c′
2, Dec(sktmp, c1)) // Proposer 2nd step)

39 : if rcid′ = null then h← [rtprop‖cid′] else h← [rtproprelay‖cid′‖rcid′]

40 : Send
〈

h, c′
1, c′

2

〉
to Y ′

Figure 5.5. – Description of Πrtprop for Node X

code of any given nodeX, defining all its actions during the topology dissemination phase.
This consists in proposing routes, and handling route proposals from its neighbors. Since
the code is from node X’s point of view, it simultaneously depicts the behavior of X
as proposee, proposer, end-receiver, or relay. With regards to the UC framework, the
figure describes the code that each ITI runs in the real execution: there are as many
running copies of this code as there are nodes in the network. It is assumed that every
node X maintains a local state during the protocol execution, and that, upon receiving
an input from the environment or a message from another node, X behaves according to
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this state. Here, a node stores routing information (although, in the code, actual routing
tables do not explicitly appear). In the code, the parties denoted Y or Yi are the node’s
direct neighbors in the topology graph, while R denotes a distant receiver. Messages
are denoted by 〈msg〉. The entry points of the code (marked by the upon keyword),
either correspond to an input that the ITI of node X receives from the UC environment
E , or to the receiving of a message from another node (i.e. another ITI). We review
these entry points in details in the following paragraphs. The first entry point (line 1
of the code) is a setup input, given once and only once by the environment to the ITI
of node X. It instructs the node to initialise itself with specific srcX and dstX values,
and to obtain its keys from Freg. The second entry point (line 3) is a proposer input
from the environment E , asking the node to propose a route to its neighbor Y using a
new circuit identifier cid. The specific route that X must propose is identified by the
pseudonym PSX→R of X towards the end-receiver R4, along with the first hop (Y ′, cid′).
E being semi-honest, this route is assumed present in the node’s routing table (and more
generally, all inputs are assumed well-formed). Node X may behave in two ways upon
a proposer input, depending on whether X is asked to perform a self-proposal (line 4),
or to relay another proposal (line 6). In any case, X eventually sends a rtprop message
to the specified neighbor Y . This sending of message is implicitly done through the
Flink ideal functionality: in order to simplify the code description, the instruction “send
message m to Y ” is used to formally mean “give subroutine input (link-send, sid, Y,m)”.
The same goes for the receiving of messages.

The third entry point (line 9), denotes the receiving of a rtprop message. As per
the description of the protocol from Chapter 4, X can react in three different ways to
this kind of messages, depending on whether it is the first (line 10), second (line 14),
or third (line 23) message exchanged between the proposee and the proposer. Note
that in the second case (when X is proposer w.r.t. this route proposal), two cases arise,
depending on whether X is self-proposing or not. Also, in the last case, when X is a
proposee receiving the final rtprop message, note that, X makes a proposer output to
the environment, specifying the newly learned pseudonym, the encryption of one, and
the next hop of the new route. The last entry point (line 26) deals with the receiving
of a rtproprelay message, that must be relayed from the proposee to the receiver and
back. This part of the code describes the behavior of node X as: relay on the way
from proposee to the receiver (line 28), receiver (line 33), relay from receiver to proposee
(line 37), and proposer (line 37 as well).

Then, Fig. 5.6 (page 110) models the ideal functionality Frtprop corresponding to Πrtprop.
In Frtprop, and in the remainder of this chapter, the set of nodes in the network is denoted
Ω, and the subset of honest (resp. corrupted) nodes is denoted Ωh (resp. Ωc). The code
of the functionality Frtprop is also written with the message-state paradigm. However,
it is not given for a specific node X, but for the whole network. Indeed, in the ideal
execution, as per the UC framework, each node is represented by a dummy ITI (or
dummy party) that accepts inputs from the environment and automatically pass them

4Note that the identity of R is not known to X. The term R is only here for denotational purposes.
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1 : Frtprop internally runs an instance of Πrtprop along with Flink.

2 : All inputs received by Frtprop are automatically passed on to the adequate party in Πrtprop, and conversely
for outputs (unless explicitly stated otherwise). Note that Frtprop knows all the routes and the relay nodes
that compose them perfectly, as well as the src and dst values.

3 : upon input (setup, sid, srcY , dstY ) from dummy party Y :
4 : Pass the input to party Y in the internal Πrtprop instance.

5 : upon input (proposer, sid, (X, cid), P SY→R, (Z1, cid0)) from dummy party Y :
6 : Pass the proposer input to party Y in Πrtprop

7 : Frtprop deduces the end-receiver R, and the nodes (Z1, . . . , Zn) between Y and R.
8 : Let Z0 := Y , Zn+1 := R
9 : Let pred(Zi, Zj) = true iff Zi and Zj are the 1st and last honest nodes in (Z0, . . . , Zn+1)

10 : Send the following to Sim, as the corresponding events happen in Πrtprop

11 : (I) if Y, Z1, . . . , Zn, R ∈ Ωc and X ∈ Ωc ∪ Ωh then

12 : (rtprop, sid, X
cid
←−→ Y

cid0−−−→ (Z1
cid1−→ . . .

cidn−1
−→ Zn)

cidn
−−−→ R, dstR

srcX ) when R is solicited
13 : (II) elseif Y, R ∈ Ωc and X ∈ Ωc ∪Ωh and ∃ 1 ≤ i ≤ j ≤ n s.t. pred(Zi, Zj) then

14 : (rtprop, sid, ?→ (Zj

cidj+1
−→ . . .

cidn
−→ Zn)→ R, dstR

srcX ) when R is solicited

15 : (rtprop, sid, X
cid
←−→ Y

cid1
−−−→ (Z1

cid1
−→ . . .

cidi−1
−→ Zi)→?→ R) when Y sends the last rtprop msg.

16 : (III) elseif X, R ∈ Ωc and ∃ 0 ≤ j ≤ n s.t. pred(Y, Zj) then

17 : (rtprop, sid, X
cid
←−→ Y →?) when X receives the first rtprop message.

18 : (rtprop, sid, X ↔?→ (Zj

cidj+1
−→ . . .

cidn
−→ Zn)→ R, dstR

srcX ) when R is solicited.

19 : (IV ) elseif R ∈ Ωc and X ∈ Ωh and ∃ 0 ≤ j ≤ n s.t. pred(Y, Zj) then

20 : (rtprop, sid, ?→ (Zj
cidj+1
−→ . . .

cidn−→ Zn)→ R, dstR
srcX ) when R is solicited

21 : (V ) elseif X ∈ Ωc and Y, R ∈ Ωh then

22 : (rtprop, sid, X
cid
←−→ Y →?) when X receives the first rtprop msg

23 : (V I) elseif Y ∈ Ωc and X ∈ Ωc ∪ Ωh and ∃ 1 ≤ i ≤ n + 1 s.t. pred(Zi, R) then

24 : (rtprop, sid, X
cid
←−→ Y

cid1−−−→ (Z1
cid2−→ . . .

cidi−→ Zi)→?) when Y sends the last rtprop message

25 : For each sub-sequence (Zi′ , . . . , Zj′ ) ⊆ (Z1, . . . , Zn) of corrupted nodes framed by two honest nodes

Zi′ and Zj′ that is solicited for relaying a message, send (subpath, sid, (Zi′

cidi′+1
−→ . . .

cidj′

−→ Zj′ )), when the
corrupted nodes in Πrtprop are actually solicited (cidk denotes both the cid and the rcid value of the

kth link)

26 : if X ∈ Ωh and R ∈ Ωc then wait for (continue, sid, X
cid
←−→ Y ) from Sim

27 : When X in Πrtprop outputs (proposee, sid, P SX→R, coneX→R, (Y, cid)), relay it.

Figure 5.6. – The Ideal Functionality Frtprop

on to the ideal functionality. All the dummy parties use the same, unique instance of the
ideal functionality. This explains why Frtprop’s code entry points are inputs from dummy
parties rather than the environment. Also, Frtprop only features entry points for inputs
(for setup and proposer inputs, the same as Πrtprop), and not for received message, since in
a UC ideal execution, no messages are actually exchanged: all happens within the ideal
functionality (this is the very principle of ideal functionalities in the UC framework).
We further describe Frtprop in the following paragraphs.

Aside from the already mentioned high-level differences between Frtprop and Πrtprop,
note that the structure of their code is also quite different. While Πrtprop is really a
pseudo-code that could be turned in an actual implementation of the protocol, Frtprop is
a theoretical object that realises all the protocol within itself. This means in particular
that it plays the role of all nodes. Actually, here, we have chosen to model Frtprop by
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making it run an internal instance of Πrtprop, meaning that Frtprop re-creates the execution
of the protocol internally: it executes copies of the code in Fig. 5.5 for each node, and
make those nodes exchange messages within itself. When a route proposal concludes in
the internal Πrtprop instance, Frtprop accordingly makes a proposee output to E (via the
adequate dummy party Y ), by simply passing on the output of what X in the internally
ran Πrtprop outputs (see line 27 of the code). But Frtprop does not simply run Πrtprop: as
any UC ideal functionality, it also explicitly leaks information to the (ideal execution)
adversary. That is, Frtprop explicitly sends information to the ideal adversary Sim. These
information leaks are actually most of the code, and all happen in the second entry point
of the protocol, for proposer inputs (line 5).

Let us review in more details this part of the code. First, note that, to mirror the
notations from Chapter 4, Y always denotes the proposer, X the proposee, R the end-
receiver, and Zi the relay nodes between proposer and end-receiver5. When the ideal
functionality receives (proposer, sid, (X, cid), PSY→R, (Y ′, cid′)) from dummy party Y
(meaning that the UC environment E instructed Y to propose a route), it first copies
that input to Y in the internally ran instance of Πrtprop. Then, Frtprop deduces all the
information on the route to propose (line 7). Indeed, because Frtprop plays the role of
all nodes in the network, it knows all src and dst, as well as all public and private keys.
It also knows, at any point in time, the exact routing table of all nodes. Consequently,
from the pseudonym PSY→R and the first hop (Z1, cid0), Frtprop deduces the full route,
meaning all nodes, including the end-receiver. It is also assumed that Frtprop knows
which nodes are corrupted and which ones are honest. From all these information, and
depending on which nodes on the route are corrupted, Frtprop starts leaking information.
More exactly, there are six different cases, depending on the corruption state of the
proposee X, proposer Y , end-receiver R, and relay nodes Zi. They are marked with
roman numerals in Fig. 5.6. In addition to these six cases, the ideal functionality always
leaks intermediary corrupted sub-paths, i.e. portions of routes made of corrupted relay
nodes that are neither the proposee, proposer, or end-receiver (line 25).

To take an example, let us look at case (IV ), on line 19 of the code. It corresponds
to the case when the end-receiver is corrupted, possibly along with the last relay nodes

Zj+1, . . . , Zn before R. The leaked information, here, is (rtprop, sid, ? → (Zj
cidj+1
−→ . . .

cidn−→
Zn)→ R, dstR

srcX ), giving the following information Sim: the session identifier sid, the
description of the last portion of the route (that is made of corrupted nodes from Zj+1

up to R), and the value dstRsrcX . The question mark denotes the fact that the route
may start before Zj, but this portion of the route is not leaked. Note that this leaked
information corresponds to what an actual adversary in an execution of our protocol
over the Internet would learn about this particular route proposal in which nodes Zj+1,
. . . , Zn, and R are corrupted. These explicit leaks are one of the fundamental features
of the UC framework: by looking at an ideal functionality, it is possible to see what the
adversary learns, much easier so than by studying the full protocol.

Note that each information leak is made at a specific moment: for our proof that

5Note that these naming naming conventions for parties does not appear in the code of Πrtprop, because
the latter is given from the point of view of one node, always denoted X.
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Πrtprop UC-realises Frtprop, it is necessary that the leaked information reflects the actual
ordering of events in a real-world network. For instance, leak (IV ) is made only when the
corrupted end-receiver R is solicited in the Πrtprop instance that Frtprop internally runs,
since this would be the moment at which an actual network adversary would learn (in
particular) the dstRsrcX value. Actually, this is the one of the main reasons why we set
out Frtprop to internally run an instance of Πrtprop, to be able to deduce a correct ordering
of information leaks. Although this is not necessary per se, because this ordering could
be explicitly enforced in the code of Frtprop, this approach makes the code easier to write
and read.

Finally, note that, in the UC framework, an ideal functionality is usually devoid of
cryptographic material and operations. However, because this ideal functionality is going
to be used as subroutine by the bigger protocol Π, which needs the encryptions of one
acquired by route proposals (in particular to encrypt payload messages), there is no
choice but to make Frtprop output it.

5.5.2. Πrtprop UC-realises Frtprop

Below is formulated the theorem defining the security of the route proposal part of the
protocol. Because Πrtprop uses Flink and Freg as subroutines, it stated as standing in
the (Flink,Freg)-hybrid model, in accordance with the UC framework terminology. This
underlines the fact that those two ideal functionalities are indeed assumptions on the
system model (in particular, Flink is the assumption that network observer can not
distinguish dummy messages from real ones). Figure 5.7 shows the relations between
A, Sim, Πrtprop, and Frtprop in the real and ideal executions. As it is standard in UC
proofs [Can+02], Sim internally runs an copy of A6.

E

A

Πrtprop

FlinkFreg

E

A

Πrtprop Flink

Flink

Frtprop

Sim

Freg

Figure 5.7. – Setup for Real (left) and Ideal (right) Executions

Theorem 2 (Πrtprop uc-realizes Frtprop). Assuming the IND-CPA, IK-CPA, and USS
properties of the Elgamal scheme, the protocol Πrtprop UC-realises Frtprop in the (Freg,

6More specifically, there are several standards for the proof setups, and Sim does not necessarily runs
a copy of A. See Appendix B.2 for a discussion on this matter.

112



5.5. Security of the Route Proposal Mechanism

Flink)-hybrid model, in the presence of semi-honest static adversaries. That is, there
exists Sim such that for all A:

{

ExecReal
Πrtprop,A,E(z)

}

∀z∈{0,1}∗

c
≡

{

ExecIdeal
Frtprop,Sim,E(z)

}

∀z∈{0,1}∗

Proof Sketch 2 (Proof Sketch of Theorem 2). The full proof is given in Appendix B.3,
where all the simulation cases are detailed (depending on the corruption state of the
proposer, proposee, end-receiver, and relay nodes).

The system setup for the proof is as follows. Sim internally runs a copy of A, relays
the communications between E and A honestly. Sim also honestly relays A’s queries to
Freg for corrupted nodes’ keys. Although Sim does see the key pairs of corrupted nodes
in this process, it does not need this knowledge to perform the simulation: Freg is here
only for convenience. Note that, the proof lies in the Flink-hybrid model. Thus, corrupted
nodes (played by A) and honest nodes (simulated by Sim) exchange messages via Flink

(which Sim internally runs as well). But more importantly, the Flink-hybrid model means
that Sim does not need to simulate messages exchanged between honest nodes (since it is
assumed that the adversary can not even observe them).

Sim is not allowed to query Freg for the honest nodes’ key. However, by the IK-CPA
property (and because (public) keys are never revealed), Sim can safely replace them by
random keys that it generates. The key pair of node X is denoted (pkSim(X), skSim(X)).
Then, a crucial point behind the proof is that, because Sim gets to see all the inputs that E
gives to corrupted nodes (as per the way the UC framework functions), Sim can perfectly
know all the routes and links constructed between corrupted nodes. This knowledge allows
Sim to infer information on the end-receivers of specific route proposals, and to be sure
that when it sends a message with some cid to a specific corrupted node, this message
will deterministically follow a known and expected route.

Then, the construction of Sim is mainly driven by the proposer inputs from A to
E, the proposee outputs from A to E, and the rtprop and subpaths leaks from Frtprop.
These inputs, outputs, and leaks contain all the necessary information to simulate honest
nodes. Another crucial idea in the construction of the simulator is that every single
rtprop or subpath leak can be simulated completely independently. Even, for instance,
the two rtprop leaks in the (III) leaking case can be simulated independently, i.e. Sim

can simulate them without knowing that they relate to the same route proposal. More
generally, (almost) every portion of route made of corrupted nodes framed by two honest
node can be simulated independently, i.e. Sim does not need to know that these sub-paths
belong to the same route to correctly simulate them.

As an example, the case (III) is simulated roughly as follows. The simulator Sim

receives the first leak, (rtprop, sid,X
cidX-Y←−−−→ Y →?) when, in the internally ran instance

of Πrtprop within Frtprop) the node X receives the first rtprop message. From this leak,
Sim knows that it must simulate the honest node Y making a route proposal, but does
not however know whether it is self-proposing, and who the end-receiver is. Anyhow,
Sim begins by simulating the sending of the rtprop message that Y would send to the
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corrupted node X in a route proposal: it sends
〈

rtprop‖cidX-Y , cprop := Enc(pkSim(Y ), r), cone := Enc(pkSim(Y ), 1)
〉

(5.5)

At some point, the adversary A, on behalf of X, answers back (as it would do in a real
execution) with ciphertexts Enc(pkSim(Y ), r

srcX ) and Enc(pkSim(Y ), pk
tmp
X ). The simulator

Sim can decrypt these ciphertexts, in particular to get pktmp
X . Then, the simulator waits

for the dummy party X in Frtprop to output (proposee, sid, PSX→R, coneX→R, (Y, cidX-Y ))
(this output is given by Frtprop directly to Sim, according to the way the UC framework
works). At this point, Sim can simulate the sending by Y of the final rtprop message,
in particular by encrypting PSX→R learned in the proposee outputs with pktmp

X .
This terminates the simulation of the first leak of case (III) . The second leak, (rtprop,

sid,X ↔?→ (Zj
cidj+1
−→ . . .

cidn−→ Zn)→ R, dstR
srcX ), is sent by Frtprop to Sim when R in the

internal Πrtprop receives the rtproprelay message. This second leak, although it pertains
to the same route proposal as the first leak, is simulated totally independently ( i.e. no
data from the simulation of the first leak is necessary here). Here, Sim must simulate
the honest node Zj sending a rtproprelay to the corrupted node Zj+1, and towards the
corrupted end-receiver R. By construction of the simulation (which we do not detail here),
the simulator Sim is sure to have an encryption of one under the key pkZj+1 ·pkZj+1 · · · · ·
pkR, noted coneZj→R. Consequently, Sim crafts ciphertexts Encnopk(coneZj→R∗ , dstR∗

srcX∗ )
and Encnopk(coneZj→R∗ , pktmp′). Here, dstR∗

srcX∗ comes from the leak, and pktmp′ is a
fresh key generated by Sim. The simulator sends these ciphertexts in a rtproprelay

message to Zj+1, which is controlled by A. Then, because A is semi-honest, and by the
way routes are built in the simulation (as in a real execution), the message is ensured
to reach R. However, since from Zj+1 to R, all nodes are corrupted, this is done by A
herself (Sim only needs to properly simulate the passing of messages through Flink). At
some point, the adversary will send back, on behalf of Zj+1, a rtproprelay message,
meant to Zj . Sim receives that message on behalf of the honest node Zj , and simply
discards it. This concludes the second leak of case (III) .

Constructing the simulator is only half of the proof. It remains to show that the
simulation is indistinguishable from a real execution, from the point of view of A and E.
First, note that, because the simulator is constructed to follow the order of leaks made by
Frtprop (and of the inputs and outputs to and from E), and because Frtprop itself is designed
to make these leaks according to the ordering of events in a real execution (by running
an internal instance of Πrtprop), Sim is sure to simulate all events in the adequate order
for A. Furthermore, cryptographically speaking, it can be formally shown that if there
exists an adversary distinguishing between this simulation and a real execution with a
non-negligible advantage, then it can be used to construct an adversary breaking the IND-
CPA, IK-CPA or the USS property of the Elgamal PKE scheme with a non-negligible
advantage. In particular, remark that, if an adversary is capable of distinguishing the
simulation from a real execution based on the fact that the rtprop message (5.5) (shown
in the above paragraph) encrypts a random group element r instead of dstR, then it is
possible to construct an adversary that breaks the IND-CPA property of the Elgamal
scheme. Likewise, if the adversary can distinguish based on the fact that ciphertexts seen

114



5.5. Security of the Route Proposal Mechanism

by the corrupted node X are completely independent from those seen by the corrupted
node R, then it is possible to construct an adversary that breaks the USS property of the
scheme (intuitively, this holds because in a real execution, nodes on the route re-encrypt
ciphertexts).

5.5.3. Analysis of Frtprop

Because the protocol is complex, in particular compared to small cryptographic protocols,
the functionality Frtprop, in itself does not directly make the properties of the route
proposal mechanism appear. After some general remarks, this section studies the four
desired properties of route proposals based on the leaks made by Frtprop: route proposal
homogeneity, route proposal indistinguishability, propagation untraceability, and return
trip untraceability. Beforehand, however, the custom security definition used to do so is
introduced.

5.5.3.a) General Remarks

It is clear, by inspection of Frtprop, that if no node is corrupted, no information is given to
the adversary (i.e. observers of the network learn nothing about route proposals and the
created routes). As a result all four security properties of the route proposal mechanism
hold perfectly against external adversaries.

In the presence of corrupted nodes, the adversary gets leaks mostly under the form
of corrupted sub-paths, that are chains of corrupted nodes. Then, due to the way
pseudonyms are computed in the protocol (as described by Fig. 4.5 in Chapter 4), during
a route proposal with a corrupted end-receiver, the value dstRsrcX is leaked. Also, the
first leaking case (I) is of particular interest, since it highlights an inherent limitation of
the protocol: when the proposer Y , the end-receiver R and all relay nodes in between are
corrupted, the adversary unavoidably learns the identity of the proposee X. Other leak-
ing cases show, however, that if there is at least one honest node between the corrupted
Y and the corrupted R, then the two halves of routes are leaked independently. As it
appears clearly in the proof, if there is no concurrency among route proposals, A can
trivially link these two halves together. However, in the general case, it is unclear what is
the probability that the adversary makes this link: it depends at least on the traffic load
(and the concurrency among route proposal), and the location in the topology graph of
the nodes involved in each route proposal.

5.5.3.b) Formalisms to Define Route Proposal Security

For reasons described in the introductory section (Section 5.1.2), the properties of route
proposals are proven (based on Frtprop) using a custom security definition. This security
definition is presented here. Recall that this definition should allow: (i) to define chal-
lenge in which the same intermediary corrupted sub-paths are solicited, (ii) to define
challenges on portions of route (rather e.g. than on a full return trip), and (ii) to issue
challenges about one particular route proposal out of the dynamics of the network.
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An other element to take into account when designing this security definition, is that
Frtprop is not meant to be run by itself: it must be used in accordance to the route
proposal policy. In particular, it is not possible to provide Frtprop with a proposer input
for X, for a route that the latter does not known. Said otherwise, a proposer input can
only be given to Frtprop if the latter made a proposee output for the corresponding route.
Furthermore, it is not allowed to e.g. supply twice the same proposer input. This is a
specificity of analysing a functionality like Frtprop, that, in contrast with the analysis of a
functionality that takes as input a send command instructing to start a communication
session: while communication sessions can be arbitrarily launched by the adversary,
route proposals must be made in a specific order. Consequently, we introduce a wrapper
to the functionality Frtprop, denoted W . The resulting functionality W (Frtprop) takes
input values of the following form:

IW =
(

graph,RtPropPolicy,{(setup, sid, srcZ , dstZ)}Z∈Ω

)

That is, it takes as input a topology graph, a specific route proposal policy, and a
setup input for each node. From that, W drives the topology dissemination phase, by
iteratively producing all the proposer inputs for Frtprop.

With this wrapper, we propose a custom security definitions based on views, where
the view of the adversary in the execution of the functionality W (Frtprop)(IW ) consists
of all the leaks made by Frtprop. More precisely, we consider that W (Frtprop)(IW ) (for
some input IW ) corresponds to: (i) the set of all proposer inputs that W provided to
Frtprop for corrupted nodes, (ii) the set of all proposee outputs that Frtprop made for
corrupted nodes, and (iii) the set of all information that is leaked by Frtprop during the
execution. Then, to be able to define the security properties without taking the dynamics
of the network into account, we denote W (Frtprop)(IW )[RP(X↔Y→R)] the information
output byW (Frtprop)(IW ), restricted to the information directly related to route proposal
RP(X↔Y→R).

With this formalism, the definition of e.g. route proposal indistinguishability roughly
corresponds to the impossibility of distinguishing between W (Frtprop)(IW )[RP(X↔Y→R0)]
and W (Frtprop)(IW )[RP(X↔Y→R1)], for honest end-receivers R0 and R1, and corrupted
nodes X and Y . Here, RP(X↔Y→R0) and RP(X↔Y→R1) are called the challenge route
proposals. However, this notion of security is trivial: without any context at all, given
one of these two views, there is just no element whatsoever for the adversary to reason
about the challenge. Therefore, we manually provide some context, namely by augment-
ing the views with encryptions of ones and pseudonyms. For instance, for route proposal
indistinguishability, where X and Y are the corrupted nodes that are challenged nodes
(since, in a real-world scenario, those are the node which must not distinguish between
route proposals towards different end-receivers), the view W (Frtprop)(IW )[RP(X↔Y→Rb)]
(for b ∈ {0, 1}) is augmented with the pseudonym and encryption of one of X and Y to-
wards end-receiver Rb. More generally, we define the adversary’s view concerning route
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proposal RP(X↔Y→Rb), for an input i ∈ IW , and for challenged nodes in the set N as:

ViewNRP(X↔Y→Rb)(i) := {o,{Z,PSZ→R, coneZ→Rb
| Z ∈ nodes(o) ∩ Ωc}

| o ∈W (Frtprop)(i)[RP(X↔Y→Rb)],

nodes(o) ∩ (Ωc \ N ) = ∅}

That is, the view contains all outputs o of W (Frtprop)(i)[RP(X↔Y→R)] that contain
the challenged nodes (and only those nodes), and for all the corrupted nodes Z appearing
in these outputs, the view provides PSZ→Rb

and coneZ→Rb
.

However, this is still not enough to yield a meaningful security definition. Actually,
much more context can be provided to the adversary, while still being able to prove the
properties. To better reflect a real-world scenario, where the adversary may have other
corrupted nodes in the network than the challenged ones, we further introduce a set
Context that specifies the pseudonyms and encryptions of one of other corrupted nodes
in the network (according to a specific input i ∈ IW ). It is defined as follows, with N
the set of challenged nodes, and R0 and R1 the two potential receivers:

ContextNR0,R1
(i) :={(Z, srcZ , dstZ , (pkZ , skZ)) | Z ∈ Ωc}

∪
{
(Z,R′, PSZ→R′ , coneZ→R′ , cidZ→R′)

| Z ∈ Ωc, R
′ ∈ Ω \{R0, R1}

}

∪ {(Z, (Ra, PSZ→Ra , coneZ→Ra , cidZ→Ra))
| Z ∈ Ωc \ N , a ∈ {0, 1}}

This set contains, for all corrupted nodes Z ∈ Ωc, and for all end-receiver R′ other
than R0 and R1, the de-anonymised pseudonym and encryption of one of Z towards R′.
It also contains, for all Z ∈ Ωc, and the de-anonymised pseudonym and encryption of
one of Z towards R0 and R1. We say that those elements are de-anonymised, because
they are explicitly accompanied with the identity of the end-receiver they are associated
to. Adding the information in Context to the security definition aims at modeling a
scenario where all corrupted nodes have de-anonymised all end-receivers, except the
challenged nodes in N that did not de-anonymised R0 and R1. Indeed, in Context, all
corrupted nodes but the challenged ones get all the de-anonymised information about
end-receivers, and in the View, the challenged nodes get the (anonymised) information
for either R0 or R1 (plus all outputs from W (Frtprop)). This thus represents a very
constraining scenario. Note however, that all the context we add to the adversarial
views are of cryptographic nature. It does not put the challenge route proposals in the
dynamic of the network, nor does it contain information on other route proposals than
the challenge one (such as the intermediary corrupted sub-paths leaked during other
route proposals). This effectively means that the proposed security definition, contrarily
to the AnoA framework (in particular) does not take the dynamic of the network into
account. It does, however try to manually account for the information the adversary
may have obtained in past interactions, by providing de-anonymised pseudonyms and
encryptions of one.
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5.5.3.c) Definition and Proof of Route Proposal Security

With the proposed formalism, Definition 25 describes the four security properties of
route proposals. In order to restrict the challenge scenario, we define each property on a
subset IPROP

W ⊆ IW of inputs. In particular, we restrict challenges to honest end-receivers,
and to challenges that solicit the same intermediary corrupted sub-paths in both cases.
For instance, route proposal indistinguishability is defined only over inputs i ∈ IRP I

W

that yield executions in which the return trips of both challenge route proposals go
through the exact same set of corrupted nodes. Our security results thus hold only for
such executions, and security for route proposals soliciting different corrupted nodes in
their return trip is not studied. Finally, in what follows, we sometimes denote corrupted
sub-paths that make up a route as Zk = {Zk,1, . . . , Zk,nk

}, for k ∈ [1,K], where K ∈ N,
nk ≤ lmax for all k. In each Zk, all nodes are corrupted, except one or both of the end
nodes.

Definition 25 (Route Proposal Security). The route proposal mechanism is said to
be secure if ∀i ∈ IPROP

W ,

{view0(i)}i∈IW

c
≡{view1(i)}i∈IW

holds, with viewb and IPROP
W defined as follows for each of the four properties PROP ∈

{RPH,RPI, PU,RTU }:

Route Proposal Homogeneity (RPH): For distinct nodes X, R0 = Y , R1 = R,

viewb(i) :=
(

X,Y,R,Context
{X }
Y,R (i),View

{X }
RP(X↔Y→Rb)(i)

)

Where IRP H
W is the set of input values for W (Frtprop) that yield an execution for

which X ∈ Ω, and Y,R ∈ Ωh, and in which both RP(X↔Y→Y ) and RP(X↔Y→R)
occur, and the latter requires a return trip that does not solicit any corrupted
node.

Route Proposal Indistinguishability (RPI): For distinct nodes X, Y , R0, R1,
and any relay nodes in Z1, . . . ,ZK , let N := {X,Y } ∪ Z1 ∪ · · · ∪ ZK . Define
viewb(i) as follows:

viewb(i) :=
(

X,Y,R0, R1,ContextNR0,R1
(i),ViewNRP(X↔Y→Rb)(i)

)

Where IRP I
W is the set of input values for W (Frtprop) that yield an execution for

which X,Y ∈ Ω, R0, R1 ∈ Ωh, all Zk,ik
are corrupted except Z1,nk

, Zk 6=1,1 and
Zk 6=1,nk

, and where both RP(X↔Y→R0) and RP(X↔Y→R1) occur, and both re-
quire a return trip soliciting the exact same corrupted sub-paths Z1, . . . ,ZK .

