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Summary

I got my Ph.D. degree in Systems Analysis and Control from the ITMO University
(Russia) in 2009. For the next two years, I was an assistant researcher developing
control solutions for optical telescopes. I accomplished two postdoctoral studies: at
Ume̊a University (Sweden) and Inria Lille (France). In 2014, I joined the Adaptive and
Nonlinear Control Systems Lab at ITMO University (Russia) as a researcher, where I
received my Dr.Sc. degree in Automatic control in 2016. Since 2017, I am a Mâıtre de
Conférences at CentraleSupélec, campus Rennes (France).

I am a member of the IFAC Technical Committee on Adaptive and Learning Systems
and the IEEE Technical Committee on System Identification and Adaptive Control; I
am an IEEE Senior member since 2018. My research interests are adaptive parameter
estimation, disturbance attenuation, nonlinear systems, and state estimation.

This manuscript is prepared to obtain the “Habilitation à diriger des recherches” and
presents my scientific background overview and my main research direction in recent
years: a method to improve transient performance in adaptive parameter estimation.
The proposed procedure enhances existing parameter estimation methods and provides
the following benefits: parameter estimation transients are monotonic without peaking
and oscillations, the gain adjustment becomes transparent and straightforward, and
asymptotic convergence can be established without persistency of excitation for some
input signals.

The manuscript is organized as follows. In the first chapter, I present my CV de-
scribing my professional experience, scientific outcome and collaborations, and teaching
activities. In the second chapter, I overview my research experience and background; in
this chapter, I also present in brief some of my scientific activities: sinusoidal signal es-
timation and disturbance attenuation, state estimation for mechanical systems, human-
machine interaction, as well as some industrial projects. The third chapter presents
my main research activity in recent years, namely the dynamic regressor extension and
mixing procedure. Finally, the fourth chapter describes my future research directions
on adaptation and learning for advanced energy management. The manuscript has two
appendices. Appendix A presents the used notation, and Appendix B contains the
complete list of my publications.
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1 Curriculum Vitae

1.1 Education, Experience, and Mobility
1.1.1 Education, diplomas, and grades
I obtained three scientific degrees in Russia, where the last one is the full Doctor of
Sciences degree, a higher scientific degree in Russia, which may be earned after the
Ph.D. degree. Besides the scientific degrees, I accomplished two postdoctoral fellowships.
These activities are listed below in chronological order.

Master equivalent, 2006.
– Title: Adaptive estimation for poly-harmonic signals with an irregular com-

ponent.
– Degree: Engineer in control systems and informatics.
– University: ITMO University, Saint-Petersburg, Russia.

Ph.D., 2009.
– Title: Adaptive Identification of Quasi-Harmonic Disturbances.
– Degree: Ph.D. in system analysis and control.
– Supervisor: Prof. Alexey Bobtsov.
– University: ITMO University, Saint-Petersburg, Russia.

The main result of the Ph.D. thesis was a new parameter estimation method
for multi-sinusoidal signals. The proposed solution had the lowest computational
complexity compared to other methods available in the literature. The proposed
method was successfully applied for vibration attenuation.

First postdoctoral fellowship, 2012-2013.
– Laboratory: Smart Robotics Lab, Ume̊a University, Sweden.
– Duration: 2 years.
– Supervisor: Prof. Leonid Freidovich.

This postdoctoral fellowship was focused on the modeling, estimation, and control
of hydraulic drives in heavy robotics. The research was conducted in collaboration
with heavy robotics manufacturers: Komatsu (forestry robotics) and Ålö AB (agri-
cultural robotics). The research results were implemented in a prototype control
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1 Curriculum Vitae

system delivered to stakeholders. The scientific results include 4 journal publica-
tions (2 in Q1 journals1) and 3 conference contributions (2 in top-level conferences).

Second postdoctoral fellowship, 2015-2017.
– Laboratory: NON-A team, INRIA, Lille, France.
– Duration: 1.5 years.
– Supervisor: Dr. Denis Efimov.

The main goal of this postdoctoral fellowship was to enhance human-computer in-
teractions with tactile devices. The main contribution is a dynamic human motion
model for human-computer interaction tasks and a prediction algorithm reduc-
ing tactile devices’ latency. The scientific results include 1 international patent,
2 publications (1 in a Q1 journal), and 4 conference contributions (3 in top-level
conferences).

Doctor of sciences, 2016.
– Title: Adaptive Observers for Nonlinear Systems via Parameter Identification.
– Degree: Doctor of Sciences in system analysis and control.
– University: ITMO University, Saint-Petersburg, Russia.

The primary results of this work are new methods for estimation and observer
design for a class of nonlinear dynamical systems based on parameter estimation.
The proposed methods were successfully applied to sensorless control of electric
motors, photovoltaic arrays estimation, and vibration suppression in mechanical
systems.

1.1.2 Professional experience and mobility
After the Ph.D. thesis, my high mobility contributed to establishing fruitful international
collaborations, developing scientific links and personal research direction.

2017 – present: Mâıtre de Conférences (Associate Professor), CentraleSupélec, Rennes,
France.

– Research activities: parameter estimation with enhanced performance and
advanced control for smart energy.

– Teaching activities: teaching and supervision, new courses development.

2015 — 2017: Postdoctoral fellow, Non-A team, INRIA, Lille, France.
– Research activities: Motion prediction and estimation in human–machine in-

teraction for touch sensors.

2014 — 2015: Associate Professor, Department of Control Systems and Informatics,
ITMO University, Saint-Petersburg, Russia.

1Here and below, Q1 journals are defined according to the Scimago SJR journal ranking.

6

https://www.scimagojr.com/journalrank.php?category=2207


1 Curriculum Vitae

– Research activities: nonlinear systems control and estimation.
– Industrial activities: temperature regulation in rapid thermal processes for

semiconductors manufacturing.
– Teaching activities: teaching, supervision of master students and Ph.D. stu-

dents.

2012 — 2013: Postdoctoral fellow, Applied Physics and Electronics Department, Ume̊a
University, Ume̊a, Sweden.

– Research activities: Hydraulic systems in robotics, active vibration control.
– Industrial activities: cooperation with a manufacturer of front-end loaders,

control design for hydraulic drives, and proof-of-concept prototyping.

2008–2011: Assistant Researcher, Department of Control Systems and Informatics,
ITMO University, Saint-Petersburg, Russia.

– Research and industrial activities: Identification and control for high-precision
electrical drives.

1.2 Research Activities
1.2.1 Main research topics
My main research topics are (primarily) focused on fundamental problems and target
developing a well-grounded basis for industrial applications. For a detailed description,
see Section 2.1.

• Enhanced parameter estimation in adaptive and learning systems. This
topic consists of developing methods empowering existing learning and adaptive
approaches, significantly improving transient performance, accelerating the tran-
sients, and removing peaks and oscillations.
Scientific outcome: 9 international journal publications (all 9 in Q1 journals), 8
conference contributions, and 2 publication in national journals (in Russian).

• Velocity estimation and nonlinear observers design. This research direction
includes state estimation methods development for nonlinear systems, primarily
applied to the velocity estimation problem in robotics and sensorless control in
electrical drives.
Scientific outcome: 7 international journal publications (6 in Q1 journals) and 6
conference contributions.

• Adaptive attenuation of periodic disturbances. The results of this research
activity provide adaptive solutions to attenuate unknown narrow-band distur-
bances, primarily applied to the vibration suppression problem in mechanical sys-
tems.

7



1 Curriculum Vitae

(a) Pulications by type (b) International journals publications by year

Figure 1.1: Publications by type and year.

Scientific outcome: 10 international journal publications (4 in Q1 journals), 14
conference contributions, and 13 publication in national journals (in Russian).

1.2.2 Scientific outcome
The illustrative summary of the scientific outcome is depicted in Fig. 1.1. The segmen-
tation of the journal publications by topics is given in Section 2.2.

The total scientific outcome

– 35 peer-reviewed articles in international scientific journals including 22 publica-
tions in Q1 journals;

– 46 peer-reviewed conference contributions including 14 contributions at the top-
level conferences, namely the Conference on Decision and Control and the IFAC
World Congress;

– 1 international patent;

– 32 peer-reviewed articles in Russian scientific journals.

The scientific outcome for the recent years (2017–present)

– 23 peer-reviewed articles in international scientific journals including 16 publica-
tions in Q1 journals;

– 16 peer-reviewed conference contributions including 8 contributions at the top-
level conferences (CDC and World Congress);

– 1 international patent;

– 3 peer-reviewed articles in Russian scientific journals.

8



1 Curriculum Vitae

Bibliometrics2

– h-index: 17,

– Citations, the total number: 1312,

– Citations in 2020: 249.

1.2.3 Fundings and projects
Grants and fundings

Project Coordinator and Principal Investigator:
– Project funding by the Russian Ministry of Science and Education for 3 years,

2011. The project was dedicated to the design of advanced controls for high-
precision drives. The team was composed of 9 members, including 4 perma-
nent researchers and 5 non-permanents. My responsibility was to manage
and direct the scientific activities, define and schedule the research tasks,
coordinate the team members and monitor the overall progress.

Personal Grants and Projects:
– L’allocation d’installation scientifique (Scientific Facility Allocation), 2019,

Rennes Metropole, France;
– Stratégie d’attractivité durable (Strategy of Sustainable Attractiveness ), 2017,

Region Bretagne, France;
– 5 personal research project grants from the Government of Saint-Petersburg,

2007-2011, Russia;
– Young Researcher Support grant by “Bortink” foundation, 2008-2010, Russia;
– 2 personal grants by the Russian Foundation of Fundamental Research, 2009

and 2011, Russia.

Participant and investigator:
– 1 ANR project (Turbotouch), 2015-2017, France;
– 11 projects funded by the Gouverment of Russian Federaation, 2007-2015,

Russia.

Industrial contracts

Scientific advisor in industrial study contracts:

– Modeling of the Rance tidal power station, EDF, 2017 and 2019;

– Control of climatic chambers, BDR Thermea France, 2018;

– Identification and modeling of synchronous motors, Renault, 2018.
2According to the Google Scholar records, May 2021.
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1 Curriculum Vitae

1.2.4 Awards and distinctions
– Elected to the IEEE Senior Member grade, 2018.

– The Best Presentation winner of the “Navigation and Motion Control” conference,
Russia, 2011.

– The winner of the “Young Author Support” program at the 15th IFAC Symposium
on System Identification, France, 2009.

1.2.5 Scientific collaborations
National collaboration (France)

– Team Valse (NON-A), Inria, Lille. Joint research on adaptive systems, parameter
estimation, and human-machine interactions.

– LORIA (Laboratoire lorrain de recherche en informatique et ses applications), Lor-
raine University, Nancy. Collaboration on control and estimation for mechanical
systems.

– L2S (Laboratoire des signaux et systèmes), CNRS, Paris. Joint research on observer
design for nonlinear and mechanical systems, adaptive control, and parameter
estimation.

International collaboration

– Laboratory of Nonlinear and Adaptive Systems, ITMO University, Russia. Col-
laborative research on adaptive and learning systems and nonlinear control.

– School of Automation, Hangzhou Dianzi University, China. Joint research on
adaptive control and parameter estimation.

1.2.6 Community activities
Technical committees

– Member of the IFAC Technical Committee on Adaptive and Learning Systems.

– Member of the IEEE Technical Committee on System Identification and Adaptive
Control.

International conference program committees

– IEEE Workshop on Advanced Motion Control, 2020.

– IFAC Workshop on Adaptive and Learning Control Systems (ALCOS), 2019 and
2022.
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1 Curriculum Vitae

– IEEE International Conference on Electrical Power Drive Systems, 2020.

– 34th Chinese Control Conference, 2015.

Invited lectures and seminars

– INRIA, Lille, France, 2019.

– Hangzhou Dianzi University, China, 2016-2019.

Editorial and reviewer activities, research evaluation

– Associate Editor (special issue), International Journal of Adaptive Control and
Signal Processing, 2020-2021.

– Best Student Paper Award Committee member, European Control Conference,
2020.

– Reviewer for multiple international journals including IEEE Transactions on Au-
tomatic Control, Automatica, Control System Technologies, Control Engineering
Practice.

1.2.7 Scientific culture dissemination
– In Russia, I presented research results on high-precision control for optical tele-

scopes in general-audience magazines and on TV news.

– In Sweden, I participated in disseminating our results on advanced control for agri-
cultural robotics, and a journal article was published highlighting the collaboration
between the university and industry.

– In France, I disseminated the scientific challenge of advanced control for low-energy
intelligent buildings; this activity was supported by Rennes Métropole. The dis-
semination includes an article in Destination Rennes Business media and a video
in Ici Rennes media.

1.3 Teaching Activities and Supervision
1.3.1 Research supervision

• Ph.D. theses supervision:
– Aleksandr KAPITONOV defended his thesis “Robust control of rapid thermal

processes applied to vapor deposition processes” in December 2014 at ITMO
University, Saint-Petersburg, Russia. I was the only supervisor of the thesis
(100% supervision rate). Alexandr is currently an Associate Professor and
research fellow at the Faculty of Control Systems and Robotics at ITMO
University.
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1 Curriculum Vitae

– Marina KOROTINA is funded by the CentraleSupélec scholarship, and she
started her doctoral studies on “Performance Improvement in Adaptive and
Learning Systems” in December 2020. I am co-supervisor (50% supervision
rate).

• Research Track supervision:
CentraleSupélec offers a career path focused on science and research. At the end of
the three years research-oriented program, the student submits a Master thesis. The
Research Track enhances this expertise for those who wish to engage in a doctoral
thesis or join a corporate RnD center.

– Ricardo EHLERS BINZ has successfully completed the first two years of his
project “Data-driven and learning-based control” in 2020. I am the only
supervisor (100% supervision rate).

1.3.2 Teaching activities
My teaching activities include lecture courses, practical and laboratory sessions, and
supervision of engineer and master students. Below, I provide the list of the courses
where I was involved in the course development. Then, I provide the list of the supervised
master and engineer students.

Courses development

• In CentraleSupélec
– Learning for Modeling and Control. Responsible (100%), conception and prepa-

ration of materials on data-driven parametric and non-parametric learning.
This course was first given in 2020.

– Nonlinear System Analysis. Responsible (100%), conception and preparation
of materials on nonlinear systems analysis in the context of power grids and
energy systems. This course was first given in 2020.

– Advanced control. Responsible (100%), conception and preparation of mate-
rials on advanced control systems (nonlinear systems, sliding-mode control,
robust control). This course was first given in 2018.

– Sampled and nonlinear systems. Co-responsible (50%), conception and prepa-
ration of materials on nonlinear system analysis. This course was first given
in 2018.

– Large-scale systems. Co-responsible (25%), conception and preparation of
materials on linear matrix inequalities. This course was first given in 2017.

• In ITMO University
– Essentials of system identification. Responsible (100%), conception and prepa-

ration of materials on system identification. This course was first given in
2014.
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1 Curriculum Vitae

Engineer and Master students supervision

In CentraleSupélec: co-supervision of 13 engineer students in 4 industrial studies
(in collaboration with Renault, EDF, BDR Thermea France) in 2017-2020:

– Industrial project “Renovation of the Rance tidal power station - Improve-
ment of the quality of regulation” (Rénovation de la Conduite de La Rance
– Amélioration de la qualité de la nouvelle conduite) proposed by EDF in
2019-2020, co-supervision (50%) of 4 engineer students.

– Industrial project “Identification and modeling of synchronous motors” (Iden-
tification d’un modèle de moteur synchrone et réduction des mesures sur banc
d’essai) proposed by Renault in 2018-2019, co-supervision (50%) of 3 engineer
students.

– Industrial project “Control of climatic chambers” (Commande de chambres
climatiques) proposed by BDR Thermea France in 2018-2019, co-supervision
(50%) of 3 engineer students.

– Industrial project “Modeling of the Rance tidal power station” (Modélisation
numérique de l’usine marémotrice de la Rance) proposed by EDF, 2017-2018,
co-supervision (50%) of 3 engineer students.

In ITMO University: supervision of 2 master students and 2 engineer students in
2014-2015. The master theses are:

– Andrey LOSENKOV, master student (100% supervision), 2015: “Direct meth-
ods of multi-sinusoidal disturbances compensation”. Scientific outcome: 5
publications in national peer-reviewed journals, 1 contribution to the inter-
national peer-reviewed conference.

– Polina GRITCENKO, master student (100% supervision), 2015: “Indirect
methods of multi-sinusoidal disturbances compensation”. Scientific outcome:
2 publications in international peer-reviewed journals, 2 contributions in the
international peer-reviewed conference.
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2 Research Experience and Background

My research field is Control Science, focusing on adaptive systems, state estimation, and
prediction in the deterministic framework. I worked on several topics during my career,
including periodic disturbances rejection, velocity estimation and nonlinear observer
design for mechanical systems, modeling and prediction in human-computer interactions;
some of these researches remain active nowadays. However, my principal current research
direction is the performance enhancement in adaptive and learning systems, where I
developed a novel procedure, Dynamic Regressor Extension and Mixing. My future
research activities are oriented toward advanced adaptive and learning control in energy
management.

In this chapter, I present the summary of my research activities, whereas the detailed
description of the key ongoing research topic is given in more detail in Chapter 3. This
chapter is organized as follows. In Section 2.1, I present a brief overview of my research
activities, and in Section 2.2, I describe the structure of my publications by research
topics. Further, in Section 2.3, Section 2.4, Section 2.5, and Section 2.6, I present short
descriptions of my research activities by topics: sinusoidal signals and disturbances,
state estimation and observers, human-machine interaction, and industrial applications,
respectively.

In this chapter, the references starting with the letters IJ or IC, e.g., [IJ1] and [IC1],
are given with respect to the list of my publications in international journals and inter-
national conferences, respectively, as given in Appendix B. And the numeric references,
e.g., [1], are provided with respect to Bibliography.

2.1 Brief Overview of the Research Background
2.1.1 Research topics
My research activities can be split in the following topics.

• Enhanced performance in parameter estimation via Dynamic Regressor Extension
and Mixing (since 2016).
Parameters estimation of a linear regression model plays a central role in many
adaptive and learning control branches. This problem naturally appears in system
identification, direct and indirect adaptive control, reinforcement learning systems,
and other areas. Various methods solve this problem, where the most widely used
are the gradient descent and the least-squares estimators. However, these meth-
ods have several drawbacks. First, even if a (weighted) estimation error norm

14



2 Research Experience and Background

decays monotonically, the element-wise transients can exhibit undesirable oscilla-
tions and peaking phenomena. Second, gains tuning is somewhat complicated and
typically involves numerous trial-and-error attempts. This complication arises due
to two reasons: the trade-off between the transients acceleration and the peak-
ing/oscillating behavior, and the interconnection of all transients, i.e., a gain ad-
justment improving the transient performance of a specific parameter inevitably
affects the transients of other parameters. Finally, the convergence of the men-
tioned methods depends on the persistence of excitation condition that can be
restrictive for some applications.
Motivated by these shortcomings, I proposed a novel Dynamic Regressor Extension
and Mixing (DREM) procedure that introduces a nonlinear dynamic transforma-
tion decoupling the element-wise transients [IJ22]. The DREM procedure yields
the following benefits:

– the transients are element-wise monotonic; thus no peaking phenomena and
oscillations;

– the tuning rules are simple and transparent providing a single tuning gain for
a single parameter;

– asymptotic convergence can be shown in the absence of the persistence of
excitation.