Propagation Untraceability (PU): For distinct nodes X, Y , X ′, Y ′, R0, R1, and
any relay nodes in Z1, . . . ,ZK and Z ′1, . . . ,Z

′
K ′, let N := {X,Y } ∪Z1 ∪ · · · ∪ ZK ,

N ′ := {X ′, Y ′} ∪ Z ′1 ∪ · · · ∪ Z
′
K ′. Define viewb(i) as follows:

viewb(i) :=
(

X,X ′, Y, Y ′, R0, R1,ContextN∪N
′

R0,R1
(i),

ViewNRP(X↔Y→R0)(i),ViewN
′

RP(X′↔Y ′→Rb)(i)
)
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Where IP U
W is the set of input values for W (Frtprop) that yields an execution

in which X,Y,X ′, Y ′ ∈ Ω, R0, R1 ∈ Ωh, all Zk,ik
are corrupted except Z1,nk

,
Zk 6=1,1 and Zk 6=1,nk

(and likewise for all nodes Z ′k′,ik′
), and where RP(X↔Y→R0),

RP(X ′↔Y ′→R0) and RP(X ′↔Y ′→R1) all occur, and the two latter ones require a
return trip soliciting the exact same intermediary corrupted sub-paths Z ′1, . . . ,
Z ′K .

Return Trip Untraceability (RTU): For nodes R0, R1, for any distinct nodes
X0, Y0, X1, Y1, and any relay nodes in Z1, . . . ,ZK and Z ′1, . . . ,Z

′
K ′, let N :=

{X0, Y0} ∪ Z1 ∪ · · · ∪ ZK , N ′ := {X1, Y1} ∪ Z
′
1 ∪ · · · ∪ Z

′
K ′. Define viewb(i) as

follows:

viewb(i) :=
(

X0,X1, Y0, Y1, R0, R1,ContextN∪N
′

R0,R1
(i),

View
N\(Zk1

∪···∪Zk2
)

RP(X0↔Y0→R0) (i),View
Z′

k′
1

∪···∪Z ′
k′

2

RP(Xb↔Yb→Rb)(i)

)

Where IRT U
W is the set of input values for W (Frtprop) that yields an execution for

which: (i) X0, Y0,X1, Y1 ∈ Ω, and either R0, R1 ∈ Ωh or R0 = R1 ∈ Ωc; (ii) all
Zk,ik

are corrupted except Z1,nk
, Zk 6=1,1 and Zk 6=1,nk

(and likewise for all nodes
Z ′k′,ik′

); (iii) both RP(X0↔Y0→R0), RP(X1↔Y1→R0) occur and respectively solicit

intermediate sub-paths Z1, . . . ,ZK and Z ′1, . . . ,Z
′
K ′ ; and (iv) return trips of these

two proposal have one (or more) intermediate sub-path(s) in common. That is,
∃k1, k2 ∈ [0,K − 1], ∃k′1, k

′
2 ∈ [0,K ′ − 1] s.t. (Zk1 ,Zk1+1, . . . ,Zk2) = (Z ′k′

1
,Z ′k′

1+1,

. . . ,Z ′k′
2
).

Note that route proposal homogeneity and indistinguishability are simply defined as
the indistinguishability between two views. However, for propagation and return trip
untraceability, the adversary gets a commit view (the same whether b = 0 or b = 1), and
a challenge view (that depends on the value of b). Indeed, in propagation untraceability
models the impossibility to link together two route proposal towards the same end-
receiver. Thus, there must be a first view provided which commits to one end-receiver
R0, and a second view that either relates to a route proposal towards the same end-
receiver R0, or towards a different one R1. The same reasoning applies to return trip
untraceability. Secondly, note that, in the definition of each property, the challenge
view is mainly focused on the end-receiver. This means that a mechanism secure by
Definition 25 does not provide anonymity guarantees for proposers and proposees. That
being said, in the context of the protocol, it is not a concern, since several (possibly
many) proposees (that will later become end-senders) share the same route.

Theorem 3. Assuming the indistinguishability of pseudonyms, and the IK-CPA prop-
erty of the Elgamal scheme, the route proposal mechanism is secure w.r.t Definition 25.
Namely, the adversarial advantage, for each property, is at most lmax · Advik-cpa(λ) +
lmax · Advps−ind(λ), for lmax the maximum route length.
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Proof Sketch 3 (Proof Sketch of Theorem 3). The full proof is given in Appendix B.4.
By making the views of each property explicit (see the same Appendix), it appears clearly
that, for each property, the only elements differing between view0(i) and view1(i) are
pseudonyms, encryptions of one, and cid values. By construction, these are not spec-
ified in the context ( i.e. the end-receiver associated to them is not specified). The cid
values are completely independent from the route (proposal) and from the end-receiver
they designate. Hence, they do not give an advantage to the adversary. The advantage
given by each pseudonym and encryption of one depend respectively on Advps−ind(λ) and
Advik-cpa(λ), which are assumed negligible. In addition, the number of such pseudonyms
and encryptions of one that differ is bounded by the number of relay nodes involved in the
challenge, which is itself bounded by the maximum route length lmax. Therefore, through
two hybrid game sequences, the theorem is easily proved, with the same methodology for
all four properties.

5.6. Security of the Protocol as a Whole

Building upon the results on the route proposal mechanism, this section studies the
security of the protocol as a whole. It follows the same outline. The protocol’s pseudo-
code Π is first given. It is then modeled in an ideal functionality F, and F is shown to
UC-realise Π. Finally, F is analysed to prove the SA, RA, and SU properties with the
AnoA framework, and MU with the custom security definition.

5.6.1. Modeling Π into an Ideal Functionality F

The protocol Π is given in Fig. 5.9 (spanning over two pages, 122 and 123). It follows
the same form as Πrtprop: it is written in the message-state paradigm, from the point
of view of one node X. We first describe the other ideal functionalities that Π uses as
subroutines, and then comment the code itself.

The protocol Π uses the following ideal functionalities as subroutines: Flink, Foffline,
Frtprop, and Freg. The former, Flink, is used in the exact same way as Πrtprop (with
implicit calls in the code whenever a message is sent/received). The second one, Foffline,
is featured in Fig. 5.8. It models the offline exchange between an end-sender Alice and
an end-receiver Bob, which is necessary prior to engaging in oriented communications.
In essence, it is actually very similar to Flink, since it aims at modeling the fact that an
external adversary can not observe the data exchanged during this interaction. Indeed,
this exchange is supposed to happen outside of the network. The main difference with
Flink is however that, in Foffline, Alice stays anonymous even w.r.t Bob, since its identity
is not output to Bob.

The third ideal functionality used by nodes in Π is Frtprop. That is, instead of actually
carrying out route proposals, nodes pass proposer subroutine inputs to Frtprop and get
proposee subroutine outputs. Note that the same unique instance is used by all the ITIs
of honest nodes, and by A as well. When it initialises (line 1 of Π’s code), node X sends a
setup input to Frtprop, and then self-proposes, by giving one proposer input for each of its
neighbors (line 5). Note that, by the way Frtprop is constructed, when X self-proposes
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1 : Foffline models the offline exchange between Alice and Bob, prior to an oriented commu-
nication.

2 : upon input (get, sid, B, ocomid, coneA→I , k) from party A:

3 : Output a copy of that input to B, and store (sid, ocomid,A,B)

4 : upon input (got, sid, ocomid, sh1, c) from B:

5 : if ∃ a stored (sid, ocomid,A,B) then Output a copy of this got input to A

Figure 5.8. – The Ideal Functionality Foffline

to its neighbor Yi by submitting a proposer input to Frtprop, the latter automatically
makes a proposee output to Yi with the adequate pseudonym and encryption of one
(see the entry point at line 6). Then, as already mentioned in previous sections, Frtprop

does not include the route proposal policy: it does not include the decision to accept
or refuse a route, and does not re-propose a route when one is learned. Therefore, in
Π, when node X learns a new route (i.e. gets a proposee output from Frtprop, at line 6),
it runs RtPropPolicy, a function effectively abstracting the route proposal policy. This
function returns two booleans, one stating whether X must accept the route, and the
second stating if it should relay it. If X accepts a route, it creates an entry in its
routing table RT . If it must relay the proposal, X gives an adequate proposer input
to Frtprop. Route proposals propagate in the network in this way. Note that corrupted
nodes, controlled by A, are assumed to behave in this way as well: A, on behalf of a
corrupted X, interacts with Frtprop to make route proposals.

Finally, Π makes uses Freg. Similarly to Πrtprop (and Frtprop), nodes request their
public keys to Freg (line 2). Here, the actual reason to be of Freg appears: its function is
to ensure that the encryptions of one output by Frtprop are indeed usable by nodes in Π.
Indeed, if the key pairs used internally by Frtprop did not match the keys used by nodes
in Π, then the latter would encrypt payload messages with encryptions of one under
(products of) public keys that they do not control, yielding payload messages impossible
to decrypt. Note that generating keys in Π and passing them as input to Frtprop is not
an option, since that would mean that, in the proof from Section 5.5.2 showing that
Πrtprop UC-realises Frtprop, it is the UC environment that would have to provide the key
pairs in input to the nodes. Since most of the security relies on the secrecy of these
keys, the proof could not carry out. Secondly, note that Freg is set to only answers to
the parties owning the key pair. More exactly, in the real execution, Freg answers only
to honest node X from Π or to Frtprop, and in an ideal execution it only answers to
F. In both executions, the adversary (A and Sim respectively) is allowed to query the
keys of corrupted nodes (but not of honest ones). This non-standard modeling of key
distributions seems unavoidable in order to split the protocol into Πrtprop and Π, and to
be able to propose a modular approach to the analysis of the full protocol. Its impact
on the proof is however minimal, since it seems that a proof of the full protocol in one
go (without dividing it into Πrtprop and Π) would be possible without Freg, by simply
having nodes generate their key pairs locally.
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1 : upon input (setup, sid, srcX , dstX , neighbors): // Init node

2 : Query Freg to get (pkX , skX ). Set P SX→X ← h(dstX
srcX )

3 : Init routing table RT , and set entry RT [0] = 〈∅, P SX→X , Enc(pkX , 1), null〉
4 : Give subroutine input (setup, sid, srcX , dstX) to Frtprop. // Self-propose

5 : ∀ Yi ∈ neighbors: Sample cidi, and give input (proposer, sid, (Yi, cidi), P SX→X ,∅) to Frtprop

6 : upon output (proposee, sid, P SX→R, coneX→R, (Y, cid)) from Frtprop: // Manage Rt. Props.

7 : Run (accept, relay)← RtP ropP olicy(P SX→R, . . . )
8 : if accept = true then

9 : Create RT entry 〈null, P SX→R, coneX→R, (Y, cid)〉
10 : if relay 6= ∅ then // Relay proposal

11 : ∀ Yi ∈ reprop: sample cidi ←$ {0, 1} not yet in use with Yi, and give subroutine input
12 : (proposer, sid, (Yi, cidi), P SX→R, (Y, cid)) to Frtprop.

13 : upon receiving message m = 〈payload‖cid, c1, c2〉 from Y :
14 : if ∃ 〈(Y, cid), _, coneX→R, (Y ′, cid′)〉 ∈ RT then // Relay payload

15 : Set c′
i ← ReEncnopk(coneX→R, Dec(skX , ci)) for i ∈ {1, 2}

16 : Send
〈

payload‖cid′, c′
1, c′

2

〉
to Y ′

17 : elseif ∃ 〈(Y, cid), _, _, null〉 ∈ RT then // Receive payload

18 : Get m1 = Dec(skX , c1) and m2 = Dec(skX , c2)
19 : if m1 parses to ocom‖ocomid‖cnt then // I reached

20 : if cnt ≤ 5, set n = 1, elseif 6 ≤ cnt ≤ 8, set n = 2, else, set n = 3
21 : goto OComInit(step = I.n), and exit
22 : elseif m1 parses to ocom‖ocomid‖cnt and ∃ stored (ocomid, k) then // R reached

23 : data by decrypting m2 with k, and output (rcvd, sid, ocomid, data)

24 : upon receiving message m = 〈rtproprelay‖cid‖rcid, c1, c2〉 from Y :
25 : if ∃ 〈(Y, cid), _, coneX→R, NextHops〉 ∈ RT then // Relay Alice → I
26 : if NextHop = (Y ′, cid′) and rcid is unknown then // Simple relay

27 : Sample rcid ←$ {0, 1}∗, (pktmp, sktmp)← KeyGen(1λ)
28 : Store (relay, (Y, cid), rcid, sktmp, rcid′, (Y ′, cid′))
29 : Set c2 ← PlainMult(c2, pktmp), and c′

i ← ReEncnopk(coneX→R, Dec(skX , ci)) for i ∈ {1, 2}

30 : Send
〈

rtproprelay‖cid′‖rcid′, c′
1, c′

2

〉
to Y ′

31 : elseif NextHop = ∅ then // I reached

32 : goto OComInit(step = I.1) and exit
33 : elseif ∃ stored (relay, (Y ′, cid′), rcid′, sktmp, rcid, (Y, cid)) then // Relay I → Alice

34 : if rcid′ 6= null then // Simple relay

35 : Set c′
2 ← ReEncone(Dec(sktmp, c2)), c′

1 ← ReEncnopk(c′
2, Dec(sktmp, c1))

36 : Send
〈

rtproprelay‖cid′‖rcid′, c′
1, c′

2

〉
to Y ′

37 : else // Alice reached
38 : goto OComInit(step = Alice.2), and exit

Figure 5.9. – Description of Π for node X

With this description of the functionalities Flink, Foffline, Freg, and Frtprop, a part of the
code of Π have already been described. Although the rest of the code is constructed very
similarly to the code of Πrtprop in Fig. 5.5 (page 108), there are some major differences
that are worth mentioning. Firstly, the routing table RT appears explicitly. Lookups
in this table are often made directly in conditional statements. For instance, on line 14,
the instruction “∃ 〈(Y, cid),_, coneX→R, (Y ′, cid′)〉 ∈ RT ” tests the existence of a routing
table entry with previous hop (Y, cid), and, if so, implicitly retrieves the encryption of
one coneX→R and the next hop (Y ′, cid′). The underscore character simply means that
the value of the field (here, the pseudonym) is not necessary in the code that follows.
The second specificity of Π are the oriented communications themselves. In particular,
the code entry point, corresponding to send inputs (on line 38, in the second part of the
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38 : upon input (send, sid, ocomid, R, data): // Send data to R
39 : if ∃ route initialised with ocomid then

40 : goto OcommInit(step = Alice.3) and exit
41 : Pick a random RT entry 〈_, P SX→I , coneX→I , NextHops〉
42 : Give input (get, sid, R, ocomid, ReEncone(coneX→I), k) to Foffline with a key k←$ {0, 1}∗

43 : Wait for subroutine output (got, sid, ocomid, sh1, c) from Foffline, and goto OComInit(step = Alice.1)

44 : upon subroutine output (get, sid, X, ocomid, coneS→I , k) from Foffline: // Gen. shares of dstR

45 : Store (ocomid, k), and sample sh1 ←$G, and set sh2 = dstX/sh1

46 : Set c← Encnopk(coneS→I , sh2)
47 : Give subroutine input (got, sid, ocomid, sh1, c) to Foffline

48 : OComInit(step): // Steps of ocom. init.

49 : if step = Alice.1 then

50 : Let sh1 and c = Encnopk(coneX→I , sh2) be the information received from Foffline

51 : Generate (pkocom
X , skocom

X )← KeyGen(1λ), (pktmp
X

, sktmp
X

)← KeyGen(1λ)

52 : For i ∈ [0, 5], set ci ← Encnopk(coneX→I , ocom‖ocomid‖i), c′
i ← Encnopk(coneX→I , e[i])

53 : with e = (pkocom
X , sh2, csh1

[0], csh1
[1], pktmp

X , pktmp
X ), and (csh1

[0], csh1
[1]) := Enc(pkocom

X , sh1)
54 : Sample two reverse circuit id, rcid4 and rcid5, and (Y, cid) ∈ NextHops

55 : ∀i ∈ [0, 5], send
〈

hi, ci, c′
i

〉
to Y , with hi = payload‖cid if i ≤ 3, else hi = rtproprelay‖cid‖rcidi

56 : Store (relay,∅, null, sktmp, rcid, (Y, cid)) along with (ocomid, coneX→I).
57 : if step = I.1 then

58 : Having received c0, c′
0, c1, c′

1, c2, c′
2, c3, c′

3 from payload messages.
59 : Having received c4, c′

4, c5, c′
5 from rtproprelay messages on link (Y, cid), and with rcid4 and rcid5

60 : Decrypt all these ciphertext, and recover csh1
= Enc(pkocom, sh1), sh2, pkocom, and pktmp

61 : Compute c′′ ← ReEncpk(pkocom, PlainMult(ScExp(csh1
, srcX), sh

srcX
2 )), and let (c′′[0], c′′[1]) := c′′

62 : Set c6 ← Enc(pktmp, c′′[0]) and c′
6 ← Enc(pktmp, 1)

63 : Set c7 ← Enc(pktmp, c′′[1]) and c′
7 ← Enc(pktmp, 1)

64 : For i ∈ {6, 7}, send
〈

rtproprelay‖cid‖rcidi−2, ci, c′
i

〉
to Y

65 : if step = Alice.2 then

66 : Retrieve (relay,∅, null, sktmp, rcid, (Y, cid)) along with (ocomid, coneX→I)

67 : Let c6 = Enc(pktmp
X , c′′[0]) and c7 = Enc(pktmp

X , c′′[1]) be the ciphertexts returned by I

68 : Reconstruct c′′ by decrypting c6 and c7 with sktmp
X

, and compute P SI→B = h(Dec(skocom
X , c′′))

69 : Set c8 ← Encnopk(coneX→I , ocom‖ocomid‖8) and c′
8 ← Encnopk(coneX→I , P SI→B)

70 : Send
〈

payload‖cid, c8, c′
8

〉
to Y

71 : Store (ocom-sender, ocomid, coneX→I , (Y, cid), cnt = 9, k) and goto OComInit(step = Alice.3)
72 : if step = I.2 then

73 : Having received c8, c′
8 via payload message, decrypt and get ocomid and P SX→R

74 : Retrieve RT entry 〈_, P SX→R, coneX→R, NextHops′〉 and sample (Y ′′, cid′′)←$ NextHops′

75 : Store (ocom-I, ocomid, P SX→R, coneR→X , (Y ′′, cid′′))

76 : if step = Alice.3 then send data as follows:
77 : Retrieve (ocom-sender, ocomid, coneX→I , (Y, cid), cnt, k)
78 : Set cdata ← Encnopk(coneX→I , ocom‖ocomid‖cnt++) and c′

data ← Encnopk(coneX→I ,{data}k)

79 : Send 〈payload‖cid, cdata, cdata〉 to Y
80 : if step = I.3 then

81 : Having received cdata, c′
data, via payload messages, decrypt and get ocomid, cnt, and {data}k

82 : Retrieve (ocom-I, ocomid, P SX→R, coneR→X , (Y ′′, cid′′))
83 : Set c← Encnopk(coneX→R, ocom‖ocomid‖cnt) and c′ ← Encnopk(coneX→R,{data}k)
84 : Send 〈payload‖cid′′, c, c′〉 to Y ′′

Figure 5.9. – Description of Π for node X (Cont.)

code), instructs a node to send a message containing data to a specific end-receiver R
using the oriented communication identifier ocomid. If this is the first such send input
with this ocomid, X will initialise the session, by first picking an indirection node, and
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requesting the dst shares to the specified receiver through Foffline (line 42). But, because
a node is allowed to send multiple messages in a single session, X may then receive other
send inputs for this ocomid, with different data to send. In this case (line 39), X uses
the already initialised session.

The third (and last) specificity of Π is the presence of a function OComInit (line 48),
which is called via goto instructions (a non-standard notation that we introduce). In-
deed, due to the complexity of the protocol, it is not possible to simply create one code
entry point per step of the oriented communication initialisation procedure. In particu-
lar, the indirection node I typically receives a combination of payload and rtproprelay

messages (corresponding respectively to the third and fourth code entry points), but that
all contain material used in the first step of the oriented communication initialisation
for the indirection node. Therefore, to group together all the operations relating to
oriented communications and their initialisations, the code includes instructions such as
“goto OcomInit(step = Alice.2)”, meaning that the code should jump to the OComInit
function, to the second step of the oriented communication initialisation (for the role
of the end-sender). We distinguish three steps each for the end-sender Alice and the
indirection node I, that follow the description of oriented communication initialisation
(see Fig 4.8 on page 85). Step one (lines 49-64) is the first round trip from Alice to
I, step two (lines 65-75) is the computation and the communication form Alice to I of
PSI→R, and the third step (lines 76-84) depicts the sending by Alice (and the relaying
by I) of actual payload data.

We now turn to the description of the ideal functionality F corresponding to Π, de-
tailed in Fig. 5.10 (page 125). Its form is quite similar to that of Frtprop: it internally
runs an instance of Π, and explicitly leaks information to the adversary. Similarly, F
knows all routes, all pseudonyms, and all events in the network. There is one important
element, however: F internally runs an instance of Frtprop. Actually, F re-creates the full
real execution inside itself. Again, this is a convenience that allows to leak the informa-
tion to the adversary in the right order (see the discussion on this point in Section 5.5.1,
on page 112).

The first part of F’s code (lines 4-7) details how the topology dissemination is ran
inside F. Basically, the latter internally runs an instance of Frtprop, and let nodes in
its internal instance of Π (as well as the ideal execution adversary Sim) communicate
with it. Also, F relays all leaks from Frtprop to Sim. Then, the second entry point of
F (line 8) corresponds to the processing of send inputs (the only input type aside from
setup). Here, similarly to Frtprop, F leaks information on the oriented communication
and its initialisation, depending on the corruption states of the end-sender S, the end-
receiver R, and the indirection node I. However, F also lets Sim communicate choices
that corrupted nodes have to make, in particular about the specific routes between S, I,
and R, and forces these choices into the internally ran instance of Π. For instance, when
S is corrupted, F sends sender-pick-route to Sim (line 12), which answers with a first hop
of its choice (line 13). F then forces S in the internally ran Π instance to choose that
first hop as well. This effectively models the influence of an actual network adversary
on the protocol, that is, the adversary gets to chose the routes used by corrupted nodes.

124



5.6. Security of the Protocol as a Whole

1 : F internally runs an instance of Π, along with Frtprop, Flink and Foffline.
2 : upon input (setup, sid, srcX , dstX , neighbors) from party X:
3 : Pass the input to the internal Π instance and ignore all subsequent setup inputs with sid of X.

4 : Relay all interactions between the internal instances of Π and Frtprop as follows: when X in Π wants
to give subroutine input proposer to Frtprop, pass it to the internal instance of Frtprop, and vice-versa
when Frtprop makes a proposee output for X.

5 : Relay all interaction between Sim and the internal instance of Frtprop as follows:

6 : −When the adversary Sim communicates a proposer input for a corrupted
proposer Y , send it to Frtprop and manually update Y ’s routing table in
the internal Π instance; and when Frtprop makes a proposee output for a
corrupted proposee X, externally send it to the adversary, and analogously
update X’s routing table.

7 : − All leaks made by the internal Frtprop are immediately passed on to the adversary Sim.

8 : upon input (send, sid, ocomid, R, data) from party S:
9 : Pass the input to S in Π.

10 : if ocomid designates a new ocom. session then

11 : if S ∈ Ωc then

12 : Send (sender-pick-route, sid, ocomid) to Sim

13 : Wait for (sender-route, sid, ocomid, (YS , cidS)) from Sim

14 : Force the choice of S in Π on that route, effectively also forcing the choice of indirection node I
15 : else
16 : Let S in Π choose a routing table entry, defining the identity of I and the first hop (YS , cidS).
17 : if R ∈ Ωc then

18 : Send (offline, sid, ocomid, R) to Sim

19 : if I ∈ Ωc then

20 : Send (I-pick-route, sid, ocomid) to Sim

21 : Wait for (I-route, sid, ocomid, (YI , cidI )) from Sim

22 : Force the choice of I in Π on that route
23 : Then, for each message that I receives from S in Π:

24 : Send (ocom-I, sid, (Zj

cidj+1
−→ . . .

cidn
−→ I), flag, ocomid‖cnt) to Sim,

25 : where Zj is the last honest node between S and I

26 : In addition, send P SI→R, when I receives the pseudonym
27 : if S ∈ Ωc then when S receives the two rtproprelay messages from I in Π

28 : Send (ocom-sender, sid, (Zi
cidi−i
−→ . . .

cid1−→ S), ocomid‖cnt, dstR
srcI ) to Sim

29 : where Zi is the first honest node between S and I

30 : Let I, (YS , cidS), (YI , cidI ), cnt be the indirection node, the end-sender’s first hops, the indirection
node’s first hop, and the counter associated to ocomid

31 : if I ∈ Ωc then when I in Π receives the payload message with data

32 : Send (ocom-I, sid, (Zj

cidj+1
−→ . . .

cidn−→ I), ocomid‖cnt) to Sim

33 : if R ∈ Ωc as well then also send data
34 : if R ∈ Ωc then when R in Π receives the payload message with data

35 : Send (ocom-rcvr, sid, (Zj

cidj+1
−→ . . .

cidn−→ R), ocomid‖cnt, data) to Sim

36 : For each sub-sequence (Zi′ , . . . , Zj′ ) ⊆ (Z1, . . . , Zn) of corrupted nodes framed by two honest nodes

Zi′ and Zj′ , send (subpath, sid, (Zi′

cidi′+1
−→ . . .

cidj′

−→ Zj′ ), flag), to Sim when the corrupted nodes in Π
are actually solicited (here, cid denotes both the cid and the rcid value of each link)

37 : if R ∈ Ωh and {S, I } ∩ Ωc 6= ∅ then

38 : Send (continue?, sid, ocomid‖cnt) to Sim

39 : Wait for (continue, sid, ocomid‖cnt) from Sim

40 : Output (rcvd, sid, ocomid, data) to party R.

Figure 5.10. – The Ideal Functionality F

This design is also necessary for the proof that Π UC-realises F to carry out. Other than
these choices that Sim is allowed to input into F, the latter merely leaks information
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about corrupted sub-paths, very similarly to Frtprop. In particular, it leaks intermediary
corrupted sub-paths, and, when S, I, and/or R are corrupted, it also leaks the end portion
of route that is corrupted, every time one of those receives a message. When relevant, the
leak is accompanied with the (decrypted) contents of these messages. Finally, because
several data payloads can be sent in the same oriented communication session, several
send inputs may be given with the same ocomid. F takes care to “run” the oriented
communication initialisation only once, when a send input specifies a new ocomid (this
is the reason to be of the conditional on line 10).

5.6.2. Π UC-Realizes F

Figure 5.11 shows the setup for the proof, and the relations between all parties. Next,
the theorem on the UC-realisation of F is formulated. Note that it is proven under the
assumption that end-senders and indirection nodes do not collude, and in particular,
that a corrupted end-sender never chooses a corrupted indirection node.

E

A

Π

Freg

Flink,offline

Frtprop

E

A

Π Frtprop Flink,offline

Flink,offline

F

Sim

Freg

Figure 5.11. – Setup for Real (left) and Simulated (right) Executions

Theorem 4 (Π UC-Realizes F). Assuming the IND-CPA, IK-CPA, and USS proper-
ties of the Elgamal scheme, and assuming that end-senders and indirection nodes do not
collude, the protocol Π UC-realises the ideal functionality F in the (Freg,Flink,Foffline,
Frtprop)-hybrid model in the presence of semi-honest static adversaries. That is, there
exists Sim such that for all A:

{

ExecReal
Π,A,E(z)

}

∀z∈{0,1}∗

c
≡

{

ExecIdeal
F,Sim,E(z)

}

∀z∈{0,1}∗

Proof Sketch 4 (Proof Sketch of Theorem 4). The full proof is given in Appendix B.5,
where all the simulation cases are detailed (depending on the corruption state of the end-
sender, indirection node, end-receiver, and relay nodes). The system setup for the proof
is roughly the same as for the proof of Theorem 2, to the difference that F internally
runs a instance of Frtprop.
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At the beginning of the simulation, the topology dissemination phase is driven by F
for honest nodes (or more exactly, by the Π instance in F), and by A for corrupted ones.
That is, the actual route proposals are performed within the internal Frtprop instance of F,
but the route proposal policy (the decision to accept/refuse routes, and to relay them) is
run by F and A. Sim relays proposer inputs and proposee outputs between A and F. By
that, Sim learns all the portions of routes that are made of corrupted nodes (as in proof
of Theorem 2). Also, to be able to simulate the oriented communications, Sim modifies
the cone encryptions in proposee outputs to replace them with encryptions under keys it
controls, i.e. so that any honest node at the end of a sub-path has the ability to decrypt
ciphertexts in the message they receive (as in proof of Theorem 2). This modification is
indistinguishable, by the USS and IK-CPA properties.

With this setup, the rest of the simulation uses exactly the same methods as in the
proof of Theorem 2, and the proof holds by similar arguments. Messages are crafted
and delivered to corrupted end of routes (here, end-senders, indirection nodes, and end-
receivers), using the last honest node on the route. Again, F leaks all the necessary
information to do so.

There are a few differences, however. Firstly, although intermediary corrupted sub-
paths are simulated independently from each other, end of routes are not. Indeed, the
ocomid value binds all the messages in the same oriented communication. This allows
Sim to correctly deliver the information proper to the oriented communications (such
as the values sh2, pk

ocom, or pktmp). In particular, when both the indirection node and
the end-receiver are corrupted, care is taken to deliver them the same encrypted payloads
{data}k. The other difference is that Sim runs a simulated version of Foffline, and by
that, gets to observe all offline interactions involving a corrupted end-sender or end-
receiver. On the other hand, Sim must also answer on behalf of honest end-receivers
contacted by corrupted end-senders though Foffline, and in particular generate shares sh1

and sh2 without actually knowing dstR. However, by the security of the secret sharing
mechanism, Sim can simply generate random shares, since end-senders and indirection
nodes are assumed not to collude. Lastly, in order to synchronize the internal states of
the simulation and of the ideal functionality, the latter lets Sim communicate the non-
deterministic decisions made by A, such as the indirection node chosen by a corrupted
end-sender. This ensures that, when an intermediary sub-path are leaked, it corresponds
to an actual sub-path that needs to be simulated. Sim can thus blindly simulate all
intermediary corrupted sub-paths as they are leaked.

Finally, the indistinguishability between the simulated and real executions stems from
the IND-CPA, IK-CPA, and USS properties, similarly to proof of Theorem 2.

5.6.3. Analysis of F

Based on the ideal functionality F, this section aims at studying the SA, RA, SU and
MU properties. Indeed, as it is the case with Frtprop, the ideal functionality being quite
complex, the security properties of the protocol do not appear trivially.
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5.6.3.a) General Remarks

Just as Frtprop, the functionality F does not leak any information to network observers, in
particular since we are in the Flink-hybrid model (in which external observers are assumed
not to be able to observe messages exchanged between neighboring nodes). Thus, SA,
RA, SU, and MU hold perfectly against external adversaries. Then, in the presence of
corrupted nodes, the nature of information leaked by F is similar to that of Frtprop: it
mostly consists of sub-paths. Again, because of the way PSI→R is computed during an
oriented communication initialisation (as defined in Fig. 4.8 in Chapter 4), when the
end-sender S is corrupted, F leaks the value dstRsrcI . Interestingly, F must allow the
adversary to input F with own random choices (such as the route used by an end-sender
or indirection node), or else the proof does not follow through. More accurately, in our
approach to construct the simulator, in order to be able to prove that the ideal and
real executions are indistinguishable, inputting the adversary’s random choice into F is
necessary. For instance, if a route from the end-sender to the indirection node is not the
same in the simulation and in the ideal functionality, the latter will leak intermediary
sub-paths that do not correspond to the ones that the adversary expects to observe (thus
possibly allowing the adversary to distinguish the simulation from a real execution).

Then, from the (full) proof, it is clear that intermediary corrupted sub-paths can
be simulated independently, which means that in general, corrupted relay nodes (other
than indirection nodes) can not link all the messages belonging to the same session with
probability one (although all messages in a session take the same route from S to I and
then I to R). This also means that a given relay node can not distinguish between a
message on a first leg S-I where I is an indirection node, and a message on a second
leg I ′-I where I is an end-receiver. However, this property has limited interest in the
formal analysis. Indeed, the frequency at which these cases arise depend on the traffic
load and the number of concurrent communications. yet, in the AnoA framework’s
approach, a worst-case scenario is assumed, and the traffic load is actually controlled by
the adversary (this amounts to assuming that there is only one communication at a time
in the network, and no concurrency among communications).

In accordance with the considered approach described in Section 5.1.2, we set out to
analyse F with the AnoA framework, in order to prove the SA, RA, and SU properties.
In a second time, the MU property is studied with the same formalism as the route
proposal properties.

5.6.3.b) Proving SA, RA, and SU with AnoA

In this section, the SA, RA, and SU properties are proved following the same method-
ology that Backes et al. apply to Tor [Bac+13]. The adjacency functions αSA, αRA,
and αSU , which formally define each property in the AnoA framework, are given in
Fig 5.12. More accurately, they are formulated with the adaptive AnoA setup, but for
n = 1 challenge session only (see [Bac+13, Section 5] for detail on the adaptive AnoA
setup). Recall that adjacency functions are sort of hooks into the challenger, the latter
being fixed by the AnoA framework (i.e. its behavior is fixed). Basically, the adversary
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produces (polynomially) as many r = (S,R, data, ocomid) input values as she wants for
arbitrary end-senders and end-receivers. She gives those inputs to the challenger, who
passes them as send inputs to F. At some point, A produces a challenge action modeled
by r0 and r1, representing two different oriented communication session e.g. with two
different end-senders for SA). The adjacency function is applied to (r0, r1, b), which, for
simple properties, returns rb after basic input checks, and the challenger runs the proto-
col on it. However, the adjacency function is allowed to perform further processing and
return a mix of r0 and r1, if it is pertinent. As usual, the objective of A is to guess the
value of the bit b (knowing the structure of the adjacency function considered).

αSA(st, r0 = (S0, R, data, ocomid), r1 = (S1,_,_,_), b) :

if (st = fresh or st = (S0, S1, R, ocomid)) and S0, S1 ∈ Ωh and topology dissemina-
tion is over then

Output ((Sb, R, data, ocomid), st := (S0, S1, R, ocomid))

αRA(st, r0 = (S,R0, data, ocomid), r1 = (_, R1,_,_), b) :

if (st = fresh or st = (R0, R1, S, ocomid)) and S,R0, R1 ∈ Ωh and topology dissemi-
nation is over then

Output ((S,Rb, data, ocomid), st := (R0, R1, S, ocomid))

αSU (st, r0 = (S0, R0, data, ocomid), r1 = (S1, R1,_, ocomid′), b) :

if S0, S1, R0, R1 ∈ Ωh and topology dissemination is over then

if st = fresh then

a←$ {0, 1}

Output ((Sa, Ra, data, ocomid), st := (S0, R0, S1, R1, a, ocomid, stage1))

elseif st = (S0, R0, S1, R1, a, ocomid, stage1) and ocomid = ocomid′ then

Output ((Sa, Ra, data, ocomid), st)

elseif st = (S0, R0, S1, R1, a, ocomid, stage1) and ocomid 6= ocomid′ then

if b = 0 then a′ := a else a′ := 1− a
Output ((Sa′ , Ra′ , data, ocomid′), st := (S0, R0, S1, R1, a

′, ocomid′, stage2))

elseif st = (S0, R0, S1, R1, a
′, ocomid′, stage2) then

Output ((Sa′ , Ra′ , data, ocomid′), st)

Figure 5.12. – AnoA Adjacency Functions for SA, RA, and SU

The functions αSA and αRA described in Fig 5.12 take as input two tuples each speci-
fying an end-sender, an end-receiver, some data to send, and an oriented communication
identifier. In αSA, for instance, the first tuple is r0 = (S0, R, data, ocomid), and the
second tuple is r1 = (S1,_,_,_). The underscore characters mean that αSA expects
that r1 specifies the same R, data, and ocomid as r0. Said otherwise, r0 and r1 are
expected to differ only in the end-sender they specify, i.e. S0 or S1. The other inputs of
αSA are st, the state of the challenge, and the bit b. The latter is fixed by the challenger,
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which itself receives it in input as well (see Section 5.1.1.b on the AnoA framework).
The state st is used to manage the challenge, for instance to ensure that the challenge is
made on only one session [Bac+13]. The code of αSA merely consists in performing a few
verifications, and outputting rb and an updated state st. These verifications define (or,
more accurately, restrict) the challenge scenario: if the verifications fail, αSA does not
output anything, meaning that the r0 and r1 input values are invalid for the challenge.
Here, we verify: (i) that the state is equal fresh (its default value from the challenger)
or equal to (S0, S1, R, ocomid), in order to ensure that the challenge focuses on only
one communication session, from Sb to R with ocomid (however, several messages can
be sent in that session, i.e. αSA may be called several times with the same Sb, R, and
ocomid); (ii) that S0 and S1 are both honest, since it otherwise does not make sense
to test sender anonymity; and (iii) that the topology has been fully disseminated, in
order to avoid cases where one or both of the end-senders are unable to contact the
specified end-receiver R (e.g. because no routes at all have been proposed at the time of
the challenge). If all these conditions are met, αSA outputs rb (and updates st), and the
challenger consequently provides input (send, sid, ocomid,R, data) for S to F. The latter
thus perform leaks, that the challenger forwards to A, who must then guess whether she
is observing a communication with S0 or S1.

The function αRA works in an analogous way as αSA, but for end-receivers. The
only difference is that αRA additionally checks that the provided end-sender S is honest.
Indeed, since, by design of our protocol, the end-sender knows the identity of the end-
receiver it contacts, it does not make sense to test receiver anonymity in this case. We
remark that the αSA and αRA are similar to the (session) sender anonymity and receiver
anonymity, as defined by Backes et al. [Bac+13].

Finally, the function αSU is more complex, and closer to the notion of session sender
unlinkability in AnoA7. The function αSU takes place in two stages (hence the values
stage1 and stage2 in the state). In the first stage, A can observe the sending of one or
several messages in a session between Sa and Ra with ocomid (a being randomly taken in
{0, 1}). In the second stage, A can observe another session (with ocomid′) with the same
end-sender/end-receiver pair (b = 0 and a′ = a), or a different one (b = 1 and a = 1−a′).
This captures the desired notion of session unlinkability: if A can not distinguish these
two cases, it implies that she is unable to link sessions between the same end-sender and
end-receiver. The verifications performed by αSU ensure that the challenge focuses on
honest end-senders and end-receiver, and that topology dissemination is terminated.

Theorem 5 formally defines the SA, RA, and SU security properties. The theorem
introduces an adversary class A′, and states security against A′(A). In the AnoA frame-
work, an adversary class roughly acts as a wrapper for A, filtering the information it
receives, or producing a subset of inputs on its behalf (without an adversary class, A
would the one producing all inputs to give to F). Here, we use the mechanism of ad-
versary classes in the second manner. More precisely, A is only allowed to produce the
setup inputs of corrupted nodes, while A′ is responsible for giving the setup inputs of

7The fact that this property also has the acronym SU is pure coincidence and not meaningful.
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honest nodes. This prevents A from knowing the honest nodes’ src and dst values. We
however allow the adversary A to produce all the send inputs, even of honest node, which
effectively grants her to control all communications in the network. This implies that
A can easily make it so there is only one communication at any time, allowing her to
trivial link together (intermediary) corrupted sub-paths.

Theorem 5 (SA, RA, SU). For any set of nodes Ω among which a random subset
Ωc ⊆ Ω of nodes are corrupted, and for any network in which, after topology dissemina-
tion, any node can reach any other node with a maximum route length of lmax ∈ N, as-
suming that end-senders and indirection nodes do not collude, and assuming pseudonym
indistinguishability and the IK-CPA property of the Elgamal scheme, F is (0, δ)-α-ind-cdp

for α ∈ {αSA, αRA, αSU }, i.e. for all adversary A,

Pr
[

A′(A)Ch(F,α,0) = 0
]

≤ Pr
[

A′(A)Ch(F,α,1) = 0
]

+ δ

with δ = 1−
(|Ω|−lmax

|Ωc| )
( |Ω|

|Ωc|)
+ negl(λ) for SA and RA and δ = 1−

(|Ω|−2lmax+1
|Ωc| )

( |Ω|
|Ωc|)

for SU

Proof Sketch 5 (Proof Sketch of Theorem 5). The full proof can be found in Appendix B.6.
It follows the methodology that Backes et al. [Bac+13] apply to Tor. The analysis and
proof of each property is driven by a distinguishing event E. For each property, E is
defined so that, if ¬E occurs, the adversary gets the same information whether b = 0
or b = 1, up to some pseudonyms or encryptions of one. Therefore, we can show that,
when ¬E occurs, A can not distinguish the two cases (up to a negligible advantage,
bounded according to the properties of the Elgamal scheme and the indistinguishability
of pseudonyms). That is, we show for each property PROP ∈ {SA, RA, SU}, that:

Pr
[

A′(A)Ch(F,αPROP ,0,) = 0
∣
∣
∣¬EPROP

]

= Pr
[

A′(A)Ch(F,αPROP ,1) = 0
∣
∣
∣¬EPROP

]

+ negl(λ)
(5.6)

Here, the distinguishing event ESA for SA (resp. ERA for RA) corresponds to the pres-
ence of at least one corrupted node on the first (resp. second) leg of the challenge com-
munication. For SU the distinguishing event ESU corresponds to the conjunction of: the
presence of at least one corrupted node on any leg of the route of the first session between
Sa and Ra and on any leg of the second session between Sa′ and Ra′ . The equality (5.6)
holds perfectly in the case of SA and SU (there is no negl(λ) factor). However, for
RA, the equality holds up to a negligible additive factor that depends polynomially on
Advps−ind(λ) + Advik-cpa(λ). This is due to the fact that, during the topology dissemina-
tion phase, the corrupted nodes of A will necessarily get pseudonyms and encryptions of
one towards R0 and R1.

Equality (5.6) holds only when E does not happen. However by the way the distin-
guishing events are defined, when they occur, there is at least one piece of information
leaked to A that differs depending on the value of b. This difference gives the adver-
sary a possibly non-negligible advantage. Here, we over-approximate this advantage, and
assume it to be maximal ( i.e. A distinguishes with probability 1 when E occurs).
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Given eq. (5.6) and the advantages of the adversary when E occurs and when it does
not occur, it remains only to quantify the probability that this event happens. Subse-
quently, the theorem is obtained by the law of total probability. This quantification of
Pr[ESA ], Pr[ERA ], and Pr[ESU ] yields the δ values specified in Theorem 5. Those are
defined over the random choice of A in corrupting a specific subset of nodes.

5.6.3.c) Proving MU

The MU property is divided between MU-session and MU-tracing. As already noted,
MU-session is simply not fulfilled for oriented communication session, in the presence of
corrupted nodes. In particular, a corrupted indirection node trivially breaks it. There-
fore, we only prove the MU-tracing property. This is done with the same formalism as
for the proofs of the route proposal properties. However, the definition of the adversarial
View is slightly modified, to adapt it from a view on route proposals to a view on oriented
communication sessions. The term ViewNS→R,ocomid,init denotes the information leaked
by F to corrupted nodes in N , restricted to information directly relating to the com-
munication between S and R with ocomid. The term {data} specifies the exchanged
payloads. If the term init is present, the view also contains the interaction between
end-sender and indirection node during the initialisation of the oriented communication;
otherwise, only the data exchange is given in the view.

The properties of MU-tracing and of route proposal return trip untraceability are
somewhat similar. That is, they are properties focusing on sub-paths. Thus, the approach
to formally define MU-tracing is to commit to a communication session between one
sender-receiver pair, but only for a portion of the route (by restricting the view to a
subset of corrupted nodes); and then giving as challenge the view of different corrupted
nodes during the same communication session (b = 0) or a different one (b = 1). We do,
however, make the restriction that the two sessions in question have a portion of route
in common, and that the challenge focuses on this portion. Overall, we decide to define
MU-tracing on the following dual scenario: either a corrupted end-sender and first leg
(possibly including the indirection node) trying to trace messages headed towards to a
(honest) end-receiver; or conversely, a corrupted end-receiver and second leg (possibly
including the indirection node) trying to trace back a message coming from a (honest)
end-sender. This represents the ultimate goal of the MU-tracing property: to conceal
where a message goes or where it comes from. Additionally, this encompasses many
other scenario, e.g. of indirection and relay nodes alone aiming at tracing messages back
to an honest end-sender and/or to an honest end-receiver.

Lastly, note that the definition of MU-tracing is quantitative (with a non-negligible
adversarial advantage), since, similarly to SA, RA and SU, the MU-tracing property
does not hold with a negligible advantage under all corruption configurations. Namely,
MU-tracing on the first leg holds up to a non-negligible advantage.

Definition 26 (MU-tracing). The protocol satisfies (δS , δR)-MU-tracing if for all
PPT adversary A, it holds that:

∀i ∈ IMU-S
F ,Pr[A (view0(i)) = 0] ≤ Pr[A (view1(i)) = 0] + δS
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∀i ∈ IMU-R
F ,Pr[A (view0(i)) = 0] ≤ Pr[A (view1(i)) = 0] + δR

where viewb is defined as follows for any nodes S0, S1, R0, R1, and relay nodes Z1, . . . ,
ZK . Let a←$ {0, 1} and a′ = a if b = 0 or 1− a if b = 1, and define:

viewb(i) :=
(

S0, R0, S1, R1,Context
Z1∪···∪ZK
R0,R1,I0,I1

(i),

View
Ωc\(Z1∪···∪ZK)
Sa→Ra,ocomida,init(i),View

Z1∪···∪ZK
Sa′→Ra′ ,ocomida′

(i)
)

IMU-S
F and IMU-R

F are sets of input values for F that both yield executions where S0, S1,
R0, R1 ∈ Ω, where all Zk,ik

are corrupted except Zk 6=1,1 and Zk 6=1,nk
; where S0 initiates

a session with R0 with ocomid0 using indirection node I0 in order to send messages
{data0}, and, independently, S1 initiates a session with R1 with ocomid1 using indirec-
tion node I1 to send {data1}; and where both sessions share a common portion of route,
described by intermediary corrupted sub-paths Z1, . . . ,ZK .

Additionally, IMU-S
F (resp. IMU-R

F ) yield executions where S0 and S1 (resp. R0 and
R1) are honest, and Z1, . . . ,ZK represent all the intermediary corrupted sub-paths from
the first (resp. second) leg.

Theorem 6 (MU-tracing). Assuming that end-senders and indirection nodes are not
colluding, assuming the indistinguishability of pseudonyms, and the IK-CPA property of
the Elgamal scheme, (δS , δR)-MU-tracing holds with δS, δR defined as:

δS ≤ 1−

(|Ω|−2
|Ωc|

)

( |Ω|
|Ωc|

) + negl(λ)

δR ≤ negl(λ)

Proof Sketch 6 (Proof Sketch of Theorem 6). The full proof is provided in Appendix B.6.2.
The proof outline consists in making explicit the view, when Z1, . . . ,ZK are on the first
leg (i ∈ IMU-S

F ) and when they are on the second leg (i ∈ IMU-R
F ).

For case of the second leg, it appears that the only information given in the chal-
lenge view View

Z1∪···∪ZK
Sa′→Ra′ ,ocomida′

(i) consist of the pseudonyms PSZ→Ra′ and encryptions

coneZ→Ra′ . Whereas in the commit view View
Ωc\(Z1∪···∪ZK)
Sa→Ra,ocomida,init(i) no information is leaked

on either R0 nor R1 that would allow to de-anonymise these pseudonyms or encryptions.
This holds whether or not the end-sender Sa or the indirection node Ia is corrupted (re-
call that by assumption, if the end-sender is corrupted, the indirection node is not, and
vice-versa). Thus, by the indistinguishability of pseudonyms and the IK-CPA property
of the Elgamal scheme, A only has a negligible advantage, that can be bounded above by
lmax · (Adv

ps−ind
A (λ) + Adv

ik-cpa
A (λ)).

For the case of the first leg, the situation is different, because the challenge view
contains pseudonyms PSZ→Ia′ , which A knows to be pseudonyms towards Ia′ . Recalling
that, ultimately, the goal of A is to know whether a′ = a or a′ = 1− a, it is clear that if
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A succeeds in distinguishing whether Ia′ (as seen in the challenge view) is the same as
Ia, then she wins. From this, it can be shown that, in the distinguishing event that one
of I0 or I1 or both are corrupted, the presence (or absence) of leaks such as ocom-I in
the commit view allows A to distinguish the view with probability one. The probability
that I0 or I1 or both are corrupted being 1−

(|Ω|−2
|Ωc|

)

/
( |Ω|
|Ωc|

)

, the value of δS can be shown

following the same methodology as the (full) proof of Theorem 5 (which deals with SA,
RA, and SU).

5.7. Summary

In addition to the summary of results and insight presented in Section 5.2, the following
remarks wrap up this chapter on the formal treatment of the protocol.

Results and Lessons Learned

We showed formal proofs for each properties of the protocol, in a very constraining model.
The first step of proofs, with the UC framework, led to the expected ideal functionalities,
in particular leaking corrupted sub-paths and dstsrc values, but leaking no information
at all to network observers. However, during the analyses of these functionalities with
the AnoA framework, we were only able to obtain under-approximation of the actual
anonymity provided by the protocol. Either because an in-depth analysis would have
been too complex and lengthy (even for a thesis), either because the formal foundations
to carry out these analyses were plainly missing in the state-of-the-art. As a result, sev-
eral interesting features of the protocol can not be integrated in the proofs. In particular,
the fact that end-senders share portions of routes, or that oriented communication ini-
tialisations use rtproprelay messages indistinguishable from those of a route proposal
return trip, and most of the elements of design that aim at preventing traffic analysis,
have not played a part in the proofs.

More generally, it can be said that, as of today, the cryptographic frameworks focusing
on the formal study of communication networks do not seem to deal well with the
countermeasures pertaining to traffic analysis. Said otherwise, it is unknown how to
quantify the adversarial advantage obtained from traffic analysis in a provable secure
way (with an upper bound that encompasses the worst possible cases). This implies
that, to still carry out formal proofs, one has to make the conservative assumption
that gives her full advantage (or alternatively, to pose strong and possibly unrealistic
assumptions).

Still, this work is a first step, which makes the basic properties of the protocol appear.
Above all, it shows that under heavy constraints, with a global observer and corrupted
colluding nodes, even if the traffic load is extremely low (only one communication at
a time), anonymity can be achieved. In comparison, the cMix protocol [Cha+16] pro-
vides comparable privacy guarantees, but is a synchronous mixnet, which by definition
requires many users to communicate at the same time to fire the mixes8. And the

8Or more exactly, the network must wait for enough end-senders to be ready to send
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5.7. Summary

Tor protocol [DMS04] simply does not provide any anonymity against a global external
adversary.

Going Further

There are gaps in the chosen approach for proving MU and the route proposal mechanism:
the proofs hold only for a subset of all possible system executions. More generally, it
would be preferable to have a standard and widely accepted security definition for MU
and the route proposal mechanism. In particular, the MU property is present in the
literature, but, to the best of our knowledge, has never been formally proved.

Secondly, the proofs of SA, RA and SU are loose, meaning that the anonymity may
actually be proved to be better. It would be interesting (although extremely cumber-
some) to delve into more details, in order to obtain tighter and more accurate bounds.
One possible lead to do so is to follow the ideas of Backes et al.’s more recent works on
Tor [BMS16], which takes into account different strategies for choosing the relay nodes of
circuits. Note that this would require assumptions on the topology graph and the route
proposal policy. Indeed, the topology graph not being complete, the identities of previ-
ous and next hop nodes leak information on the potential end-sender and end-receivers
to corrupted nodes on the route. In addition, this analysis would require to define a
concrete route proposal policy. Indeed, the route proposal policy determines the proba-
bility that a given route is effectively created in the network. Thus, for a corrupted relay
node on a route, the route proposal policy determines the potential end-senders (and
end-receivers), and their probability to be the actual end-sender (resp. end-receiver).
Formally taking into account these elements in a detailed analysis is a challenge in it-
self. However, in the next chapter, we make a step towards studying the impact of
these elements on anonymity. We empirically measure the distribution of routes length,
and model collusions of corrupted nodes on the routes trying to find the end-sender or
end-receiver of a communication, by enumerating all the nodes reachable in less than
a certain number of hops in the topology graph. As a result, we obtain an empirical
quantification of SA and RA, showing much more optimistic results than the level of
anonymity proved in this chapter.

Finally, of course, the proofs must be ported to the adaptive, fully malicious adversary
model. For that, heavy modifications are needed on the protocol.
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After the formal and theoretical security analysis, this chapter studies the protocol
under a more practical point of view. It presents a proof-of-concept implementation of
the protocol, and puts in light different properties related to its general efficiency and
privacy. It also studies the route proposal, message re-ordering, dummy messages and
controlled traffic rates mechanisms. Finally, in complement to the theoretical privacy
quantification from the previous chapter, an empirical measure of privacy is presented.

6.1. Implementation Choices

The motivation behind the proof-of-concept implementation is before all to evaluate
the time taken by topology dissemination, the latency in message delivery, and the
privacy provided by the protocol. The implementation is not meant to account for the
physical network phenomenons, nor to study how the protocol performs over a real-world
transport protocol such as TCP/IP.

The protocol was implemented using a discrete-event simulator [WLW09], as it is
common for a first protocol implementation. Here, we chose to use SimPy [Mul+], a
generic-purpose simulator written in Python. The protocol implementation is thus also
written in Python. SimPy is not dedicated to network simulations, and does not provide
any network model (e.g. wireless mesh network, Internet overlay). It merely consists in a
generic API for discrete-event simulation, which is sufficient for our needs. Indeed, in the
proposed protocol, nodes’ behavior is driven by the batching rounds, i.e nodes activate
every tP seconds to process received messages and send out others to their neighbors.
Thus, the main events needed for the simulation are simple delay events of tP seconds,
which SimPy handles perfectly.

Transposing the abstract protocol description from Chapter 4 into an implementation
requires making certain choices, such as the exact route proposal policy that nodes are
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going to follow. Below are listed some of the most relevant points of implementation.
For more details, see the publicly available code of the implementation [Gue17].

Network We used the NetworkX library [Net] to generate and manipulate the topology
graph. Before running the network, a random regular graph is generated, where each
node has exactly log |Ω| neighbors. The resulting graph is connected and undirected.

Cryptography We did not implement the cryptographic operations. First, since these
operations are known and proved to be secure, implementing them would not allow
to further attest their security. Secondly, even though cryptographic operations (espe-
cially modular exponentiations) are known to be time and resource-consuming, the times
required to encrypt or decrypt with AES or Elgamal, or to compute homomorphic oper-
ation, are expected to be negligible compared to the batching time interval tP . However,
in order to check the correctness of the homomorphic operations used in the network
(in particular concerning the accumulation of temporary keys during a return trip), we
implemented basic group operations.

Batching, Dummy Messages, and Controlled Traffic Rates In the Python implemen-
tation, message re-ordering, dummy messages, and controlled traffic rates are imple-
mented exactly as described in Section 4.4.2, with two exceptions. First, by the way
the SimPy implementation works, the network is actually synchronous, i.e. all nodes
are always in the same batching round. Secondly, we introduce a sampling bias when
choosing messages from the pools, so as to select real messages more often than dummy
ones. That is, messages to send in each round are not selected according to a uniform
distribution pools, but biased towards real messages. Indeed, from preliminary measures
without this bias, it appeared that real messages stayed a very large number of rounds in
the pools before being selected, thus greatly degrading the performances of the protocol.
In practice, we programmed this bias to depend on the node’s allowed sending budget
in each given round (that is, the more real messages a node is allowed to send as per
the traffic rates constraints, the greater the bias is). In Section 6.3, we show that this
design choice does not severely impacts privacy, and the TAR property in particular.

Concrete Route Proposal Policy Finally, a crucial part of the implementation consists
in proposing a concrete route proposal policy. Indeed, Section 4.5.4 merely discussed
the route proposal policy, leaving this element of design as an implementation choice.
In this proof-of-concept implementation, the guidelines exposed in Section 4.5.4 are
followed, and the route proposal policy exhibit the following features

• Route length limitation, using the described encrypted decision process. This
requires the return trip from proposee to receiver to carry two link messages (one
with dstsrc , the other with glmax−l).

• Possibility for a node to have several routes towards the same receiver (i.e. towards
the same pseudonym), up to a maximum maxrt.
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• Connectivity: ensure that, at the end of topology dissemination, each node has a
route towards each other.

– Always accept the first route proposal towards a newly discovered pseudonym.

– Make each node propose each other node at least once (here, exactly once).

• Unpredictability of created routes: introduce probabilistic behavior.

– A node accepts a route towards a pseudonym it already knows on a random
basis, according to preaccept

– For such an accepted route, a node can randomly choose to replace a route it
already knows with probability preplace, or to add a new route with probability
1− preplace.

– Avoid shortest paths: do not immediately re-propose the first route learned
towards a pseudonym (wait to see if a second route is learned, and propose
that one preferably).

The route proposal policy parameters lmax, maxrt, preaccept, and preplace are tuned
as follows. First, the maximal route length lmax is automatically set according to the
longest among all shortest paths between pairs of nodes in the topology graph. Then,
maxrt is arbitrarily set to 3, for it leaves enough choice to node, and yields routing tables
of reasonable size. For the preaccept and preplace parameters, we ran several simulation
of the network with various values, in order to measure the unpredictability of obtained
routes. This unpredictability is measured as the Jaccard distance between the set of
routes created in one network run, and those created in a second network run (on the
same topology graph). This distance metric is defined over two sets of items A and B,
not necessarily of the same size, as (|A ∪B| − |A ∩B|)/ |A ∪B|. A Jaccard distance
of 1 means that the two topology dissemination runs did not produce a single route in
common. This is abstractly what is aimed at for unpredictability, since this means that
the set of created routes is very different between each topology dissemination run on
the same graph. In addition to the route unpredictability, we also measured the effective
number of routes per nodes, in order to attest that each node obtains its three routes
towards each other node. The results of these network simulations are shown in Fig. 6.1
and 6.2. Although the other parameters of the protocol, pertaining to the message re-
ordering mechanism in particular, may have had an influence on the results, this was not
measured. Here, simulations were run using the standard set of parameters fP = 0.5,
nPmin = 5, fdum = 0.8, ∆r = 8, described in details in the next section.

The results interestingly show that, even with preaccept = 0 and preplace = 0, the route
unpredictability is not zero. That is, the network naturally ensures a base value for
route unpredictability. This is largely imputable to the pool-based mixing of messages,
that introduces randomness in the order messages are delivered, and thus in the order
that route proposal are carried out. However, it is desirable to reach a higher Jaccard
distance than this base value. Here, we choose to set preaccept = 0.5 and preplace = 0.25,
for these are the lowest values achieving a high route unpredictability of 0.90 or above,
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and which still provide a relatively high effective number of routes between any two pair
of nodes (2.5 in average).

Figure 6.1. – Routes unpredictability Figure 6.2. – Number of routes

6.2. Efficiency

The first motivation behind the implementation is to test the performances of the net-
work, and to study the effects of the different protocol parameters. Of particular interest
here are the parameters of the batching, dummy messages, and controlled traffic rates
mechanisms (namely, nPmin, fP , fdum and ∆r), and their influence on the time needed
to disseminate the topology, and to deliver payload messages in oriented communication
sessions. To that end, network simulations with |Ω| = 100 nodes were run. Topology is
fully disseminated in a first phase, and oriented communications take place in a second
phase. In the later, each node chooses 5 receivers at random, to which it sends 40 payload
messages each. For each of these five receivers, the node also picks a random (possibly
different) indirection node, with which it runs the oriented communication initialisation.

Note that the batching time interval parameter tP is not tested. Indeed, the network
being synchronous, the value of the time delay between rounds has actually no impact
on the performances of the simulated network1. Therefore, we measure network perfor-
mances in number of rounds, allowing a generic expression of results. To interpret them,
we will however consider that tP is equal to one minute.

Table 6.1 shows the tested parameter combinations, and the results. The first table
row gives the result for the parameter set nPmin = 5, fP = 0.5, fdum = 0.8 and ∆r = 8,
hereby denoted the standard parameter set. Note that the values for the batching
parameters nPmin and fP are in accordance with the values proposed in the Mixminion
implementation by Nick Mathewson [Mat11]. Subsequent table rows show results for
alternative parameter combinations. A “−” symbol indicates a parameter left to its

1At least as long as tP is set sufficiently large in comparison to the expected time needed for nodes to
process and send messages in a round.
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standard value. While alternative values for fdum and ∆r were independently tested, fP
and nPmin were tested together, for they are strongly tied together in the pool-based
mixing mechanism. For each parameter combination, Table 6.1 shows the two main
performance metrics: the number of rounds necessary for topology dissemination to
complete, and the amortized number of rounds for one oriented communication message
to be delivered from end-sender to end-receiver, i.e. the latency of the entire session,
divided by the total number of messages in the session. The latter metric is presented
with and without taking into account the oriented communication initialisation into
account (numbers in brackets are with initialisation). The presented figures are averages
and standard deviations over several network runs. The table gives additional metrics
that help towards interpreting the results: the ratio of the overall number of real messages
that were sent in the network over the number of dummy ones; the average number of
rounds between the insertion of a real message in a pool and its actual sending (pool
delay); and the percentage of rounds in which a node has to resort to using end-to-end
dummy messages in order to respect the controlled traffic rate equation.