The DREM procedure was successfully applied for numerous applications, includ-
ing system identification [IJ11], photo-voltaic systems [IJ20], motor control [IJ23],
and also robotics, power systems, and model reference adaptive control.
The development of the DREM procedure constitutes the main direction of my
research activities in recent years. Its interpretation as a functional observer was
shown in [IJ15], and a possible connection with the composite learning methods was
discussed in [IJ12]. The analysis of excitation properties propagation is given in
[UR1] and [IC5], and the generalization to the discrete-time domain can be found
in [IJ3]. A fixed-time estimator under interval excitation applying the DREM
procedure is proposed in [IJ8].

• State estimation in nonlinear systems (since 2015).
This research topic is primarily motivated by various robotics applications. The no-
table results include a globally exponentially stable momentum estimation method
for a class of mechanical systems with a strict Lyapunov function [IJ14] and a
switched observer for a class of parameter-varying systems that are unobservable
for specific values of the varying parameters [IJ1]. Working on this topic, I also
participated in developing a parameter-estimation-based observer design method
that translates the state estimation problem to parameter estimation [IJ28].
Besides the results mentioned above, this research topic includes several case-study
outcomes, such as velocity estimation for a scissored pair control moment gyro-
scopes [IJ5], a bias propagation analysis for a model-based homogeneous differ-
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entiator in a robotics application [IJ6], and a sliding-mode observer for hydraulic
drives in heavy-duty forestry robotics [IJ25].

• Sinusoidal signal parameters estimation and adaptive compensation of sinusoidal
disturbances (since 2006).
The problem of parameter estimation for sinusoidal signals was a central topic of
my Ph.D. thesis. The main contribution was the approach rewriting the frequency
estimation problem as parameter estimation for a linear regression model. This ap-
proach yielded the simplified global frequency identification algorithm [IJ31]. The
results on frequency identification attracted interest and were used for marine ap-
plications. The proposed frequency estimator allowed for several indirect adaptive
disturbance rejection approaches [IJ19, IJ35]. I also successfully participated in
the International Benchmark on Adaptive Vibrations Regulation [IJ29] organized
by Professor I. D. Landau, GIPSA-Lab, France, in 2013. My recent activities in
this field are devoted to estimation with enhanced convergence [IJ26, IJ21] and
estimation of time-varying sinusoidal signal parameters [IJ18].

• In addition to the three main research topics mentioned above, it is also worth
noting some other research activities:

– My collaboration with an industrial partner (see Section 2.6) motivated my
research on passivity-based control for rapid thermal processes in semicon-
ductors manufacturing [IJ27].

– The human-machine interaction was the core of my postdoctoral studies in
INRIA (Lille, France). Two main outcomes of this research are i) the hybrid
wrist motion dynamic model of a user performing a pointing task with a
computer mouse [IJ7] and ii) an adaptive user’s trajectory prediction method
for touch input devices [IJ10]. The proposed trajectory prediction method
yielded the predictive display device patent [P1].

2.1.2 Selected topics included in the HDR manuscript
I performed most of my research activities on parameter estimation for sinusoidal sig-
nals and periodic disturbance attenuation during my Ph.D. study, right after that, and
partially during my first postdoctoral stay (Ume̊a University, Sweden). My research
activities on modeling and control for hydraulic systems were central to my first post-
doctoral stay (Ume̊a University, Sweden), whereas the research on human-machine in-
teraction was performed during the second postdoctoral stay (Inria, France). These
research activities are briefly described in the following sections of this chapter.

Two main lines of my independent research activities are the observer design and the
performance improvement in parameter estimation. In order to streamline the presenta-
tion, in this manuscript, I focus on the performance improvement research and present
it in detail in Chapter 3. The observer design research activities are discussed in brief
in Section 2.4.
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Research topic International International National
Journals Conferences Journals

Principal topics
Enhanced parameter estimation 9 (all in Q1) 8 2
State and velocity estimation 7 (6 in Q1) 6 0
Sinusoidal signals estimation 10 (4 in Q1) 14 13and compensation

Other topics
Modeling and control 6 (2 in Q1) 10 11for nonlinear systems
Human-Machine interaction 2 (1 in Q1) 3 0
Other 1 5 6

Table 2.1: Structure of publications with respect to research topics (Q1 journals are
defined according to the Scimago SJR journal ranking).

2.2 Structure of Publications
The structure of my publications according to the mentioned research topics is summa-
rized in Table 2.1.

Publications in international journals by topics

• Enhanced Parameter Estimation
– General results on the Dynamic Regressor Extension and Mixing procedure

[IJ3, IJ9, IJ15, IJ22].
– Finite-time estimation via DREM [IJ8].
– Performance enhancement in composite learning [IJ12].
– Applications of the DREM procedure [IJ11, IJ20, IJ23].

• Velocity Estimation and Nonlinear Observers
– Velocity observers for mechanical systems [IJ5, IJ6, IJ13, IJ14].
– Switched observer for parameter-varying systems [IJ1].
– Parameter estimation-based observer [IJ28].
– Time-varying differentiator in hydraulic drives [IJ25].

• Sinusoidal signal estimation and periodic disturbance compensation
– Parameter estimation for sinusoidal signals with constant parameters [IJ31,

IJ33, IJ34].
– Parameter estimation for sinusoidal signals with time-varying parameters

[IJ18].
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– Performance improvement in frequency identification [IJ21, IJ26].
– Periodic disturbances compensation [IJ19, IJ29, IJ32, IJ35].

• Modeling and control for nonlinear systems
– Delay-based adaptive output stabilization [IJ2].
– Induction motor application [IJ4].
– Passivity-based control [IJ16, IJ27].
– Chattering reduction in hydraulics drive control [IJ24].
– Friction analysis in high-precision systems [IJ30].

• Modeling and Forecasting in Human-Machine Interaction
– Pointing motion modeling [IJ7].
– Latency compensation and trajectory prediction [IJ10].

• Other results
– Empowering excitation in parameter estimation [IJ17].

2.3 Sinusoidal Signals Parameter Estimation and Attenuation
of Periodic Disturbances

2.3.1 Context and challenges
The problem of disturbance compensation is one of the classical problems of control the-
ory that is important for engineering practice. Notably, such a situation arises in various
applications where it is necessary to reduce the influence of noise. The broad field where
such compensation often is the sole goal of control design is Active Noise Control (see,
e.g., [1]). It is usually acceptable and reasonable to model noise as a deterministic
narrow-band disturbance composed as a sum of a finite number of sinusoidal signals. An
overview of relevant applications where the rejection of such narrow-band disturbances
is required can be found in [2]; particular examples include fed-batch reactors, dis-
tributed flexible mechanical structures, and Blu-ray disc drives servomechanisms. Since
the frequencies of the sinusoidal signals constituting the narrow-band disturbances are
typically not known in advance and can be time-varying depending on the environment,
most active disturbance rejection methods are adaptive.

Adaptive disturbance compensation is typically based on the internal model prin-
ciple [3], and the compensation methods can be divided into two groups, direct and
indirect. For the direct adaptive compensation, disturbance parameters are not explic-
itly estimated since one performs adaptive tuning of the controller’s coefficients them-
selves [4, 5]. In contrast, in indirect adaptive methods, one first explicitly estimates
disturbance parameters (frequencies) and then constructs the control law based on the
resulting estimates. Thus, indirect adaptive disturbance compensation strongly relies

18



2 Research Experience and Background

on the frequency identification algorithms that constitute the core of the corresponding
methods. It is worth noting that besides the indirect adaptive disturbance compensa-
tion, the frequency estimation problem also arises, e.g., in servo-loops failure detection
in aircraft [1], marine applications to avoid parametric roll resonance for ships [6,7], and
wind power systems control [8].

There are two main challenges in frequency estimation and disturbance compen-
sation. First, these methods should be robust to inevitable noises and measurement
distortions that reduce frequency estimation accuracy and cause waterbed noise ampli-
fication, as discussed in [9]. Second, such methods are often implemented in embedded
devices and thus should be sufficiently computationally easy to ensure the real-time op-
eration; this requirement excludes some methods based on signal buffering and, e.g.,
Fourier analysis. Finally, these methods should track parameters and reject disturbance
as the frequencies drift in time.

2.3.2 Research objectives, positioning, and achievements
Frequency estimation

The adaptive frequency estimation for multi-sinusoidal signals was the core topic of my
Ph.D. thesis. The research objective was to develop a novel method for the frequency
estimation of a multi-sinusoidal signal in the presence of a bounded irregular (non-
periodic) distortion component. At that time, several frequency identification methods
were available in the literature, such as methods based on adaptive notch filters [10–12],
on nonlinear error signal generators, e.g., the PLL-based approach [13, 14], a technique
utilizing the squared measured signal [15], and more general methods capable of esti-
mating frequencies of a sum of sinusoidal signals [16–18].

To fulfill the objective, I proposed a new frequency identification algorithm [IJ31].
The main novelty and contribution were rewriting the frequency estimation problem as
a parameter estimation problem for a linear regression model. This approach yielded a
simplified global frequency identification algorithm. Compared to the methods [10–13,
15], the proposed method can estimate the frequencies of a sum of sinusoidal signals, not
of a single sinusoidal signal only. Compared to the works [16–18], the proposed solution
had a lower dynamic dimension of the estimation algorithm, i.e., the smaller number
of states in the state-space representation of the algorithm, and, to the best of my
knowledge, the algorithm proposed in [IJ31] had the lowest dynamic order among
all existing solutions. The proposed frequency estimator allowed for several indirect
adaptive disturbance rejection approaches [IJ19, IJ35], and the results of [IJ31] were
later extended for sinusoidal signals with time-varying parameters [IJ18].

Estimation performance

Concerning the estimation accuracy problem in the presence of noises, there are two
possible scenarios for improving the performance: to improve the signal-to-noise ratio
of the signal itself (filtering) or to reduce the noise sensitivity of the estimation process
(averaging). Typically, the averaging leads to identification algorithms with time-varying
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gains asymptotically converging to zero, for example, a least-squares algorithm with no
forgetting. This approach’s drawback is that the insensitive to noise algorithms also
become insensitive to possible variations of the parameters to be estimated, and it is not
consistent with the challenges discussed above. This drawback is usually overcome with
constant-gain and constant-trace algorithms [19] or covariance-resetting [20]; however,
the trade-off between averaging properties and transient time is still relevant. The second
way to reduce the noise is filtering. This approach’s drawback is that a priori knowledge
of an acceptable frequency range is needed to construct a suitable band-pass filter. If the
sinusoidal signal frequency can belong to an (arbitrary) wide range, no a priori defined
filter can be applied.

My research objective was to design an approach that can empower existing fre-
quency estimation methods and increase the estimation accuracy. In [IJ26], I proposed
the construction of an adaptive filter cascade. The cascade consists of adaptive band-pass
filters tuned by estimates of the frequency provided by a given identification algorithm.
It was shown that the proposed solution significantly improves the estimation perfor-
mance for a broad class of frequency estimation methods.

Direct disturbance attenuation

Besides the internal model principle [3], a large family of periodic disturbance attenuation
methods (mainly attributed to acoustics) is based on adaptive feedforward compensation;
see [1, 21] and references therein. It is assumed that reference signals, i.e., sinusoidal
signals of the same frequencies as the disturbance, are provided to feed into the system.
Then the parameters of the feedforward compensator are tuned adaptively. One classical
scheme in this approach is the Filtered-x Least Mean Square (FXLMS) one (see [22,23]),
where the plant model is involved in the adaptation loop to predict the plant’s output.
A gradient or pseudo-gradient algorithm is often used for tuning. It can be shown, see,
e.g., [23,24], that under some conditions, the adaptive feedforward approach can be seen
as an asymptotic realization of the internal model principle.

Addressing the problem of direct adaptive compensation of periodic disturbances and
motivated by the adaptive feedforward concept, in [IJ29], I proposed a direct adaptive
disturbance attenuation method. This method is based on a representation of the dis-
turbance as a linear combination of outputs of stable filters applied to the measured
output error signal passed through the plant model. The resulting design is similar to
the classical adaptive noise control scheme, known as adaptive FXLMS [21], but differs in
the parameter adaptation idea. The proposed method deals with discrete-time systems
with unstable zeros challenging for adaptive regulation methods based on passivity. This
method was then implemented in the International Benchmark on Adaptive Regulation
(see Fig. 2.1). The special issue [9] devoted to this benchmark presents state-of-the-art
adaptive disturbance regulation; the publication [IJ29] is also included in this issue. It is
essential to highlight that the result given in [IJ29] has the smallest computational
cost among all the benchmark approaches. The proposed method can also deal with
disturbances where the exact number of sinusoidal components is unknown, contrasting
with many disturbance attenuation methods, such as [5, 23,25].
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Figure 2.1: The testbed used in the Benchmark on Adaptive Regulation; see [9] and the
project’s website.

2.3.3 Summary and scientific outcome
My research activities on sinusoidal signal parameter estimation and periodic disturbance
attenuation started with my Ph.D. thesis and remained an active research field after.
Most of the results in this field were obtained in 2008–2016; these results constitute
a significant part of my scientific background. This research field benefited from my
collaboration with ITMO University (Russia), Ume̊a University (Sweden), and
Hangzhou Dianzi University (China).

In total, the scientific outcome of this research direction constitutes of 10 papers
in international peer-reviewed journals (including 4 Q1 journals), 14 submissions at
international peer-reviewed conferences, and 13 publications in national peer-reviewed
journals (in Russian); see Section 2.2 for details.

2.4 Velocity Estimation and Observer Design
2.4.1 Context and challenges
State estimation is a common problem in control systems that has a vast of engineer-
ing applications. In this field, my motivation was mainly due to mechanical systems
and robotics, where state estimation usually becomes velocity or generalized momenta
estimation given the coordinates measurements.

Besides some specific applications, e.g., fault detection, state observers in mechani-
cal systems are used to enable full-state feedback control. Thus, the estimation error
transients impact the overall performance, and the exponential (rather than only asymp-
totic) convergence is a desirable property. Moreover, the closed-loop system analysis is
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significantly simplified when a Lyapunov function for the used state observer is avail-
able, and even stronger stability results can be obtained if the Lyapunov function is
strict. Furthermore, as discussed in [26, 27], globally exponentially stable systems with
strict Lyapunov functions have good robustness properties. These arguments make of
interest to design an observer with the strict Lyapunov function ensuring the global
exponential convergence and identify a class of mechanical systems where such an
observer can be applied.

Another challenge in state estimation is the observability of parameter-varying sys-
tems. Many observer design approaches assume that a plant is uniformly completely
observable. Unfortunately, this assumption is violated in some applications, where a
particular combination of input signals or time-varying parameters may make the plant
unobservable, at least for some instances of time or for some operation regimes. Then, a
single observer with constant parameters cannot track the states in all operation modes
or along all trajectories.

One particular case arising, e.g., in robotics, is when the whole set of time-varying
parameters, or the whole trajectory, can be divided into a finite number of subsets, or
trajectory segments, such that the system is observable for these segments and loses
the observability only when travailing between them. This behavior naturally yields the
switched systems formulation. To this end, my goal was to design an observer capable
of dealing with this class of locally unobservable time-varying systems. Moreover,
aiming at the embedded system implementation makes it preferable to compute the
observers’ gains in advance, thus reducing real-time computation.

Full-state estimators can be redundant in some engineering applications, e.g., in
robotics with multiple degrees of freedom (DOF), and a widely used practical approach
is to estimate velocities for each DOF separately. From the signal processing point of
view, this velocity estimation approach can be seen as online numerical differentiation of
the measured position signal. My research in this field was motivated by the AnyWalker
walking robot design [28] (see Fig. 2.2), where rapid and accurate velocity estimation is
crucial to apply the stabilizing full-state feedback.

The AnyWalker robot uses an auxiliary non-anthropomorphic dynamic stabilization
system that consists of two reaction wheels inside the robot’s body. There are multiple
solutions for walking robot stabilization, and the related simplified problem statement
formulated as an inverted pendulum is included as an example in many graduate courses
on control design. However, it should be noted that stabilization algorithms typically
implement a full-state control law using both position and velocity measurements. Thus,
the velocity estimation becomes the critical element of the vertical stabilization control
design, and the main challenge here was to understand the achievable estimation ac-
curacy despite model mismatches and disturbances due to the other DOFs.
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Figure 2.2: AnyWalker robot uses reaction wheels as an auxiliary stabilization system;
see [28,29].

2.4.2 Research objectives, positioning, and achievements
Switched observer for locally unobservable time-varying systems

Switched observers are typically applied to systems with commutations of dynamics,
where a plant can operate in a finite number of operation modes. Whereas there exist
nonlinear observers for nonlinear switched systems [30,31], linear switched system state
estimation is commonly addressed through linear switched observers. The conventional
approach is to construct a common Lyapunov function that is suitable for all operation
modes, such as [32], and the key tools for this approach are linear matrix inequalities.
However, the existence of a common Lyapunov function is a restrictive assumption, and,
particularly, it does not hold if some operation modes are not observable. This problem
was addressed in [33], where authors proposed conditions under which the system is
observable even if some individual modes are unobservable. The same problem was
considered in [34], where the authors studied when does there exist a trajectory making
the system observable. The common Lyapunov function requirement can be relaxed by
imposing assumptions on the average dwell time of commutation, as in [35, 36]. This
concept can also be used when the switching signal is not precisely known and has to be
estimated, as in [37], or is measured with a delay, as in [38].

My objective was to design a switched observer for a parameter-varying system
that is unobservable for some values of time-varying parameters. The considered
systems are not switched themselves and do not have a finite number of operation modes.
To reformulate it as a switched system, in [IJ1], I proposed to divide the set of parameter
values into a finite number of subsets, where the system is observable for each subset,
and the observability is lost only when the vector of varying parameters travels from one
subset to another. For such systems, I proposed a switched observer based on switched
Lyapunov function with a dwell-time condition ensuring the exponential convergence.
The stability condition for the proposed observer was formulated in the form of matrix
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inequalities, which can be used for gains tuning.

Momentum estimation in mechanical systems

For mechanical systems applications, I considered the class of systems that are partially
linearizable via a change of coordinates. This class, formally defined in [39], consists of
mechanical systems whose dynamics becomes linear in velocity after a partial coordinate
transformation, e.g., a linear transformation of the velocities. These systems were stud-
ied, e.g., in [40–42], because, on the one hand, observer design and controller synthesis
are simplified for them while, on the other hand, many practical examples satisfy this
property. My research objective was to design an exponentially converging observer for
the considered class of systems with a strict Lyapunov function.

The existing solutions for this class of systems include the linearization-based ob-
servers, e.g., Kalman filter, and nonlinear observers [43], e.g., a high-gain observer [44],
a sliding-mode observer [45], or an invariance-based observer [46]. My main achievement
presented in [IJ14] was designing a simple globally exponentially stable Luenberger-like
nonlinear momentum observer for the considered class of systems. The main contribu-
tion of the proposed solution is that it was the first observer design supported with a
strict Lyapunov function for the considered class of systems.

Numerical differentiators

Numerical differentiators are a standard engineering solution for velocity estimation for
each degree of freedom separately, and many solutions are available. To mention a few,
see the first-order difference used in [47], the sliding-mode exact differentiator [48], the
algebraic and annihilators-based differentiators [49,50], high-gain differentiators [51], and
homogeneous differentiators [52]. Whereas differentiator-based velocity observers can be
designed model-free [47, 49], better performance is obtained when the observers use (at
least partially) available model knowledge as in [48,50–52].

My research on model-based differentiators was motivated by the Any-Walker walk-
ing robot design (Fig. 2.2), where rapid and accurate velocity estimation is crucial to
stabilizing full-state feedback control. The high-dimensional complete mechanical model
of such a system makes it questionable to design a model-based observer for the whole
state vector, and local velocity observers for each degree of freedom are preferred. The
research objective was to study model-based differentiators’ behavior in the presence
of model mismatch and measurement distortions, e.g., a measurement bias. My key
achievements are the experimental studies on achievable performance for state-of-art
velocity observers [IJ5] and the bias propagation analysis and compensation for a
class of finite-time homogeneous differentiators [IJ6].

2.4.3 Summary and scientific outcome
My research activities on velocity estimation and observer design started in 2015 and
remain active. Most of the results in this field were obtained in collaboration with the

24



2 Research Experience and Background

Laboratory of Signals and Systems (CNRS, France), LORIA (CNRS, France),
Hangzhou Dianzi University (China), and ITMO University (Russia).

In total, the scientific outcome of this research direction constitutes of 7 papers in
international peer-reviewed journals (including 6 papers in Q1 journals), 10 submissions
at international peer-reviewed conferences, and 1 publication in a national peer-reviewed
journal (in Russian); see Section 2.2 for details.

2.5 Modeling and Forecasting in Human-Machine Interaction
2.5.1 Context and challenges
Typically, human-computer interactions can be divided into two categories: direct and
indirect interactions. In indirect interactions, the input device (e.g., a mice or a trackball)
and the output device (e.g., a display) are separated. In contrast, for direct interactions,
the input and the output devices are coupled together, and the input and the system
output (observed by a user) share the same screen. Examples of direct interactions
include smartphones, pads, i.e., the touch screens.

For direct touch interactions, a significant challenge is the latency reduction. The
detrimental impact of latency on user performance has been known for a long time [53].
Direct interactions are more sensitive to latency, and in [54], the authors found that
latency greater than 25 ms can significantly affect the user performance in touch dragging
tasks. Simultaneously, in [55], the authors show that latency as small as 10 ms still can be
perceived in direct interactions. However, it is reasonable for modern touchscreen devices
to expect the end-to-end latency of about 60 ms or more, as measured in [55]; thus, the
latency reduction methods can significantly improve the performance of human-machine
interactions.

Another challenge that appears in indirect human-computer interactions is the mod-
eling of human movements. In indirect interactions, the user’s action is typically
scaled by a pointing transfer function before being display at the output device. Such
an adjustment provides small amplification for low input velocities to improve pointing
accuracy and provide high amplification for high input velocities to reduce traveling
time. Experimental studies [56] report that a choice of a scaling function affects human-
computer interaction, and users get better performance using switching scaling functions.
However, despite all the research on evaluation and reverse-engineering of the existing
scaling functions, the problem of design and optimization of such a scaling remains open
due to limitations of existing dynamical models for human pointing.

Models of pointing dynamics are also of interest for endpoint prediction techniques [57],
where the system attempts to predict the target cursor position from the beginning of
the pointing movement. Such a prediction is further used to modify the visual interface
dynamically (e.g., reduce the distance to the target or increase its width). Some tech-
niques and methods can be found in [58], and a toolbar with dynamically expanding
icons represents an example of such an approach [59]. Some other challenging applica-
tions where dynamic models of (pointing) movements can be relevant include analyses
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of mouse movements for user identification [60] and human movement estimation [61],
e.g., for manipulators teleoperation [62].

2.5.2 Research objectives, positioning, and achievements
Modeling of Pointing Movements

My research objective was a model that can describe pointing human movements in
human-computer interaction, taking into account modern graphical interfaces’ scaling
functions.

In human-computer interactions, the Fitts’ law [63] claims the logarithmic relationship
between the traveled distance and the moving time, and the hybrid Optimized Initial
Impulse model developed by Meyer et al. [64] is now accepted as the most well-established
explanation for Fitts’ law [58]. This explanation separates the pointing motion into two
different stages: a rapid and large movement (ballistic phase) and a slower corrective
action under feedback control (corrective phase).

The ballistic movement is typically considered an optimal control problem. A well-
known result is the minimum jerk model proposed in [65], which claims that the ballistic
action is performed to minimize the total jerk cost along the trajectory. As shown in [66],
the jerk cost minimization leads to more plausible results than the acceleration or snap
cost functions. For the tracking stage, researchers typically use linear time-varying
or time-invariant models, see the crossover model [67] and the Vector Integration To
Endpoint (VITE) model introduced in [68]. The first attempt to handle both ballistic
and tracking phases with a single model was the Suge model [69]. It is worth noting
that since the transient time of a linear system is logarithmically related to the traveled
distance, the asymptotic behavior of such models reproduces Fitts’ law.

In this field, my principal achievement is a switched dynamic model handling cur-
sor movements in indirect pointing tasks describing both ballistic and tracking motions
and taking into account motion scaling by a graphical interface system. The model also
includes the intermediate commutation phase explaining the switch between the ballistic
and the tracking stages. During the first stage, there is no visual guidance to the user,
i.e., only sensorimotor feedback is available, and a nonlinear Lurie form system is used
to model this part. When the user perceives the final cursor position is approaching,
the commutation phase triggers the switching to the tracking phase. In this last phase,
feedback is given by the visual perception of the user’s cursor position, and an extended
VITE model [68] is used to model the tracking dynamics.

I showed that both ballistic and tracking models are globally asymptotically stable
under various scaling functions used in graphical interfaces and generate bounded and
realistic trajectories under some established mild conditions. A series of experiments with
several users performing pointing tasks were performed to validate the model showing
that it fits well different pointing movements and outperforms pure ballistic and tracking
models.
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Latency Reduction in Direct Interactions

In this field, my key objective was to reduce the perceived latency, i.e., the observed
lag between the user’s and the cursor’s motions. There are two ways to reduce the
impact of latency. The first is at the hardware level, e.g., using more reactive and
advanced elements and making the signal flow as fast as possible. This approach has two
drawbacks, the high cost of advanced components and the increased energy consumption,
which play a significant role in portable devices.

The second way to reduce latency is at the software level by using latency reduction
algorithms. From the control point of view, this problem can be formulated as a trajec-
tory prediction or forecasting problem, and convenient prediction methods can be used.
However, methods based on underlying dynamic models cannot be easily applied for
latency reduction since dynamic models of user behavior are not typically available for
the specific user.

The lack of models motivates the use of model-free prediction methods. For instance, a
trajectory prediction using a Kalman filter for a chain of integrators was proposed in [70],
and a strategy based on the first-order Taylor series was used in [71]. In [72], a forecasting
algorithm based on the Taylor series expansion was proposed, where the derivatives were
estimated using either algebraic or homogeneous finite-time differentiators. However,
these differentiators’ parameter tuning is rather complicated due to their high non-
linearity. Also, some model-free approaches motivated by Kalman filter, curve fitting,
and heuristic considerations can be found in patents. To summarize, latency reduction
can be translated to the problem of estimating the user’s trajectory or, equivalently, to
the further trajectory points prediction.

My achievement in this field was a novel model-free frequency-domain-based
approach for human movements forecasting. It was shown that the proposed solution is
an approximation of an ideal (not causal) predictor. The proposed forecasting algorithm
can be tuned numerically as an optimization task over the available dataset on the user’s
movements. Moreover, an adaptive modification of the design is proposed that adapts
to the changes of users and movement types. Several experimental studies with various
users were performed, illustrating the proposed forecasting algorithm’s applicability and
performance compared to other methods.

2.5.3 Summary and scientific outcome
My research activities in this field were a part of the ANR-funded Turbotouch project in
2015-2017. This research benefited from my scientific collaboration with NON-A team,
INRIA (Lille, France).

In total, the scientific outcome of this research direction constitutes of 2 papers in
international peer-reviewed journals (including 1 Q1 journal), 3 submissions at interna-
tional peer-reviewed conferences, and 1 international patent on latency reduction; see
Section 2.2 for details.
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Figure 2.3: The hydraulic crane prototype at the Robotics and Control Lab, Ume̊a Uni-
versity; see [73].

2.6 Industrial Applications
Besides the scientific research activities discussed above, I also present my scientific
participation and advising in some industrial projects I was involved in during my career.

2.6.1 High-precision optical telescopes for satellites tracking
In 2008–2011, I participated in a project on control system design and implementation
for high-precision optical telescopes performed at ITMO University, Saint-Petersburg,
Russia.

These telescopes are used in various applications, and satellite tracking is one of these
tasks. Each telescope is equipped with a laser-based range sensor to measure the dis-
tance from the telescope to a satellite. The measurements from a network of telescopes
are used, e.g., for GPS and GLONASS navigation. Such a telescope tracks a rotating
satellite with an outstanding accuracy and precision. In this project, I was a member
of the control system design team. The solutions I have designed are currently under
exploitation in satellite tracking systems.

Scientific results of this project include friction modeling and analysis in high-precision
electrical drives [IJ30]. The project results were also disseminated in the public sector
via several general-purpose journals and TV news reports.

2.6.2 Hydraulic drives control and automation
I worked on this project in 2012–2014, being a postdoctoral member of the Robotics and
Control Lab at Ume̊a University with professor Leonid Freidovich.

Mobile hydraulic drives are widely used in heavy-duty machines in mining, forestry,
and agriculture. In contrast with stationary hydraulic systems, e.g., hydraulic presses,
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Figure 2.4: Reactor during the annealing process; see [74].

the mobile hydraulic drives are less automated. Most of such drives are nowadays con-
trolled manually via a set of joysticks. A prototype of such a hydraulic crane is depicted
in Fig. 2.3. In the Robotics and Control Lab, we have developed innovative solutions
to automate mobile hydraulics: novel models of spool dynamics, velocity observers with
time-varying gains, and a set of nonlinear inversion-based controllers.

Experimental studies showed that these solutions significantly improve tracking per-
formance, and our industrial colleagues highly appreciated the practical outcome of this
researches. Scientific results of this project include velocity observers with time-varying
gains [IJ25] and control design with input non-linearity inversion [IJ24].

2.6.3 Temperature regulation in rapid thermal processes applied to
semiconductors manufacturing

This project was performed in 2014–2015 in collaboration with a semiconductor manu-
facturing company in Saint-Petersburg, Russia. The goal of the project was to provide
accurate temperature regulation in rapid thermal processes applied to vapor deposi-
tion processing; the experimental testbed is depicted in Fig. 2.4. We have developed a
system identification procedure to solve the problem and then successfully used a ro-
bust passivity-based controller. Our industrial collaborators appreciated the provided
accuracy as a significant impact on the manufacturing process.

This project’s scientific outcome includes the robust passivity-based control design for
a class of nonlinear systems [IJ27, IC36]. The project results were also a part of a Ph.D.
thesis prepared under my supervision by Aleksandr Kapitonov. Aleksandr successfully
defended the thesis in 2015.
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3 Dynamic Regressor Extension and Mixing
This chapter presents my recent research activities on parameter estimation with im-
proved performance and the dynamic regressor extension and mixing procedure. The
chapter is organized as follows. Section 3.1 presents the context of adaptive parameter
estimation and discusses the related performance improvement challenges. Section 3.2
provides the positioning of my results regarding state of the art, and in Section 3.3, I
present the problem statement and describe some preliminary results on parameter esti-
mation. Section 3.4 gives the general description of the proposed procedure and discusses
its use for asymptotic parameter estimation. Excitation propagation in the proposed
procedure is then discussed in Section 3.5. Section 3.6 presents further advances and
briefly describes various applications where the proposed procedure was used. Finally,
the concluding Section 3.7 summarizes the results, provides references to related topics
not discussed in the chapter, and highlights open questions. For the sake of clarity of
materials presentation, proofs are collected in the appendix Section 3.A.

The content of this chapter summarizes the results previously reported in [UR1, IJ3,
IJ8, IJ15, IJ22, IC5, IC25], as given in Appendix B.

3.1 Context and Challenges
To effectively face the challenges of the modern world, we should think about systems
that are not rigid but flexible, about strategies that can react to changing environment,
adapt and learn from experience. A proper tool to achieve these aims is adaptation
and experience-based learning. Adaptive control systems represent a mature field of
research, where many results on stabilization, trajectory tracking, learning from trials,
and parameter estimation are available. However, adaptive control is not as widespread
in practical applications as it probably deserves. The main challenges for adaptive control
precluding it from being ubiquitous are questionable transient performance, complicated
tuning procedures, and sufficient informational richness requirements.

Poor transient performance is typically associated with slow transients, peaking
phenomena, and transient oscillations. The peaking phenomena mean that control sig-
nals have magnitudes significantly higher during the adaptation phase than in nominal
operation when the adaptation has finished. Such control signals cannot and should not
be implemented in practice since they may damage the controlled plant or drive the
system away from its nominal operation, making the used mathematical model, e.g.,
obtained by linearization around an equilibrium, invalid. As a result, even if the closed-
loop system is proven to be globally stable for a nominal system model, the modeled
behavior cannot be reproduced in practice due to the peaking phenomena yielding pos-
sible instabilities during the transient phase. The peaking often arises when one wants
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to accelerate the convergence rate increasing controller gains; it restricts the possibility
to obtain fast adaptation and parameter learning.

In the adaptation/learning phase, control signals may oscillate. These oscillations can
cause undesirable resonances in the controlled plant that are not adequately addressed
by simplified mathematical models and may cause damage or instability. Transient oscil-
lations are also associated with frequent switches in control signals that are undesirable
in many practical systems.

Tuning procedures for adaptive systems generally consist of choosing a gain ma-
trix for adaptation or parameter learning algorithms. The general idea is that high
gains provide fast transients with possible peaking, whereas low gains reduce peaking
and oscillations, yielding a slow convergence rate; the gain choice is also related to the
tracking/filtering trade-off. However, the exact tuning rules for multiple variables are
usually complicated. Since adaptation and parameter learning algorithms act on several
estimated/adapted variables simultaneously, there is a strong interconnection between
these variables, and it is hardly possible to accelerate/decelerate the rate of convergence
for a single variable without affecting the transient performance for others. Due to these
interconnections, tuning procedures are typically time-consuming and include multiple
trials.

Besides transient performance, adaptive control relies on the so-called excitation re-
quirement imposed for parameter estimation. The intuitive idea is that to estimate
parameters, one needs sufficiently rich measurements, and this requirement is translated
to the rigorous mathematical definition of Persistency of Excitation. Unfortunately, such
a requirement can be hard to verify in applications. As a result, a common practice is to
inject an additional instrumental signal (also known as probing noise) to get sufficient
excitation. This practical solution has drawbacks: the probing noise also affects the
plant’s performance output, and if the probing signal is removed, then the adaptation
properties are lost. Moreover, such an artificial excitement procedure can be unaccept-
able for users. Thus, relaxation of excitation conditions and reducing the probing signal
impact are of significant interest in adaptive control systems.

To summarize, many shortcomings of adaptation and parameter learning may be
associated with their transients, tuning, and excitation requirements. In this context, my
objective was to develop a solution enhancing adaptive systems’ performance.

3.2 State of the Art and Positioning
The investigation of physical phenomena by mathematical modeling frequently leads
to the problem of estimating model parameters. Indeed, the differential equations ap-
pearing in the model under consideration may contain parameters that are difficult to
determine in advance. Through the years, numerous research works in several disciplines
have been dedicated to this fundamental problem.

The linear regression equation (LRE) plays a central role in adaptive parameter es-
timation and adaptive control. It can be found in system identification [75], in model-
reference adaptive control [20,76] and adaptive pole-placement [77], in filtering and pre-
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diction [78], in reinforcement learning [79], and other areas. We will formally introduce
the LRE in Section 3.3, but in brief, it is given by

y(t) = φ>(t)θ,

where y(t) is the output signal, φ(t) is the regressor vector, and θ ∈ Rn is the vector of
unknown constant parameters. The goal is to estimate θ using the measurements of y
and φ.

There are plenty of methods to solve this problem offline, i.e., after the complete data
collection on the process is finished [80]: least squares, maximum-likelihood estimation,
Bayesian linear regression, principal component regression, to mention a few. However,
in adaptive and learning systems, parameters need to be estimated online, i.e., progres-
sively and simultaneously with the collection of new data points. There exist approaches
for adaptive and online estimation [19,20,75,76], where two traditional strategies are the
least-squares method and the gradient estimator. The applicability conditions of these
methods are based on the persistence of excitation [81, 82], and thus these approaches
are implicitly based on asymptotic statistics.

In standard adaptive estimation, the persistence of excitation is necessary to estab-
lish global exponential convergence. To this end, in [83, 84], authors consider if, for
the gradient estimator, this condition can be relaxed in the case of asymptotic but not
exponential convergence. While some analytical results are reported, the resulting re-
quirements are somewhat technical, and it is hard to use them in applications. To the
best of our knowledge, there is no known necessary and sufficient condition to conclude
asymptotic stability for the standard gradient estimator without the persistency of ex-
citation assumption.