Parameters
Topo. Diss. 1 Ocom Msg # reals / # dum Pool Delay E2e dum.

(rounds) (rounds) (msg. ratio) (rounds) (round ratio)
fP = 0.5
nPmin = 5
fdum = 0.8
∆r = 8

1519.80±124.50
14.59±0.22

(18.61±0.40)
42.44%±1.65% 15.15±5.94 0.26%±0.03%

fP = 0.8
nPmin = 2
−
−

1610.60±144.21
14.86±0.45

(19.03±0.55)
36.67%±1.09% 16.91±6.17 0.18%±0.03%

−
−
fdum = 0.3
−

2891.80±119.96
25.13±0.68

(32.30±0.86)
26.58%±0.80% 43.91±9.62 0.07%± < 0.01%

−
−
−
∆r = 2

1803.80±164.28
18.54±0.55

(23.45±0.61)
45.46%±2.65% 15.31±6.47 2.14%±0.29%

Table 6.1. – Network Performances for |Ω| = 100 nodes

Results for the standard parameter set show that, with tP = 1min, topology dissem-
ination takes slightly more than 24 hours. This represents a full day, before being able
to start sending messages. However recall that topology dissemination is meant to be
run only once. Then, the amortized delivery latency of one payload message, from end-
sender to end-receiver, is approximately 15 minutes (and 18 minutes when taking the
oriented communication initialisation into account). This is an acceptable delay for the
envisioned application, and for a high latency protocol in general. A very large part
of the introduced delays can be explained by the batching strategy and the controlled
traffic rates mechanisms, as the remaining columns of Table 6.1 show. Indeed, out of all
messages sent in the network, only 42.44% are real ones, i.e. nodes spend more than half
of their time sending dummy messages. Then, per the batching strategy, a real message
is typically delayed for 15 rounds at each node. This means that, on a route of length l,
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a message takes l times 15 rounds in average to be delivered2. This is however the cost
for resisting traffic analysis. On the other hand, for the standard parameters, a node
needs only rarely (in only 0.26% of rounds) to resort to end-to-end dummy messages in
order to respect the traffic rates constraints, which was the expected behavior.

The other parameter combinations shows that performances degrade when fdum and
nPmin decrease. In particular, a lower fdum yields a particularly inefficient network. It
seems that a consequence of decreasing fdum (and thus inserting less dummy messages
in neighbor pools) is that there are not enough messages in pools to fire the mix at
every round. Indeed, a node can only sample and send messages from the pools if
min(nPYi

−nPmin, nPYi
·fP) > 0 for each neighbor Yi (see Section 4.4.2). Then, a low value

for ∆r decreases performances, mainly because nodes need to adjust more frequently
their dummy budgets to respect the traffic rates constraints, and this is realised by
sending more link or end-to-end dummy messages instead of real ones. Lastly, parameters
fP = 0.8 and nPmin = 2, although they are more permissive (since they allow to send
almost all the messages contained in pools in any given round), surprisingly do not imply
better performances. In fact, they are comparable to the performances of the standard
parameter set. More simulations would be needed to understand the impact of these
parameters on the overall efficiency.

These results do not show how the network behaves in function of its size. Intuitively,
one would expect that the time required for topology dissemination (in particular) de-
pend quadratically on the number of nodes |Ω|, since |Ω|2 routes must be created. How-
ever, from complementary results (not depicted in Table 6.1), it seems that the network
scales well: the topology dissemination latency only augment linearly or sub-linearly
with the number of nodes in the network. For instance, for 70 and 50 nodes respectively,
the number of rounds for topology dissemination is roughly 1275 and 1068. As for the
amortized latency of one oriented communication message, it actually decreases as the
number of nodes augments: for 70 or 50 nodes, this latency is respectively of 15.35
and 16.03 rounds. This scaling effect can be explained by the increase of the number
of neighbors per node, and the overall augmentation of connectivity and traffic, which
allow real messages to be relayed faster. Indeed, the pool delay increases to 16.76 and
18.16 rounds for 70 and 50 nodes respectively. A second factor that comes into play is
the route length, that we have measured to be approximately log |Ω| for the chosen type
of topology graph. This means that the route length, and thus the amount of work re-
quired to create a single route, augments only logarithmically with the number of nodes
in the network.

6.3. Traffic Analysis Resistance

Section 6.1 already studies the routes unpredictability. A high route unpredictability
intuitively works towards TAR, since it prevents the adversary from knowing with cer-

2Note that this is consistent with the latency of an oriented communication message, since the later is
presented amortized over 40 messages sent in parallel.
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tainty the created routes. However, as mentioned in the same section, we introduced a
sampling bias in the random selection of messages from neighbor pools, in order to fa-
vor the selection of real messages over dummy ones, and increase the network efficiency.
This bias tampers with the traditional functioning of pool-based mixing of messages.
Indeed, the idea of this mechanism, in addition to re-ordering messages, is to delay each
of them independently: each message may stay an undetermined (and theoretically un-
bounded [SDS02]) number of rounds in a pool before being selected for sending. This
introduces uncertainty regarding the mapping of incoming and outgoing messages of a
node, since (contrarily to simpler mixing strategies) a message entering a node at round
r does not necessarily comes out from this node at round r + 1, but at round r + r′ for
some r′. The value r′ is what we call the pool delay. Intuitively, a higher uncertainty
regarding the value of r′ implies a better resistance to traffic analysis. Yet, the bias we
introduce tampers with the functioning of pools, and may lower that uncertainty. This
section thus studies this aspect.

From Table 6.1 in the previous section, it can already be noted that the pool delay
of real messages exhibits a large standard deviation: 5.94, for a mean of 15.15 (for
standard parameters). Informally, this shows that the pool delay of each message is
indeed hard to predict with certainty. This tendency is confirmed by Fig. 6.3, which
shows a detailed view of the pool delay per message. This figure takes the form of a
probability distribution, obtained from an empirically measured histogram over several
network runs. The maximum delay being greater than a thousand rounds, the figure
cuts the histogram to r = 30 on the x axis, and the probabilities for delays over 30 are
stacked together. This shows that the probability that a message is delayed for 30 rounds
or more is far from negligible, since it is approximately 0.14. Actually, the results fit well
into a log-normal distribution with parameters σ = 1.60 and µ = 0.93. This distribution
is heavy-tailed, implying in our case that the probability that a message stays a large
number of rounds in the pools is low, but not exponentially small. It also means that
the distribution has high entropy (namely, 4.91), intuitively showing that predicting the
pool delay for one message is hard, which is what is desired for privacy. And at the same
time, note that a message has more than 50% chance of spending only five rounds or
less in the pools, which yields good efficiency.

It thus seems that the pool-based mixing mechanism, even with the sampling bias,
introduces enough uncertainty regarding the per-message pool delay, while actually nat-
urally favoring low delays. This result, along with the results on route unpredictability,
are arguments towards showing that the protocol is resistant against traffic analysis.

6.4. Privacy

In addition to measuring network performances, the goal of this chapter is to study the
privacy provided by the network on empirical grounds. In particular, we are interested
in confronting the obtained quantification of SA and RA from the formal proofs, to a
less conservative, empirically measured value. It is assumed here, in contrast with the
model of formal proofs, that even corrupted nodes can not perform traffic analysis.
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Figure 6.3. – Probability Distribution of Pool Delays

6.4.1. Proposed Methodology

In this thesis, we choose to quantify privacy using an approach inspired from Tarzan
(itself inspired from Crowds). It is based on the argument that corrupted nodes on
a route can estimate their distance, in hops, to the end-sender or end-receiver. From
this, and assuming that she knows the topology graph, the adversary can deduce a
set AS of potential end-senders or end-receivers. Tarzan measures anonymity by the
confidence that the adversary has in de-anonymising the end-sender or end-receiver,
computed as 1/ |AS|. This approach implicitly assumes that the adversary assigns the
same probability to each potential end-sender/end-receiver in AS.

We adapt this methodology to our setting of oriented communications, taking it one
step further: we assume that the probability distribution of routes length is known to
the adversary, and that she can deduce a non-uniform probability distribution on the
anonymity set. From this distribution, we take out the most probable end-sender (or end-
receiver), and consider it to be the adversary’s guess. Repeating this process for many
oriented communication routes, we measure the frequency at which the adversary guesses
correctly, and consider it to be the anonymity quantification. Here, we only report the
results for end-receiver anonymity, because the method we use (described below in more
detail) actually returns the same results for end-senders and end-receivers.

In detail, here is how the results were acquired. We ran network simulation with
the standard parameters, where each node sends 40 payload messages to 5 random end-
receivers. For a given network simulation, we apply the following processing to each
oriented communication route used by the nodes during the simulation. First, we look
at the corrupted nodes on the route (node corruption is determined at network startup,
according to a corruption ratio parameter), and select the largest collusion of consecutive
corrupted nodes on the route. Let’s assume that in a 10-node route from X1 to X10,
nodes X2,X3,X6,X7, and X8 are corrupted. In this case, it is the collusion {X6,X7,X8}
that will be retained, and the considered collusion controls four hops in total (including
the edges to X5 and X9). From this, the adversary can deduce that the maximal number
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of remaining hops towards end-receiver is lrem = lmax−4. Assuming that the probability
distribution on routes lengths is known to the adversary3, she can deduce the probability
distribution of remaining hops towards the end-receiver. Denote p(l), for l ∈ [1, lrem],
the probability that l hops remain, i.e. that the end-receiver is exactly l hops after
X8. The next step, for the adversary (assuming she knows the topology graph), is to
construct the sets ASR(l) of potential end-receivers for each l ∈ [1, lrem]. From there,
the adversary assigns to each reachable end-receiver R the probability:

p(R) =
∑

l∈[1,lrem]s.t.R∈ASR(l)

p(l)/ |ASR(l)|

At the end of this process, we obtain the non-uniform probability distribution on end-
receivers from the adversary’s point of view. Finally, we take out the most probable
end-receiver (if several receivers have the same maximal probability, one is taken at
random), representing the adversary’s guess. It is compared to the actual end-receiver,
and the adversary’s success or failure in guessing the end-receiver is logged.

This approach assumes that the distribution of routes lengths and the topology graph
are known to the adversary. On the other hand, it implicitly assumes that traffic analysis
is impossible. This is in opposition with Tarzan’s approach. Because Tarzan does not
aim at ensuring TAR, in the above example route, it would have considered that all
hops between the outermost corrupted nodes X2 and X8 are controlled by the adversary.
The analysis would consequently have been carried out with lrem = lmax− 8, necessarily
yielding an attack with better accuracy. In this chapter, we choose to assume perfect
traffic analysis resistance, in contrast with the formal proofs in the previous chapter.

The novel way of measuring anonymity that we propose, adapted from Tarzan, is
related in some respects to entropy-based metrics [Daz+03; THV04], that measure
anonymity according to the entropy of the adversary’s probability distribution on the
potential end-senders or end-receivers. In particular, both the entropy approach and
ours necessitate assumptions on the attack strategy of the adversary, which is in contrast
with the black-box model favored in formal cryptographic proofs. Still, we argue that the
metric we propose better renders the practical anonymity of nodes than those proposed
in the past. Indeed, as also noted by Syverson [Syv09], entropy-based measures often fail
to reflect the notion of anonymity that actually matters for the network users. This is
especially true for anonymity quantification with Shanon’s entropy. Indeed, as pointed
out by Tóth et al. [THV04], a probability distributions may exhibit a high Shanon en-
tropy, but at the same time associate to the actual end-receiver a probability much larger
than to all the others. Our approach does not suffer this shortcoming, since it always
considers the most probable end-receiver as being the adversary’s guess, even if that
end-receiver does not especially stand out from the others (i.e. even if its associated
probability is close to that of the other end-receivers).

3In practice, we measure this distribution empirically, by looking at routes created in several network
runs on the same topology graph.
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6.4.2. Results

Figure 6.4 shows the adversary’s probability in correctly guessing the identity of the end-
receiver (i.e. her probability of breaking RA), according to the corruption ratio c ∈ [0, 1].
Each data point shows an average of this probability over several network runs with a
particular c value. The theoretical bound from the previous chapter is also included, for
comparison. It follows the formula δ = 1−

(|Ω|−lmax

|Ωc|

)
/
( |Ω|
|Ωc|

)
, i.e. the probability that SA

or RA does not hold according to the formal proof from Section 5.6.3.

Figure 6.4. – Probability of Breaking SA or RA: Theoretical vs. Empirical

Although our quantification of anonymity is more constraining than previous measures,
results show a low probability of success for the adversary, under 0.2 even when there
are 60% of corrupted nodes in the network. Also, even when 90% of the network is
corrupted, the adversary has only one chance out of two of correctly guessing the end-
receiver. Results are not shown for c > 0.95, because it is not possible to obtain data
points for corruption ratios close to one. Indeed, we measure RA only when the end-
receiver is honest, since it does not make sense to de-anonymise a corrupted node. Yet,
for c > 0.95, it often happen that all the oriented communication routes in the network
have a corrupted receiver.

Note that these are results for small networks of 100 nodes. The fact that the
anonymity level is high even for such small networks is actually encouraging. Indeed,
this ensures a satisfactory anonymity level even for small networks, and for networks in
early stages of development. Also, anonymity only gets better as the number of nodes
in the network augments. For a constant corruption ratio, the theoretical anonymity
indeed increases with the network size (this is easily verified using the formula for the-
oretical anonymity), before reaching a stationary level for a few thousand nodes. Also,
additional measures show that for 50 and 70 nodes, empirical anonymity is slightly lower
than with 100 nodes. For instance, the probability of breaking RA for c = 0.3 is 0.099
for 50 nodes, 0.093 for 70 nodes, and 0.088 for 100 node. For c = 0.7, these probabili-
ties are respectively 0.274, 0.245, and 0.235. Intuitively, this effect can be explained by
the augmentation of neighbors per node, meaning more connectivity, and thus bigger
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anonymity sets.
Figure 6.4 also allows to compare the theoretical and empirical anonymity levels, and

shows great discrepancies between them. Indeed, in formal proofs, SA and RA are
considered broken as soon as there is one corrupted node on the route. This is in
particular due to the fact that, in the formal analysis, traffic analysis is assumed possible
for the adversary, while it is not in the empirically measured privacy. Also, the disparity
is explained by the fact that the theoretical anonymity is a lower bound, obtained from
a relatively simple analysis that does not delve into details. The empirical results show
that, in practice, the anonymity level provided by the protocol may be much higher than
this theoretical lower bound.

Finally, note that our theoretical anonymity (and, necessarily, our empirical one) is
still better than the results from a recent analysis of Tor [BMS16], even though our
adversary model is stronger than Tor’s. The authors of this study show that, for 20
corrupted Tor nodes, and for the current Tor relay selection algorithm, the adversary’s
probability in compromising RA is roughly 0.25. Yet, in 2015 at the time this research
was conducted, there was more than 6000 such Tor nodes 4. This means that these
results hold for a corruption ratio of c = 0.33%. In comparison, for that corruption
ratio, our theoretical and empirical results regarding the probability of breaking RA are
lower than 0.05 and 0.01 respectively.

6.5. Concluding Remarks

In this chapter, we presented a proof-of-concept implementation of the protocol. Exper-
imentations show that the protocol introduces high latency, but provides strong privacy.
These results indicate that the protocol is suited for the communication of any data
in a non-interactive manner (i.e. for communications that do not necessitate frequent
back and forth exchanges), including the exchange of emails, similarly to mixnets. The
sending of data can be done in parallel, by sending many messages in a same oriented
communication route, and by opening several such routes, thus amortizing the overall de-
lay of data transmission. Note that the use of multiple oriented communication channels
in parallel does not degrade privacy, since the SU property ensures a clear separation
between the multiple sessions.

This way of using the network fits the informant-journalist scenario, where it is as-
sumed that the informant needs to send a set of documents to the journalist, without
requiring an immediate answer from the latter. Also, the fact that the protocol provides
strong guarantees even for small networks is in accordance with the envisioned use-case.
Indeed, even though the inefficiency of the protocol may not provide incentive for many
users to join in, we have shown that privacy can still be strong for a small set of users
that are willing to pay the cost for privacy.

4https://metrics.torproject.org/networksize.html
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Over the last years, privacy in Internet communications has been rising as a major
concern. Recent events show in particular the necessity of ensuring the privacy of in-
dividuals that take personal risks to inform the general public of illegal or immoral
actions conducted by governement bodies, such as citizens in an authoritarian regime or
so-called whistle-blowers. The aim of this thesis was to study the possibility of providing
anonymity guarantees suitable for such individuals. For that, we proposed a homoge-
neous protocol, and studied its security and performances. This protocol can be seen as
an attempt at providing the highest level of privacy in a homogeneous network, while
still being manageable for hundreds to thousands of nodes, and taking into account a
large part of know (passive) attacks of all kinds. We show that it is possible to achieve
a level of privacy where the very fact that a node communicates is concealed, for a cost
in terms of efficiency comparable to existing high latency protocols.

Summary of Contributions

(Formal) Definition of Anonymity Properties

First of all, we defined what strong privacy means in our envisioned application, specify-
ing in particular that sender and receiver anonymity should imply the impossibility to
detect the very fact that a node communicates (a property also denoted as unobservable
communications). In Chapter 5, we then studied these properties, and provided formal
definitions for each of them.

Survey of Related Works

In our survey of existing works, we underlined the necessity of a homogeneous network
architecture to provide the anonymity level we aim for. Also, through a review of known
attacks against existing protocols, we were able to identify traffic analysis as one of the
main (yet least understood) threats to anonymity.

Design of an Anonymous Protocol

The core contribution of this thesis is a new homogeneous protocol that realises strong
anonymity, making it suitable for an informant-journalist type of scenario. The original-
ity of our work mainly relies in the use of relationship pseudonyms, that, in particular,
has led us to design a stateful protocol. That is, a protocol which requires a topology
dissemination phase, and which constructs long-lived circuits. This is in opposition to
the more traditional approach, in which a sender constructs a circuit only when needed
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and uses it only for one particular communication. In the design of our protocol, we also
showed one possible way to adapt message re-ordering techniques from mixnets (pool-
based ones in particular), into a fully decentralised network, where there is no more
distinction between users and mix servers. Then, we conducted a thorough analysis
based on the point of view of a given honest node, which allowed us to formulate equa-
tions governing traffic rates and the use of dummy messages, so as to make each node
appear as a simple relay. This mechanism builds upon the Tarzan protocol, but pro-
poses stricter rules, and is made to resist even against network observers and corrupted
neighbors. Another contribution resides in the way we implemented the topology dissem-
ination and the construction of routes. Using homomorphic encryption, we showed how
virtually any information on the routes can be computed while minimising the amount
of leaked information (in particular, about the identity of the nodes on these routes).
Finally, our protocol, to the best of our knowledge, is the first to study the use of rela-
tionship pseudonyms in anonymous networking. The cryptographic properties of these
pseudonyms allow to realise a functional equivalent to Tor’s hidden services, which, in
our motivating use-case, allows the informant to stay anonymous even from the journal-
ist. Another benefit of these pseudonyms is the separation of knowledge between nodes.
Actually, using such pseudonyms is a way to admit that there will always be successful
de-anonymisations attacks on the protocol, and to pro-actively limit their impact.

Validation of the Protocol

We validated our protocol in two ways. First, we formally proved its privacy properties
using state-of-the-art cryptographic proof frameworks, thereby providing a complete
formal analysis of the protocol. Secondly, we implemented a proof-of-concept version of
the protocol, and measured its performances and practical privacy. In terms of efficiency,
these results show that the protocol introduces high latency in communications, to an
extent comparable to existing mixnets. The formal proofs provide results that represent
the worst-case level of privacy that the protocol achieves. Practical measures of privacy
are more optimistic, and show that, even for a small network, anonymity is strong in
practice.

Lessons Learned

During our work, we were also able to establish or confirm the following results, that
were not initially linked to the main subject of the thesis. First, we noted that pool-based
message re-ordering techniques do not only participate in preventing traffic analysis, but
also introduce uncertainty regarding all events in the network. In our case, it allows to
introduce uncertainty regarding the obtained routes after topology dissemination. Sec-
ondly, during the production of formal proofs, we noted that, with today’s existing
cryptographic frameworks, analysing a protocol as complex as the one we propose is
extremely challenging. More accurately, the existing tools allow an analysis of the cryp-
tographic parts of protocols, but do not allow to model traffic analysis or concurrency
among network events. Consequently, all the mechanisms that aim at ensuring resistance
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against traffic analysis can not be taken into account in proofs. Also, the fact that the
protocol is stateful is another obstacle towards analysing it thoroughly, since, to analyse
one communication, it is necessary to take into account all that happened before that
communication, and in particular during topology dissemination. Therefore, although
they provide a good basis for a preliminary analysis of our protocol, these cryptographic
proofs frameworks are mainly suited to the analysis of simpler protocols, such as (parts
of) low latency networks.

Assessment

On the one hand, the popular networks deployed today over the Internet (e.g. Tor [DMS04]
or I2P [I2P]) aim at providing anonymity for the masses [Lin16b]. As such, they feature
high efficiency, in order to be usable on a daily basis. These networks however provide
protections only against the receivers of communications (e.g. web servers) and against
network operators, but not against the type of adversary considered in this thesis.

On the other hand, our protocol is more suited for communicants in need of strong
privacy guarantees, which are willing to take their time to be cautious in order to avoid
being detected. Note that it took more than five months to Edward Snowden between
its first contact with the outside and the publication of its revelations [Lee14]. Also, our
protocol is tailored for a small (but worldwide) community of privacy activists willing
to take part in the network to provide protection to informants. Indeed, our results
show that, even when there are only a few hundred nodes in the network (e.g. only a
few journalists, human rights organisations, and privacy activists), the protocol provides
suitable anonymity. Moreover, this community aspect appears directly in the design of
the protocol, since privacy mainly stems from the willingness of nodes to help each other
in staying anonymous, through the mutual provision of cover traffic.

Future Works and Possible Improvements

Considering Malicious Adversaries

The first and foremost improvement to the protocol should be to include protections
against malicious behaviors (i.e. active adversaries). In particular, there are active vari-
ants for most of the attacks presented in Chapter 3.

A malicious adversary is assumed to be able to delay, replay, inject, or drop messages
flowing in the network. There are various ways in which the adversary can make use of
these capacities to degrade privacy [BPS01; SDS02; DMS04; SW06; HB13; Gha16]. How-
ever, in its current design, our protocol may already resist most of these network-level
active attacks, because pool-based message re-ordering, dummy messages, controlled
traffic rates, and of URE, are known to participate in preventing them (in particular,
URE changes messages’ appearance in a non-deterministic way, invalidating a base as-
sumption of several mixnets-related attacks).

To offer protection against malicious adversaries, the protocol should also be modified
to ensure integrity and authenticity of messages. This can be done on a link-basis, by
including Messages Authentication Codes (MAC) [MOV96] in the message headers, or
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on an end-to-end basis, e.g. by encrypting oriented communication payloads using the
AES block cipher in an authenticated encryption mode such as the Gallois Counter
Mode (GCM) [MV04]. Also, the unauthenticated DHKA used in the protocol should
be replaced with one of its many well-studied secure variants (e.g. using certified public
keys). These variants, however, often assume the presence of a trusted entity that issues
or certifies the keys, an assumption we carefully avoided so far in the design of the
protocol

Finally, there are also attacks specific to our protocol. In particular, during topology
dissemination a malicious corrupted node can easily mount several attacks. For instance,
by the way route proposals work, when an end-receiver receives a rtproprelay message,
it automatically decrypts and hashes the ciphertext corresponding to the pseudonym.
This offers the opportunity to a malicious corrupted node to embed a ciphertext on
which it wants to obtain information into a rtproprelay message, and contact the
end-receiver. Although this malicious node does not directly obtain the corresponding
plaintexts (but a hashed version of it), it obtains partial information on them, thus de-
feating the purpose of encryption. One way to counter the above attacks is by forcing
the honest behavior of nodes. Indeed, it is known that that there exist a generic trans-
formation, that transforms any SMPC protocol secure against passive adversaries into
one secure against malicious adversaries [Gol04]. In these regards, it is possible to con-
sider the entire topology dissemination phase as one large SMPC, and apply this generic
transformation. This would however be very costly, both in terms of computation and
bandwidth, because this SMPC transformation relies on a heavy use of Zero-Knowledge
Proofs (ZKP) and commitment schemes [Gol04].

Further Increase the Level of Privacy

The privacy level we aim for in this thesis is stronger than in most existing works, but it
is not the maximal anonymity that can be imagined. Indeed, there exist protocols that
aim at preventing the detection (by external adversaries) of the very fact that nodes
participate in the anonymous network. These protocols ensure such a property through
the use of steganography. For instance, Invernizzi et al. [IKV13] propose to hide data
in blog posts, and the images they contain. Another approach is to make the traffic
of the anonymous protocol look like another innocuous protocol, such as HTTP (thus
realising a form of protocol steganography) [Wei+12]. However, the first method only
works for small, unidirectional, and very high latency communications; and Houmansadr
et al. have shown that the second method is ineffective against simple traffic analysis
attacks [HBS13]. Another kind of solution was proposed by Clarke et al. in an extension
of the Freenet protocol [Cla+10]. The authors propose to hide participation of a node
in the network by restricting the neighbors of a node to trusted peers. Since only the
neighbors of a node X may see X’s IP address, and since those neighbors are trusted
by X, a form of participation hiding is achieved (but a weak form, since the attacks of
Houmansadr et al. can still be mounted on links between neighbors). This approach is
easily applicable to our protocol, since we assume a connected but incomplete topology
graph, similarly to Clarke et al. Note however that it is not applicable to a client-server

152



architecture, in which simply observing who connects to the publicly known relay servers
allows to uncover the identity of network users.

Towards More Advanced Routing Functionalities

In this thesis, we mainly focused on providing privacy, to the expense of efficiency. Also,
we left aside considerations about network and route management, such as the handling
of node failure, the destruction (and reconstruction) of routes, and the management of
bandwidth and congestion.

Some of these elements (management of bandwidth in particular) can be taken into
account in the route proposal policy. That is, in the same way as the hop count, the
overall route bandwidth can be encrypted and advertised in route proposals, allowing the
proposee to leverage the homomorphic properties of the Elgamal scheme to determine
whether they accept the route or not (without actually learning the route’s bandwidth).
Other elements, such as management of congestions, can be left as the task of upper
network layers. Then, note that the current design of the protocol already partially
handles node failure, since nodes have multiple routes towards a same receiver. If one
breaks, they still can use the others. The protocol however lacks a way for a node to
signal a broken link. Indeed, when the link of a route is broken (e.g. because a node
left the network), all upstream nodes of the route must be made aware of this event,
and must stop using the route. Alternatively, the protocol could be designed with a
route-repair mechanism which re-attaches the broken route to a valid one, preventing
the need to reconstruct the entire route.

In our work, we choose to first design the protocol without all these network compo-
nents. Indeed the integration of these mechanism may actually degrade privacy, because
they can act as side-channels for the adversary. For instance, the adversary could delib-
erately destroy a route link to see the consequences in the network and how route failure
propagates, in order to ultimately try to deduce the identity of nodes on the route.

Opening and Perspectives

The scope of the work presented in this thesis is limited to direct messaging over the
Internet. But some elements of the proposed protocol may have other applications, e.g. in
anonymous file sharing networks. In particular, the use of relationship pseudonyms, the
computation of information on routes using homomorphic encryption may be adapted
to other architecture. It would also be interesting to see if the same mechanisms can
be put in place in a protocol that builds circuits in the more traditional manner (in
the manner of e.g. Tor), and if the same level of privacy as in our protocol can be
achieved. Furthermore, we have presented our protocol as an Internet overlay, for it
is the most popular application for anonymous networks. However, our protocol can,
at least theoretically, be instantiated over any other network working on a connected-
but-incomplete topology graph. This includes mesh wired or wireless networks. The
main impediment to such an adaptation is the fact that in mesh networks, in particular
wireless ones, nodes are often small devices with low power, that may not be able to
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support the heavy operations required to run the protocol.

The work we have carried out in this thesis fits into the current debates that has been
emerging in Western societies around the freedom of the Internet and the privacy of its
users. Our protocol participates in making the Internet a collaborative platform, free
of pervasive surveillance, and respectful of the freedom of speech. Although it is not
possible to technically ensure that the anonymity provided by our protocol will be used
for the public good and not for criminal activities (a common ethical issue in science),
we believe that mass surveillance of citizens (even those who have nothing to hide)
boils down to abandoning the presumption of innocence, and is not the solution [Gre14].
Indeed, as explained by Edward Snowden and shown by the recent CIA leaks [Wik17],
intelligence agencies do not need mass surveillance to catch criminals: they “find ways
around [encryption]” [Lee14] when the need arises, on a case-by-case basis.
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The Elgamal PKE scheme, the DHKA, and the URE scheme used in this thesis have in
common that they function within the same group G. The security of these cryptographic
tools (and of the whole protocol) rely on the assumption that the DDH problem is hard in
the group G. The choice of group is thus of central importance. This appendix explains
in details how the group in instantiated. It also discusses the plaintext encoding issue
specific to the Elgamal scheme.

A.1. Instantiating the Group

The DDH problem is believed intractable in various groups [Bon98]. The most suitable
way to instantiate G for this thesis, is to take a subgroup of prime order q of the group
(Z∗p,× mod p) where p is a safe prime, i.e. p = 2q+1. The resulting G is cyclic and abelian.
The primes p and q must be chosen large enough, so that computing discrete logarithms
in G (and solving the DDH problem) is hard enough w.r.t. the security parameter λ.
For λ = 128, it is advised to set |p| ≈ 2048 and |q| ≈ 200 [Gir15].

This group can equivalently be described as the group of quadratic residues modulo
p, meaning that G =

{

e | ∃ x ∈ Z
∗
p s.t. x2 = e mod p

}

. But the simplest way to express

it is with a suitable generator g: G = 〈g〉 =
{

gi mod p | i ∈ Zq

}

, which clearly is
composed of q elements. Note that each and every element in G is a candidate generator
of G (except the identity element). Thus, to find one, it is sufficient to take any element
x ∈ Z

∗
p, and if y = x2 mod p 6= 1, use y as generator g (since x2 mod p is a quadratic

residue modulo p, it has to be an element of G).

In the protocol, all nodes must agree on the same group and the same generator. Note
that the group is fully defined by the pair (q, g ). These parameters are thus assumed
publicly known by all nodes. In practice, they are chosen once and for all, by consensus
at the start of the network or by hard-coding them into nodes for instance.

A.2. Encoding of Elgamal Plaintexts

While the issue of plaintext encoding in the Elgamal scheme is known [CPP06], most
works often fail to specify how they work around it. However, the matter is crucial: in
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the scheme, not everything can be securely encrypted and yield ciphertexts that support
homomorphic operations.

Historically, Tahrer Elgamal proposed to set the plaintext space of the scheme to to
Z∗p = {1, . . . , p− 1}. It is indeed standard to choose a plaintext space that is identifiable
to a set {1, . . . , n} (for some n ∈ N), because then any bit-string of length lower than |n|
bits can be directly encrypted. However, this choice turned out to lead to an insecure
scheme: the group Z

∗
p is now known to be vulnerable against attacks on the DDH

problem [Bon98]. To be secure, the Elgamal scheme must encrypt elements from a group
G where the DDH assumption holds, such as G =

{
gi mod p | i ∈ Zq, p = 2q + 1

}
. As

a result, one practical way to implement the Elgamal scheme on the later group is to
take a plaintext in {1, . . . , q}, and encode it into an element of G before encrypting
it. Another common alternative is to use a hash-based encryption algorithm [CPP06].
Both solution however degrade or completely take away the homomorphic properties of
the scheme. These limitations and questions about encoding are explored in details by
Chevallier-Mames et al. [CPP06], and by Marc Joye [Joy16].

In definitive, there are two options: allow the encryption of any |q|-bit-string (i.e. set
the plaintext space to {1, . . . , q}, use encoding, and loose homomorphic properties); or
directly encrypt elements of G (i.e. have homomorphic properties, but loose the ability
to encrypt arbitrary application data).

In this thesis, a hybrid approach is chosen. Indeed, only ciphertexts from routing
messages need to support homomorphic operations. Thus, all terms and plaintext used
in routing messages are taken directly in G. On the other hand, payload messages’ plain-
texts consists in arbitrary application data, but do not need to support homomorphic
operations. They can therefore be encoded from {1, . . . , q} to G. In the description of
the protocol, the encoding of payload message is implicit and ignored. For completeness
however, note that for the present choice of group, m ∈ {1, . . . , q} can be encoded as
e = m2 mod p, which can efficiently be inverted by computing e1/2 mod φ(p) mod p using
Euler’s theorem [Sho09; Joy16].
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This appendix presents the full proofs of all theorems from Chapter 5, in their order
of appearance. For more context, the reader is invited to refer to the section of chapter
where the theorem is formulated. The last section is however an attempt at UC-realising
the ideal functionality Frtprop. Because the UC proofs sand in the Frtprop-hybrid model,
the idea is to break down the assumption that this ideal functionality represents.

B.1. Proof of Theorem 1 (Pseudonyms Security)

This proof relates to the three properties of pseudonyms defined in Section 5.4 (p. 104).

Proof of Theorem 1. Each property is proven independently.

– Proof of Uniqueness. Since the hash function h is collision-resistant, then for any
fixed src ∈ Z

∗
q:

Pr[dst1 6= dst2 ∧ f(src, dst1) = f(src, dst2) | dst1, dst2←$ G ]

= Pr
[

x 6= x′ ∧ h(x) = h(x′)
∣
∣ dst1, dst2←$G;x := dstsrc

1 ;x′ := dstsrc
2

]

≤Advh−coll
A (λ)
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Additionally, it can happen that dst1 and dst2, drawn at random from G, are equal.
This happens with probability 1/ |G|. Consequently, it holds that:

Adv
ps−uniq
A (λ) = Pr[f(src, dst1) = f(src, dst2) | dst1, dst2←$ G ]

= Pr[f(src, dst1) = f(src, dst2) | dst1, dst2←$ G; dst1 = dst2 ]
· Pr[dst1 = dst2 | dst1, dst2←$G ]

+ Pr[f(src, dst1) = f(src, dst2) | dst1, dst2←$ G; dst1 6= dst2 ]

· Pr[dst1 6= dst2 | dst1, dst2←$ G ]

= 1 · Pr[dst1 = dst2 | dst1, dst2←$ G ]
+ Pr[dst1 6= dst2 ∧ f(src, dst1) = f(src, dst2) | dst1, dst2←$ G ]

=
1
|G|

+ Advh−coll
A (λ)

Since Advh−coll
A (λ) is assumed negligible in λ, and |G| = q ≈ 2O(λ), Adv

ps−uniq
A (λ) ≤

negl(λ).

– Proof of one-wayness . If there exists an adversary A successfully outputting dstA
such that f(src, dstA) = f(k, src, dst), then it is possible to construct an adversary
B that distinguishes h from a random function Rand. Denote by O the challenge
function given to B. That is, either O = h, or O = Rand. B has oracle access to
O, but it is important to note that, in any case, A also has free access to it. That
is, O is public, and A can compute pseudonyms for any src and dst values that it
wants (just as it would do with a regular hash function).

B is constructed as follows, for any given src value. It starts by sampling dst←$G,
and giving src to A. Then, whenever A makes a request to its oracle f(·, dst) with
value src, then B calls O on the value dstsrc and sends the result back to A. Ul-
timately, A outputs dstA. The adversary B checks if O(dstsrc) = O(dstAsrc) by
calling its oracle again. If it is the case, B returns 0 (meaning, B believes it is in-
teracting with h), and 1 otherwise. When A succeeds with advantage Adv

ps−ow
A (λ),

then B has advantage Adv
ps−ow
A (λ) ≤ Adv

h /Rand
B (λ) + 1/ |G| + 1/ |{0, 1}n|. Indeed,

the probability that A wins when B has access to h is by definition Adv
ps−ow
A (λ).

And the probability that A wins when B has access to a Rand is zero (since A
then has no information at all on dst), added to the trivial probability that A ran-
domly guesses dst plus the probability that a collision occurs in the Rand function.
Since both both G and {0, 1}n have size in 2O(λ) and Adv

h /Rand
B (λ) is negligible by

assumption, we obtain the proof of one-wayness.

– Proof of Indistinguishability . If there exists an adversary A breaking the indis-
tinguishability property, then it is possible to construct an adversary B that dis-
tinguishes the hash function from a random oracle. The adversary B is con-
structed as follows. At first, it samples dst0, dst1←$ G and b←$ {0, 1}, computes
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PS1 := O(dstsrc
b ) and PS2 := O(dstsrc

1−b), and hands them to A. Then, for every

oracle call with src′, B answers with O(dstsrc′

0 ) or O(dstsrc′

1 ) (depending on which
oracle A queried). Ultimately, A outputs b∗. If b∗ = b, then B outputs 0 (meaning
B thinks O = h), and 1 otherwise.

Clearly, Adv
h /Rand
B (λ) = Adv

ps−ind
A (λ), since when O = h, B perfectly emulates A’s

challenger, and when O = Rand, A can only win win probability 1/2. Therefore,
Adv

ps−ind
A (λ) ≤ Adv

h /Rand
B (λ) ≤ negl(λ), which is negligible by assumption.

This concludes the proof of Theorem 1.

B.2. Adversary Model and Notations in the UC
Framework

This section details how our adversary model (passive static) is modeled into the UC
framework. We present this section before the full proofs in order to avoid any confusion
about the formalism and models we use, since, indeed, the flexibility of the UC framework
allows to model a same type of adversary in several ways. In this thesis, we use the same
approach as Canetti et al. in a paper from 2002 [Can+02], which shows proofs for passive
static adversaries.

B.2.1. A as a Proxy vs. A as an Algorithm

In the UC framework, there are two (equivalent) ways to consider the adversary. To
understand those two ways, it is first necessary to understand that the actual adversary
is really the environment E : it is the one that, in the proofs, must be shown unable to
distinguish between the ideal and real executions. In the UC framework, E is however
not allowed to send messages directly to the (ITIs of the) parties of the protocol in the
real execution, nor to interact with the ideal functionality in the ideal execution. The
environment is only allowed to have an impact on the protocol execution, through the
adversary A in a real execution. In this sense, A is essentially a proxy of E , allowed to
interact with ITIs of nodes. Note that, although this separation into E and A seems to
be equivalent to allowing E to directly interact with parties, it has crucial theoretical
implications on the way proofs are carried out, and on their impact. Indeed, it is this
difference with the standard model which allows to prove protocols secure under universal,
concurrent composition.

Coming back to our main point, there are two ways to see this proxy A: either
it is really just an interface, which merely executes the instructions of E ; either A
is an algorithm with its own strategy (but a strategy bounded to the environment’s
will) [Can13]. These two ways are actually equivalent, since A and E are not restricted
in the information they can exchange. In particular, A can at any moment send its full
state to E , and the latter can “set the code” of A. These two possible ways of considering
A however have an impact on the proof setup, and, in this thesis, in the notations. If
A is assumed to be an algorithm on its own, in the ideal execution, Sim will be set to
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run an internal copy of A, and relay the communications between E and A. If A is
considered to be a proxy, Sim will not actually run a copy of A, but simply execute
(or rather, simulate the execution of) the instructions from E . But the two cases are
actually equivalent, as long as, in the former approach, Sim relays the communication
between E and its internally ran instance of A without tampering in any way with the
communicated data.

In this thesis, similarly to Canetti et al. [Can+02], we choose to consider A as an
algorithm on its own. The reason why we set out to recall that technicality of the UC
framework is to avoid confusion. Indeed, we now introduce the notations A(X) and
Sim(X), used in the proofs contained in this appendix, in order to make explicit the
difference between a corrupted node played by A and an honest node simulated by Sim.
Also, in proofs, we write “E passes input I to A(X)” as a shorthand for “E communicates
input I, meant for corrupted node X to Sim, which directly passes it to its internal copy
of A ”. Independently, we also denote the dummy party corresponding to node X by
Frtprop(X). These notations put in evidence the fact that, in a UC proof, each node X
has two representatives: X implicitly appears in Frtprop, and it is also either simulated
by Sim (if honest), or played by A (if corrupted).

B.2.2. The Passive Static Adversary Model in the UC Framework

In the UC framework, party corruption is not modeled by default. It must be ex-
plicitly coded into ideal functionalities in particular, using special corruption messages.
Canetti proposes several ways to implement these messages, for different adversary mod-
els [Can13]. In this thesis, to model static passive adversaries, we follow the approach
of Canetti et al. in a 2002 paper [Can+02].

In the static adversary model, no corruption messages are actually used, but it is
assumed that prior to the start of the (real or ideal) execution, the adversary specifies all
the parties she wants to corrupt. Of course, E is aware of these corruptions. Furthermore,
in the ideal execution, the ideal functionality is also made aware of these corruptions.
Then, when a party is corrupted in the real execution, it is A which takes on its role.
That is, A receives its inputs from E , and sends the messages on behalf of the party.
However, in the passive adversary model, it is considered that, A strictly follows the
code of the protocol1.

In consequence, we consider that, in the real execution, E does not give inputs to the
corrupted parties, but instead directly hand them to A. Similarly, in the ideal execution,
E does not provide inputs to dummy parties of corrupted nodes, but to Sim (which
relays them to A). Finally, note that, because we consider static corruptions, the ideal
functionalities presented in Chapter 5 do not need to handle corruption messages.

1An alternative modeling consists in letting the party continue its execution, but let the adversary have
read access to its internal state at any time.
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B.3. Proof of Theorem 2 (Πrtprop UC-realises Frtprop)

The below proof shows that the route proposal protocol Πrtprop (defined p. 108) UC-
realises Frtprop (defined p. 110). Based on the remarks from the previous section, we
denote corrupted nodes played by adv as A(X), the honest nodes simulated by Sim as
Sim(X), and the dummy parties as Frtprop(X).

Proof of Theorem 2. Let A be a semi-honest, static adversary that interacts with parties
running the protocol Πrtprop in the (Freg,Flink)-hybrid model. We construct a simulator
Sim for the ideal process for Frtprop running in the Freg-hybrid model such that no
environment E can tell with non-negligible probability whether it is interacting with A
and the protocol, or with Sim and the ideal functionality. Figure 5.7 in Section 5.5
(p. 112) shows the setup and relations between ITIs to carry out the proof. As usual,
the simulator Sim starts by invoking a copy of A. Sim also runs a simulated version of
Flink. However, Freg stays outside of Sim.

We describe how Sim simulates a real execution, by acting on behalf of the honest
nodes that A interacts with, and show that this simulation is indistinguishable from
a real execution for the A and E . For that, the proof is divided in three main parts.
The first part gives details on the proof setup; while the second (resp. third) part
deals with route proposals towards honest (resp. corrupted) end-receivers. The two
latter parts are organised as a scenario, divided in several simulation cases. In the first
simulation case, the honest (resp. corrupted) end-receiver self-proposes; in the second
one, that proposition is relayed etc.. This ensures no simulation case is forgotten. Each
simulation case in the scenario refer to the appropriate modeled leakage formalised by
Frtprop in Fig. 5.6 (p. 110), using roman numerals.

Simulating the communication between E and A: Sim internally runs a copy of
A. Every input from E is written on A’s input tape, and conversely. Note that
seeing setup inputs of given by E to each corrupted node A(X) allows Sim to
learn the src and dst value of all corrupted nodes.

Simulating Flink: Sim internally simulates Flink completely honestly.

Simulating key pairs: Sim must obtain a key pair for each honest node, but can not
request Freg for it, since, for an honest nodeX, Freg only answers to the node itself.
Consequently, Sim generates one fresh key pair for each honest node. Denote the
key of X ∈ ΩSim as (pkSim(X), skSim(X)). Additionally, Sim honestly relays A’s
queries to Freg for the key pairs of corrupted nodes, and the corresponding answers.
Although Sim does see the key pairs of corrupted nodes in this process, it does
not need this knowledge to perform the simulation.

Handling corrupted parties’ output/inputs: Sim gives the corrupted parties’ in-
puts to Sim which, as mentioned above, passes them directly to A. However,
in addition to giving them to A, Sim gives a copy of all setup inputs given by
E to Frtprop. Other inputs are handled case by case, as described in subsequent
paragraphs. In any case, Sim always receives the proposee outputs of Frtprop(X)
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for all corrupted X. But Sim does not forward them to anyone: A will be making
its own proposee outputs, that Sim will then pass on to E .

Simulating intermediary corrupted sub-paths (abstractly): Sim can receive, at

any moment, an intermediary corrupted sub-path leak (subpath, sid, (Zi′

cidi′+1
−→ . . .

cidj′

−→
Zj′)) from Frtprop. Sim can not (in the general case) link it to a particular route
proposal. This is not an issue, since each such sub-path can be simulated inde-
pendently. However, it is crucial that sub-paths be simulated in the exact order
in which they are leaked by Frtprop.

For clarity, the formal description of sub-paths simulation is deferred to the end of
the proof. In a nutshell, the idea is for Sim(Zi′) (i.e. Sim, simulating honest node
Zi′) to create a message with adequate ciphertexts (in particular encrypted under
the appropriate public keys), and to send it to A(Zi′+1) (i.e. to A, that plays
the role of corrupted node Zi′+1) with cidi′+1. By construction of the simulation,
and because A is semi-honest, it is ensured that the message will exactly follow
the leaked sub-path, and arrive to Sim(Zj′) with cidj′ . We will show that this
simulation is indistinguishable from a real execution.

First scenario: route proposals towards an honest end-receiver. We now de-
scribe the simulation of actual route proposals. Since each route is constructed
hop by hop, it is clearer to describe the simulator starting from a self-proposition,
and then show how relayed propositions propagate. There are two main scenarios,
depending on whether the self-proposing end-receiver is honest or corrupted. We
start by an honest end-receiver. The scenario is based on the route described in
Fig. B.1, where corrupted nodes are designated with a super script star. That is,
the scenario begins with the honest end-receiver R self-proposing to a corrupted
Z∗1 , the latter then relaying the route proposal to Z∗2 , and so on.

RZ∗1Z∗2· · ·Z∗nX
cidX-Z∗

n
cidZ∗

n-... cidZ∗
2 -Z∗

1
cidZ∗

1 -R

Figure B.1. – Route for the First Scenario, with a Honest R

Sim(R) self-proposes (V ): First of all, the honest node R self-proposes. That
means that Frtprop, receives (proposer, sid, (Z∗1 , cidZ∗

1 -R), PSR→R, null) from the
dummy party Frtprop(R). It is important to note that, sinceR is honest, E provides
the above input to Frtprop(R). Thus, Sim does not get to see that input, and does
not immediately knows that it must simulate a self proposition by Sim(R) to
A(Z∗1 ). However, Sim may will leaks from Frtprop relating to this self-proposal:

Frtprop leaks (rtprop, sid, Z∗1
cidZ∗

1
-R

←−−−→ R→?).

Sim proceeds as follows, upon receiving such a leak. First, Sim(R) samples r←$G,
and sends to A(Z∗1 ):

〈

rtprop‖cidZ∗
1 -R,Enc(pkSim(R), r),Enc(pkSim(R), 1)

〉
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Consequently, when A(Z∗1 ) answers with
〈

rtprop‖cidZ∗
1 -R, c1, c2

〉

, Sim(R) de-

crypts c2 to get pktmp. At some point, Frtprop(Z∗1 ) will output (proposee, sid,
PSZ∗

1→R, coneZ∗
1→R, (R, cid)) to Sim, allowing Sim to learn PSZ∗

1→R. Then, and
only then, Sim(R) sends the final message

〈

rtprop‖cidZ∗
1 -R,Enc(pktmp, PSZ∗

1→R),Enc(pktmp, 1)
〉

to A(Z∗1 ). Even though the first ciphertext contains r instead of dstR, and is
encrypted under the wrong public key, this simulation is indistinguishable from a
real execution, by the IND-CPA and IK-CPA properties. More formally, the proof
requires a game-hop: the first game requires to distinguish between Enc(pkR, dstR)
and Enc(pkSim(R), r) (which corresponds to distinguishing the real and simulated
executions); the second game requires to distinguish between Enc(pkR, dstR) and
Enc(pkR, r); and the last game requires to distinguish between Enc(pkR, r) and
Enc(kR, r). Clearly, the advantage of the adversary is zero in the last game. It is
possible to show that if there exists a distinguisher between the two first games,
then there exists an adversary B that breaks IK-CPA (the idea being that B ties
its challenge public keys to pkR and pkSim(R); and if there exists a distinguisher
between the two last games, then there exists an adversary B breaking IND-CPA
(the idea is for B to issue (m0,m1) := (dstR, r) as challenge).

A(Z∗1 ) proposes the route to A(Z∗2 ) (V I): In a second step, A(Z∗1 ) then
proposes the route it just learned to another corrupted node A(Z∗2 ). That is, E
gives a (proposer, sid, (Z∗2 , cidZ∗

2 -Z∗
1
), PSZ∗

1→R, (R, cidZ∗
1 R)) input to A(Z∗1 ). Sim

sees that input as it relays it from E to A, and recognises PSZ∗
1→R and (R,

cidZ∗
1 -R) as the route that Sim(R) previously proposed. A will begin by playing

the protocol for Z∗1 and Z∗2 , using Enc(pkSim(R),Z∗
1
, r) as cprop, since it corresponds

to the one it learned from Sim(R) earlier. At some point, Sim(R) necessarily
receives from A(Z∗1 )

〈

rtproprelay‖cid‖rcid, c1 = Enc(pkSim(R), r
srcZ∗

2 ), c2 = Enc(pkSim(R), pk
tmp)

〉

At that point, Sim(R) can decrypt c1 and c2 to get pktmp and r
srcZ∗

2 which it knows
to be related to Z∗2 (since it knows r and srcZ∗

2
). At this point, Sim externally

activates Frtprop(Z∗1 ) with a copy of the proposer input. Consequently, Sim re-
ceives Frtprop(Z∗2 )’s output (proposee, sid, PSZ∗

2→R, coneZ∗
2→R, (Z∗1 , cidZ∗

2 -Z∗
1
)). The

simulator Sim now knows the pseudonym expected by A(Z∗2 ), and Sim(R) can
send it back in a rtproprelay message, using the same rcid as in the received
one.

The simulation is thus similar to the case of R self-proposing, and indistinguisha-
bility is proven with the same arguments. Note that when A(Z∗1) simultaneously
proposes the route to two (or more) corrupted nodes A(Z∗2 ) and A(Z∗′2 ), the sim-
ulation still works. Although the concurrency of the two route proposal seems to
prevent Sim from linking the right rcid value with the right pseudonym PSZ∗

2→R

163



B. Detailed Cryptographic Proofs

or PSZ∗′
2 →R to send back, Sim can get over this by recognising and distinguishing

the values r
srcZ∗

2 and r
srcZ∗′

2 .

A(Z∗2 ) proposes the route to A(Z∗3 ) and so on (V I): The above simulation
methodology works because (R, cidZ∗

1 -R) appears in the proposer input. However,
the strategy can be generalized even if A(Z∗2) then proposes the route to another
corrupted node A(Z∗3 ) and so on. Indeed, Sim can see each proposer inputs given
by E to the corrupted nodes. These inputs specify the new cid of the link to be
formed, along with the existing next hop on which the route extends. Since these
proposer inputs are given sequentially and in order, as long as the route is relayed
among corrupted proposers and proposees, Sim perfectly knows the full route
being built towards Sim(R). Thus, in the general case, when a corrupted node
receives a new proposer input, Sim can trace the route by following the cids, and
e.g. check if it goes towards Sim(R). The concurrency between two or more route
proposals also occurs in this case, and is also resolved by the same methodology.
Indistinguishability is again proved with the IND-CPA and IK-CPA properties.

A(Z∗n) proposes the route to Sim(X) (V I): Let’s jump ahead in the scenario,
when A(Z∗n) relays the proposition to the honest node Sim(X). That is, A(Z∗n) is
instructed by E to propose a route to Sim(X) with a (proposer, sid, (X, cidX-Z∗

n
),

PSZ∗
n→R, (Z∗n−1, cid

′
Z∗

n-Z∗
n−1

)) input. Sim gets to see that input, can trace the cids

links, and guess that this route ends at honest node Sim(R). When A(Z∗n) sends
the first rtprop message to Sim(X), with c1 = Enc(pkZ∗

n,...,Z∗
1 ,Sim(R), r), Sim(X)

uses some r′←$Z
∗
q to play the role of srcX . For the rest (the ScExp operation,

and the key pktmp), it behaves honestly and answers A(Z∗n). Consequently, a
rtproprelay message is forwarded on the route A(Z∗n), . . . ,A(Z∗1 ), and arrives
at Sim(R) under the form
〈

rtproprelay‖cidZ∗
1 -R‖rcid, c1 = Enc(pkSim(R), r

r′
), c2 = Enc(pkSim(R), pk

tmp′)
〉

The simulator Sim decrypts the ciphertexts, thus extracting pktmp′ and rr′
, the

latter of which allows to link this message with Sim(X). Sim then waits for the

(rtprop, sid,X
cidX-Z∗

n←−−−→ (Z∗n
cidZ∗

n-...
−→ . . .

cidZ∗
1

-R

−→ R)) leak from Frtprop. When it is received
(and only then), Sim(R) answers along the reversed route with the same rcid, and
the same value rr′

instead of a real pseudonym. When the final rtprop message
gets to Sim(X), the latter decrypts the ciphertexts, recognises rr′

, and simply
discards the ciphertexts. Finally, Sim must give a copy of the proposer input to
Frtprop(Z∗n) so that Frtprop(X) makes its proposee output to E .

This simulation is indistinguishable from a real execution, by the IND-CPA and
IK-CPA properties, as in previous cases, and by the USS property as well. Indeed,
in this simulation case, the coneX→R output by Frtprop(X) to E is totally indepen-
dent of the cone = Enc(pkZ∗

n,...,Z∗
1 ,Sim(R), 1) given out by A(Z∗n) in its first rtprop

message. However, if there exists a distinguisher (based on this fact) between
the simulation and a real execution, then it is possible to construct an adversary
breaking the USS property.
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Sim(X) proposes the route (V ): Pushing further the scenario, what if Sim(X)
must then re-propose the route? If the proposee to which Sim(X) proposes the
route is honest, there is nothing to do (actually, Sim will have no information
on that route proposal). If the proposee is corrupted, however, we return to the
first simulation case. Indeed, for an honest end-receiver, Sim can not distinguish
between a self-proposition and a relayed one. That is, Sim will not actually be
able to recognise the route, because it can no longer trace the sequence of cid, and
what Frtprop will leak for this new route proposal will not be linkable by Sim to the
above scenario. Consequently, Sim acts in the same way whether an honest node
is self-proposing or relaying a proposition. Abstractly, this means that Sim(X)
will now play the role that Sim(R) thus far played in this scenario. Furthermore,
Sim(R) will actually only be solicited as part of what seems like an intermediary

corrupted sub-path (X
cidX-Z∗

n−→ Z∗n
cidZ∗

n-...
−→ . . .

cidZ∗
1

-R

−→ R). There is an important difference
however: the return trip on to R (on the said intermediary sub-path) must be
simulated before Sim(X) sends the final message of the route proposal. This
is done automatically since, as briefly mentioned earlier, Sim will automatically
simulate intermediary corrupted sub-paths as they are leaked; and because in the
first simulation case, and the one immediately above, note that Sim respectively
waits for a proposee output and a rtprop leak before answering the route proposal.
All this ensures the good ordering of events from A’s point of view.

Second scenario: route proposals towards a corrupted end-receiver. This
second scenario (which is also the last one), deals with a corrupted end-receiver.
The proof for this scenario is outlined similarly to the previous one, starting from
R∗ self-proposing, and then other nodes relaying this route proposal. The route
being built at the outcome of the scenario is depicted in Fig. B.2

R∗Y ∗Z1Z2· · ·ZnX∗
cidX∗-Zn cidZn-... cidZ2-Z1 cidZ1-Y ∗ cidY ∗-R∗

Figure B.2. – Route for the Second Scenario, with a Corrupted R

A(R∗) self-proposes to A(Y ∗): In this case, A(R∗) receives an input of the form
(proposer, sid, (Y ∗, cidY ∗-R∗), PSR∗→R∗ , null), which Sim sees. Sim can detect
that this is a self-proposition from the null value of the next hop. Because the
proposee Y ∗ is also corrupted, and thus played by A, there is actually nothing
to simulate, but only to feed a copy of the proposer input to Frtprop(R∗) so that
the internal state of nodes in Frtprop matches the simulation. More generally,
when the proposer, proposee, end-receiver, and the relay nodes in between are all
corrupted, Sim has nothing to simulate.

A(Y ∗) proposes the route to Sim(Z1) (I): Now, it is A(Y ∗) that receives
an input (proposer, sid, (Z1, cidZ1-Y ∗), PSY ∗→R∗ , (R∗, cidY ∗-R∗)), which Sim sees.
Sim can detect that this is a relayed proposition towards R∗, in two ways: by
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the uniqueness of pseudonyms (since, given dstR∗ and srcY ∗ , Sim can com-
pute PSY ∗→R∗ , which unambiguously designates R∗); and by the next hop (R∗,
cidY ∗-R∗), which, as long as there are only corrupted nodes between Y ∗ and R∗,
can be traced back to R∗ since Sim perfectly knows the portions of routes going
through corrupted nodes.

Consequently, when A(Y ∗) receives the above proposer input it will start by send-
ing to Sim(Z1):

〈rtprop‖cidZ1-Y ∗ , cprop := Enc(pkY ∗,R∗ , dstR∗), cone := Enc(pkY ∗,R∗ , 1)〉

To be able to answer, Sim copies the proposer input to Frtprop(Y ∗). Sim then

waits to receive the dstR∗
srcZ1 value given in the leak (rtprop, sid, Z1

cidZ1-Y ∗

←−−−−→

Y ∗
cidY ∗-R∗
−−−−−→ R∗, dstR∗

srcZ1 ). From this, Sim(Z1) answers A(R∗) with ciphertexts
c′1 ← Encnopk(cone, dstR∗

srcZ1 ) and c′2 ← Encnopk(cone, pktmp) for a newly generated
key pktmp. Ultimately, A(R∗) answers with ciphertexts encrypted under pktmp,
which Sim(Z1) can discard. After this, Sim sends a continue to Frtprop, letting
Frtprop(Z1) make its proposee output. Finally, Sim(Z1) stores cone for later use.

Indistinguishability with a real execution is again obtained from the USS prop-
erty: even though c′1 and c′2 are not computed by Sim(Z1) in the proper way, the
re-randomisation performed in the real and simulated executions ensures indis-
tinguishability. More exactly, here, the USS property ensures indistinguishability
between a ciphertext obtained from running ScExp and ReEncnopk, and a cipher-
text obtained from Encnopk and cone. Additionally, by the USS property, the fact
that encryption of one output by Frtprop(Z1) to E is independent from the en-
cryption of one cone given by A(Y ∗) does not allow to distinguish the real and
simulated executions.

Sim(Z1) proposes the route to Sim(Z2) (IV ): Let’s suppose that, once Z1

obtains the route towards R∗, E asks to relay the proposition to an honest
node Z2, by sending input (proposer, sid, (Z2, cidZ1-Z2), PSZ1→R∗ , (Y ∗, cidZ1-Y ∗))
to Frtprop(Z1). Once more, since Z1 is honest, E gives the input to Frtprop(Z1), leav-
ing Sim unaware that it must simulate Sim(Z1) proposing a route to Sim(Z2). But

it receives (rtprop, sid, ? → Z1

cidZ1-Y ∗

−−−−−→ Y ∗
cidY ∗-R∗
−−−−−→ R∗, dstR∗

srcZ2 ) from Frtprop.
Sim does not need to simulate a transcript between Sim(Z2) and Sim(Z1), since
we are in the Flink-hybrid model (and thus link messages between honest nodes
can not be observed by the adversary). However, it needs to simulate a return
trip to the end-receiver A(R∗). For that, Sim proceeds analogously to the imme-
diately above simulation case, using the value dstR∗

srcZ2 , and the cone ciphertext
obtained earlier. That is, Sim(Z1) sends to A(Y ∗)

〈

rtproprelay‖cidZ1-Y ∗‖rcid,Encnopk(cone, dstR∗
srcZ2 ),Encnopk(cone, pktmp)

〉

with rcid←$ {0, 1}∗ and a newly generated key pktmp. A carries out the necessary
forwarding to A(R∗), and processes the ciphertexts. Ultimately, at some point,
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A(R∗) will send back data (which would be a pseudonym in a real execution)
towards the proposee Z2, by first going through A(Y ∗. Thus, at some point,
Sim(Z1) will receive a rtproprelay message from A(Y ∗, with the same rcid
value, that Sim(Z1) simply discards. Lastly, Sim sends a continue message to
Frtprop, letting Frtprop(Z2) make its proposee output to E . This simulation is
indistinguishable from a real execution, by the USS property and for the same
reason as the previous simulation case.