It is a challenging theoretical problem to develop a parameter estimation method re-
laxing the persistency of excitation, and many research works have been devoted to it in
various scenarios. One attempt to alleviate this requirement in learning and parameter
estimation is based on the idea of online historical data collection, e.g., [85, 86]. This
idea yielded a family of methods that are nowadays known as concurrent [87–89], or,
more recently, composite learning [90–93]. Within this methodology, a dynamic data
stack is built to record online historical data discretely, and the convergence of param-
eter estimation is shown under the interval excitation condition, a weaker requirement
than the persistence of excitation. However, whereas these methods can provide learn-
ing convergence under relaxed conditions, the transient performance is typically not
addressed.

Regarding the problem of transient performance, standard results [20,76] on adaptive
parameter estimators claim that (again, under the persistence of excitation condition)
there exists a weighted norm of the estimation errors that can be bounded by a decaying
exponential, where the rate of convergence depends on excitation characteristics [94].
However, the authors of [82] proved that the gradient estimator’s gain amplification
does not always produce accelerated transients, and the worst-case bound for the rate
of convergence cannot be arbitrarily accelerated; moreover, such amplification provokes
pikes augmentation.
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Another disadvantage of these techniques is that despite the weak monotonicity of a
weighted norm of the estimation errors, the estimation transients for each component of
the vector θ may be rather unpredictable, presenting notable oscillations and peaking
phenomena. Furthermore, usual tuning procedures for these estimators consist of the
gain matrix adjusting, which can be delicate, involving many trial-and-error attempts.

The recent results on transient performance include perturbation-based methods,
where a decaying perturbation is injected during the transients to increase excitation,
as in [95], and parameters-resetting techniques as in [96]. The improved transient per-
formance was also reported in [97, 98]. However, in [97], a (robotics) application-based
parameter-dependent persistence of excitation was assumed, and in [98], a finite-time
identification procedure was applied; it was not studied if these results can be extended
to a general linear regression model.

Another approach to addressing the performance problem is the L1-adaptive control
[99,100], claiming that by decoupling adaptation/learning and control loops, it is possible
to obtain arbitrary fast transients. However, such acceleration also increases peaking.
Nevertheless, it should be highlighted that these results consider only upper bounds and
the rate of convergence; the problem of transient oscillations is not addressed.

Positioning

Summarizing, when the Dynamic Regressor Extension and Mixing (DREM) procedure
was proposed in [101, 102], in adaptive estimation and learning, there was no available
systematic procedure able to ensure monotonic peaking-free and oscillation-free tran-
sients and simultaneously provide transparent and straightforward tuning rules for the
rate of convergence. By developing the DREM procedure described in the next section, I
contributed to filling this lack and provided an efficient tool addressing these challenges.

Combined with the standard gradient estimator, see Section 3.3, the DREM procedure
ensures the element-wise transient monotonicity preventing oscillations and peaking,
independently of the excitation conditions. For each element of the vector θ, the estimate
is tuned with a separate scalar gain, which does not affect transients for other elements,
making the gain tuning procedure more straightforward and transparent. Moreover, in
contrast to the standard gradient methods, the DREM procedure establishes a necessary
and sufficient condition for asymptotic but not exponential convergence. Finally, the
DREM procedure can be efficiently combined with various estimators, e.g., with a least-
squares or fixed-time estimator.

3.3 Problem Statement and Preliminaries
This section presents some preliminary results. Section 3.3.1 introduces the linear re-
gression equation and the problem of improved parameter estimation. Section 3.3.2
discusses various types of excitation, and Section 3.3.3 presents the standard gradient
estimator, its convergence conditions and transient performance.
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3.3.1 Linear Regression Equation
The linear regression equation (LRE) is given by

y(t) = φ>(t)θ + w(t), (3.1)

where y(t) ∈ R` is the output signal, φ(t) ∈ Rn×` is the regressor, w(t) ∈ R` is an
additive distortion, e.g., a measurement noise, and θ ∈ Rn is the vector of unknown
constant parameters. The signals y and φ are known, e.g., they are measured, and the
distortion signal w is unknown; all signals are bounded.

The problem is to estimate the vector of parameters θ using the measurements of y
and φ. We focus on online parameter estimation that is the standard for adaptive systems
real-time recurrent processing of the arriving measurements, in contrast with the offline
batch processing of the previously recorded data. Whereas numerous solutions to this
problem are available, the goal is to develop a procedure yielding improved parameter
estimation performance.

Equation (3.1) considers the general case of multiple outputs, i.e., the output y is
a vector and the regressor φ is a matrix. However, in most references, LREs are tra-
ditionally defined with a scalar output and a vector regressor. In this chapter, if the
dimension ` is not explicitly mentioned, we assume ` = 1 to stay consistent with the
standard notation.

In this chapter, we focus on the continuous-time systems and methods. However,
equivalent results can be easily derived for discrete-time systems; see [103].

3.3.2 Persistent, Infinite, and Interval Excitation
Definition 3.1. A bounded signal φ : R+ → Rn×` is persistently excited if there exist
T > 0 and µ > 0 such that for all t ∈ R+,∫ t+T

t
φ(s)φ>(s)ds ≥ µIn.

We further denote this property as φ ∈ PE, or φ is PE. To mention specific values of T
and µ, we write (T, µ)-PE.

The Persistence of Excitation property and its connection with the exponential conver-
gence in various estimation schemes are widely known. One relaxation of this condition
is interval excitation, also referred to as sufficient excitation. This relaxation is used,
e.g., in concurrent and composite learning algorithms [89].

Definition 3.2. A bounded signal φ : R+ → Rn×` is excited on an interval, or suffi-
ciently excited, if there exist t1 ≥ 0, T > 0, and µ > 0 such that∫ t1+T

t1
φ(s)φ>(s)ds ≥ µIn.

We further denote this property as φ is IE. To mention specific values of t1, T and µ,
we write (t1, T, µ)-IE.
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The fundamental difference is that the persistence of excitation is uniform in time,
whereas the interval excitation holds for the particular time interval starting at t1. If
t1 = 0, then the interval excitation is also called initial excitation [92].

Another relaxation of the PE property is the infinite excitation.

Definition 3.3. A bounded signal φ : R+ → Rn×` is infinitely excited if

lim
t→∞

λm

(∫ t

0
φ(s)φ>(s)ds

)
=∞.

The relation between between different types of excitation can be summarized as
follows: any persistently excited signal is infinitely excited, and any infinitely excited
signal is excited on an interval.

Example 3.1. In this example, we consider the excitation definitions above for some
R+ → R functions.

• The signal

x1(t) =
{

1 for t ≤ 1,
0 otherwise

is excited only on the interval [0, 1]. It is neither infinitely excited, nor PE.

• The signal x2(t) = e−
1
2 t is excited on any interval, e.g., x2 is (0, T, 1 − e−T )-IE

for any T > 0. However,
∫∞

0 x2
2(s)ds = 1 < ∞ and x2 is not infinitely excited.

Moreover, x2 tends to zero, and thus it is not PE.

• The signal x3(t) = 1√
t+1 is excited on any interval since it remains positive for all

t. Moreover,
∫∞

0 x2
3(s)ds = ∞, and x3 is infinitely excited. However, x3 tends to

zero, and thus it is not PE.

• The signal x4(t) = sin(t) is excited on any interval and it is infinitely excited.
Moreover, it is straightforward to verify that x4 is

(
π, π2

)
-PE. 4

3.3.3 Gradient Estimator
The gradient estimator for the LRE (3.1) is given by

˙̂
θ(t) = Γφ(t)

(
y(t)− φ>(t)θ̂(t)

)
, (3.2)

where θ̂ denotes the estimate of θ and Γ > 0 is the gain matrix. Define the estimation
error

θ̃(t) := θ̂(t)− θ. (3.3)

Then the error dynamics is given by

˙̃θ(t) = −Γφ(t)φ>(t)θ̃(t) + Γφ(t)w(t). (3.4)
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Convergence conditions

In the noise-free scenario, i.e., assuming w ≡ 0, the gradient estimator ensures exponen-
tial convergence to zero of the estimation error θ̃ if and only if the regressor φ is PE;
see [20, 104, 105]. Otherwise, for w 6≡ 0, the gradient estimator is input-to-state stable
with respect to w.

For the case when the regressor φ is not PE, no necessary and sufficient convergence
condition is available. In [83,84], authors addressed the asymptotic (but not exponential)
convergence of (3.4) for w ≡ 0 and Γ = γI with a positive scalar γ, and without the
persistence of excitation. They derived several sufficient but not necessary and necessary
but not sufficient conditions. Later, the authors of [106] summarized these conditions
and analyzed the integral input-to-state stability of (3.4) with respect to the noise w.

However, the conditions discussed in [83,84,106] are rather technical and can hardly be
applied in practice. For example, the sufficient condition for global asymptotic stability
(GAS) of the origin of (3.4) for w ≡ 0 given in [84] can be summarized as follows.

Proposition 3.1 (see [84,106]). Assume that, for any t0 ∈ R+, there exist sequences of
positive numbers {tk}∞k=0, {lk}∞k=0, and {vk}∞k=0 such that for all k ≥ 0,

tk+1 ≥ tk + lk,

λm

(∫ tk+lk

tk

φ(s)φ>(s)ds
)
≥ vk, (3.5)

and ∞∑
k=0

vk

γ−1 + γ
(∫ tk+lk
tk

|φ(s)|2ds
)2 =∞. (3.6)

Then the origin of (3.4) with w ≡ 0 and Γ = γI is GAS.

Whereas the condition (3.5) has a clear interpretation, namely the regressor φ remains
excited with a possibly decaying excitation level, the condition (3.6) is very technical.

In [84], the authors also showed that in a general case, the infinite excitation condition
(see Definition 3.3) is necessary but not sufficient to ensure the GAS; the authors proved
this claim by constructing a counterexample.

It is worth noting that for φ being (T, µ)-PE, the conditions of Proposition 3.1 are
satisfied. Indeed, setting lk ≡ T , tk = t0 + kT , and vk ≡ µ, for all k ≥ 0

vk

γ−1 + γ
(∫ tk+lk
tk

|φ(s)|2ds
)2 ≥

µ

γ−1 + γT 2‖φ‖4∞
,

and thus the infinite summation in (3.6) does not converge.
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Transient performance and tuning

For the noise-free case, i.e., for w ≡ 0, it is straightforward to show that the weighted
norm ‖θ̃‖Γ−1 is not increasing. Indeed, for V (θ̃) := θ̃>Γ−1θ̃, we obtain1

V̇ = −θ̃>φφ>θ̃ ≤ 0.

However, the monotonicity of the weighted norm does not imply that the element-wise
transients are monotonic. In contrast, it is well-known that the element-wise transients
of the estimation error vector θ̃ generally oscillate and may have significant peaks. It
happens due to the interconnections induced by the off-diagonal elements of the matrix
φφ>.

These interconnections also complicate the gain tuning procedure. The gain matrix Γ
is often chosen as a diagonal matrix, Γ = diag (γi), where i ∈ 1, n, and γi > 0 are scalar
parameters. Such a choice is motivated by reducing the number of tuning parameters
and the intuition that i-th gain mainly affects the i-th element. However, a change in
γi also affects the transients for θ̃j , j 6= i, and these interconnections yield multiple
trial-and-error tunning attempts.

Regarding the speed of convergence, a standard result is that if φ is PE, then the
weighted norm ‖θ̃‖Γ−1 converges to zero exponentially fast, where the rate of convergence
depends on the gain Γ and the excitation characteristics of φ; see, e.g., [20,76]. However,
the exponential bound cannot be arbitrary accelerated. In [82], authors show that for φ
being (T, µ)-PE and Γ = γI, solutions of (3.4) satisfy for t ≥ t0

|θ̃(t)| ≤
√
ζ‖φ‖∞

(
e−

1
2γζ

−1(t−t0)|θ̃(t0)|+ γζ−1‖w‖∞
)
, (3.7)

where
ζ := γη−1e2ηT , η := − 1

2T ln
(

1− γµ

1 + γ2T 2‖φ‖4∞

)
.

The relationship between the tuning gain γ and the rate of convergence of the exponential
bound function is not straightforward, and an increase of γ may decrease the rate of
convergence 1

2γζ
−1.

3.4 DREM Procedure in Asymptotic Parameter Estimation
In this Section, we describe the DREM procedure and how this procedure yields im-
proved transient performance in parameter estimation. The materials of this section
are organized as follows. First, in Section 3.4.1 we introduce the DREM procedure
and present the DREM-enhanced gradient estimator. Section 3.4.2 discusses the tran-
sient performance and the convergence conditions of the DREM-enhanced estimator,
and some illustrative examples are provided in Section 3.4.3. Finally, in Section 3.4.4,
we discuss the use of the DREM procedure with the least-squares estimator.

To simplify the presentation, in this section we introduce the DREM procedure for
the scalar output case, ` = 1. The extension to the general case ` ≥ 1 is straightforward,
and we discuss it in Section 3.5.

1When clear from the context, in the sequel the argument of time may be omitted.
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3.4.1 DREM Procedure Description
Two steps of the DREM procedure

The first step in the DREM procedure is the dynamic regressor extension, where the goal
is to get n − 1 new linear regressor equations sharing the same vector of parameters θ.
To this end, we introduce n−1 linear, L∞–stable operators Hi : L∞ → L∞, i ∈ 1, n− 1.
The outputs of these operators applied to a signal x : R+ → R are further denoted as

xfi(t) := Hi [x(t)] .

For example, the operator Hi may be an exponentially stable linear time-invariant
(LTI) filter,

Hi = αi
p+ βi

, (3.8)

where p := d
dt and αi > 0, βi > 0. Another possible choice is the delay operator,

Hi [x(t)] =
{
x(t− di) for t ≥ di,
0 for t < di,

where di ∈ R+.
We apply these operators to the LRE (3.1) to get the filtered regressions

yfi(t) = φ>fi(t)θ + wfi(t).

Remark 3.1. For some choices of Hi, e.g., for an LTI filter with nonzero initial con-
ditions, the exponentially decaying term εi may appear in the filtered regression,

yfi(t) = φ>fi(t)θ + wfi(t) + εi(t).

To simplify the presentation, we omit these terms in the sequel, and we incorporate them
in the analysis when necessary.

Combining the original LRE (3.1) with the n−1 filtered regressions, we construct the
extended LRE

Y (t) = Φ(t)θ +W (t), (3.9)
where we define Y : R+ → Rn, Φ : R+ → Rn×n, and W : R+ → Rn as

Y :=


y
yf1
...

yfn−1

 , Φ :=


φ>

φ>f1...
φ>fq−1

 , W :=


w
wf1

...
wfn−1

 . (3.10)

Note that Y , Φ, and W are bounded due to the L∞–stability assumption on Hi.
The second step of the DREM procedure is the mixing. Recall that for any square

possibly singular matrix A and its adjugate matrix adj(A), it holds

adj(A)A = det(A) I.
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At this step, we multiply the extended LRE (3.9) by the adjugate matrix of Φ(t) on
the left. Defining

Y(t) := adj(Φ(t)))Y (t), (3.11)
W(t) := adj(Φ(t))W (t),

we get
Yi(t) = ∆(t)θi + Wi(t), (3.12)

where i ∈ 1, n, and we define the scalar function ∆ : R+ → R as

∆(t) := det(Φ(t)) . (3.13)

The set of n scalar LREs (3.12) sharing the same bounded scalar regressor ∆ is the
outcome of the DREM procedure. Thus, the DREM procedure is a nonlinear transfor-
mation that converts the original LRE (3.1) with the vector θ containing n unknown
parameters to the set of n scalar LREs (3.12) for each element θi separately, where the
new regressor ∆ is the determinant of the extended matrix Φ.

Parameter estimation and convergence properties

We can θi in the scalar regression (3.12) by applying the gradient estimator (3.2). It
yields, for i ∈ 1, n, the DREM-enhanced gradient estimator

˙̂
θi(t) = γi ∆(t)

(
Yi(t)−∆(t)θ̂i(t)

)
, (3.14)

where γi > 0 is a scalar tuning parameter. The estimation error dynamics is then

˙̃θi(t) = −γi∆2(t)θ̃i(t) + γi∆(t)Wi(t), (3.15)

where θ̃ was defined in (3.3).
Consider first the noise-free case, i.e., w ≡ 0 implying that W and W are identically

zeros as well. Then the LRE (3.1) takes the form

y(t) = φ>(t)θ, (3.16)

and for i ∈ 1, n, the scalar LREs (3.12) are

Yi(t) = ∆(t)θi. (3.17)

The derivations above allow for establishing the following proposition (see [102]).

Proposition 3.2. Consider the n–dimensional linear regression equation (3.1) with ` =
1, w ≡ 0, where y : R+ → R and φ : R+ → Rn are known, bounded functions of time and
θ ∈ Rn is the vector of unknown parameters. Introduce n−1 linear, L∞–stable operators
Hi : L∞ → L∞, i ∈ 1, n− 1. Define the vector Y and the matrix Φ as given in (3.10).
Consider the estimator (3.14) with Yi and ∆ defined in (3.11) and (3.13), respectively.
Then the following properties hold for all i ∈ 1, n:
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P1: the estimation error θ̃i converges to zero asymptotically if and only if ∆ is a non-
square-integrable function,

∆ 6∈ L2 ⇔ lim
t→∞

θ̃i(t) = 0; (3.18)

P2: the estimation error θ̃i converges to zero exponentially fast if and only if ∆ is PE;

P3: (the element-wise monotonicity) the transients θ̃i are monotonic, i.e., for all ta ≤ tb
it holds

|θ̃i(ta)| ≤ |θ̃i(tb)|;

P4: (the element-wise tuning) variations in the gain γi affect the transients for θ̃i only.

The proof of Proposition 3.2 is straightforward. For w ≡ 0, (3.15) becomes

˙̃θi(t) = −γi∆2(t)θ̃i(t). (3.19)

The exponential convergence of the linear time-varying (LTV) system (3.19) for a per-
sistently excited ∆, i.e., property P2, is well-known; see Section 3.3. Properties P1, P3,
and P4 follow directly from the solution of (3.19) given by

θ̃i(t) = e−γi
∫ t

0 ∆2(τ)dτ θ̃i(0).

Regarding Remark 3.1, if we consider the possible presence of the exponentially de-
caying terms εi due to some choices of Hi, the error equation (3.19) becomes

˙̃θi(t) = −γi∆2(t)θ̃i(t) + εt,

where εt is a generic exponentially decaying term. When ∆ is PE, θ̃i converges expo-
nentially despite εt. To prove (3.18) and establish the asymptotic (but not exponential)
convergence for a non-square-integrable ∆, we note that a bounded exponentially decay-
ing term εt is absolutely integrable, εt ∈ L1, and apply the following Lemma (see [107]).

Lemma 3.1. Consider the scalar system defined by

ẋ(t) = −a2(t)x(t) + b(t), (3.20)

where x(t) ∈ R, a, b : R+ → R are piecewise continuous bounded functions, x(t0) = x0.
If a 6∈ L2 and b ∈ L1 then

lim
t→∞

x(t) = 0. (3.21)

The proof of Lemma 3.1 is given in Section 3.A.1.
Concerning the case w 6≡ 0, the estimator (3.14) is input-to-state stable with respect

to Wi if ∆ ∈ PE, which is a similar result as for the standard gradient estimator; see
Section 3.3. Moreover, as it is shown in [108], if Wi ∈ L2 and ∆ 6∈ L2, then θ̃i is bounded.
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3.4 DREM Procedure in Asymptotic Parameter Estimation

3.4.2 Transients and Convergence
The improved tuning and transient performance

Two key features of the DREM procedure for the transient performance are properties P3
and P4 of Proposition 3.2. The element-wise monotonicity provides performance guar-
antees on the parameter estimation transients, excluding the peaking and oscillations.
Even if the noise-induced components Wi can deteriorate the monotonicity, these dis-
tortions are typically smaller than those induced by interconnections between elements
of θ̃. Another corollary is that the parameter estimate θ̂i crosses zero not more than
once, up to the noise-induced component Wi; in [109], this property was used to relax
the high-frequency gain sign assumption in model reference adaptive control.

The element-wise tuning property is also of great importance as it significantly simpli-
fies the tuning procedure and allows adjusting the transient rate for a specific estimated
parameter without affecting others. Such a property is valuable, e.g., for time-scale sep-
aration or filtering/tracking trade-off tuning for an individual parameter. Note that the
DREM procedure allows estimating the separate component θi only instead of the whole
parameter vector θ. In such a case, the computation of the adjoint matrix adj(Φ) can
be avoided, and the elements Yi in (3.12) can be computed using Cramer’s rule as

Yi(t) = det(ΦY,i(t)) ,

where ΦY,i is the matrix Φ of the extended LRE (3.9), where the i-th column is replaced
by the vector Y , and i ∈ 1, n.

The novel convergence condition

The DREM procedure introduces the new convergence condition in (3.18), namely ∆ 6∈
L2, . Two natural questions arise at this point.

Q1. Can the condition ∆ 6∈ L2 hold when φ is not PE?

Q2. Can a poor choice of operatorsHi compromise the convergence, i.e., to yield ∆ ∈ L2
for φ ∈ PE?

First, recall that ∆ 6∈ L2 is a weaker condition than ∆ ∈ PE. Following the definitions
introduced in Section 3.3, the condition ∆ 6∈ L2 corresponds to the infinite excitation
in the sense of Definition 3.3, which is weaker than the persistency of excitation. As
shown in Example 3.1, ∆(t) = 1√

t+1 is infinitely excited, ∆ 6∈ L2, but such a signal is
not persistently excited, ∆ 6∈ PE.

Answer to Q1. The answer to question Q1 is positive, as we will show with the
following example (see [102]).

Example 3.2. Define g : R+ → R as

g(t) := sin(t)√
t+ 1

,
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3.4 DREM Procedure in Asymptotic Parameter Estimation

and choose the regressor φ =
[
1 g + ġ

]>
. Since both g and ġ tend to zero as t tends to

infinity, the second element of the regressor φ decays, and φ is not persistently excited.
Choose now

H1 = 1
p+ 1 .

Following the DREM procedure, define φf1 = H1[φ]. Then for the second element of
φf1 , which is given by φf1,2 = H[g + ġ], it holds

φ̇f1,2 = −φf1,2 + g + ġ.

It follows then that
d

dt
(φf1,2 − g) = − (φf1,2 − g) ,

and |φf1,2 − g| → 0 exponentially as t tends to infinity. Neglecting the exponentially
decaying terms and considering the steady-state behavior, the extended regressor matrix
Φ defined in (3.10) is given by

Φ =
[

1 g + ġ
φf1,1 φf1,2

]
=
[
1 g + ġ
1 g

]
,

and ∆ = det(Φ) = −ġ. The time derivative of g is

ġ = cos(t)√
t+ 1

− sin(t)
2
√

(t+ 1)3 .

Since ġ goes to zero as t goes to infinity, the novel regressor ∆ is not persistently excited.
However, it is straightforward to check that

lim
s→∞

∫ s

0

(
cos(t)√
t+ 1

− sin(t)
2
√

(t+ 1)3

)2

dt =∞.

Thus, the novel regressor ∆ 6∈ L2 and the DREM-enhanced gradient estimator (3.14)
converges asymptotically. 4

Answer to Q2. The answer to the question Q2 is also yes, and a poor choice of
the operators H can compromise the convergence. We illustrate it with the following
example.

Example 3.3. Consider the regressor φ(t) = [sin(t) cos(t)]> and choose

H1 = c(p+ 1)
p2 + p+ 2 ,

where c > 0. Note that for the unit frequency, the operator H1 provides the zero
phase shift and the magnitude gain c. Thus, in the steady-state, φf1(t) = c sin(t),
φf2(t) = c cos(t), and

Φ(t) =
[

sin(t) cos(t)
c sin(t) c cos(t)

]
.
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3.4 DREM Procedure in Asymptotic Parameter Estimation

Obviously, φ ∈ PE, but det(Φ) = 0 and ∆ ∈ L2.
On the the other hand, for φ(t) = [sin(

√
3t) cos(

√
3t)]>, in the steady-state we have

Φ(t) =
[

sin(
√

3t) cos(
√

3t)
c sin(

√
3t− π

3 ) c cos(
√

3t− π
3 )

]
,

and det(Φ) = c
√

3
2 , thus ∆ ∈ PE. 4

To summarize, the examples above illustrate that the following scenarios are possible:

• PE yields PE, i.e., the original regressor φ is PE, and the novel regressor ∆ is PE;

• PE yields poor excitation, i.e., the original regressor φ is PE, but due to the poor
choice of Hi, the novel regressor is not infinitely excited, ∆ ∈ L2;

• no PE yields GAS, i.e., the original regressor φ is not PE, but the novel regressor
is infinitely excited, ∆ 6∈ L2;

• no PE yields no excitation, i.e., the original regressor φ is not PE, and the novel
regressor is not infinitely excited, ∆ ∈ L2.

It is not yet clear if the DREM procedure requires less excitation than the standard
(vector) gradient estimator, i.e., if the DREM-enhanced estimator (3.14) converges when
the gradient estimator (3.2) does not; this question remains open due to the complicated
non-exponential convergence conditions of (3.2) discussed in Section 3.3. However, the
new necessary and sufficient asymptotic convergence condition ∆ 6∈ L2 is more trans-
parent, and illustrative simulations in Section 3.4.3 demonstrate the better behavior of
the DREM-enhanced estimator (3.14) in the φ 6∈ PE and ∆ 6∈ L2 scenario.

The operators Hi are crucial components of the DREM procedure. Whereas this
degree of freedom can be used, e.g., to attenuate the measurement noise w, a poor
choice can compromise the convergence generating a poor novel regressor ∆ from a
persistently excited original regressor φ. Thus, the resulting excitation should be studied
when the DREM procedure is applied. We will alleviate this shortcoming in Section 3.5
by proposing a dynamic extension method that guarantees preservation of the original
excitation.

3.4.3 Illustrative Examples
Consider the noise-free linear regression (3.16), namely

y(t) = φ>(t)θ,

where we recall that y and φ are known and θ is the vector of unknown parameters.
Below, we use the gradient estimator (3.2) to estimate θ in (3.16), and apply the DREM
procedure and the DREM-enhanced estimator (3.14) to improve the performance.
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3.4 DREM Procedure in Asymptotic Parameter Estimation

Persistently excited regressor

Consider first the case when both the original regressor φ and the new regressor ∆ are
persistently exited. Choose

φ(t) =
[
1 sin(t) cos(t)

]>
. (3.22)

Such a regressor often appears in adaptive disturbance estimation and attenuation ap-
plications. It is straightforward to show that φ is (2π, π)-PE, i.e., for all t ≥ 0,∫ t+2π

t
φ(s)φ>(s)ds ≥ πI.

To apply the DREM procedure, we perform the following two steps.
Step 1. At this step, we perform the dynamic regressor extension. For φ(t) ∈ R3, we

have to introduce two operators, H1 and H2. Choose H1 as the delay,

H1 [x(t)] =
{
x(t− 1) for t ≥ 1,
0 for t < 1,

and H2 as the LTI filter,
H2 = 2

p+ 1 .

For t ≥ 1 and neglecting exponentially decaying terms, the extended regressor matrix
Φ defined in (3.10) is given by

Φ(t) =

 φ>(t)
H1[φ>(t)]
H2[φ>(t)]

 =

1 sin(t) cos(t)
1 sin(t− 1) cos(t− 1)
2
√

2 sin(t− π
4 )
√

2 cos(t− π
4 )

 .
Then det(Φ(t)) = cos(1) + sin(1)− 1, and the new regressor ∆ = det(Φ) is also PE.

Step 2. At this step, we perform the mixing and construct new scalar LREs. Following
the DREM procedure, we define the extended output vector

Y (t) =
[
y(t) H1[y(t)] H2[y(t)]

]>
and compute Y = adj(Φ(t))Y (t). It yields the scalar equations (3.17) for i = 1, 2, 3,
namely

Yi(t) = ∆(t)θi.

We are now in the position to present numerical simulations of the standard gradient
estimator (3.2) applied to (3.16), and the DREM-enhanced estimator (3.14) applied to
(3.17).

Choose the unknown parameter vector as θ =
[
1 −1 2

]>
and set the initial es-

timates θ̂(0) = 0 for all estimators. Consider the estimator (3.2) with Γ = I. The
transients of the estimation error θ̃ are given in Fig. 3.1a, where we can approximate
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Figure 3.1: The estimation error θ̃ of the gradient estimator (3.2); φ is given by (3.22)
and persistently excited.

the transient time as 30 seconds. Suppose our goal is to have the transient time approx-
imately equal to 10 seconds, i.e., we want to accelerate the transients. The direct gain
adjustment as Γ = 3I does not yield the desired result (see Fig. 3.1b). This adjustment
makes the transients worse, increasing both the transient time and oscillations. Proba-
bly, for a more general structure of the gain matrix Γ, we can get better performance
via the time-consuming trial-and-error tuning.

Let us now consider the DREM-enhanced estimator (3.14), where γi = 1, i = 1, 2, 3.
The transients are given in Fig. 3.2a, where the initial absence of the response is due
to the delay operator H1 and the transient time of the LTI operator H2. The length of
this interval depends on the choice of operators. In this example, we have chosen the
operators H1, H2 to get approximately the same time of response for unit gains, i.e., 30
seconds, as for the gradient estimator (3.2) in Fig. 3.1a.

However, having a comparable speed of response, the DREM procedure provides
monotonic estimates with no oscillations. Consider now the straightforward gains ad-
justment γi = 3 for i = 1, 2, 3. The resulting estimates are given in Fig. 3.2b, where the
transient time is approximately 10 seconds. This example illustrates the transparent and
simple tuning of the DREM-enhanced estimator; moreover, the accelerated transients
remain monotonic.

Next, we consider the noised scenario, i.e., we consider the LRE (3.1) instead of (3.16)
and choose w as a bounded white noise with the zero mean and the standard deviation
equal to 1; note that in the noise-free case, y(t) varies between −2 and 4, and the
considered additive noise is not negligible. Being applied to (3.1), the DREM procedure
yields now (3.12) instead of (3.17). The plots of the estimation error θ̃ for the gradient
estimator (3.2) and the DREM-enhanced estimator (3.14) are depicted in Fig. 3.3a and
Fig. 3.3b, respectively. The simulation results illustrate the comparable noise sensitivity
of the estimators for the unit gains.

For a persistently excited regressor, both the standard gradient and the DREM-
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(a) γi = 1 for i = 1, 2, 3
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(b) γi = 3 for i = 1, 2, 3

Figure 3.2: The estimation error θ̃ of the DREM-enhanced estimator (3.14); ∆ is persis-
tently excited.

Tuning parameters, The gradient The DREM-enhanced
Γ and γi, i = 1, 2, 3 estimator (3.2) estimator (3.14)
Γ = 1

2I and γi = 1
2 0.82 0.19

Γ = I and γi = 1 1.68 0.40
Γ = 3I and γi = 3 5.06 1.60
Γ = 10I and γi = 10 16.26 8.81

Table 3.1: Mean squared norm of the estimation error MSE(θ̃), tf = 1000 and L = 100,
for the noised LRE (3.1).

enhanced estimators are input-to-state stable with respect to the additive noise. Whereas
the ISS gain can be estimated via the Lyapunov analysis, see, e.g., [82] and the inequality
(3.7), this gain can be conservative. Below we illustrate the sensitivity of the DREM-
enhanced estimator to the additive noise for various tuning parameters and compare
it with the gradient estimator. To separate the transients from the noise, we perform
numerical simulations for a sufficiently large time tf seconds and then compute the mean
squared norm of the estimation error θ̃ over the last L seconds,

MSE(θ̃) := 1
L

∫ tf

tf−L
|θ̃(s)|2ds.

For the considered experiment, we choose tf = 1000 and L = 100. The numerical
simulation results are given in Table 3.1 and illustrate the filtering behavior of the
DREM procedure.

Finally, it is worth noting that the DREM procedure allows for the tracking/filtering
trade-off tuning for the specific parameter estimate θ̂i. It can be achieved by adjusting
the specific gain γi, without affecting the other estimates’ transients. To illustrate this
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(a) The gradient estimator (3.2), Γ = I
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(b) The DREM-enhanced estimator (3.14), γi = 1,
i = 1, 2, 3

Figure 3.3: The estimation error θ̃ in the presence of noise.

property, consider the DREM-enhanced estimator (3.14) applied to the noised LRE
(3.12) with the same noise as in the example above, and set γ1 = γ3 = 1 and γ2 = 5.
Simulation results are given in Fig. 3.4. Whereas θ̃1 and θ̃3 behave as in the previous
example, compare with Fig. 3.3, the estimate of θ2 has a faster response (tracking) but
is more sensitive to noise (filtering).

Decaying regressor

Consider the noise-free LRE (3.16), where we choose such a regressor φ that it is not
PE but can generate a new infinitely excited regressor ∆ 6∈ L2. To this end, we recall
Example 3.2 and choose φ =

[
1 g + ġ

]>
, where

g(t) = sin(t)√
t+ 1

.

The gradient estimator (3.2) is stable, and the estimation error θ̃ remains bounded.
However, it is not exponentially converging since φ(t) 6∈ PE, and PE is a necessary con-
dition for exponential stability; moreover, we cannot conclude if the gradient estimator
is asymptotically converging. The considered regressor φ is infinitely excited in the sense
of Definition 3.3, i.e.,

lim
t→∞

λm

(∫ t

0

[
1 g(s) + ġ(s)

g(s) + ġ(s) (g(s) + ġ(s))2

]
ds

)
=∞,

and thus it satisfies the necessary condition for GAS. However, it is unclear if the re-
gressor φ satisfies the sufficient condition given in Proposition 3.1.

Choose θ =
[
1 −1

]>
and θ̂(0) = 0. The transient behavior of the estimation error

θ̃(t) for the gradient estimator (3.2) is shown in Fig. 3.5; the plots show that convergence
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Figure 3.4: The tracking/filtering trade-off tunning; the tuning coefficients are γ1 = γ3 =
1, γ2 = 5.
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Figure 3.5: The estimation error θ̃ of the gradient estimator (3.2) for φ 6∈ PE.

has not been achieved even after a reasonably long period of 500 seconds, and the gain
increase does not accelerate the convergence.

Following Example 3.2, we apply the DREM procedure with H1 = 1
p+1 ; then, the

new regressor ∆ satisfies ∆ 6∈ L2 ensuring the asymptotic convergence. The transient
behavior of the estimation error θ̃ for the DREM-enhanced estimator (3.14) is shown in
Fig. 3.6. It illustrates the asymptotic (but not exponential) convergence and the impact
of the tuning gains.

3.4.4 DREM with the Least-Squares Estimator
The least-squares estimator

In this chapter, we primarily focus on the gradient-descent type of estimators, namely the
estimator (3.2). However, besides the gradient estimators, another widely used method
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Figure 3.6: The estimation error θ̃ of the DREM-enhanced estimator (3.14) for φ 6∈ PE
and ∆ 6∈ L2.

for adaptive parameter estimation is the least-squares (LS) approach; see [20, 76, 110].
For the continuous-time linear regression model (3.1), the LS estimator is given by

d

dt
θ̂(t) = ΓP (t)φ(t)

(
y(t)− φ>(t)θ̂(t)

)
,

d

dt
P (t) = Γ

(
λP − P (t)φ(t)φ>(t)P (t)

)
,

(3.23)

where P (0) = P0 > 0, Γ > 0, and λ ≥ 0 are the design parameters. Here, λ is the
exponential forgetting factor, where λ = 0 implies no forgetting, and λ > 0 yields
the exponential forgetting of the past measurements. In contrast with the gradient
estimator minimizing the instantaneous estimation error, the LS estimator minimizes
the integral cost. As a result, if the LS estimator does not perform any forgetting,
λ = 0, it loses the alertness, i.e., it becomes incapable of tracking variations of the
parameters θ. In other words, for λ = 0, the absolute priority in the tracking/filtering
trade-off is given to the filtering. Due to the loss of alertness, the no-forgetting LS
estimators are not typically used in adaptive online parameters estimation, and the
exponentially forgetting LS estimators are preferred. It is also worth noting that besides
the exponential forgetting, there exist other methods to deal with the loss of alertness:
covariance resetting, constant-trace, and other algorithms [19, 20]. However, in this
section, we consider only the LS estimator with the constant forgetting factor.

The LS estimator typically has better transient performance than the gradient estima-
tor: the transients are faster and less oscillating, and the noise attenuation is better [19].
However, the LS estimator provides neither element-wise monotonicity nor the transpar-
ent tuning recommendations for the gain Γ. The LS estimator ensures the exponential
convergence if the regressor φ is persistently excited [20]. The drawback of the LS esti-
mator is that for φ not being PE, the nonlinear dynamics of P in (3.23) can be unstable,
yielding the unboundedness of P and excessive estimator’s sensitivity. This effect is
known as the covariance “wind-up.” To deal with the wind-up, many solutions propose
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to saturate, in a certain way, or reset the matrix P . Another interesting approach is the
“directional forgetting” discussed in [111,112]. The key idea is that the regressor φ may
contain information in specific directions, i.e., for some elements of the vector θ, and this
information can be incorporated in the matrix P update law. However, this approach is
mainly developed for the discrete-time recursive LS estimators, and we do not address
it here; this question is also discussed in Section 3.7.3.