Note that, when Z2 is then instructed to further relay further the route proposal
to another honest node Z3 (i.e. when E gives a subsequent proposer input to
Frtprop(Z2)), and so on, up to Zn, the exact same simulations take place. That is,
Frtprop will perform the same rtprop leak every time (only, with a different dstRsrc

value), and it is still Sim(Z1) who will interact with A(Y ∗), because Z1 is the last
honest node before the corrupted end-receiver.

Sim(Zn) proposes the route to A(X∗) (III): Jumping ahead in the scenario,
let us suppose that the honest node Sim(Zn) proposes the route towards A(R∗) to
a corrupted node A(X∗). That is, Frtprop(Zn) receives input (proposer, sid, (X∗,
cidX∗-Zn), PSX∗→R∗ , (Zn, cidZn-Zn−1)), which Sim does not see. By construction

of the ideal functionality, Sim gets the leak (rtprop, sid,X∗
cidX∗-Zn←−−−−→ Zn →?)

in a first time (when, in Frtprop, X∗ gets the first rtprop message). In conse-
quence, Sim simulates Sim(Zn) acting as proposer. For that, it proceeds exactly
as though Sim(Zn) were self-proposing (that is, with cprop := Enc(pkSim(Zn), r) in
particular). At some point A(X∗) answers with a rtprop, from which Sim(Zn) ex-
tracts and decrypts c2 to get pktmp, and then discards the message. At some point
(when, in Frtprop, R∗ receives the rtproprelay message), Frtprop leaks (rtprop, sid,
X∗ ↔? → Z1 → Y ∗ → R∗, dstR∗

srcX∗ ). Here, Sim acts as in the immediately
above case: Sim(Z1) sends Encnopk(cone, dstR∗

srcX∗ ) and Encnopk(cone, pktmp′) to
A(R∗) in a rtproprelay message, and with a fresh key pktmp′. When the latter
answers, Sim(Z1) discards the message. Finally, Frtprop(X) outputs (proposee, sid,
PSX∗→R∗ , coneX∗→R∗ , (Zn, cidX∗-Zn)) to Sim, which is able to link this with the
first rtprop leak thanks to (Zn, cidX∗-Zn) notably. Consequently, Sim(Zn) answers
toA(X∗) with the message

〈
rtprop‖cidX∗-Zn ,Enc(pktmp, PSX∗→R∗),Enc(pktmp, 1)

〉
.

This terminates the simulation for this case.

Note how each half of the route proposal, the one with X∗ and the one with R∗,
are handled independently by Sim. Indeed, in the general case, Sim can (and
need) not link together these two halves. Actually, for all that Sim knows, the
first half corresponds to Zn self-proposing (case (V ) in the first scenario); and the
second half corresponds to a honest proposer proposing R∗ to an honest proposee
(case (IV ) in the second scenario). Taking a step back, that also means that,
when an honest node makes a route proposal, Sim can only distinguish if it is a
proposition towards an honest or corrupted end-receiver a posteriori (when it gets
the proposee output with PSX∗→R∗). Also, in future relays of the route proposal,
Sim(Zn) will fill in for A(R∗), just as it would do if R∗ was honest.
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For the first and second halves, taken separately, indistinguishability is already
proved since we re-use other simulation cases. Additionally, the fact that the first
and second halves are handled independently does not allow to distinguish the
simulation from a real execution: the key is that all cryptographic material, and
in particular ciphertexts seen byA(X∗) and A(R∗), are expected to be independent
since re-encryptions happen in between. Thus indistinguishability holds by the
USS property. Likewise, the key pktmp generated by A(X∗) is expected to be
independent from the pktmp′ as seen by A(Y ∗) and A(R∗), since each honest
relay node multiplies the former by a random temporary public key.

A(X∗) proposes the route again (II): To complete the scenario, let us now
assume that A(X∗) receives input (proposer, sid, (X ′, cidX′-X∗), PSX∗→R∗ , (X∗,
cidX∗-Zn)) from E , instructing A(X∗) to propose the route it just learned to X ′.
Sim sees that input, and knows it relates to a proposition towards the corrupted
end-receiver R∗, by the uniqueness of pseudonyms. Consequently, Sim immedi-
ately copies the proposer input to Frtprop(X∗). Two cases arise, depending on the
corruption state of X ′:

– When X ′ is corrupted, Sim(Zn) begins by receiving from A(X∗) the message
〈

rtproprelay‖cidX∗-Zn‖rcid,Enc(pkSim(Zn), r
srcX′ ),Enc(pkSim(Zn), pk

tmp)
〉

Note that r is the random number that Sim(Zn) used in the previous sim-
ulation case, to propose the route towards A(R∗) to A(X∗). Sim can trace
this message back to A(X∗) thanks to the cid and rsrcX′ values. Sim can
also know that this rtproprelay message relates to the previously seen
proposer input fromX∗ toX ′. Subsequently, Sim waits to receive (rtprop, sid,
?→ Z1 → Y ∗ → R∗, dstR∗

srcX′ ), which is leaked by Frtprop when Frtprop(R∗)
receives the rtproprelay message in the ideal functionality. Once received,
Sim(Z1) interacts with A(Y ∗) in the exact same way as in the second half
in the preceding simulation case (again, Sim does not necessarily know to
which route proposal this rtprop leaks relates, but it does not matter). When
A(Y ∗) sends back a rtproprelay message, Sim(Z1) discards it. At some

point, Frtprop will leak (rtprop, sid,X ′
cidX′-X∗
←−−−−→ X∗

cidX∗-Zn−−−−−−→ Zn →? → R∗),
namely when Frtprop(X∗) sends the last rtprop message to Frtprop(X ′) in
the ideal functionality. Simultaneously, Frtprop(X ′) will output (proposee,
sid, PSX→R∗ , coneR∗ , (X∗, cidX′-X∗)). Sim can thus identify PSX′→R∗ as the
pseudonym it must send back toward X ′, in particular thanks to (X∗,
cidX′-X∗). Proceeding as usual, Sim(Zn) sends:

〈

rtproprelay‖cidX∗-Zn‖rcid,Enc(pktmp, PSX′→R∗),Enc(pktmp, 1)
〉

to A(X∗), with rcid and pktmp as received by Sim(Zn) earlier.

– When X ′ is honest, Sim(X ′) begins by receiving a rtprop message from
A(X∗). Similarly to previous cases, Sim(X ′) answers using a random r′←$ G
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instead of srcX′ . At some point, Sim(Zn) receives a rtproprelay message as
in the case when X ′ is corrupted. Then, the second half of the route, with
Z1, Y ∗ and R∗, is simulated as usual. Later, when in the ideal functionality,

nodeX∗ sends the last rtprop message, Frtprop leaks (rtprop, sid,X ′
cidX′-X∗
←−−−−→

X∗
cidX∗-Zn−−−−−−→ Zn →? → R∗). Sim however does not get to see Frtprop(X ′)’s

proposee output, which includes PSX′→R∗ . Still, it can safely make Sim(Zn)
send back a rtproprelay message with c1 := Enc(pktmp, rr′

) to A(X∗). The
latter will forward it to Sim(X ′), who can discard the message. Lastly, Sim

sends a continue message to Frtprop, letting Frtprop(X ′) make its proposee

output to E .

Since this simulation case is only a re-use of previously presented simulation
methodologies, indistinguishability for the first and second halves separately is
already proven. Now, by the same argument as the previous simulation case,
and mainly thanks to re-encryptions, the fact that the two halves are totally
independently simulated is indistinguishable from a real execution, by the USS
property.

This concludes the second scenario. With these two scenarios, all cases of interest
are covered. There may be some slight differences, e.g. a variant of the sec-
ond scenario could include corrupted nodes between, say, Sim(Z3) and Sim(Z2).
However, such intermediary corrupted sub-paths can always be safely simulated
as presented below.

Formal simulation of intermediary corrupted sub-paths: At the beginning of
this proof, we informally described how intermediary sub-paths were to be simu-
lated. Here, now that we have formally defined the simulations of end sub-paths,
we provide a formal description. When Sim receives

(subpath, sid, Zi′

cidi′+1
−−−−−→
rcidi′+1

. . .
cidj′

−−−→
rcidj′

Zj′)

from Frtprop, it necessarily corresponds to a sequence of corrupted nodes forward-
ing a rtproprelay message, in which Zi′ and Zj′ are honest nodes. This sub-path
can correspond to the forward or backward direction of the return trip (i.e. either
the outward journey or or the return journey of the rtproprelay message). Since
the simulation of the backward direction depends on how the forward direction
was simulated, we first describe the simulation of a sub-path corresponding to the
forward relay.

By the construction of the simulation, note that Sim(Z ′i) is sure to know a correct
encryption of one cone = Enc(pkZi′+1,...,Zj′−1,Sim(Zj′ ), 1). Sim(Zi′) encrypts r←$ G

and a freshly generated key pktmp in c1 and c2 respectively, using Encnopk and
cone. Then, Sim(Zi′) sends 〈rtproprelay‖cidi′+1‖rcid, c1, c2〉 to A(Zi′+1), with
rcid←$ {0, 1}∗. By the construction of the simulation, the message necessarily
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traverses A(Zi′+1), A(Zi′+2), etc., and necessarily arrives at Sim(Zj′) as
〈

rtproprelay‖cidj′‖rcid′,Enc(pkSim(Zj′ ), r),Enc(pkSim(Zj′ ), pk
tmp′)

〉

The latter can decrypt the ciphertexts, recognise the random value r, and discard
the message. However, Sim(Zj′) stores (rcidj′ , rcid′, pktmp′), so as to simulate the
return path.

Now, when Sim receives (subpath, sid, Zj′

cidj′

−−−→
rcidj′

. . .
cidi′+1
−−−−−→
rcidi′+1

Zi′), with cid used

in reverse fashion, and such that the corresponding forward path was simulated
previously, Sim proceeds as follows. It first retrieves the stored tuple associated
to rcidj′ to get rcid′ and pktmp′. That is, rcidj′ is what binds the forward and
return sub-paths leaked by Frtprop (as it would in a actual network nodes in a real
execution). Then, Sim(Zj′) sends

〈

rtproprelay‖cidj′‖rcid′,Enc(pktmp′, r),Enc(pktmp′, 1)
〉

to A(Zj′−1). The message necessarily returns to Sim(Zi′), which can not decrypt
the ciphertexts, but recognises the rcid value and discards the message.

The simulation of intermediary corrupted sub-paths is indistinguishable from a
real execution, by the IND-CPA, IK-CPA and USS properties. In particular, the
fact that ciphertexts seen by the corrupted relay nodes are independent from
any other ciphertext in the network (since they are crafted by the simulator, and
encrypt a random plaintext) is indistinguishable from a real execution by the
USS property. Finally, as mentioned previously, all sub-paths are simulated in
the order they are received from Frtprop, and more generally, throughout the entire
simulation, care was taken to enforce the right ordering of events.

This terminates the description of the simulator. To show indistinguishability, a couple
of arguments remain to be specified, for the simulation as a whole. First, Sim relies on
the randomness of the rcid values or of values such as rr′

. The simulation fails if e.g.
the same rcid value is used twice. However, the size of the sets from which these values
are taken from is exponential in the security parameter, and hence this happens with
negligible probability. Lastly, indistinguishability holds because the communications
between A and E are relayed by Sim without alteration, and because Πrtprop and Frtprop

exhibit the same input/output behavior. This concludes the proof that the simulated
and real executions are indistinguishable.

B.4. Analysis of Frtprop

This section provides supplementary material with respect to the analysis of the route
proposal protocol in Section 5.5.3 (p. 115). Namely, we present the explicit adversarial
views from Definition 25, and the proof that the proposed route proposal mechanism
does fulfill the said definition.
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B.4.1. Explicit Adversarial Views

We begin by explicitly describing the view of the adversary for each of the four properties
presented in Definition 25 (p. 119). Each view is given for Rb, b ∈ {0, 1}, and the elements
that vary depending on the value of b are in bold font. Note that in each view, there
is redundant information (e.g. PSX→Rb

appears twice in the view for route proposal
homogeneity), but this does not impact the proof.

Route Proposal Homogeneity The most constraining case is when X is corrupted
(otherwise, the view is empty, since by definition, Y and R are honest). Denote R0 :− Y
and R1 := R. The context and view are as follow:

Context
{X }
Y,R (i) =







{(Z, srcZ , dstZ , (pkZ , skZ)) | Z ∈ Ωc}

∪
{
(Z,R′, PSZ→R′ , coneZ→R′ , cidZ→R′)

| Z ∈ Ωc, R
′ ∈ Ω \{Y,R}

}

∪ {(Z, (Ra, PSZ→Ra , coneZ→Ra , cidZ→Ra))
| a ∈ {0, 1}, Z ∈ Ωc \{X }}

View
{X }
RP(X↔Y→Rb)(i) =







(rtprop, sid,X
cid
←−→ Y →?),

(proposee, sid,PSX→Rb
, coneX→Rb

, (Y, cid))

(X,PSX→Rb
, coneX→Rb

)

Route Proposal Indistinguishability The most constraining case, here, is when X and
Y are both corrupt (otherwise, the adversary only gets less information). In this case,
the context and view are as follows, for N := {X,Y } ∪ Z1 ∪ · · · ∪ ZK :

ContextNR0,R1
(i) =







{(Z, srcZ , dstZ , (pkZ , skZ)) | Z ∈ Ωc}

∪
{
(Z,R′, PSZ→R′ , coneZ→R′ , cidZ→R′)

| Z ∈ Ωc, R
′ ∈ Ω \{R0, R1}

}

∪ {(Z, (Ra, PSZ→Ra , coneZ→Ra , cidZ→Ra))
| a ∈ {0, 1}, Z ∈ (Ωc \ N )}

ViewNRP(X↔Y→Rb)(i) =







(proposer, sid, (X, cid),PSY→Rb
, (Z1,1, cid1,1))

(rtprop, sid,X
cid
←−→ Y

cid1,1
−−−−→ (Z1,1

cid1,2
−→ . . .

cid1,n1−→ Z1,n1)→?),

(subpath, sid, sp2 = (Z2,1
cid2,2
−→ . . .

cid2,n2−→ Z2,n2)),

. . . ,

(subpath, sid, spK),

(proposee, sid,PSX→Rb
, coneX→Rb

, (Y, cid))
)

∀Z ∈ N ∩ Ωc, (Z,PSZ→Rb
, coneZ→Rb

)

Untraceable Propagation The most constraining case is when X, Y , X ′, Y ′ are all
corrupted (otherwise, the adversary only gets less information). In this case, the context
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and view are as follows, forN := {X,Y }∪Z1∪· · ·∪ZK andN ′ := {X ′, Y ′}∪Z ′1∪· · ·∪Z
′
K :

ContextN∪N
′

R0,R1
(i) =







{(Z, srcZ , dstZ , (pkZ , skZ)) | Z ∈ Ωc}

∪
{
(Z,R′, PSZ→R′ , coneZ→R′ , cidZ→R′)

| Z ∈ Ωc, R
′ ∈ Ω \{R0, R1}

}

∪ {(Z, (Ra, PSZ→Ra , coneZ→Ra , cidZ→Ra))
| a ∈ {0, 1}, Z ∈ Ωc \ (N ∪N ′)

}

ViewNRP(X↔Y→R0)(i) =







(proposer, sid, (X, cid), PSY→R0 , (Z1,1, cid1,1))

(rtprop, sid,X
cid
←→ Y

cid1,1
−−−→ (Z1,1

cid1,2
−→ . . .

cid1,n1−→ Z1,n1)→?),

(subpath, sid, sp2 = (Z2,1
cid2,2
−→ . . .

cid2,n2−→ Z2,n2)),

. . . ,

(subpath, sid, spK),

(proposee, sid, PSX→R0 , coneX→R0 , (Y, cid))
)

∀Z ∈ N ∩ Ωc, (Z,PSZ→R0, coneZ→R0)

ViewN
′

RP(X′↔Y ′→Rb)(i) =







(proposer, sid, (X ′, cid′),PSY′→Rb
, (Z ′1,1, cid′1,1))

(rtprop, sid,X ′
cid′

←−→ Y ′
cid′

1,1
−−−−→ (Z ′1,1

cid′
1,2
−→ . . .

cid′
1,n′

1−→ Z ′1,n′
1
)→?),

(subpath, sid, sp′2 = (Z ′2,1

cid′
2,2
−→ . . .

cid′
2,n′

2−→ Z ′2,n′
2
)),

. . . ,

(subpath, sid, sp′K ′),

(proposee, sid,PSX′→Rb
, coneX′→Rb

, (Y ′, cid′))
)

∀Z ∈ N ′ ∩ Ωc, (Z,PSZ→Rb
, coneZ→Rb

)

Untraceable Return Trip The main case of interest is when X0, Y0, X1, and Y1 are all
corrupted, and R0 6= R1 ∈ ΩSim. Indeed, note that when R0 = R1, the challenge view is
actually the same whether b = 0 or b = 1, up to the cid values (which do not allow to
distinguish). In the case when R0 6= R1 ∈ ΩSim, the context and view are as follow, for
N := {X0, Y0} ∪ Z1 ∪ · · · ∪ ZK and N ′ := {X1, Y1} ∪ Z

′
1 ∪ · · · ∪ Z

′
K ′ :

ContextN∪N
′

R0,R1
(i) =







{(Z, srcZ , dstZ , (pkZ , skZ)) | Z ∈ Ωc}

∪
{

(Z,R′, PSZ→R′ , coneZ→R′ , cidZ→R′)
| Z ∈ Ωc, R

′ ∈ Ω \{R0, R1}
}

∪ {(Z, (Ra, PSZ→Ra , coneZ→Ra , cidZ→Ra))
| a ∈ {0, 1}, Z ∈ Ωc \ (N ∪N ′)

}
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View
N\(Zk1

∪···∪Zk2
)

RP(X0↔Y0→R0) (i) =







(proposer, sid, (X0, cid), PSY0→R0 , (Z1,1, cid1,1))

(rtprop, sid,X0
cid
←→ Y0

cid1,1
−−−→ (Z1,1

cid1,2
−→ . . .

cid1,n1−→ Z1,n1)→?),

(subpath, sid, sp2 = (Z2,1
cid2,2
−→ . . .

cid2,n2−→ Z2,n2)),

. . . ,

(subpath, sid, spk1−1), (subpath, sid, spk2+1),

. . . ,

(subpath, sid, spK),

(proposee, sid, PSX0→R0 , coneX0→R0 , (Y0, cid))
)

∀Z ∈ (N \ (Zk1 ∪ · · · ∪ Zk2)) ∩ Ωc, (Z,PSZ→R0 , coneZ→R0)

View
Z′

k′
1

∪···∪Z ′
k′

2

RP(Xb↔Yb→Rb)(i) =







(subpath, sid, spk1 = (Zk1,1

cidk1,2
−→ . . .

cidk1,n2−→ Zk1,n2)),

. . . ,

(subpath, sid, sp′k2
),

∀Z ∈ (Z ′k′
1
∪ · · · ∪ Z ′k′

2
) ∩Ωc, (Z,PSZ→Rb

, coneZ→Rb
)

B.4.2. Proof of Theorem 3 (Route Proposal Security)

Given these explicit adversarial view, we now prove Theorem 3 (p. 119), which states
the security of route proposals.

Proof of Theorem 3. For each property, we show that, the adversary’s advantage in dis-
tinguishing between the two view distributions, is, for k, k′ ∈ poly(λ), at most:

k · Adv
ik-cpa
B (λ) + k′ · Adv

ps−ind
B (λ)

Namely, (k, k′) = (1, 1) for route proposal homogeneity, (k, k′) = (lmax, lmax) for route
proposal indistinguishability, propagation untraceability, and return trip untraceability.

We provide the full proof for route proposal indistinguishability. The proofs for the
other properties follow the same outline. In what follows, denote by:

N := {X,Y,Z1,1, . . . , Zk,nk
} ∩ Ωc = (N1, . . . , Ni, Ni+1, . . . , Nn)

In light of the view for route proposal indistinguishability property, we show that,
given ContextNR0,R1

(i), the advantage of A in distinguishing ViewNRP(X↔Y→R0)(i) from

ViewNRP(X↔Y→R1)(i), for a given i ∈ IRP I
W , is bounded above by

AdvA(λ) ≤ |N |Adv
ik-cpa
B (λ) + |N |Adv

ps−ind
B (λ)

The theorem directly follows, since, by definition N ≤ lmax. To prove the above claim,
we use the two following hybrid arguments, linked together.
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Hybrid H
(i)
cone for i ∈ [0, |N |]: H(0)

cone consists in distinguishing the original definition of
the views, H(1)

cone consists in distinguishing the views where coneX→Rb
was replaced

by an encryption of one under a random public key,H(2)
cone consists in distinguishing

the views where coneY→Rb
was also replaced by an encryption of one under a

random (different) public key, etc. Finally, H(|N |)
cone consists in distinguishing the

views where all encryptions of one were replaced by encryptions of one under a
different, random public key each.

Hybrid H
(i)
P S for i ∈ [0, |N |]: H(0)

P S = H(i)
cone, H

(1)
P S consists in distinguishing the view

where PSX→Rb
was replaced a pseudonym PSX→rand = h(dstsrcX ) with a ran-

dom dst, H(2)
P S consists in distinguishing the view where PSY→Rb

was also replaced
a (different) pseudonym PSY→rand = h(dst′srcX) with a random dst′ (indepen-
dent from dst), etc. Finally, H(|N |)

P S consists in distinguishing the views where
pseudonyms were replaced by pseudonyms computed with a different, random
dst value each.

The advantage of A in the last hybrid H(|N |)
P S is zero. Indeed, (i) the cid values,

pseudonyms, and encryptions of one are essentially random values, not giving any infor-
mation on Rb, and (ii) note additionally that by definition, ZK can not terminate with
Rb′ (unless R0 = R1). We then show that the advantage of the adversary in distinguish-
ing neighboring hybrids is either Adv

ik-cpa
B (λ), or Adv

ps−ind
B (λ), which in turn yield the

desired result.
To prove indistinguishability between each adjacent hybrid games H(i)

cone and H(i+1)
cone ,

let us assume that there exists an adversary A capable of distinguishing between them

with advantage Adv
H

(i/i+1)
cone
A (λ). Then, we construct an adversary B that, using A breaks

the OK-CPA property of the Elgamal scheme with the same advantage. B takes in input
two public keys pk0, pk1. To generate all the elements of the view that A expects, B
begins by sampling srcZ , dstZ ←$ Z

∗
q × G for all Z ∈ Ω, and (pkZ , skZ) ← KeyGen(1λ)

for all Z ∈ Ω \ {R0, R1}. For the end-receivers R0 and R1, B samples b′←$ {0, 1}, and
assigns pkRb′ := pk0, and (pkR1−b′ , skR1−b′ )← KeyGen(1λ). Then, B selects honest nodes
to fill the gap between each intermediary corrupted sub-paths Zk, and between the last
corrupted sub-path ZK and the potential end-receivers R0 and R1. B thus obtains full
routes, from Y to R0 and from Y to R1, respectively denoted rt0 and rt1.

From these routes, B can generate all the necessary material. Hereby, for simplicity,
N is considered as the set

{

N1, . . . , N|N |
}

, in particular containing Ni+1, which is the

pivotal point of hybrid H(i+1)
cone . B consequently generates:

– PSZ→R0 = h(dstR0
srcZ ), and PSZ→R1 = h(dstR1

srcZ ) for all Z ∈ Ω

– For all nodes N ∈ {N1, . . . , Ni}, coneN→Rb′ ← Enc(pk, 1) for a freshly generated
public key pk (different for each N)

– For all nodes N ∈
{

Ni+2, . . . , N|N |
}

, coneN→Rb′ ← Enc(pkrtb′ [N-Rb′ ], 1) and for
pkrtb′ [N-Rb′ ] the product of public key of all nodes between N (excluded) and Rb′

(included) on route rtb′
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– For all remaining corrupted nodes Z ∈ Ωc \ N , set coneZ→R0 ← Enc(pkrt′[Z-R0], 1)
and coneZ→R1 ← Enc(pkrt′′[Z−R1], 1) for some route rt′ and rt′′ from Z to R0 and
R1 (respectively), randomly selected by B.

For the case of Ni+1, B outputs m = 1 as its challenge, and receives cb. It sets
coneNi+1→Rb′ = KeyMult(sk, cb), where sk is the sum of secret keys of nodes between
Ni+1 and Rb′ (both excluded) on route rt. Finally, B gives to A all the generated ele-
ments, according to what A expects as context and view, and in particular: PSN→Rb′ ,
PSN→Rb′ , and coneN→Rb′ for each N ∈ N . A makes its guess: if it outputs “H(i)”, B
outputs b∗ = 0, and b∗ = 1 if A outputs “H(i+1)”. B breaks the key privacy property
with the same advantage that A has, since: (i) all the elements of the view apart from
the encryption of one coneNi+1→Rb′ of node Ni+1 are well generated/simulated, and (ii)
when b = 0, coneNi+1→Rb′ is Enc(pkZ−Rb′ , 1), because pkRb′ = pk0, and when b = 1, it is
an encryption of one under (pkZ−Rb′/pkRb′ ) · pk1 which is random to A, since pk1 does
not appear anywhere else in the elements given to her.

To prove the indistinguishability of each adjacent hybrid games H(i)
P S and H(i+1)

P S , the
same methodology applied. There are a few differences, however. First, all encryptions
of one for nodes in N (those receiving the challenge), are made under different, random
public keys. The challenge of B consisting of (src, PS1, PS2) is bound to A’s challenge
in the following way. First, the value srcNi+1 is set to src. Then, pseudonyms towards
R1 are computed directly by B, using a randomly generated dstR1 value, while for
pseudonyms towards R0 are computed using her oracle f(·, dst0). The exceptions being
that: the pseudonyms towards Rb′ for each node N1, . . . , Ni are computed directly and
with a different, random dst value each; and PSNi+1→Rb′ is set to PS1. Finally, if A
outputs “H(i)”, B outputs b∗ = 0, and b∗ = 1 otherwise. B breaks the indistinguishability
of pseudonyms with the same advantage as A, since: (i) all the elements of the view
apart from Ni+1’s pseudonyms towards the end-receiver are well generated/simulated,
and (ii) when b = 0, PS = h(dstsrc

0 ) = PSNi+1→Rb′ , and when b = 1, PS = h(dstsrc
1 )

which is a pseudonym with a dst value that never appears elsewhere in the view, and
thus a random one.

Putting hybrids together, since H(0)
P S = H(i)

cone, we have that:

AdvA(λ) ≤ |N |Adv
ik-cpa
B (λ) + |N |Adv

ps−ind
B (λ)

Since the same reasoning can be applied to any input i ∈ IRP I
W , this concludes the

proof for the case of route proposal indistinguishability.
For the propagation and return trip untraceability, the same methodology with two

hybrid sequences can be applied, yielding the same results. For the route proposal homo-
geneity property, A’s advantage is smaller, since only one pseudonym and encryption of
one differ following the value of b (those of X’s towards Rb). Said otherwise, the hybrid
sequences are actually of size one. This concludes the proof for Theorem 3.
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B.5. Proof of Theorem 4 (Π UC-Realizes F)

Below is the proof showing that the full protocol Π (defined p. 122) UC-realises F
(defined p. 125). All the comments made in Section B.2 about the UC framework, and
the distinction between E and A also apply here. In particular, we denote corrupted
nodes played by adv as A(X), the honest nodes simulated by Sim as Sim(X), and the
dummy parties as Frtprop(X).

Proof of Theorem 4. Let A be a semi-honest, static adversary in a real execution that
interacts with parties running the protocol Π in the (Freg,Flink,Foffline,Frtprop)-hybrid
model. We construct a simulator Sim in the ideal execution, interacting with F in the
Freg-hybrid model, such that no environment E can tell with non-negligible probability
whether it is interacting with A and the protocol, or with Sim and the ideal functionality.
Figure 5.11 in Section 5.6 (p. 126) shows the setup and relations between ITIs to carry
out the proof. As usual, the simulator Sim starts by invoking a copy of A. Sim also
internally runs a copy of Flink and Foffline. However, Freg stays outside of Sim, and Frtprop

is run internally by F.
We describe how Sim simulates a real execution, by acting on behalf of the honest

nodes X that interact with A, and show that this simulation is indistinguishable from
a real execution. After a few preliminaries, the description of the simulator (and the
proof itself) is presented as follows. First, the simulation of topology dissemination is
presented. Then the case of payload messages sent by corrupted end-senders is considered
and divided in three main steps corresponding to: the offline interaction between end-
sender and end-receiver, the first leg between end-sender and indirection node, and the
second leg between indirection node and end-receiver. And finally, the simulation of
messages sent by honest end-senders is presented, analogously separated in three main
steps.

Simulating the communication between E and A: Sim internally runs a copy of
A. Every input from E is written on A’s input tape, and conversely. Note that
seeing setup inputs of given by E to each corrupted node A(X) allows Sim to
learn the src and dst value of all corrupted nodes.

Simulating Flink and Foffline: Sim internally runs these two ideal functionalities in
a completely honest way. This provides Sim with valuable information. For
instance, running Foffline allows Sim to see the ocomid and key k.

Simulating key pairs: Sim must obtain a key pair for each honest node, but can not
request Freg for it, since, for an honest nodeX, Freg only answers to the node itself.
Consequently, Sim generates one fresh key pair for each honest node. Denote the
key of X ∈ ΩSim as (pkSim(X), skSim(X)). Additionally, Sim honestly relays A’s
queries to Freg for the key pairs of corrupted nodes, and the corresponding answers.
In this process, Sim in particular learns the public key of corrupted nodes.

Simulating topology dissemination: Topology dissemination must be performed
through F’s internally ran instance of Frtprop. More exactly, route proposals
are performed through Frtprop, but the route proposal policy (i.e. the decision of
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accepting routes, and about re-proposing them) is run by F and A, for honest and
corrupted nodes respectively. . Note that F is designed to allow Sim to provide
proposer inputs to F, that relays it to the internally ran Frtprop instance. Thus,
every time A want to provide a proposer input to Frtprop ion behalf of corrupted
node X (as it would in a real execution), Sim externally sends that input to F.
Conversely, when F sends back proposee inputs meant for corrupted node X, Sim

internally relays it to A. Note that this relay position allows Sim to perfectly
know all portions of routes among corrupted nodes. In particular, this gives Sim

the abilities: to trace any portion of route made of corrupted nodes, given only
a first hop (Y, cid), and to know the pseudonyms (and identity if corrupted) of
the end-receivers. This is similar to the situation in proof of Theorem 2. Finally,
during the topology dissemination phase, the F will leak information on route
proposals (i.e. route-prop and subpath leaks from its internal Frtprop instance),
which Sim directly passes to A.