The LS estimator in the DREM procedure

The DREM procedure renders the LRE (3.1) to the set of scalar LREs (3.12). Within
this context, the LS estimator (3.23) takes the element-wise form, for i ∈ 1, n,

˙̂
θi(t) = γi∆(t)pi(t)

(
Yi(t)−∆(t)θ̂i(t)

)
, (3.24)

ṗi(t) = γi
(
λipi(t)− p2

i (t)∆2(t)
)
, (3.25)

where pi(0) > 0 and γi > 0 are the design parameters, and λi ≥ 0 is the element-wise
forgetting factor. In the noise-free case, the error dynamics under the LS estimator is
given by

˙̃θi(t) = −γipi(t)∆2(t)θ̃i(t). (3.26)

From (3.25), it follows that p(t) remains nonnegative for t ≥ 0. Together with the
estimation error dynamics (3.26), it implies that the DREM-enhanced element-wise LS
estimator has the same transient improvements:

• the transients of θ̃ are element-wise monotonic;

• the coefficients γi and λi have the element-wise effect making the overall tuning
simpler and clearer.

Let us now discuss the convergence conditions of the the element-wise LS estimator
(3.24), (3.25). As well as (3.23), it converges exponentially when ∆ is PE. However, it
is of interest to study the convergence conditions for the DREM-specific case when ∆ is
not PE but belongs (or not) to L2. Recall that, in the noise-free scenario, the gradient
estimator (3.14) converges exponentially when ∆ ∈ PE, asymptotically when ∆ 6∈ L2,
and ensures the boundedness of θ̂ when ∆ ∈ L2.

For the scalar equation (3.25), we can derive and analyze the exact solution pi(t). This
analysis allows us establishing convergence properties of the element-wise LS estimator in
the context of the DREM procedure, which are summarized in the following proposition
(see [113]).

Proposition 3.3. Let i ∈ 1, n. Consider the estimation algorithm (3.24), (3.25) with
pi(0) > 0 and γi > 0. The claims are:

(i) If λi = 0 (the LS estimator without forgetting) then
(C1) if ∆ ∈ L2 then for all nonzero θ̃i(0) the signal θ̃i does not converge to zero;
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(C2) if ∆ 6∈ L2 then θ̃i is monotonic and converges to zero asymptotically;
(C3) if ∆ is PE, it does not imply the exponential convergence.

(ii) If λi > 0 (the LS estimator with forgetting) then
(C4) pi is bound from below;
(C5) if ∆ ∈ L2 or

∆ 6∈ L2 and ∆→ 0,

then the estimator is unstable and pi tends to infinity;
(C6) if ∆ is PE then pi is bounded, θ̃i is monotonic and converges to zero expo-

nentially fast.

Whereas the LS estimator’s behavior for ∆ ∈ PE directly follows from the known
properties of LS estimators, Proposition 3.3 provides also the analysis for the ∆ 6∈ L2
case and the explicit solution for pi. The proof of Proposition 3.3 is given in Section 3.A.2.

Proposition 3.3 shows that, within the context of the DREM procedure, the use of
the nonlinear (in the dynamics of p) LS estimator (3.24), (3.25) does not yield weaker
convergence properties than the gradient estimator (3.14), even if the possible unbound-
edness of pi can be alleviated, e.g., via projection. For the noise-free scalar LREs (3.17),
both the gradient estimator and the element-wise LS ensure the transient monotonicity
and the element-wise tuning. However, the benefit of the LS estimator is the better
noise attenuation, which can be crucial in some applications.

3.5 Excitation Propagation in the DREM Procedure
As discussed in Section 3.4.2, dynamic extension in the first step of the DREM procedure
is critical for performance. The question is how to perform such an extension that the
excitation of the original regressor φ is preserved, either persistent or interval. As shown
in Example 3.3, a poor choice can compromise the convergence even if φ is PE.

For a particular class of LRE, where the regressor consists of a finite sum of sinusoidal
signals, one suitable choice is a series connection of delay operators. It can be proven
that such a choice preserves the excitation under conditions on the delay value, but
the upper frequency bound must be known in advance (see [114]). In this section, we
address this problem for the more general case of multi-output linear regression with an
arbitrary regressor matrix φ, where φ(t) ∈ Rn×` and ` ≥ 1.

This section is organized as follows. First, in Section 3.5.1, we discuss an interpre-
tation of the DREM procedure as a linear time-varying functional observer; this in-
terpretation generalizes finite-dimensional linear dynamic regressor extensions. Then,
in Section 3.5.2, we consider one specific choice of dynamic extension, namely Kreis-
selmeier’s scheme, that preserves excitation of the original regressor φ. We provide the
quantitative analysis of this excitation preservation property in Section 3.5.3, where we
also analyze the dynamics of ∆, and we present an illustrative example in Section 3.5.4.
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3.5.1 Functional Observer Interpretation
An interesting interpretation of the DREM procedure is to consider it as a Functional
Observer for an LTV system, as discussed in [115].

Functional Observers for LTV systems

Following [116], consider the LTV system

ẋ = A(t)x+B(t)u,
y = C(t)x,

(3.27)

where x ∈ Rnx , u ∈ Rnu , y ∈ Rny , and the linear functional

v = M(t)x, (3.28)

with v ∈ Rnv . The goal is to design an observer for the signal v given the measurements
of y and u. In [116, Theorem 3.6], the following result is established.
Proposition 3.4. Define a completely observable nv-dimensional system

ż = F (t)z +G(t)u+K(t)y,
ϑ = P (t)z,

(3.29)

with all the solutions of ẋ = F (t)x converging to zero. The system (3.29) is a global
asymptotic observer of the linear functional (3.28) for the system (3.27), that is, for all
x(0) ∈ Rnx, z(0) ∈ Rnv and all continuous, bounded inputs u we have

lim
t→∞

(v(t)− ϑ(t)) = 0,

if there exists a continuously differentiable nv ×nx matrix Φ(t) solution of the equations

G(t) = Φ(t)B(t),
Φ̇(t) = F (t)Φ(t)− Φ(t)A(t) +K(t)C(t),
M(t) = P (t)Φ(t).

(3.30)

The DREM procedure as a functional observer

The linear regression (3.16) can be seen as the following LTV system with the n-
dimensional state θ and the `-dimensional output y,

θ̇(t) = 0,
y(t) = φ>(t)θ(t).

This system can be written in the form (3.27) choosing nx = n, ny = `, A = 0, B = 0,
and C = φ>. The observer (3.29) and the conditions (3.30) yield

ż(t) = F (t)z +K(t)y(t),
Φ̇(t) = F (t)Φ(t) +K(t)φ>(t),
ϑ(t) = P (t)z(t),

(3.31)
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and ϑ is an asymptotic estimate of v(t) = M(t)θ if holds

M(t) = P (t)Φ(t). (3.32)

To derive the DREM procedure, choose nv = n making the matrices P and Φ square,
and choose

M(t) = det(Φ(t)) In.

Then the linear functional (3.28) takes the decoupled form

vi(t) = det(Φ(t)) θi,

and the condition (3.32) is satisfied choosing

P (t) = adj(Φ(t)) . (3.33)

Denoting Y = ϑ and ∆ = det(Φ), the LTV observer (3.31), (3.33) asymptotically gener-
ates the element-wise scalar LREs

Yi(t) = ∆(t)θi,

which are the outcome of the DREM procedure. Here, the state vector z plays the same
role as the extended output matrix Y in (3.9).

Considering the LTV observer (3.31) as an implementation of the DREM procedure,
the first two lines of (3.31) define the dynamics extension, and the last line performs the
mixing step. Particularly, for ` = 1, choosing F (t) as a constant diagonal matrix with the
entries αi and K(t) as a constant vector with the entries βi, i ∈ 1, n, the LTV observer
(3.31) yields the set of first-order LTI filters Hi chosen as (3.8). However, from the
analysis above, it follows that the dynamic extension can also be performed with a more
general choice of the time-varying matrices F (t), K(t) and for ` > 1. Particularly, one
interesting choice is K(t) = φ(t) yielding the semi-positive definite input term φ(t)φ>(t)
in (3.31). Together with F (t) = −aIn, such a choice yields Kreisselmeier’s regressor
extension [105]. This scheme has the excitation preservation property that we discuss in
the next section.

3.5.2 Kreisselmeier’s Regressor Extension
One possible dynamics extension preserving the excitation, widely used in adaptive
control, is Kreisselmeier’s regressor extension introduced in [105]. For the LRE (3.1),
Kreisselmeier’s scheme generates the extended LRE (3.9), where the extended matrices
Φ and Y are solutions of

Φ̇(t) = −aΦ(t) + φ(t)φ>(t), (3.34)
Ẏ (t) = −aY (t) + φ(t)y(t), (3.35)

where Φ(0) = Φ0 ≥ 0, Y (0) = Y0, and a > 0 is a scalar tuning parameter.
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Remark 3.2. As discussed in Section 3.5.1, we can derive Kreisselmeier’s regressor
extension scheme (3.34), (3.35) from the general LTV observer representation of the
dynamic extension (3.31) choosing F = −aI and K = φ.

The PE preservation property of (3.34) is well-known and summarized in the following
implication:

φ is PE ⇒ Φ(t) > 0, ∀t ≥ T, (3.36)

where T is the excitation interval of φ; see Definition 3.1 in Section 3.3. This PE
preservation property of (3.34) motivates its use in the DREM scheme; the authors
of [117] proposed such a choice referring to it as Memory Regressor Extension.

Within the DREM context, Kreisselmeier’s scheme (3.34), (3.35) is augmented with
the mixing step given by (3.11) and (3.13), namely

Y(t) = adj(Φ(t))Y (t),
∆(t) = det(Φ(t))

yielding the scalar LREs (3.17) for i ∈ 1, n, namely

Yi(t) = ∆(t)θi.

We are interested in the new regressor ∆, for which (3.36) implies the positiveness
and the PE property,

φ is PE ⇒ ∆(t) > 0, ∀t > T ⇒ ∆ is PE. (3.37)

The proof of the implication (3.36) and thus (3.37) is well-known and can be found,
e.g., in [76, Theorem 4.3.3], where the integral cost gradient adaptation algorithm is
considered. However, these proofs provide only the qualitative results (3.36) and (3.37).
What is more interesting for the DREM procedure is to derive quantitative results on
the excitation preservation, i.e., given that φ is (T, µ)-PE, or (t1, T, µ)-IE, what are
the PE, or IE, characteristics of the new regressor ∆(t)? We address this question in
the next section by providing the quantitative analysis of excitation preservation via
Kreisselmeier’s scheme.

More precisely, besides the discussed implication φ is PE ⇒ ∆ is PE, we estimate the
lower bound for ∆ as a function of the excitation characteristics of φ and the gain a in
(3.34). Then we study the Interval Excitation property of φ and show that it is preserved
as well; we also provide the quantitative analysis of the resulting interval excitation for
∆. Moreover, we show that the inverse implication holds and ∆ is PE only if φ is PE;
this observation is somewhat intuitive and implies that the extension scheme does not
bring new excitation.

It is worth noting that the dynamic extension scheme (3.34), (3.35) also allows estab-
lishing bounds on the dynamics of the new regressor ∆; we present this analysis in the
next section after studying the excitation preservation properties.
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3.5.3 Excitation Propagation Analysis
As discussed above, the applicability of (3.34), (3.35) for the DREM procedure and the
implication (3.37) can be derived from the proof of Theorem 4.3.3 in [76]. However,
in that theorem, only the positiveness on the smallest eigenvalue of the matrix Φ is
established. Extending that result, we present the following proposition providing precise
lower bounds for the determinant of the matrix Φ. We also show that the inverse
implication in (3.37) holds supporting a somewhat intuitive observation that the dynamic
extension (3.34) does not create new excitation.

Proposition 3.5. Consider the bounded signal φ : R+ → Rn×` and let Φ : R+ → Rn×n
be a solution of (3.34) for some initial value Φ(0) = Φ0 ≥ 0. Let ∆ : R+ → R be the
determinant of Φ. Then if φ is (T, µ)-PE, then for any positive integer q ≥ 1 and for
all t ≥ qT , it holds

∆(t) ≥ µn
( q∑
k=1

e−akT
)n

(3.38)

and
lim inf
t→∞

∆(t) ≥
(

µ

eaT − 1

)n
. (3.39)

Moreover, the following implication holds

φ ∈ PE⇔ ∆ ∈ PE. (3.40)

The proof of Proposition 3.5 is given in Section 3.A.3.
In the vein of Proposition 3.5, it can be also shown that the dynamic extension (3.34)

preserves the interval excitation in the sense of Definition 3.2 as well. To this end, let
the signal φ be (t1, T, µ)-IE for some t1 ≥ 0, T > 0, and µ > 0. Define f : R+ → R as

f(t) := λm

(∫ t

t1
φ(s)φ>(s)ds

)
. (3.41)

The function f is continuous and nondecreasing. It is not necessarily differentiable;
however, due to the boundedness of φ, it admits a Lipschitz constant, i.e., there exists a
positive constant ρ > 0 such that for any s ≥ t1 and h ≥ 0 it holds

0 ≤ f(s+ h)− f(s) ≤ ρh.

With this definition, we can formulate the following proposition establishing the interval
excitation preservation.

Proposition 3.6. Consider the bounded signal φ : R+ → Rn×` and let Φ : R+ → Rn×n
be a solution of (3.34) for some initial value Φ(0) = Φ0 ≥ 0. Let the signal ∆ : R+ → R
be the determinant of Φ. If the signal φ is (t1, T, µ)-interval excited for some t1 ≥ 0,
T > 0, and µ > 0, then the signal ∆ is (t1, T, α)-interval excited for

α :=
(
ρ

a2 e
−aT

(
e
aµ
ρ − 1− aµ

ρ

))2n
> 0, (3.42)

where ρ is the Lipschitz constant of the function f defined in (3.41).
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The proof of Proposition 3.6 is given in Section 3.A.4.
Proposition 3.5 and Proposition 3.6 justify using (3.34), (3.35) for the dynamic re-

gressor extension step of the DREM procedure. Under this choice, the persistence of
excitation and the interval excitation properties of the original regressor are always pre-
served. The obtained bounds (3.38), (3.39), and (3.42) allow for performance evaluation
of the DREM-enhanced estimation algorithms, e.g., the convergence rate and noise sen-
sitivity gains estimation.

It is also of interest to study the dynamics of the DREM-generated new regressor ∆
for Kreisselmeier’s regressor extension scheme. Such an analysis can be established using
Jacobi’s formula [118, Theorem 8.1]

∆̇(t) = tr
(
adj(Φ(t)) Φ̇(t)

)
,

and the relation between eigenvalues of Φ and adj(Φ). Recalling that λM (Φ) is the
maximum eigenvalue of Φ, we establish the following proposition, whose proof is given
in Section 3.A.5.

Proposition 3.7. Let Φ be a solution of (3.34) and let ∆ = det(Φ). Then ∀t ≥ 0:

• if λM (Φ(t)) = 0, then ∆̇ = 0;

• if λM (Φ(t)) > 0, then

∆̇(t) ≥
(
−an+ ‖φ(t)‖2

λM (Φ(t))

)
∆(t).

It is also worth noting that the upper bound of the maximum eigenvalue of Φ can be
estimated given the upper bound of φ.

3.5.4 Illustrative Example
To illustrate the excitation preservation and the lower bounds (3.38) and (3.39), we
consider the problem of magnitude and phase estimation for sinusoidal signals with
known frequencies. In this example, we also illustrate that the DREM procedure is also
applicable for multiple-output linear regression models. To this end, chose ` = 2, n = 3,
and consider

y1(t) = A sin(πt+ ψ),
y2(t) = B +A cos(2t+ ψ)

where B, A > 0, and ψ ∈ [−π, π) are the unknown parameters to be estimated. These
signals can be rewritten as the LRE (3.16) with

y(t) =
[
y1(t)
y2(t)

]
, φ(t) =

[
0 sin(πt) cos(πt)
1 cos(2t) − sin(2t)

]>
, θ =

 B
A cos(ψ)
A sin(ψ)

 , (3.43)

and w ≡ 0. Obviously, the values A, B, and ψ can be reconstructed given θ.
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Figure 3.7: The new regressor ∆(t), the lower bound (3.38), and the asymptotic lower
bound (3.39).

It is straightforward to verify that the regressor φ is (2π, µ)-PE, where

µ = 2π − sin(2π2)
2π ,

i.e., for all t ≥ 0 ∫ t+2π

t
φ(s)φ>(s)ds ≥ µI.

We apply the DREM procedure with the dynamic regressor extension (3.34), (3.35),
where the only tuning parameter is chosen as a = 0.1. The new regressor ∆ is depicted
in Fig. 3.7 with the lower bound (3.38) and the asymptotic lower bound (3.39).

Whereas the goal of this example is to illustrate the lower bounds established in
Proposition 3.5 and the positiveness of the regressor ∆(t), for the completeness we
present also the estimation error θ̃ for the gradient estimator (3.2) and the DREM-
enhanced estimator (3.14), where we obtain ∆ and Y with Kreisselmeier’s scheme, i.e.,
we compute ∆ and Y as (3.11) and (3.13) with Φ and Y generated by (3.34), (3.35),
respectively.

Choosing B = 1, A = 2
√

2, and ψ = −π
2 yields

θ =
[
1 2 −2

]>
.

For the estimation algorithms, we choose Γ = I for (3.2), γi = 1, i = 1, 2, 3, for (3.14),
and θ̂(0) = 0. The plots of the estimation error θ̃ are depicted in Fig. 3.8 and illustrate
the improved transient performance due to the use of the DREM procedure. The initial
transient phase of the DREM-enhanced estimator is due to the initial transients of the
regressor ∆, see Fig. 3.7, where the positiveness of ∆ is guaranteed only after T seconds
for a (T, µ)-PE signal φ.
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(a) The gradient estimator (3.2)
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(b) The DREM-enhanced estimator (3.14) with
Kreisselmeier’s scheme (3.34), (3.35)

Figure 3.8: The estimation error θ̃ for (3.1) with w ≡ 0 and y, φ, θ defined in (3.43).

3.6 Going Further
This section presents some further developments of the DREM procedure and briefly
discusses various applications where the DREM procedure was used. Section 3.6.1 dis-
cusses how the DREM procedure can be used for parameter estimation of a nonlinear
in parameters regression model where some of the nonlinearities constitute a monotone
operator. Section 3.6.2 introduces the fixed-time parameter estimation under interval
excitation via the DEM procedure. Finally, in Section 3.6.3, we briefly describe some
applications where the DREM procedure was successfully applied.

3.6.1 Partially Monotonic Nonlinearly Parametrized Regressions
In previous sections, we considered linear in parameters regression models (3.1) and
(3.16). However, in many practical problems, parameters enter nonlinearly in the re-
gression form yielding the nonlinear regression equation

y(t) = φ>(t)ψ(θ), (3.44)

where we now assume that θ ∈ Rp and ψ : Rp → Rn is a nonlinear function; we also
recall that y(t) ∈ R` and ψ(t) ∈ Rn×`.

Designing parameter identification algorithms for nonlinearly parameterized regres-
sions is difficult, and one common solution is to overparametrize it. To this end, we
define η := ψ(θ) and transform the nonlinear (in θ) equation (3.44) into the linear one,
namely

y(t) = φ>(t)η.

Then, the tools and methods for linear regression parameter estimation can be applied.
However, overparametrization is not always applicable when the true parameter θ is
required since the mapping ψ must be invertible, at least locally. Moreover, typically
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n > p, i.e., the parameter space of the linear equation is bigger, which complicates prior
knowledge incorporation concerning the domain of validity of parameters θ.

An interesting case is when the function ψ exhibits some monotonicity properties, and
estimation in such a case is discussed, e.g., in [119]. Unfortunately, it is often the case
that this property holds only for some of the functions entering in the regression. In this
section, we consider using the DREM technique to separate and isolate the monotonic
nonlinearities and exploit the monotonicity to achieve consistent parameter estimation
for nonlinearly parameterized regressions.

Before presenting the general result, we first consider the following example.

Example 3.4. Consider the nonlinearly parametrized regression for the scalar param-
eter θ ∈ R,

y(t) = φ1(t)
(
θ − e−θ

)
+ φ2 cos(θ) =

[
φ1(t) φ2(t)

] [ψ1(θ)
ψ2(θ)

]
= φ>(t)η,

where ψ1(θ) := θ − e−θ, ψ2(θ) := cos(θ), and η :=
[
ψ1(θ) ψ2(θ)

]>
is the over-

parametrized parameter vector.
Using standard parameter estimation methods, we can estimate η and then reconstruct

θ. Note, however, that ψ2 is not bijective, and thus we use only ψ1 to estimate θ or
apply a more advanced estimation approach, e.g., the nonlinear least squares. On the
other hand, using the DREM procedure, we get the scalar linear equation

Y1(t) = ∆(t)η1 = ∆(t)ψ1(θ), (3.45)

where Y1 and ∆ are generated using, e.g., Kreisselmeier’s scheme as discussed in Sec-
tion 3.5.2. Then we can estimate only η1 and reconstruct θ inverting the ψ1 function,

θ̂1 = η̂1 +W0(e−η̂1),

where W0 is the principal branch of the Lambert (product logarithm) function.
However, we can also exploit the monotonicity property of ψ1 combining it with the

DREM procedure and estimate θ directly from (3.45).
To this end, we note that ψ1 is strictly monotonically increasing,

ψ′1(θ) ≥ ρ > 0,

where ρ = 1 in the example. It implies that for all a, b ∈ R, it holds

(a− b) (ψ1(a)− ψ1(b)) ≥ ρ(a− b)2. (3.46)

Choose the estimation law
˙̂
θ = γ∆

(
Y1 −∆ψ1(θ̂)

)
for some initial condition θ̂(0). Then for the estimation error θ̃ = θ̂ − θ it holds

˙̃θ = −γ∆2
(
ψ1(θ̂)− ψ1(θ)

)
,
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and for the Lyapunov function
V = 1

2 θ̃
2

using (3.46), we obtain

V̇ = −γ∆2
(
θ̂ − θ

) (
ψ1(θ̂)− ψ1(θ)

)
≤ −γρ∆2θ̃2 = −2γρ∆2V.

Then ∆ 6∈ L2 implies that θ̃ converges to zero asymptotically, and moreover, if ∆ is PE,
then θ̃ converges to zero exponentially fast. 4

Let us now generalize the result of Example 3.4 for the nonlinear regression (3.44).
Assuming n ≥ p, suppose that among n functions ψi, i ∈ 1, n, there exist p functions
satisfying the monotonicity condition. Without loss of generality, assume that these
functions are ψ1, . . ., ψp, i.e.,

ψ =
[
ψg
ψb

]
, ψg =

ψ1
...
ψp

 , ψb =

ψp+1
...
ψn

 ,
where the “good” functions ψg constitute a P -monotone operator Rp → Rp, i.e., there
exists a positive definite matrix P ∈ Rp×p such that2

P
∂ψg(θ)
∂θ

+
(
∂ψg(θ)
∂θ

)>
P > 0 (3.47)

for all θ uniformly. This property implies, see [120], that there exists ρ > 0 such that
for all a, b ∈ Rp

(a− b)>P (ψg(a)− ψg(b)) ≥ ρ(a− b)>P (a− b).

Apply the DREM procedure, e.g., Kreisselmeier’s scheme (3.34), (3.35) with the mix-
ing (3.11), (3.13), and consider only the first p elements. Then we get

Ȳ(t) = ∆(t)ψg(θ), (3.48)

where Ȳ consists of the first p elements of Y.

Proposition 3.8. Consider (3.48), where the function ψg : Rp → Rp satisfies (3.47) for
some positive-definite matrix P . Apply the estimator

˙̂
θ = γ∆

(
Ȳ−∆(t)ψg(θ̂)

)
, (3.49)

where γ > 0 is a scalar. Then ∆ 6∈ L2 implies that θ̂ converges to θ asymptotically, and
if ∆ is PE, then the convergence is exponential.

2This section considers monotonically increasing functions, and extension to the monotonically decreas-
ing functions is straightforward.
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The proof is trivial noting that (3.49) yields

˙̃θ = −γ∆2
(
ψg(θ̂)− ψg(θ)

)
.

Consider the Lyapunov function
V = 1

2 θ̃
>P θ̃.

Then
V̇ = −γ∆2θ̃>P

(
ψg(θ̂)− ψg(θ)

)
≤ −2γρ∆2V

and
V (t) ≤ e−2γρ

∫ t
0 ∆2(s)dsV (0)

completing the proof.

Remark 3.3. It is worth noting that in the considered nonlinear parametrization, the
element-wise monotonicity of the transients is not guaranteed, in contrast to the linear
(in parameters) equations.

3.6.2 Fixed-time Convergence Under Interval Excitation
Estimation algorithms discussed in Section 3.4 require either persistent or infinite ex-
citation3 and provide asymptotic convergence. In this section, we consider a method
allowing fixed-time parameter estimation under the interval excitation.

As discussed in Section 3.2, some parameter estimation methods relax the PE con-
dition, e.g., the concurrent and composite learning. In a certain sense, these methods
“prolongate” the (finite in time) interval excitation over the infinite time horizon, i.e.,
the data collected during the initial interval is then used in the absence of excitation. In
contrast to that idea, in [108], authors proposed to estimate parameters during the initial
interval, i.e., before the excitation decays. To this end, they proposed several finite-time
algorithms providing parameter estimation under the interval excitation. However, the
algorithms proposed in [108] require a priori knowledge of the admissible parameter
values interval, i.e., the authors assume that |θi| ≤ θ̄ for i ∈ 1, n, where θ̄ is a known
constant. Extending that approach, in [121], we proposed two fixed-time estimation
algorithms that provide estimation convergence under interval excitation and do not re-
quire the knowledge of θ̄. To streamline the presentation, in this section, we only briefly
discuss one of that results; see [121] for more details and illustrative examples.

As in [108], the discussed method involves the DREM procedure. First, a fixed-time
estimation method is constructed for a scalar linear regression, i.e., when a single scalar
parameter is estimated. Then, the DREM procedure is applied allowing to estimate
the vector of parameters θ. I.e., the linear regression for the vector θ is transformed
to the set of scalar equations, and the fixed-time estimation algorithm is then applied
element-wise. The excitation preservation properties of the DREM procedure discussed

3Recall that the infinite excitation for a scalar signal is equivalent to the non-square-integrability.
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in Section 3.5, see Proposition 3.6, justify the applicability of the proposed solution
under the interval excitation of the original regressor φ.

To present the result, we first introduce the following definition.

Definition 3.4. A continuous function κ : R+ → R+ belongs to the class K if κ(0) = 0
and it is strictly increasing. A function $ : R+ × R+ → R+ belongs to the class GKL
if $(s, 0) belongs to the class K, $(s, ·) is decreasing, and for each s ∈ R+ there exists
Ts ∈ R+ such that $(s, t) = 0 for all t ≥ Ts.

Now we can present how the DREM procedure is used to ensure the fixed-time esti-
mation. Consider the LRE (3.1), namely

y(t) = φ>(t)θ + w(t),

where φ is (0, T, µ)-IE, see Definition 3.2, and w is bounded. Apply the DREM procedure
with Kreisselmeier’s scheme (3.34), (3.35) and the mixing (3.11), (3.13) transforming the
vector LRE to the set of n scalar LREs (3.12), namely

Yi(t) = ∆(t)θi + Wi(t),

for i ∈ 1, n. Due to the properties of the DREM procedure and recalling Proposition 3.6,
we get that Wi are bounded for all i ∈ 1, n, ∆ and the time derivative of ∆ are bounded,
and ∆ is (0, T, α)-IE for α given by (3.42).

Consider the estimation algorithm

˙̂
θi(t) = ∆(t)

(
γ1,i

⌈
Yi(t)−∆(t)θ̂i(t)

⌋1−ηi + γ2,i
⌈
Yi(t)−∆(t)θ̂i(t)

⌋1+ηi
)
, (3.50)

where ηi ∈ [0, 1) and γ1,i > 0, γ2,i > 0 are the tuning parameters, i ∈ 1, n, and

dxcη := sign(x)|x|η.

Then there exists Tf,i ∈ (0, T ] and γ0,i > 0 such that if min (γ1,i, γ2,i) ≥ γ0,i then the
estimation error dynamics θ̃i is fixed-time input-to-state stable for Tf,i, i.e., the exist
functions $ : R+ × R+ → R+ belonging to the class GKL and κ : R+ → R+ belonging
to the class K, such that

|θ̃i(t)| ≤ $
(
|θ̃i(0)|, t

)
+ κ (‖Wi‖∞) , ∀t ∈ [0, Tf,i], (3.51)

and $
(
|θ̃i(0)|, Tf,i

)
= 0.

The values of Tf,i and γ0,i depend on the tunning coefficient ηi and the excitation
characteristics T and α. The proof of (3.51) and expressions for the functions $ and
κ can be found in [121]. Moreover, it can be shown, that in the noise-free case, the
transients θ̃ are element-wise monotone.

The inequality (3.51) implies that in the noise-free case, the estimate θ̂ converges
to the true value θ in the fixed time Tf , and for the noised case, the estimation error
remains bounded, where the upper bound depends on the noise magnitude ‖Wi‖∞.
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Figure 3.9: Estimation of θ1 in (3.52) via the DREM-enhanced gradient estimator (3.14)
and the fixed-time estimator (3.50) for φ being PE.

This result illustrates that the DREM procedure can be fruitfully combined not only
with the asymptotic gradient and least-square estimators, as discussed in Section 3.4,
but also with more advanced approaches, such as finite/fixed-time estimators discussed
in [108,121].

Example 3.5. Consider the linear regression

y(t) =
[
φ1(t) sin(3t)

] [θ1
θ2

]
= φ>(t)θ, (3.52)

where the signal φ1 will be defined later. The goal is to estimate the first element of
the vector θ, namely θ1, and we compare the DREM-enhanced gradient estimator (3.14)
and the fixed-time estimator (3.50).

To this end, we first apply Kreisselmeier’s scheme (3.34), (3.35) with a = 1 and the
mixing (3.11), (3.13) transforming (3.52) into

Y1(t) = ∆(t)θ1.

The true value of the vector θ is θ =
[
−10 5

]>
, and for all estimators we set zero initial

conditions, θ̂1(0) = 0.
Persistent excitation. Choose φ1(t) = 1 for all t, then the regressor φ in (3.52) is

PE. For the DREM-enhanced gradient estimator (3.14), we choose γ1 = 5, and for the
fixed-time estimator (3.50), we choose η1 = 1

2 and γ1,1 = γ2,1 = 5.
The transients of θ̃1 are depicted in Fig. 3.9, both in linear and logarithmic scale.

Whereas both estimators are capable of estimating the true value, the estimator (3.50)
converges in fixed time.

Interval excitation. Choose now φ1(t) = 1 for t ≤ 5 and zero otherwise, then
the regressor φ in (3.52) is not PE, but it is excited on the interval from zero to five
seconds. We use the same tuning coefficients as above. The transients of θ̃1 are depicted
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Figure 3.10: Estimation of θ1 in (3.52) via the DREM-enhanced gradient estimator (3.14)
and the fixed-time estimator (3.50) for φ not PE but exited on the interval
[0, 5].

in Fig. 3.10, both in linear and logarithmic scale. Whereas the gradient estimator fails
to converge due to the absence of the persistent excitation, the fixed-time estimator
converges under the interval excitation. 4

3.6.3 Applications
This chapter mainly focuses on the theoretical aspects of the DREM procedure and its
properties. At the same time, the DREM procedure was used in various applications,
and this section provides a brief overview of some of them.

Adaptive systems

Regarding indirect adaptive control, an improved online parameter estimation method
for linear time-invariant systems identification is presented in [114]. In that work, it
is also proven that for an input signal consisting of a finite number of sinusoidal com-
ponents, delay operators used for the dynamic regressor extension step preserves the
persistence of excitation; this property is valuable for embedded applications where the
delay operators are implemented as a memory buffer without additional computational
costs.

In the recent work [122], authors apply the DREM procedure to a class of nonlinearly
parametrized regressions in Euler–Lagrange models and discrete-time indirect adaptive
pole-placement.

Considering direct adaptive control, in [109], authors use the DREM procedure to
relax the high-frequency gain sign assumption in model reference control; the key idea
is that due to the monotonicity properties of the DREM procedure, the estimate of the
high-frequency gain crosses zero at most once enabling singularity avoidance.
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State estimation

In [123], authors use the DREM procedure to enhance parameter estimation-based ob-
servers applying it to power systems and chemical–biological reactors. The DREM
procedure is also used to develop an adaptive state observer [124], where the linear re-
gression separation allows to isolate unknown parameters; this approach is extended to
time-varying parameters in [125]. Finally, the authors of [126] use the DREM procedure
to get the fixed-time estimation for delayed linear time-varying systems.

Sinusoidal signals estimation and disturbance rejection

The DREM procedure was successfully applied for parameter estimation of multi-sinusoidal
signals. In this class of problems, regressors are typically persistently excited due to the
nature of studied signals, and the benefit of the DREM procedure was the improved
transient performance and transient time acceleration. Starting from the straightfor-
ward application of the DREM procedure in [127], more advanced results were further
derived, including signals with time-varying magnitude [128] and finite-time frequency
estimation [129]. Regarding the direct adaptive disturbance attenuation, the work [130]
reports how the DREM procedure can be used to empower adaptive regulation.

Robotics and Sensorless Control

In robotics, the DREM procedure is applied for parameters estimation with accelerated
convergence rate; see [131] for a quadrotor example and [132] for the attitude control
problem of a rigid body. The DREM is also used in the simultaneous localization and
mapping problem reformulated as parameter estimation [133] and vision-based position
control, where the camera’s orientation was treated as an unknown parameter [134].

The use of the DREM procedure in sensorless control of permanent magnet syn-
chronous motors is attributed to the position and flux estimation via the DREM-
enhanced state observers discussed above [135,136].

Power systems

In [137], authors use the DREM procedure to monitor the power system inertia, and the
paper describes several test cases using the 1013-machine European Network of Trans-
mission System Operators for Electricity dynamic model. In [138], authors integrate the
DREM procedure into a photovoltaic arrays’ maximum power extraction algorithm for
current-voltage characteristic estimation and update. In [139], authors apply the DREM
procedure to improve transient response and get finite-time convergence for a DC-DC
buck converter regulation.

Other applications

Two applications not included in the groups above are the works [140,141]. In [140], au-
thors consider a high-frequency noninvasive valvometry device in an autonomous biosen-
sor system using bivalve mollusks valve-activity measurements for ecological monitoring
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purposes, and the DREM procedure is used to allow the decoupled fixed-time estima-
tion. In [141], authors address the state estimation problem for a bioreactor containing a
single substrate and several competing species, where the total biomass is the only avail-
able measurement, and the challenge is to estimate the concentration of the competing
species. As in the previous example, the DREM procedure is used to get the fixed-time
estimation of decoupled system parameters.

3.7 Conclusion
3.7.1 Summary
In this chapter, we have discussed the DREM procedure, namely the Dynamic Regressor
Extension and Mixing. The DREM procedure consists of two steps, where the first one
is a linear dynamic extension of the original LRE, and the second is the nonlinear signal
transformation given by the adjugate matrix multiplication. Thus, in a nutshell, the
DREM procedure is a transformation that renders a linear regression equation for a
vector of unknown parameters into a set of scalar linear regressions for each unknown
parameter separately.

The straightforward application of the DREM procedure is to combine it with a gra-
dient estimator. The resulting DREM-enhanced estimator has the following nice prop-
erties:

• the transients are element-wise monotonic;

• the gain adjustment becomes simple and direct;

• the asymptotic convergence can be established without the persistency of excita-
tion.

The DREM-enhanced estimator outperforms the standard gradient one, which is illus-
trated in examples. Furthermore, the DREM procedure can also be fruitfully combined
with different types of estimators, e.g., the least-squares estimator or finite/fixed-time
estimators, providing element-wise monotonicity and tuning. It also can be used for non-
linearly parameterized regression models, where some nonlinearities satisfy the mono-
tonicity condition.

The DREM procedure gives rise to the new regressor, namely the extended matrix’s
determinant, and the excitation of this new regressor is a crucial question. Interpretation
of the DREM procedure as a linear time-varying observer motivates using Kreisselmeier’s
scheme for the dynamic extension step. This specific choice has good excitation preser-
vation properties and alleviates the risk of excitation loss; it also allows to evaluate
the new excitation as a function of the original regressor’s characteristics, both for the
persistent and interval excitation.

The DREM procedure was applied in various applications, including robotics, sen-
sorless control, power systems, and periodic signals estimation, and is proven to be
instrumental in providing improved parameter estimation and relaxing excitation con-
ditions.
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3.7.2 See Also
This chapter focused on the principal aspects of the DREM procedure and did not
include several other DREM-related results to streamline the presentation. Below, we
mention some results not included in this chapter.

• In this chapter, we discuss only the continuous-time formulation of the DREM pro-
cedure. Similar results can be derived in discrete-time as well. For the discrete-time
formulation of the DREM procedure and discussion on the convergence conditions,
see [103]. The excitation-preservation properties of the discrete-time equivalence
of Kreisselmeier’s scheme are shown in [130].