However, throughout the above described process, in order to lay the groundwork
for the simulation of oriented communications, Sim applies slight modifications to
proposee outputs. That is, it modifies the coneX→R ciphertexts by an encryption
of one under a public key controlled by Sim, so that, every time a link message
arrives at an honest node, Sim can decrypt the ciphertexts it carries. From the
construction of the simulation in the proof of Theorem 2, it is clear that Sim

can proceed as follows: when F makes a (proposee, sid, PSX→R, coneX→R, (Y, cid))
output toA(X), if Y ∈ ΩSim, then it replaces coneX→R with Enc(pkSim(Y ), 1); if Y ∈
Ωc, let the proposed route be (Y,Z1, . . . , Zn) with end-receiver Zn, and Zi be the
first honest node on that route, then replace coneX→R with Enc(pkY · · · · ·pkSim(Zi),
1); otherwise, if there are no honest node on the route, leave coneX→R as is. Note
that this approach requires that Sim knows the public keys of corrupted nodes
(that it learns by relaying A’s requests to Freg). This replacement of encryptions
of one is indistinguishable by the IK-CPA and USS properties of the Elgamal
scheme.

Simulating intermediary corrupted sub-paths: Intermediary corrupted sub-paths
are simulated exactly as in the proof of Theorem 2, in an independent and or-
dered manner. The details are thus not given here. The only difference being the
payload messages that do not convey rcid value, and which simulation is actually
simpler because no return trip is necessary.

Simulating payload messages from corrupted end-senders: After topology dis-
semination, nodes may be instructed at any moment to end-send messages. This
is done on a per-message basis by E . Sim must simulate the sending, relaying,
and receiving of payload messages, and the initialisation of oriented communica-
tions on behalf of honest nodes. We begin by describing the work of Sim when
a corrupted end-sender S is instructed to send a message by a (send, sid, ocomid,
R, data) input. Recall that Sim receives this input from E (and thus knows that
ocomid is associated with end-sender S and end-receiver R). Upon such an input,
Sim passes it on to A, and also immediately externally sends it to F(S). The
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simulation is then divided into three major steps: (I) the simulation of the inter-
action between end-sender and end-receiver through Foffline, (II) the simulation
of the first leg between end-sender and indirection node, and (III) the simulation
of the second leg between indirection node and end-receiver.

Step (I) First of all, A(S), being semi-honest and thus following Π, will select a
random routing table entry, in order choose an indirection node I. By assumption
that end-sender and indirections nodes do not collude, this I is necessarily honest.
Then, A(S) interacts with R through Foffline, as it would in a real execution.
Sim sees and relays the input (get, sid,R, ocomid, coneS→I , k) from A(S) to the
simulated instance of Foffline. If R is corrupted, A(R) answers (still through
the simulated Frtprop instance), and Sim has nothing to do. Otherwise, Sim must
compute shares sh1 and sh2 to answer A(S). For that, Sim samples sh1, sh2←$G,
and answers with (got, sid, ocomid, sh1,Encnopk(coneS→I , sh2).

Step (II) After the interaction through Foffline, A(S) and Sim(I) exchange several
messages. More exactly, step (II) can be decomposed as: (II.i) Sim answering the
(sender-pick-route, sid, ocomid, S) sent by F, (II.ii) A(S) sending six messages as
part of the oriented communication initialisation, (II.iii) Sim(I) answering with
two rtproprelay messages, and (II.iv) A(S) finally sending back the payload

message containing PSI→R and then sending one or several payload messages
with with {data}k. Furthermore, in the simulation of the step (II) as a whole,
we will assume that the route for the first leg, between A(S) and Sim(I), begins

as (A(S) cid1−→ A(Z1) cid2−→ A(· · · )
cidi−→ Sim(Zi)). That is, it begins with a sequence

of corrupted nodes, and necessarily hits a honest node Zi at some point. Indeed,
since I itself is honest, in the worst case, Zi is actually I.

Step (II.i) Firstly, Sim must provide F with the first hop used by A(S). This
is something Sim can learn. Indeed, A(S) will begin sending the first messages
of the oriented communication initialisation, and at some point, Sim(Zi) will in-
ternally receive messages of the form: 〈flag‖cidi[‖rcid], c1, c2〉 from A(Zi−1). By
construction of the topology dissemination simulation, c1 and c2 are encrypted
solely under pkSim(Zi). Thus, Sim can decrypt them, and in particular obtain
ocomid, linking that message to the communication between A(S) and R. Fur-
thermore, by knowing A(S) and (A(Zi−1), cidi), Sim can deduce the exact path
taken by the message from A(S) to Sim(Zi) (since it perfectly knows routes be-
tween corrupted nodes). From that, Sim deduces that A(S) used the first hop
(Z1, cid1). Consequently, Sim sends (sender-route, sid, ocomid, S, (Z1 , cid1)) to F.
This ensures that the route(s) used by node S in (tine internally run instance of
Π in) F are the same as those used by A(S).

Step (II.ii) The next step consists in simulating the relay of the first six messages
from A(S) to I. This step is actually trivial: since I is honest, there are only
intermediary corrupted sub-paths to simulate, which are handled as usual, in an
independent manner. However, each message received by Sim(Zi) from A(Zi−1),
contains data encrypted under pkSim(Zi) (which Sim can thus decrypt) that will
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be useful for the simulation of the next step. More exactly, Sim(Zi) receives sh2,
pkocom, pktmp, csh1 [0], and csh1 [1], which Sim stores along with ocomid.

Step (II.iii) In this third step, Sim(Zi) must send back two rtproprelay mes-
sages towards the end-sender A(S), via A(Zi−1). More accurately, after pos-
sibly several subpath leaks corresponding to intermediary corrupted sub-paths
from the end-sender to the indirection node and back, F will leak (ocom-sender,

sid, (Zi
cidi−i
−→ . . .

cid1−→ S), ocomid‖cnt, dstRsrcI ). At this point, Sim retrieves the
previously stored pkocom and pktmp associated to ocomid. Then, Sim crafts a
fresh encryption of dstRsrcI (learned in the leak) with pkocom, i.e. it sets (c[0],
c[1]) ← Enc(pkocom, dstR

srcI ). From this, Sim(Zi) sends the two following mes-
sages to A(Zi−1):

〈

rtproprelay‖cidi‖rcid,Enc(pktmp, c[0]),Enc(pktmp, 1)
〉

〈

rtproprelay‖cidi‖rcid
′,Enc(pktmp, c[1]),Enc(pktmp, 1)

〉

By construction of the simulation, these messages are ensured to be relayed (by
corrupted nodes, played by A), up to A(S).

Step (II.iv) This last step is simulated exactly as step (II.ii). That is, there
are mainly intermediary corrupted sub-paths to simulate. However, in this step,
for each each payload message sent by A(S) that contains actual data, Sim gets
{data}k, along with the counter number cnt associated to each such piece of
encrypted data. This knowledge will be used in the next simulation step.

Step (III) The simulation of the second leg, between indirection node and end-
receiver, depends on whether the latter is corrupted or not. If R is honest, there
are intermediary corrupted sub-paths to simulate, and at some point, Sim will
externally receive (continue?, sid, ocomid‖cnt) from F (on for each pieces of data
received by R in F). Sim accordingly externally sends (continue?, sid, ocomid‖cnt)
to F. This mechanism of continue exchange acts as a synchronisation point: Sim

answers back with a continue only when it has simulated all the other leaks from F
that precede the continue? message. This ultimately ensures that F(R) makes its
rcvd output only after all the intermediary sub-paths from I to R are simulated.

If R is corrupted, the situation is quite different. Assume, without loss of gen-

erality, that the route between I and R ends with (Sim(Zj)
cidj+1
−→ A(Zj+1)

cidj+2
−→

A(· · · ) cidn−→ A(R)), i.e. that Zj is the last honest node on the route. For each
payload message received by R in (the internal Π instance within) F, the latter

will leak (ocom-rcvr, sid, (Zj
cidj+1
−→ . . .

cidn−→ R), ocomid‖cnt, data). This indicates to
Sim that it must make Sim(Zj) deliver {data}k to A(R) through A(Zj+1). Note
however, that {data}k must be exactly equal to the SKE ciphertext that A(S)
originally crafted (since, in a real execution, this SKE ciphertext stays the same
from end-sender to indirection node to end-receiver). Therefore, here, the leaked
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cnt value is used as an index to retrieve {data}k learned during the simulation of
step (II.iv). From this, Sim(Zj) sends the following message to A(Zj+1):

〈

payload‖cidj+1,Encnopk(cone, ocom‖ocomid‖cnt),Encnopk(cone,{data}k)
〉

Here, cone is the adequate encryption associated to (Zj+1, cidj+1), which Sim

necessarily knows from the simulation of the topology dissemination phase. Also,
because the exact same routes are constructed in the simulation and in F, this
message is ensured to go through A(Zj+1),A(Zj+2), . . . , and to ultimately arrive
at A(R) with ciphertexts solely encrypted under pkR.

Indistinguishability: Indistinguishability stems from the IND-CPA, IK-CPA
and USS properties, plus from the way F is constructed which allows Sim to
learn all the information it needs, an that allows Sim to incorporate A’s random
choices in F’s internal instance of Π (such as the route chosen by A(S)).

More precisely, the simulation of this case differs from a real execution in the
following points:

– The shares. The shares sh1, sh2 do not produce dstR. But since I is honest
by assumption, A only sees one share sh1, and indistinguishability stems
from the security of the secret sharing mechanism.

– If the route between A(S) and I contains at least one intermediary corrupted
sub-path, then: (i) these nodes relay random data, and (ii) corrupted nodes
in different intermediate sub-paths see ciphertext that are completely inde-
pendent from each other. In particular, these ciphertexts are not a function
of those sent by A(S). Indistinguishability here stems from the IND-CPA
property for point (i), and from the USS property from point (ii).

– The point immediately above is also valid for the route between I and R,
and the same arguments apply.

– Every time Sim delivers messages to a corrupted node (that is, A(S) and
possibly A(R)), the latter receives ciphertexts crafted by Sim(Zk). Again,
indistinguishability is ensured by the USS properties.

Simulating payload messages from honest end-senders: The simulation of hon-
est end-senders actually follows the same general methodology as for corrupted
end-senders: Sim will simulate the intermediary sub-paths independently, and
deliver messages to corrupted indirection nodes or end-receivers. Before all, note
if neither I nor R is corrupted, there is nothing to simulate but intermediary
corrupted sub-paths, and in particular, ocomid is never leaked to Sim.

The simulation of honest end-senders still features some important differences.
Here, Sim must simulate interactions with the end-receiver through Foffline, I
may be corrupted, and the delivery of messages to corrupted indirection nodes or
end-receivers necessitates new sources of information for Sim. We hereby assume
that F(S) (for some S ∈ ΩSim) receives input (send, sid, ocomid,R, data) from
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E . Three steps (I), (II) and (III) are identified, as for the case of corrupted
end-senders.

Step (I) First of all, if R is corrupted, F leaks (offline, sid, ocomid,R) to Sim.
The latter thus knows it must simulate an interaction between some honest end-
sender (whose identity it does not know) and node R through Foffline. For that, it
uses the specified ocomid, a freshly generated symmetric key k, and encryptions
of one under a key it controls, i.e. one it generates for the occasion (instead of an
actual coneS→I), so that it can decrypt and get the shares sh1 and sh2. It gives
all that to A(R) in a get input. On the other hand, if R is honest, Sim receives
nothing from F, and does not need to simulate anything. It still generates sh1,
sh2←$G for later use.

Step (II) After this, Sim must simulate the first leg. Depending on the indirec-
tion node and on the route chosen by F(S), the latter may or may not contain
intermediary corrupted sub-paths. If so, they are handled as usual, on the way
forward and back. Also, the indirection node may or may not be corrupted, de-
pending on the random choice of F(S). If I is honest, then there is nothing else
to simulate for the first leg.

If I is corrupted, F leaks (ocom-I, sid, (Zj
cidj+1
−→ . . .

cidn−→ I), flag, ocomid‖cnt) for
each of the six first messages that are part of the oriented communication ini-
tialisation. Each of these leaks indicate that Sim must make Sim(Zj) deliver a
message containing either sh2, pk

ocom, pktmp, csh1 [0], or csh1 [1] to A(I) through
A(Zj+1). Here again, it is the value of cnt of the leak lets Sim know which
particular piece of information must be sent. However, Sim must generate sh2,
pkocom, pktmp, csh1 [0], and csh1 [1] by itself. For that, it uses the following values:
freshly generated key pairs (pktmp, sktmp) and (pkocom, skocom); sh1, sh2 as ob-
tained from step (I); and c ← Enc(pkocom, sh1). From this, messages are crafted
and delivered by Sim(Zj) to A(I) in the usual way. Then A(I) processes the
messages, and answers with two rtproprelay messages, that Sim(Zj) receives,
decrypts, and recognises as belonging to the session identified by ocomid. These
messages are however simply discarded. More intermediary sub-paths are possi-
bly simulated, and at some point, when in (the internal Π instance within) F,
F(I) receives the payload message containing the pseudonym, F makes a ocom-I
leak specifying the pseudonym PSI→R. With this value, Sim can thus deliver
the pseudonym to A(I) in an adequately crafted ciphertext. For each following
payload message containing some data:

– Either R is corrupted as well, and (ocom-I, sid, (Zj
cidj+1
−→ . . .

cidn−→ I), ocomid‖cnt,
data)) is leaked, specifying data. Sim can thus encrypt data with k (the key
generated in step (I)), and make Sim(Zj) deliver it to A(I).

– Either R is honest, and Sim delivers {data′}k′ for random values data′,
k′←$ {0, 1}∗. If there are multiple data payload messages to deliver, Sim

uses the same key k′ for all of them (but a different data′).
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Step (III) For the second leg, we distinguish five corruption configurations: (a)
I and R are both honest, (b) R is corrupted, and (c) I is corrupted, (d) both I
and R are corrupted but there is at least one honest node on the route between
them, and (e) both I and R are corrupted, and there are only corrupted nodes
on the route.

In case (a), there is nothing else to simulate but intermediary corrupted sub-
paths. In case (b), for each payload message, Sim must deliver {data}k to A(R)

when F leaks (ocom-rcvr, sid, (Zj
cidj+1
−→ . . .

cidn−→ R), ocomid‖cnt, data). For that, Sim

generates{data}k using data from the leak and k from step (I), and makes Sim(Zj)
deliver it to A(R) as usual. In case (c), there is no need to deliver anything to
R, since it is honest. However, since I is corrupted, Sim will externally receive
(I-pick-route, sid, ocomid, I) from F. Sim must answer with the first hop chosen
by A, which it can learn in the same manner as described previously (step (II.i)
of the simulation of corrupted end-senders). Sim thus sends back (I-route, sid,
ocomid, I, (Y, cid)) to F.

This latter I-pick-route/I-route exchange must also be carried out in cases (d)
and (e). Note that in case (e), there is no honest node on the route for Sim to
intercept the message, but Sim can trivially learn the first hop used by A(I) by

the (ocom-rcvr, sid, (I cid1−→ . . .
cidn−→ R), ocomid‖cnt, data) leak from F, that specifies

the full route from I to R. For case (e), this I-pick-route/I-route exchange is the
only element to simulate for Sim: since the whole route is corrupted, it is A that
performs all the actions. In case (d), there are possibly intermediary corrupted
sub-paths, but most importantly, using the last honest node on the route, Sim

must deliver to A(R) what the first honest node on the route receives from A(I).
This is performed by Sim for each payload message in the oriented communication
session, using techniques already described.

Indistinguishability: By the same arguments as for the case of corrupted end-
senders, the simulation of intermediary corrupted sub-paths, and the delivery of
messages to corrupted nodes, are indistinguishable from a real execution. Other
points that needs to be mentioned are:

– Public keys pktmp and pkocom are generated by Sim, instead of the actual
end-sender S. However, this perfectly simulates a real execution, since Sim

generates these keys exactly as an honest S would do.

– The encryption of data. When the end-receiver is honest but the indirection
node is not, Sim delivers {data′}k′ for a random data′ and k′ instead of the
actual data and key. This is indistinguishable, by the IND-CPA security of
AES, and by the randomness of the key that the end-sender and end-receiver
agreed on. When both the end-receiver and indirection node are corrupted,
Sim generates {data}k itself (this perfectly simulates how an actual honest
end-sender would behave). But note that care is taken to give the exact
same ciphertext {data}k both to A(I) and A(R). This simulation is thus
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indistinguishable from a real execution, where A(I) and A(R) indeed expect
to see the same SKE ciphertext. Lastly, when the end-receiver is corrupted
but the indirection node is not, Sim generates {data}k just before delivering
it to A(R). This yields a simulation indistinguishable form a real execution,
since no corrupted node get to see {data}k other than R.

– When R is corrupted, Sim interacts with it through Foffline on behalf on the
honest end-sender S. Although Sim does not know the actual identity of this
end-sender, note that, by construction of Foffline, in a real execution, A(R)
does noes expect to get any information on the identity of the end-sender.
Thus, the fact that Sim does not know the identity of the end-sender is not
an issue. Secondly, although Sim does not use an actual encryption of one
coneS→I existing in the network, but cone← Enc(pk, 1) for a freshly generated
pk. However, by the IK-CPA and USS properties, cone are indistinguishable
from an actual coneS→I that A(R) would expect to receive in a real execution.

– The shares: when R is honest, Sim generates the shares randomly. Since
A only sees at most one of these shares shares (namely, sh2, via I when it
is corrupted) this element of the simulation is indistinguishable from a real
execution by the security of the secret sharing mechanism.

This terminates the description of the simulator. The conclusion of the proofs goes as
for the proof of Theorem 3.

B.6. Analysis of F

This section provides the proofs of the two theorems from Section 5.6.3 (pages 131
and 133). The first proof deals with SA, RA and SU, and the second one with MU.

B.6.1. Proof of Theorem 5 (SA, RA, SU)

Proof of Theorem 5. Following the proof methodology of Backes et al. [Bac+13], to sim-
plify the proof, the challenger and adversary A′(A) are first modeled into deterministic
machines by explicitly proving them random strings rCh and rA as input. Fixing these
random strings in turn fixes all routes created and used in the network, the choices of
indirection nodes. It also fixes all the set of corrupted nodes, the send inputs created
by A, the src and dst value of each node. More generally, this makes the algorithm
A′(A, rA)Ch(F,α,b,rCh) completely deterministic. That is, the execution of F by the chal-
lenger is fixed rA and rCh. Therefore, the algorithms A′(A, rA)Ch(F,αRA,0,rCh) and A′(A,
rA)Ch(F,αRA,1,rCh) differ only by the value of the bit b, which means that the difference
in what A learns from their execution solely depends on the challenge session(s). This
allows us to focus only on what the adversary learns from the challenge (i.e. on the
difference of the leaks that A gets from F when b = 1 and when b = 0).

In the analysis, we consider the following distinguishing events. These events are
defined for fixed values for rCh, rA ∈ {0, 1}∗ and b ∈ {0, 1}, since this triplet of values
fully determines whether the event happens or not.
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ESA(rCh, rA, b) := there is at least one corrupted node on the chosen route
between the end-sender Sb and the indirection node (in-
cluded).

ERA(rCh, rA, b) := there is at least one corrupted node on the chosen route
between the indirection node (included) and the end-
receiver Rb.

ESU (rCh, rA, b) := there is at least one corrupted node on the full chosen
route between the end-sender Sa and the end-receiver Ra

and one corrupted node on the full chosen route between
the end-sender Sa′ and the end-receiver Ra′ .

Given these events, we show that, for any rCh, rA←$ {0, 1}∗ and for PROP ∈ {SA,RA,SU }:

Pr
[

A′(A, rA)Ch(F,αPROP ,0,rCh) = 0
∣
∣
∣¬EPROP(rCh, rA, 0)

]

= Pr
[

A′(A, rA)Ch(F,αPROP ,1,rCh) = 0
∣
∣
∣¬EPROP(rCh, rA, 1)

]

+ negl(λ)
(B.1)

Intuitively, this holds because, when b = 0 and ¬EPROP(rCh, rA, 0), and when b = 1 and
¬EPROP(rCh, rA, 1), A gets the same information from F, up to e.g. a pseudonym, which
does not allow her to distinguish the two case with more than a negligible advantage.

More accurately, for the RA challenge (the most complex case of the proof), when
ERA does not happen, A gets:

– proposer, proposee, rtprop, subpath leaks during topology dissemination. These leaks
do not give information on R0 nor R1 as end-receivers by the indistinguishability
of pseudonyms and the IK-CPA property of the Elgamal scheme. Thus, in this
phase, A learns no information that could help her towards winning the challenge.

– For each oriented communications except the challenge one, A gets send, rcvd,
I-pick-route, I-route, sender-pick-route, sender-route, ocom-I, ocom-sender, ocom-rcvr,
and offline leaks. The only information leaked to A that relates to R0 or R1 are the
dstR

srcI values that the ocom-sender leaks contain. These leaks happen when the
sender of the oriented communication is corrupted. Recall that, by assumption,
in this case, the indirection node is honest. Thus, A receives dstRb

srcI values, for
unknown srcI values. Thus, given polynomially many dstRb

srcI values, A can not
learn information on dstR0 nor dstR1.

– For the challenge communication between S and Rb, recall that, by the definition
of the function αRA, the end-sender S in the challenge session is assumed honest
(since it does not make sense to check the anonymity of the end-receiver w.r.t.
the end-sender, which explicitly knows its identity). Also, A does not get any
information on the second leg, since when ¬ERA(rCh, rA, b) happens, the entire
second leg, including the indirection node, is honest. In definitive, A gets only
subpaths leaks on the first leg. These leaks do not give any direct or indirect
information on R0 nor R1.

For a fixed random string rCh, these three sets of information thatA learns during the RA
challenge are actually the same whether b = 0 or b = 1. Therefore, if RA ⊆{0, 1}

∗ is the
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subset of random strings rA such that A′(A, rA)Ch(F,αRA ,0,rCh) = 0 when ¬E(rCh, rA, 0),
then becauseA′(A, rA) is a deterministic machine ∀ rA ∈ RA, A′(A, rA)Ch(F,αRA,1,rCh) =
0 when ¬E(rCh, rA, 1) except with negligible probability (that depends polynomially on
Advps−ind(λ) + Advik-cpa(λ)). The probabilities being the same for every random string
rCh, by the law of total probability, eq (B.1) holds.

Then, for the case of SA and SU, the situation is simpler. In the SA challenge, when
ESA does not happen, A gets at most the following leaks about the challenge communi-
cation between Sb and R (when R, in particular, is corrupted): (offline, sid, ocomid,R),

(sid,R, ocomid, coneA→I , k), and (ocom-rcvr, sid, (Zj
cidj+1
−→ . . .

cidn−→ R), ocomid‖cnt, data). A
also gets subpaths leaks relating to the second leg. A however does no get any informa-
tion on the first leg, since when ¬ESA(rCh, rA, b) happens, the entire first leg, including
the indirection node, is honest. As a result, A get no direct or indirect information
relating to Sb, and, by an argument similar to the case of RA, the equality (B.1) can
be show to hold perfectly for SA(i.e. with a negligible factor of zero). Likewise, for SU,
when ¬ESU , then the entire routes between Sa and Ra, and Sa′ and Ra′ consist only
in honest nodes. Thus A gets no information at all on the two these communications
(i.e. no information relating to the challenge), which trivially yields the result.

Using equality (B.1), we show that, for any rCh, rA←$ {0, 1}∗ and PROP ∈ {SA,RA,SU },
the following holds:

Pr
[

A′(A, rA)Ch(F,αPROP,0,rCh) = 0
]

= Pr
[

A′(A, rA)Ch(F,αPROP,0,rCh) = 0
∣
∣
∣EPROP(rCh, rA, 0)

]

· Pr[EPROP(rCh, rA, 0)]

+ Pr
[

A′(A, rA)Ch(F,αPROP,0,rCh) = 0
∣
∣
∣¬EPROP(rCh, rA, 0)

]

· Pr[¬EPROP(rCh, rA, 0)]

= Pr
[

A′(A, rA)Ch(F,αPROP,0,rCh) = 0
∣
∣
∣EPROP(rCh, rA, 0)

]

· Pr[EPROP(rCh, rA, 0)]

+ (Pr
[

A′(A, rA)Ch(F,αPROP,1,rCh) = 0
∣
∣
∣¬EPROP(rCh, rA, 1)

]

+ negl(λ)) · Pr[¬EPROP(rCh, rA, 0)]

≤ Pr[EPROP(rCh, rA, 0)]

+ (Pr
[

A′(A, rA)Ch(F,αPROP,1,rCh) = 0
∣
∣
∣¬EPROP(rCh, rA, 1)

]

+ negl(λ)) · Pr[¬EPROP(rCh, rA, 0)]

≤Pr[EPROP(rCh, rA, 0)] + Pr
[

A′(A, rA)Ch(F,αPROP,1,rCh) = 0
∣
∣
∣¬EPROP(rCh, rA, 1)

]

+ negl(λ)

≤Pr[EPROP(rCh, rA, 0)] + Pr
[

A′(A, rA)Ch(F,αPROP,1,rCh) = 0
]

+ negl(λ)

We have almost completed the proof of the theorem. Remains only to to quantify the
probability of ESA, ERA and ESU . Whether b = 0 or b = 1, the probabilities of these
events for any fixed rCh, rA ∈ {0, 1}∗ is bounded above as follows. The probabilities are
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taken on the random choice of A in corrupting a specific subset of nodes.

Pr[ESA(rCh, rA, b)] = 1− Pr[no node on the route from Sb to I is corrupted]

= 1−

(|Ω|−|rtb|
|Ωc|

)

( |Ω|
|Ωc|

)

≤ 1−

(|Ω|−lmax

|Ωc|

)

( |Ω|
|Ωc|

)

Pr[ERA(rCh, rA, b)] ≤ 1−

(|Ω|−lmax

|Ωc|

)

( |Ω|
|Ωc|

) (similarly to SA)

Pr[ESA(rCh, rA, b)] = 1− Pr
[
no node between Sa and Ra is corrupted ∨
no node between Sa′ and Ra′ is corrupted

]

≤ 1− Pr[no node between Sa and Ra is corrupted]

≤ 1−

(|Ω|−2lmax+1
|Ωc|

)

( |Ω|
|Ωc|

)

Since the whole proof holds for any randomly sampled (rCh, rA), we can remove the
explicit random strings (making A′(A) and Ch probabilistic again), and obtain the
theorem.

B.6.2. Proof of Theorem 6 (MU-tracing)

This section provides the full proof of Theorem 6, stated on page 133.

Proof of Theorem 6. Following Definition 26, let us first study the case when nodes Z1,
. . . ,ZK are on the first leg. For a given i ∈ IMU -R

F , viewb(i) is:

ContextZ1∪···∪ZK

R0,R1
(i) =







{(Z, srcZ , dstZ , (pkZ , skZ)) | Z ∈ Ωc}

∪{(Z,R′, PSZ→R′ , coneZ→R′ , cidZ→R′) | Z ∈ Ωc, R
′ ∈ Ω \ {R0, R1}}

∪ {(Z, (N,PSZ→Ra
, coneZ→Ra

, cidZ→Ra
)) | a ∈ {0, 1}, Z ∈ Ωc \ (Z1 ∪ . . .ZK)}
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View
Ωc\(Z1∪···∪ZK)
Sa→Ra,ocomida,init(i) =







(subpath, sid, sp1), . . . ,

∀Z ′ ∈ (nodes(spi)) ∩ Ωc, (Z ′, PSZ′→Ia
, coneZ′→Ia

)

if Sa ∈ Ωc,

(send, sid, ocomida, Ra, dataa), ∀dataa ∈ {dataa}

(sender-pick-route, sid, ocomida, Sa)

(sender-route, sid, ocomida, (Z ′
k,ik+1, cidk,ik+1)), (Z ′

k,ik+1

cidk,ik+2

−→ . . .
cidk,nk−→ Z ′

k,nk
)

∀Z ′ ∈
{
Z ′

k,1, . . . , Z
′
k,ik

}
∩ Ωc, (Z ′, PSZ′→Ia

, coneZ′→Ia
)

(ocom-sender, sid, (Z ′
k,1

cidk,2

−→ . . .
cidk,ik−→ Sa), payload, ocomida‖cnt, dstRa

srcIa )

if Ia ∈ Ωc,

(ocom-I, sid, (Z ′
k,1

cidk,2

−→ . . .
cidk,ik−→ Ia), flag, ocomida‖cnt) for cnt ∈ {1, . . . , 5, 8}

∀Z ′ ∈
{
Z ′

k,1, . . . , Z
′
k,ik

}
∩ Ωc, (Z ′, PSZ′→Ia

, coneZ′→Ia
)

PSIa→Ra

(I-pick-route, sid, ocomida, Ia)

(I-route, sid, ocomida, (Z ′
k,ik+1, cidk,ik+1)), (Z ′

k,ik+1

cidk,ik+2

−→ . . .
cidk,nk−→ Z ′

k,nk
)

∀Z ′ ∈
{
Z ′

k,ik+1, . . . , Z
′
k,nk

}
∩Ωc, (Z ′, PSZ′→Ra

, coneZ′→Ra
)

(ocom-I, sid, (Z ′
k,1

cidk,2

−→ . . .
cidk,ik−→ Ia), payload, ocomida‖cnt) for cnt ∈ [9, |{dataa}|+ 9]

where all node Z ′ in this view does not belong to the set Z1 ∪ · · · ∪ ZK

ViewZ1∪···∪ZK

Sa′ →Ra′ ,ocomida′
(i) =

{

(subpath, sid, sp1 = (Z1,1
cid1,2

−→ . . .
cid1,n1−→ Z1,n1

), flag), . . . , (subpath, sid, spK),

∀Z ∈ (Z1 ∪ . . .ZK) ∩ Ωc, (Z,PSZ→R
a′
, coneZ→R

a′
)

We reason on the information in the commit view, and study if it may (indirectly)
allow the adversary to link the information in the challenge view to R0 or R1. More
exactly, we have to analyse whether the adversary can know of Ra in the commit view
(the first view) is the same as Ra′ in the challenge view (the second view). We show that
it is not the case, i.e. that A can not distinguish between view0(i) and view1(i).

Both in the commit and challenge view, A gets leaks that depend on R0 and/or R1,
under the form of dst values in pseudonyms, or of public keys in encryptions of one. We
show, however, that the information on Ra in the commit view can not be used to by the
adversary to distinguish with more than a negligible advantage whether the information
in the challenge view relates to the same Ra or to a different Ra′ . This holds by the
by the indistinguishability of pseudonyms and the IK-CPA property, and because the
definition of the MU-tracing property ensures that nodes which appear in the commit
view do not appear in the challenge one (indeed, the commit view is taken over the set
of nodes N := Ωc \ (Z1 ∪ · · · ∪ ZK)).

– In the commit view, even if S and Ia are both honest, A gets sub-paths and tuples
(Z ′, PSZ′→Ia, coneZ′→Ia). Thanks to the provided Context, A directly knows that

187



B. Detailed Cryptographic Proofs

these pseudonyms and encryption relate to Ia. But that does not say anything
on Ra, and can not be used by A to win the challenge. Also, note that the set
of nodes (and thus all sub-paths) that appear in the commit view, and the set of
nodes (and sub-paths) that appear in the challenge view are disjoint. Therefore,
in themselves, sub-paths do not provide any advantage to the adversary towards
winning the challenge.

– If Ia is corrupted (and thus by assumption Sa is honest), A additionally gets
PSIa→Ra and several tuples (Z ′, PSZ′→Ra , coneZ′→Ra) in the commit view. Then,
in the challenge view, A gets tuples (Z,PSZ→Ra , coneZ→Ra), for different nodes
Z 6= Z ′. If there exists an adversary capable of distinguishing view0(i) and view1(i)
based on these information, it is possible to construct an adversary B that breaks
the indistinguishability of pseudonyms or the IK-CPA property. The reduction is
similar to that of proof of Theorem 3 in Section B.4 of this appendix: since there
are at most lmax challenge pseudonyms and encryptions of one in the challenge
view, it can be shown that δR ≤ lmax · (Adv

ps−ind
A (λ) + Adv

ik-cpa
A (λ)) by a hybrid

argument

– If Sa is corrupted (and thus, by assumption Ia is honest), A gets tuples (Z ′,
PSZ′→Ia, coneZ′→Ia) in the commit view, as well as the identity of Ra. A thus
deduces the value of a, since it knows the identities of R0 and R1. The latter
fact does not help A at all towards winning the challenge. And, by an argument
similar to the above point, even if Ia = R0 or R1 (which happens with probability
2/ |Ω|, the tuples (Z ′, PSZ′→Ia , coneZ′→Ia) only provide a negligible advantage to
adversary.

As a result, we have that δR = negl(λ), and MU-tracing holds with all but a negligible
advantage for the second leg.

The case of MU-tracing on the first leg is similar, but features one difference. In the
challenge view, A gets one or more pseudonyms PSZ→Ia′ , where Z is a corrupted node
in the set Z1 ∪ · · · ∪ ZK , and Ia′ is either I0 or I1. If A can determine whether this Ia′

in the challenge session is the same as the node Ia in the commit view, then she wins
the challenge. When the indirections nodes I0 and I1 are both honest, then the same
arguments as for the case of the second leg apply, and it is possible to show that the
adversary has a negligible advantage in distinguishing view0(i) from view1(i).

However, when I0 or I1, or both, are corrupted the adversary wins with probability
one, independently of the values of a and a′. We prove that by a case study of corruptions
states of corrupted nodes, and on whether a = a′ or a 6= a′. Firstly, let us assume that
a = a′ and that Ia = Ia′ is corrupted (the corruption state of I1−a does not matter).
Then, in the commit view, A recognises PSZ′→Ia as the pseudonym of the corrupted
node Z ′ towards the corrupted indirection node Ia, and trivially knowns the identity of
Ia. Likewise, in the challenge session, A recognises PSZ→Ia′ as the pseudonym of the
corrupted node Z towards Ia′ , and trivially knows the identity of Ia′ . Thus,A can observe
that Ia = Ia′ , and guess that she is observing view0(i) with probability one. Secondly,
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assume that a 6= a′, and that I0 and I1 are both corrupted. Then, by a similar argument
as the first case, A can deduce the identities of the indirections nodes in the commit and
challenge view, observe that they are different, and deduce that b = 1. Finally, when
a 6= a′ and only Ia or Ia′ is corrupted (but not both), A can only deduce the identity of
the indirection node of the commit view, or of the challenge view (respectively). Since
this case only arises in this particular configuration, it indirectly indicates to A that she
is witnessing view1(i).

The proof for the first leg can be concluded in the same manner as proof of Theorem 5,
by introducing a distinguishing event EMU -S defined as:

Pr[EMU -S ] = Pr[I0 ∈ Ωc ∨ I1 ∈ Ωc ]

= 1− Pr[I0, I1 ∈ Ω]

≤ 1−

(|Ω|−2
|Ωc|

)

( |Ω|
|Ωc|

)

An analysis based on this distinguishing event allows to obtain the theorem, stating that:

δS ≤ 1−

(|Ω|−2
|Ωc|

)

( |Ω|
|Ωc|

) + negl(λ)

B.7. Towards UC-realising Flink

The proof that the proposed protocol UC-realises F (in particular) lies in the Flink-hybrid
protocol, which in the UC-framework can be identified as an assumption. Namely, Flink

represents the assumption that the controlled traffic rate, the dummy messages, and the
message re-ordering mechanisms prevent external adversaries from even observing the
exchanged messages between neighboring nodes (except maybe with a negligible advan-
tage). This section is about breaking down and studying the feasibility and practicality
of this assumption. For that, we describe the protocol Πlink, and present a slightly mod-
ified version of Flink compared to the one defined in Chapter 5 (p. 106). Then, we put
forwards a (partial) proof that Πlink UC-realises that variant of Flink.

B.7.1. Modeling Πlink

The protocol Πlink is presented in Fig. B.3. It is written with the same formalism as
the other protocols presented in Chapter 5, and from the point of view of one node X.
There are some points of Πlink that need to be explained. First, note that according to
Πlink, the first action of any node X is to perform a DHKA with each of its neighbors.
Then, Πlink (just as Flink) takes link-send inputs, and makes link-rcvd outputs. When X
gets a link-send input (line 10), it simply places the input message in the corresponding
neighbor pool. When X receives a message from a neighbor (line 12), it decrypts the
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header with the link keys from DHKAs, and checks whether it is a real or dummy
message. Dummy messages are simply discarded, while real messages are output (to
the parent ITI, e.g. E or an instance of Π). In both cases, X also updates its incoming
traffic counters nIdum

and nIreal
. The final code entry point (line 16) depicts one batching

round, in which a node samples messages from pools, verifies the traffic rates constraints,
and sends messages. Although, in an actual protocol implementation, a batching round
would be triggered every tP seconds, here, this is modeled by clock-ticks inputs. Indeed,
in the UC framework, there is no notion of time, and the constraint “every tP seconds”
can not be formulated in a UC protocol or ideal functionality. Here, we assume that
the clock-tick inputs are given out by the environment, on a regular basis (and passed
down by the parent ITIs of Πlink, if the later is used as subroutine). The unfolding
of a round follows the description given in Chapter 4 (p. 68), only transformed into
pseudo-code: insert a dummy message in a fraction fdum of pools, sample a batch of
n = mini(min(nPYi

−nPmin, nPYi
·fP)) messages from each pool, compute the traffic rates

constraints (including dummy budgets bIdum
and bOdum

), adjust the batches accordingly,
update traffic counters, and send the resulting batches. The only difference with the
description from Chapter 4 is that it is assumed that end-to-end dummies are not needed,
i.e. that a node never receives too many messages over short periods of time (see comment
on line 30). Indeed, this would otherwise necessitate Πlink to have access to routing tables
(in order to find a suitable route on which to send the end-to-end dummy messages), in
turn requiring to modify Πrtprop and Π. Also, note that this assumption is realistic, since
our results from practical experimentations on the protocol (Chapter 6, p. 140) show
that nodes need only rarely to resort to end-to-end dummy messages.

B.7.2. Modeling a Variant of Flink

We then present a variant of Flink, denoted F ′link. Indeed, to be able to prove that Πlink

UC-realises Flink, both ITIs should at least have the same input/output behavior. Yet,
Flink, as described in Chapter 5, does not expect the same form of link-send input (Πlink

requires a ssid and a cone ciphertext to be provided in those inputs, while Flink does not),
and Flink is not driven according to discrete rounds triggered by clock-tick inputs.

The adapted version of Flink is given in Fig. B.4. Its differences with the version from
Chapter 5 are the following. Firstly, F ′link accepts a cone ciphertext in link-send messages
(although it does not use it). It no longer produces a link-rcvd message immediately
after receiving a link-send input, but emulates delays. For corrupted nodes, this delay is
specified by the ideal adversary Sim: F ′link allows Sim to specify when (at which round)
the message should be output to Y , via a continue signal specifying the ssid of the link
message. For honest nodes, F ′link samples a delay delayr (in number of rounds), and
stores the link-send input into a poolX structure, at index r + delayr. This specifies
that the message should be processed at round r + delayr. Consequently, when rounds
r′ = r+delayr will be activated (that is, after delayr clock-tick inputs), F ′link will look into
poolX [r′], and process all messages contained in this set. That is, for such message, F ′link

makes a link-rcvd output to the adequate neighbor of X. More generally, the functionality
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1 : The protocol is parameterised with nPmin, fP , fdum, ∆r
2 : upon input (setup, sid, neighbors):
3 : Initialise the round counter r = 0, and set NT = neighbors
4 : For each Yi ∈ NT , create a pool PYi

← ∅
5 : ∀r′, set nIdum

(Yi, r′) = 0, nOdum
(Yi, r′) = 0, nIreal

(r′) = 0, and nOreal
(r′) = 0.

6 : // Perform DHKA

7 : ∀Yi ∈ NT , sample ai ←$Zq , store (dhka, ai, Yi), and send Yi (dhka, sid, gai )
8 : upon receiving message (dhka, sid, gb) from Y ∈ NT :
9 : Retrieve (dhka, ai, Y ), compute s = (gb)ai , derives kXY , kY X from s, and store them.

10 : upon input (link-send, sid, ssid, Y, m = 〈h, c, c′〉 , cone) (with a new ssid):

11 : Put (sid, ssid,
〈
{h}kXY

, ReEncnopk(cone, c), ReEncnopk(cone, c′)
〉

, type := real) in PY .

12 : upon receiving message (link-msg, sid, ssid, m) from Y (with a new ssid):
13 : Decrypt the header of m with stored key kY X and obtain m′.
14 : if the header specifies a dummy flag then Increment nIdum

(Y, r)
15 : else Increment nIreal

(r), and output (link-rcvd, sid, ssid, Y, m′).
16 : upon input (clock-tick, sid): // Description of a batching round

17 : − Randomly sample a subset P ⊆
{
PYi

}

∀Yi

of size ⌊|NT | · fdum⌋.

18 : Generate (pk, sk)← KeyGen(1λ)

19 : In each PYi
∈ P, insert (sid, ssidi,

〈

{dummy}kXYi
, Enc(pk, 1), Enc(pk, 1)

〉

, type := dummy)

20 : − Let k := mini(min(nPYi
− nPmin, nPYi

· fP ))

21 : if k 6= 0 then For each PYi
, sample a set MPYi

of k random messages.

22 : else ∀Yi ∈ NT , MPYi
=

{

(sid, ssidi,

〈

{dummy}kXYi
, Enc(pk, 1), Enc(pk, 1)

〉

, type := dummy)

}

23 : − Compute:
24 : equilibirum := nOreal

(r −∆r)− nIreal
(r −∆r)

25 : bIdum
:= min

Yi∈NT

( ∑

r′∈[r−∆r,r]

nIdum
(Yi, r′)

)
and bOdum

:= min
Yi∈NT

( ∑

r′∈[r−∆r,r]

nOdum
(Yi, r′)

)

26 : maxreal := bIdum
− equilibirum and minreal := −bOdum

− equilibirum

27 : − while
∑

Yi∈NT

(
# real msgs in MPYi

)
> maxreal:

28 : Replace a random real message by a dummy in MPYi
, for a random Yi

29 : while
∑

Yi∈NT

(
# real msgs in MPYi

)
+ min

Yi∈NT

(
# dummy msgs in MPYi

)
< minreal:

30 : // Assumed not to happen (would require end-to-end dummy message)

31 : − Decrease counters nIdum
and nOdum

according to the consumed budgets

32 : Set nOreal
(r)←

∑

Yi∈NT

(
# real ∈MPYi

)
and ∀Yi ∈ NT , nOdum

(Yi, r)←
(

# dummy ∈MPYi

)

33 : − ∀MPYi
and ∀(sid, ssidj , mj , typej) ∈MPYi

, send (link-msg, sid, ssidj , mj) to Yi

34 : − Increment the round number r

Figure B.3. – Description of Πlink for node X

F ′link checks the honest nodes’ pools at every clock-tick input, and for every honest node.
This design of the delays of honest nodes’ messages, with the probability distribution χ,
is discussed in the proof sketch below. It can be considered that χ corresponds to the
discrete probability distribution of pool delays presented in Fig. 6.3 (p. 144), obtained
empirically from simulations of our proof-of-concept protocol implementation.

Impact of Flink on the Proofs in Chapter 5 Note that these modifications to Flink

require to slightly modify the proofs and proofs setup of Theorems 2 and 4 (that Πrtprop

and Π respectively UC-realise Frtprop and F). In particular, the clock-tick inputs must
be handled by all ITIs, and passed down by nodes’ ITIs to F ′link. However, the proof
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1 : The functionality Flink is responsible for delivering link messages.

2 : upon input (setup, sid, neighbors) from party X:

3 : Initialise the round counter rX = 0, and a message pool poolX .

4 : Send (dhka, X, neighbors) to Sim.

5 : upon input (link-send, sid, ssid, Y, m) from party X (with a new ssid):

6 : if X ∈ Ωc then

7 : Wait for (continue, sid, ssid) from Sim.

8 : When received, output (link-rcvd, sid, ssid, X, m) to party Y in the current round.

9 : else

10 : Sample delayr ←$ χ, and store (Y, (link-rcvd, sid, ssid, X, m)) in poolX [r + delayr].

11 : upon input (clock-tick, sid) from X:

12 : if X ∈ ΩSim then

13 : For each (Y, (link-rcvd, sid, ssid, X, m)) in poolX [rX ]:

14 : output (link-rcvd, sid, ssid, X, m) to party Y .

15 : Send (clock-tick, sid, X) to Sim.

16 : Increment the round counter rX .

Figure B.4. – The Modified Link Message Functionality F ′link

outline stays the same, and does not modify the results. Indeed, the impacts on the
real executions is only that link messages are not immediately transmitted, and may be
out of order, and that A is allowed to specify the delay of its messages using continue

messages to F ′link. This however do not necessitate a modification of Πrtprop or Π. Then,
the impact on the ideal execution (and in the construction of the simulator for the proof),
is minor, since Sim simply needs to honestly simulate F ′link instead of Flink, and let A
specify the delays of corrupted node’s messages. Apart from these modifications, the
construction of the simulator does not need to change. Indeed, the simulator does not
rely on the order in which messages are delivered, or on the fact that link messages are
immediately delivered. Thus, the proofs of Theorems 2 and 4 are not impacted .

B.7.3. Towards showing that Πlink UC-realises Flink

Since it could not be proven, we do not formulate a theorem stating that Πlink UC-realises
F ′link, but merely provide a proof sketch that it does.

Proof Sketch 7 (Πlink UC-realises F ′link). Similarly to previous proofs, the adversary A is
assumed static and semi-honest, and we construct an adversary Sim that interacts with
E and F ′link. Sim internally runs a copy of A, and honestly forwards all communications
between A and E. Sim needs to simulate: the DHKAs, the real and dummy link messages
sent and received by honest and corrupted nodes, and more importantly, Sim must sim-
ulate the rounds, and the fact that messages are delayed (to simulate the time they wait
in pools in the real execution with Πlink). Note that, contrarily to the case of Πrtprop and
Π, here, actual messages are exchanged between the nodes’ ITIs in a real execution of
Πlink. This implies, in the UC framework, that A can observe these messages in the real
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execution (but not modify them, since we assume a passive adversary), and that these
messages must be simulated by Sim in the ideal execution. Therefore Sim must even
simulate messages exchanged between honest nodes, including dummy ones.
Sim is constructed as follows. The DHKAs are the simplest component to simulate.

When Sim externally receives (dhka,X, neighbors) from F ′link, in which X is a honest
node, Sim(X) does the following for Y ∈ neighbors: it generates a←$Zq, and simulates
the sending of (dhka, sid, ga) to Y . At some point, Sim(X) will receive a message (dhka,
sid, gb), from A(Y ) if Y is corrupted, and played by A, or from Sim(Y ) if Y is honest
and simulated by Sim. Node Sim(X) then deduces s = (ga)b, and generates the link keys
exactly as X would do in Πlink. In the rest of the simulation, Sim(X) encrypts the header
of each link message between X and Y with these keys, and decrypts received messages’
headers with them. Note that for DHKAs between two corrupted nodes, Sim has nothing
to simulate, since A will play both neighboring nodes. At the end of the simulations of
the DHKAs, note that Sim will have seen all neighbor values in setup inputs, for both
corrupted and honest nodes. This allows Sim to have knowledge of the whole topology
graph.

Then Sim simulates the exchanges of dummy and real link messages between nodes.
We describe how this is done in the four possibles cases: messages between two corrupted
nodes, messages from a corrupted node to a honest node, messages from a honest node
to a corrupted node, and messages between honest nodes.

Simulating messages from A(X) to A(Y ): When the environment E provides a
(link-send, sid, ssid, Y,m, cone) input to A(X), Sim immediately provides a copy of
this input to F ′link(X). F ′link will then expect a (continue, sid, ssid) signal from
Sim. When A(Y ) later makes the corresponding (link-rcvd, sid, ssid,X,m) out-
puts (which is linked to the link-send input, at least by the ssid value), Sim sends
(continue, sid, ssid) to F ′link. Consequently, F ′link(Y ) outputs (link-rcvd, sid, ssid,
X,m) to Sim, which the latter simply discards.
Note that this simulation was for the case of real messages. However, A(X) also
sends dummy messages to A(Y ). Note that A(X) is not instructed by E to send
dummy messages. Indeed, as per the code of Πrtprop (that A(X) runs honestly
since the adversary is assumed passive), A(X) crafts and sends such messages
on its own. When A(X) sends a dummy message to A(Y ), however, Sim has
actually nothing to do: the exchange is internal to A.
This simulation of real and dummy messages from A(X) to A(Y ) perfectly mirrors
a real execution, and is thus indistinguishable from it.

Simulating messages from A(X) to Sim(Y ): Here, Sim must play the role of the
link-receiver Y . Again, we distinguish the case of real messages and the case of
dummy messages. The simulation of real messages is analogous to the above sim-
ulation case, except that, at the end, F ′link(Y ) makes the link-rcvd output directly
to E. The fact that Sim can specify by a continue message is crucial here: it
allows to ensure that Flink(Y ) makes its link-rcvd only after A(X) actually sent
the message.
For dummy messages, the simulation is trivial: when Sim(Y ) receives a dummy
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message from A(X), Sim simply discards it.
Again, these simulations perfectly mirror a real execution.

Simulating messages from Sim(X) to A(Y ): From this point on, we have to in-
troduce strong assumptions to carry out the proofs. Indeed, as we will see, it is
not possible to construct a simulator and prove indistinguishability with a real
execution without such assumptions.

For the case of messages from a honest nodes to a corrupted neighbor, we again
distinguish between the sending of real and the sending of dummy messages, and
begin with the case of real messages. Sim does not get to see the link-send input
for honest nodes. However, when the link-receiver Y is corrupted, Sim receives
from F ′link(Y ) the output (link-rcvd, sid, ssid,X,m = 〈h, c1, c2〉), with a header h
in the clear (not AES encrypted with link keys). Consequently, Sim knows that
it must simulate the sending of a real message to A(Y ). For that, Sim(X) crafts

m′ =
〈

{h}kXY
, c1, c2

〉

(encrypting h with the link key it knows, and copying c1

and c2 from the link-rcvd outputs). Sim(X) then sends (link-msg, sid, ssid,m′)
to A(Y ). This simulation of real messages from Sim(X) to A(Y ) is however not
indistinguishable from a real execution. Indeed, F ′link is constructed to emulate the
delays of the pool-based message re-ordering in Πlink by sampling a delay from the
probability distribution χ. However, even if χ can be approximated by experimental
measures, it is quite likely that there will be a non-negligible statistical distance
between the messages delays in the real execution and the delays emulated by F ′link.
Indeed, F ′link does not take into account, in particular, the number of received
and sent real messages in past rounds, and thus may not even respect the traffic
rates constraints. To be able to carry on with the proof, we will however assume,
for the sake of the argument, that the independently sampling the delay ofr each
real message from χ produces delays that are indistinguishable from that of a real
execution. This assumption is discussed after the proof sketch.

Now, for the case of dummy messages from a honest node to a corrupted one,
the simulation is also inevitably flawed. Indeed, Sim does not get any hint that
it must simulate the sending of a dummy message. Instead, Sim must, by itself,
know how many dummy messages Sim(X) should send to A(Y ) in each round.
However, this number varies from round to round, and in a real execution, it would
depend on the values of the traffic counters nIreal

, nIdum
, nOreal

, nOdum
of node X.

The issue here, is that Sim does not know the value of these counters. Actually,
simulating dummy messages from honest nodes is the second challenge of this
proofs, and the second point that we do not know how to prove (and that may not
be provable). For this reason, we defer its description in the next paragraph, after
discussing the simulation of messages between two honest nodes.

Simulating messages from Sim(X) to Sim(Y ): The construction the simulator for
this case involves the same difficulties as mentioned in the previous one. That is,
Sim has no source of information regarding the messages exchanged between hon-
est nodes. It does not know the number of messages that honest nodes exchange
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per round, nor the type (dummy or real) of these messages. In consequence, Sim

can not simulate link messages between honest nodes such that the simulation is
indistinguishable from a real execution. As a side note, we remark that this is
actually the desired property of our protocol, modeled as an assumption by F ′link:
that an external adversary is not able to know the number of real messages ex-
changed between neighboring nodes.
We describe below how link messages from honest to honest nodes are simulated,
in the same time as the simulation of dummy messages from honest to corrupted
nodes.

The approach we suggest here is to approximate the number of link messages sent
by a honest node in each round. We do not distinguish real and dummy messages, but
only care about the number of messages. More formally, we make the following assump-
tion: the number of messages sent by a honest node at round r is dictated by a known
probability distribution. That is, Sim knows, for any node X, a (possibly different) prob-
ability distribution ψX : N→ [0, 1], which associates a probability to any number of link
messages. Therefore, we construct the simulation of messages sent by a honest node X
in the following way. When Sim receives (clock-tick, sid,X) from F ′link, Sim samples a
number of link messages n from ψX . For each neighbor Y of X, Sim does the following:

– If Y is honest, then Sim(X) crafts and sends to Sim(Y ) n different messages
〈

{dummy}kXY
,Enc(pk, 1),Enc(pk, 1)

〉

, where kXY is the actual key for this pair of

the X-Y link, and pk is a freshly generated public key. That is, Sim(X) sends only
dummy messages.

Simulating messages between neighboring honest nodes in this manner ensures in-
distinguishability from a real execution, if we do not take into account the fact
that the number n of link message sent may not be correct. We discuss this latter
point later, and show here that the appearance and data contained in messages do
not allow to distinguish the real and simulated executions. Indeed, the fact that X
always sends dummy messages is not detectable (except with a negligible probabil-
ity). Although X may be instructed by E to send real messages, the fact that the
encrypted header always contains a dummy flag (instead of an actual header such
as payload‖cid), and the fact that Elgamal ciphertexts encrypt 1 under a random
public key, are undetectable for the adversary. Indeed, if there exist adversary
distinguishing between the simulation and a real execution based on the encrypted
header, then it is trivial to show that there exists an adversary breaking the IND-
CPA security of the AES. Then,if there exist adversary distinguishing between the
simulation and a real execution based on the Elgamal ciphertexts, then it is pos-
sible to construct an adversary breaking the USS property of the scheme. Indeed,
although it is E that provides the ciphertexts c1 and c2 of real messages in link-send

inputs to F ′link(X), E does not expect to recognise them when they are sent in a
link-msg message, since in the code of Πlink, a node re-encrypts every real message
it receives as input.

– If Y is corrupted, then Sim(X) behaves exactly in the same way, but for a number
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of messages n′ := n−nreal, where nreal is the number of real link messages already
simulated from Sim(X) to A(Y ) in the current round. Indeed, as described in
the simulation case “simulating messages from Sim(X) to A(Y )”, Sim gets a leak
from F ′link every time Sim(X) sends a real message to A(Y ). We define nreal as
the number of such leaks.

In both cases (whether Y is honest or corrupted), the simulation of link messages, in
particular dummy ones, from a honest node X is not indistinguishable from a real exe-
cution. There are several things that can go wrong. The most straightforward example
is that, for the simulation of dummy messages from a honest node to a corrupted one,
the sampled number of link message n may actually be smaller than the number nreal of
already simulated real messages. More generally, proving that the simulation is indistin-
guishable from a real execution would require to prove that, at each round, the probability
that the sampled number n of messages sent by honest node X does not correspond the
number that this node would send in a real execution, is negligible. We do not know of a
way to prove this fact, which may actually not be provable at all. Therefore, to conclude
the proof (sketch), we put it as assumption. That is, we assume that, for each honest
node X and each round r, the number n sampled from ψX is exactly equal to the number
of link messages that X would send to each neighbor, except with a negligible probability.

This concludes the proof sketch.

B.7.4. Perspectives

As a result, in order to complete the proof, we made two strong assumptions:

– That independently sampling the delay of each message using χ produces mes-
sage delays indistinguishable from that of a real execution, except with negligible
probability.

– That there exists a probability distribution ψX for each node X that gives the
number of link messages (real and dummy counter together) that node X sends to
each neighbor in a given round.

These two assumptions are likely to be impossible to prove. This means ultimately
that it is not possible that Πlink UC-realises F ′link (at least with the chosen approach for
the proof). Intuitively, this means that F ′link (and thus Flink) is also a strong assumption
in itself. Although we intuitively knew that Flink was indeed as strong assumption, we
employed this ideal functionality in Chapter 5, and provided proofs in the Flink-hybrid
model, so as to focus the analysis on the impact of (collusions of) corrupted nodes, that
we believe are the greater threat to our protocol.

Our our attempt at proving that Πlink UC-realises F ′link put in light the difficulty of
formalising a security definition (i.e. an ideal functionality) that captures the fact that an
external observer can not know the number of messages exchanged between neighboring
nodes, and the difficulty of designing a protocol that UC-realises it.
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This attempt also shows how Flink should be modified to become UC-realisable; i.e. what
are the additional leaks that Flink must provide to Sim to be able to construct an ade-
quate simulator. In our approach here, we have proposed a variant F ′link that conserves
the results from Chapter 5. That is, F ′link is a variant of the ideal functionality used in
Chapter 5, but that does not invalidate our proofs of Theorems 2 and 4. However, if we
accept to break this compatibility, here are some leads to modify the functionality so as
to make it UC-realisable:

– Firstly, run Πlink inside Flink, so that the latter can perfectly emulate the delays of
honest nodes’ real messages, instead of relying on χ.

– Since, in a real-world run of our protocol over the Internet, a network observer
does see the number of link messages sent by a node, it would be logical to make
Flink leak that information (without specifying how many of these messages are
real ones, and how many are dummy ones). This can be done also by having Flink

internally run an instance of Πlink, and observe messages sent by nodes at each
round.

– These two previous modifications, however, require that the simulated execution
and the internal state of Flink be synchronised. In particular, it is necessary that
Flink knows the number of dummy messages sent by corrupted nodes to honest
neighbors. Otherwise, the internal Πlink instance can not run, since honest nodes
with corrupted neighbors can not properly compute their dummy budget bIdum

.
Yet, the number of dummy messages sent by corrupted nodes is determined by A
(ran within Sim in the ideal execution). Although A is a passive adversary and
follows the code of Πlink, it remains that the number of dummy messages that a
corrupted node sends depends on A’s random choices, and that these choices must
be communicated to Flink. Thus, Flink should be modified to let Sim specify the
number of dummy messages that each corrupted node A(X) sends in each round.

To further validate our proofs of security, we envision to design a new variant of Flink

following these guidelines, verify that Πlink UC-realises it, and then adapt the proofs of
Theorems 2 and 4 to the Flink-hybrid model for this new version.
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Abstract

With the development of online communications in the past decades, new privacy concerns have
emerged. A lot of research effort have been focusing on concealing relationships in Internet commu-
nications. However, most works do not prevent particular network actors from learning the original
sender or the intended receiver of a communication. While this level of privacy is satisfactory for the
common citizen, it is insufficient in contexts where individuals can be convicted for the mere sending
of documents to a third party. This is the case for so-called whistle-blowers, who take personal risks
to alert the public of anti-democratic or illegal actions performed by large organisations.

In this thesis, we consider a stronger notion of anonymity for peer-to-peer communications on
the Internet, and aim at concealing the very fact that users take part in communications. To this
end, we deviate from the traditional client-server architecture endorsed by most existing anonymous
networks, in favor of a homogeneous, fully distributed architecture in which every user also acts as a
relay server, allowing it to conceal its own traffic in the traffic it relays for others. In this setting, we
design an Internet overlay inspired from previous works, that also proposes new privacy-enhancing
mechanisms, such as the use of relationship pseudonyms for managing identities. We formally prove
with state-of-the-art cryptographic proof frameworks that this protocol achieves our privacy goals.
Furthermore, a practical study of the protocol shows that it introduces high latency in the delivery
of messages, but ensures a high anonymity level even for networks of small size.

Résumé

L’avènement de l’ère digitale a changé la façon dont les individus communiquent à travers le monde, et
a amené de nouvelles problématiques en terme de vie privée. La notion d’anonymat la plus répandue
pour les communications sur Internet consiste à empêcher tout acteur du réseau de connaître à la
fois l’expéditeur d’un message et son destinataire. Bien que ce niveau de protection soit adéquat
pour l’utilisateur d’Internet moyen, il est insuffisant lorsqu’un individu peut être condamné pour
le simple envoi de documents à une tierce partie. C’est le cas en particulier des lanceurs d’alerte,
prenant des risques personnels pour informer le public de pratiques illégales ou antidémocratiques
menées par de grandes organisations.

Dans cette thèse, nous envisageons un niveau d’anonymat plus fort, où l’objectif est de dissimuler
le fait même qu’un utilisateur envoie ou reçoive des données. Pour cela, nous délaissons l’architecture
client-serveur couramment utilisée dans les réseaux anonymes, en faveur d’une architecture entière-
ment distribuée et homogène, où chaque utilisateur remplit également le rôle de serveur relais, lui
permettant de dissimuler son propre trafic dans celui qu’il relaie pour les autres. Dans cette optique,
nous proposons un nouveau protocole pour les communications de pair à pair sur Internet. À l’aide
de récents outils de preuves cryptographiques, nous prouvons que ce protocole réalise les propriétés
d’anonymat désirées. De plus, nous montrons par une étude pratique que, bien que le protocole
induise une grande latence dans les communications, il assure un fort anonymat, même pour des
réseaux de petite taille.
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