• Kreisselmeier’s scheme guarantees excitation preservation; however, the excitation
properties can be further improved. One such extension of Kreisselmeier’s scheme
with improved convergence is discussed in [103].

• In Section 3.6.2, we discussed the fixed-time parameter estimation with the DREM
procedure. It is worth noting, that despite the results discussed in Section 3.6.2, the
finite-time convergence can be also achieved combining the DREM procedure with
algebraic estimators. The authors of [142] present examples of such estimators.

3.7.3 Open Questions
Several questions remain open for the DREM procedure, and in this section, we discuss
three of them.

As discussed in Section 3.4.2, the DREM procedure yields a necessary and sufficient
condition for asymptotic convergences of the DREM-enhanced gradient estimator. This
condition is weaker than the persistence of excitation of the original regressor and differs
from necessary but not sufficient and sufficient but not necessary conditions for the stan-
dard gradient estimator. The open question remains if the DREM-enhanced estimator
converges under the conditions weaker than the standard gradient estimator. In other
words, does there exist a regressor φ such that the standard gradient estimator does
not converge, and the DREM-enhanced does? This question is complicated by rather
technical sufficient convergence conditions for the gradient estimator.

Another open question is related to the parameter estimation problem when some
elements of the regressor vector φ in (3.1) are linearly dependent, i.e., there exists a
constant vector c ∈ Rn, such that φ>(t)c = 0 for all t. Obviously, such a regressor is not
excited on any interval, and the extended regressor matrix Φ in the DREM procedure
is always singular; the vector of unknown parameters θ cannot be estimated. However,
from the practical point of view, it is of interest to estimate a part of the vector θ, i.e.,
those elements that have enough excitation. This research direction has similarities to
the directional forgetting methods in the least-squares framework, which is performed via
the singular value decomposition of the covariance matrix. It is an envisioned research
direction to see if this approach can be applied to the DREM procedure while keeping
the element-wise monotonicity of the transients.
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Finally, the practical implementation of the DREM procedure involves the determi-
nant computation, which is computationally demanding. Thus, one interesting research
direction is the recurrent reformulation of the discrete-time DREM procedure, both for
the new regressor ∆ and the new output Y providing computationally efficient imple-
mentation of the DREM procedure.
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3.A Proofs
3.A.1 Proof of Lemma 3.1
The proof was first presented in [107].

Proof. Solution x(t) of the scalar linear time-varying system (3.20) is given by

x(t) = φ(t, t0)x(t0) +
∫ t

t0
φ(t, s)b(s)ds, (3.53)

where
φ(t, τ) = exp

(
−
∫ t

τ
a2(s)ds

)
.

For a 6∈ L2, i.e., ∫ t

t0
a2(s)ds→∞ as t→∞,

the function φ(t, τ) has the following properties:

0 < φ(t, τ) ≤ 1, ∀t ≥ τ, (3.54)
φ(t, τ)→ 0 as t→∞, (3.55)

and for any δ ≥ 0, for all t ≥ τ + δ,

φ(t, τ) ≤ φ(t, τ + δ). (3.56)

Recalling that b ∈ L1, i.e., ∫ ∞
t0
|b(s)|ds =: C <∞, (3.57)

we also state that for any arbitrary small εb > 0 there exists Tb > t0 such that∫ ∞
Tb

|b(s)|ds < εb. (3.58)

Due to (3.55), we conclude that φ(t, t0)x(t0)→ 0 as t→∞, and to prove (3.21) it is
sufficient to prove that the integral term in (3.53) tends to zero as well.

Define
I(t) :=

∫ t

t0
φ(t, s)b(s)ds.

For an arbitrary T ∈ [t0; t], the function I(t) can be divided into two parts:

I(t) =
∫ T

t0
φ(t, s)b(s)ds+

∫ t

T
φ(t, s)b(s)ds.

Due to (3.56), for t ≥ T and any s ≤ T it holds φ(t, s) ≤ φ(t, T ). Recalling (3.57), the
following holds: ∫ T

t0
φ(t, s)b(s)ds ≤

∫ T

t0
φ(t, T )|b(s)|ds ≤ Cφ(t, T ),
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where C was defined in (3.57). Recalling (3.54), we obtain∫ t

T
φ(t, s)b(s)ds ≤

∫ t

T
|b(s)|ds,

which results in
|I(t)| ≤ Cφ(t, T ) +

∫ t

T
|b(s)|ds

for any T ≥ t0.

Now we can show that I(t) → 0. Choose arbitrary small ε > 0. According to (3.58),
there exists Tb = Tb(ε) ≥ t0 such that ∀t ≥ Tb∫ t

Tb

|b(s)|ds < 1
2ε.

Recalling (3.55), there exists tφ = tφ(ε, Tb) ≥ Tb such that φ(t, Tb) < 1
2C ε for all t ≥ tφ.

Then ∀t ≥ tφ
|I(t)| ≤ Cφ(t, Tb) +

∫ t

Tb

|b(s)|ds < ε,

which implies I(t)→ 0 as t→∞ and completes the proof.

3.A.2 Proof of Proposition 3.3
The proof was first presented in [113].

Proof. Part 1. Consider first the case λi = 0. We obtain

ṗi(t) = −γip2
i (t)∆2(t)

yielding
pi(t) = 1

c1 + γi
∫ t

0 ∆2(s)ds
,

where c1 := 1
pi(0) . Obviously, for ∆ 6∈ L2 we have pi → 0, as it is expected for an LS

estimator without forgetting. The error dynamics (3.26) can be now written as

˙̃θ(t) = −β(t)θ̃, (3.59)

where
β(t) = γi∆2(t)

c1 + γi
∫ t

0 ∆2(s)ds
= ∆2(t)
c2 +

∫ t
0 ∆2(s)ds

, (3.60)

and c2 := c1
γi

. Since ∆ is bounded, the LTV system (3.59) has the unique solution

θ̃i(t) = c3

c2 +
∫ t
0 ∆2(s)ds

, (3.61)
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where c3 := θ̃(0)c2. Indeed, taking the time derivative of (3.61) we obtain

˙̃θ(t) = − c3∆2(t)
(c2 +

∫ t
0 ∆2(s)ds)2

= − ∆2(t)(
c2 +

∫ t
0 ∆2(s)ds

) c3(
c2 +

∫ t
0 ∆2(s)ds

) = −β(t)θ̃.

From (3.61), we observe that θ̃i does not converge to zero if ∆ ∈ L2 and c3 6= 0, which
proves the claim (C1) of Proposition 3.3.

On the other hand, for ∆ 6∈ L2 it follows from (3.61) that θ̃ converges to zero asymp-
totically. Moreover, since the function β defined in (3.60) is nonnegative, the convergence
is monotonic, which proves the claim (C2).

Finally, to prove proves the claim (C3) of Proposition 3.3, notice that ∆ ∈ PE implies
that β defied in (3.60) converges to zero. Thus, β is not PE, and θ̃ does not converge ex-
ponentially since the PE of β is a necessary condition of the the exponential convergence
of (3.59).

Part 2. Consider now the case λi > 0. The nonlinear ODE (3.25) has the solution

pi(t) = eλiγitpi(0)
1 + pi(0)γi

∫ t
0 e

λiγis∆2(s)ds
.

The rest of proof is performed in three steps. First, we show that for all bounded ∆, pi
is bounded from below by a positive constant proving the claim (C4) of Proposition 3.3.
Second, we show that ∆ being PE implies that pi is bounded from above θ̃ converges
exponentially proving the claim (C6). Finally, we show that pi tends to infinity if ∆ ∈ L2
or if ∆ tends to zero, which proves the claim (C5).

Step 1. Consider the inverse function

1
pi(t)

= 1
pi(0)e

−λiγit + γiz(t), (3.62)

where
z(t) = e−λiγit

∫ t

0
eλiγis∆2(s)ds.

Recalling that ∆ is bounded, say ∆2(t) ≤ ∆̄, the function z is bounded as

z(t) ≤ ∆̄e−λiγit
∫ t

0
eλiγisds = ∆̄

λiγi

(
1− e−λiγit

)
≤ ∆̄
λiγi

.

It follows that
1

pi(t)
≤ 1
pi(0) + ∆̄

λi
,

and pi is bounded from below as

pi(t) ≥
pi(0)λi

λi + ∆̄pi(0)
= pm. (3.63)
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Step 2. Assume that ∆ is (T, µ)-PE. Then for t ≥ T the function z is bounded from
below as

z(t) ≥ e−λiγit
∫ t

t−T
eλiγis∆2(s)ds

≥ e−λiγiteλiγi(t−T )
∫ t

t−T
∆2(s)ds ≥ µe−λiγiT .

Then we have two bounds,

1
pi(t)

≥ 1
pi(0)e

−λiγiT for 0 ≤ t ≤ T,

1
pi(t)

≥ γiz(t) ≥ γiµe−λiγiT for t > T,

and pi is bounded by

pi(t) ≤ eλiγiT max
(
pi(0), 1

µγi

)
= pM . (3.64)

From (3.63) and (3.64) it follows that if ∆ is PE, then the signal t 7→
√
pi(t)∆(t) is

bounded and PE as well. Therefore the exponential convergence of θ̃ follows from (3.26).
Moreover, the convergence is monotonic since pi(t)∆2(t) ≥ 0, ∀t ≥ 0.

Step 3. Assume now that ∆ ∈ L2. Rewriting z as

z(t) =
∫ t

0
e−λiγi(t−s)∆2(s)ds,

it can be noted that z is the solution of the differential equation

ż(t) + λiγiz(t) = ∆2(t), z(0) = 0. (3.65)

Note that ∆ ∈ L2 implies ∆2 ∈ L1. It is known that the considered stable first order
LTI system (3.65) has a finite L1 gain, thus z ∈ L1. Noting also that ż is bounded and
applying Barbalat’s lemma, we conclude z → 0. Then from (3.62) it follows that pi
tends to infinity and the estimator (3.24), (3.25) is unstable.

For the case when ∆ 6∈ L2 but ∆ → 0, we note that the LTI system (3.65) is expo-
nentially stable, therefore for ∆2 → 0 we have z → 0 and pi tends to infinity.

3.A.3 Proof of Proposition 3.5
Proof. The proof consists of two parts. First, we show that if φ is (T, µ)-PE, then the
inequalities (3.38) and (3.39) hold proving the direct implication in (3.40). Next, we
show that the inverse implication in (3.40) also holds.

Part 1 : φ ∈ PE implies the inequalities (3.38), (3.39) and ∆ ∈ PE.
The solution of (3.34) is given by

Φ(t) = e−atΦ(0) +
∫ t

0
ψ(t, s)ds, ∀t ∈ R+, (3.66)
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where
ψ(t, s) := e−a(t−s)φ(s)φ>(s).

Consider t ≥ T and let q ≥ 1 be a positive integer number such that t ≥ qT . The
integral term in (3.66) can be rewritten as∫ t

0
ψ(t, s)ds =

∫ t−qT

0
ψ(t, s)ds+

q∑
k=1

∫ t−kT+T

t−kT
ψ(t, s)ds.

For any positive integer k ≤ q it holds∫ t−kT+T

t−kT
ψ(t, s)ds = e−at

∫ t−kT+T

t−kT
easφ(s)φ>(s)ds

≥ e−atea(t−kT )µI = µe−akT I.

Then
Φ(t) ≥ µ

q∑
k=1

e−akT I +
∫ t−qT

0
ψ(t, s)ds+ e−atΦ(0). (3.67)

For Φ(0) ≥ 0, the sum of the last two terms in the right-hand side of this inequality is
a semi positive-definite matrix,∫ t−qT

0
ψ(t, s)ds+ e−atΦ(0) ≥ 0.

Then from (3.67) it follows that for all t ≥ qT the smallest eigenvalue of Φ(t) is not less
than µ

∑q
k=1 e

−akT . Thus

det(Φ(t)) ≥ µn
( q∑
k=1

e−akT
)n

,

and (3.38) follows.
The PE property follows by noting that for t ≥ T it holds

∆(t) ≥ µne−anT > 0,

and ∆ is strictly separated from zero for all t ≥ T .
To get the inequality (3.39), we choose q as the largest integer such that t ≥ qT . Then

q →∞ as t→∞. Since

lim
q→∞

q∑
k=1

e−akT = 1
eaT − 1 ,

the asymptotic lower bound (3.39) for ∆(t) follows.

Part 2: ∆ ∈ PE ⇒ φ ∈ PE. Now we will show that if ∆ is PE, then φ is also PE.
More precisely, we will show that if φ is bounded and there exist T > 0 and µ > 0 such
that for all t ∈ R+ ∫ t+T

t
∆(s)2ds ≥ µ,
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then there exist L > 0 and α > 0 such that for all t ∈ R+∫ t+L

t
φ(s)φ>(s)ds ≥ αI.

Since the matrix Φ given by (3.66) is bounded for bounded φ, it follows that all its
eigenvalues are non-negative and also bounded, and there exists a constant c > 0 such
that for all t ∈ R+

cλm(Φ(t)) ≥ ∆2(t),

where a conservative estimate of c is

c =
(

sup
t
λM (Φ(t))

)2n−1
.

Then ∫ t+T

t
λm(Φ(s)) ds ≥ µ

c
. (3.68)

From (3.66), it follows that for s ≥ t

Φ(s) = e−a(s−t)Φ(t) +
∫ s

t
e−a(s−τ)φ(τ)φ>(τ)dτ.

Then recalling (3.68), for any positive integer k it holds∫ t+kT

t
λm(Φ(s)) ds

=
∫ t+T

t
λm

(
e−a(s−t)Φ(t) +

∫ s

t
e−a(s−τ)φ(τ)φ>(τ)dτ

)
ds

≥
∫ t+kT

t
λm
(
e−a(s−t)Φ(t)

)
ds

+
∫ t+kT

t
λm

(∫ s

t
e−a(s−τ)φ(τ)φ>(τ)dτ

)
ds ≥ kµ

c
.

Note that ∫ t+kT

t
λm
(
e−a(s−t)Φ(t)

)
ds

= λm(Φ(t))
∫ t+kT

t
e−a(s−t)ds ≤ 1

a
λm(Φ(t))

for a > 0. Choose c0 as
c0 := 1

a
sup
t
λm(Φ(t)) .

Then we have that for any k∫ t+kT

t
λm

(∫ s

t
e−a(s−τ)φ(τ)φ>(τ)dτ

)
ds ≥ kµ

c
− c0. (3.69)
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Note that

λm

(∫ s

t
e−a(s−τ)φ(τ)φ>(τ)dτ

)
≤ λm

(∫ s

t
φ(τ)φ>(τ)dτ

)
,

and for all s satisfying t ≤ s ≤ t+ kT it holds

λm

(∫ s

t
φ(τ)φ>(τ)dτ

)
≤ λm

(∫ t+kT

t
φ(τ)φ>(τ)dτ

)
.

Thus ∫ t+kT

t
λm

(∫ s

t
e−a(s−τ)φ(τ)φ>(τ)dτ

)
ds

≤
∫ t+kT

t
λm

(∫ s

t
φ(τ)φ>(τ)dτ

)
ds

≤
∫ t+kT

t
λm

(∫ t+kT

t
φ(τ)φ>(τ)dτ

)
ds

=kTλm
(∫ t+kT

t
φ(τ)φ>(τ)dτ

)
.

(3.70)

Finally, combining (3.69) and (3.70) yields

λm

(∫ t+kT

t
φ(τ)φ>(τ)dτ

)
≥ µ

cT
− c0
kT

.

Since c and c0 are constants and do not depend on k, we can choose the positive integer
k ≥ 1 such that k > c0c

µ . Then φ(t) is PE with L = kT and α = µ
cT −

c0
kT > 0.

3.A.4 Proof of Proposition 3.6
Proof. As it is discussed in the proof of Proposition 3.5, see Section 3.A.3, the solution
of (3.34) is given by (3.66). Then for t1 ≤ t ≤ t1 + T

Φ(t) = e−a(t−t1)Φ(t1) +
∫ t

t1
e−a(t−s)φ(s)φ>(s)ds,

and ∫ t1+T

t1
λm(Φ(t)) dt ≥

∫ t1+T

t1
λm

(∫ t

t1
e−a(t−s)φ(s)φ>(s)ds

)
dt

≥
∫ t1+T

t1
e−a(t−t1)f(t)dt,

where f is defined in (3.41),

f(t) = λm

(∫ t

t1
φ(s)φ>(s)ds

)
.
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The function f is continuous and nondecreasing, f(t1) = 0 and, due to the interval
excitation, f(t1 +T ) ≥ µ. The function f is not necessarily differentiable; however, since
φ is bounded it admits a Lipschitz constant, i.e., there exists a positive constant ρ > 0
such that for any s ≥ t1 and h ≥ 0 it holds

0 ≤ f(s+ h)− f(s) ≤ ρh,

and ρT ≥ µ. Define τ := µ
ρ ≤ T . Since f(t1 + T ) ≥ µ and f(t) cannot grow faster than

a linear function with the slope equal to ρ, it follows that for all t ∈ [t1 + T − τ, t1 + T ]
it holds

f(t) ≥ ρ (t− (t1 + T − τ)) .
Thus ∫ t1+T

t1
e−a(t−t1)f(t)dt ≥

∫ t1+T

t1+T−τ
e−a(t−t1)ρ (t− (t1 + T − τ)) dt

= ρ

a2 e
−aT (eaτ − 1− aτ) .

Finally, recalling that ∆(t) ≥ (λm(Φ(t)))n, the (t1, T, α)-interval excitation follows:∫ t1+T

t1
∆2(t)dt ≥ α,

where α > 0 is as defined in (3.42),

α =
(
ρ

a2 e
−aT

(
e
aµ
ρ − 1− aµ

ρ

))2n
.

3.A.5 Proof of Proposition 3.7
Proof. Consider the time evaluation of ∆ = det(Φ). The matrix Φ is a solution of (3.34),
so ∆ obeys Jacobi’s formula [118, Theorem 8.1]:

∆̇(t) = tr
(
adj(Φ(t)) Φ̇(t)

)
,

where ∆(0) = det(Φ(0)).
Substituting (3.34), we obtain for all t ∈ R+:

∆̇(t) = tr
(
−a adj(Φ(t)) Φ(t) + adj(Φ(t))φ(t)φ(t)>

)
= −an∆(t) + tr

(
adj(Φ(t))φ(t)φ(t)>

)
,

where we recall that the dimension of φ is n × `. Let φk ∈ Rn be the k-th column of
φ, k ∈ 1, `. Due to elementary properties of the matrix trace function, it follows for all
t ≥ 0,

tr
(
adj(Φ(t))φ(t)φ(t)>

)
=
∑̀
k=1

φk(t)> adj(Φ(t))φk(t),
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and we obtain

∆̇(t) = −an∆(t) +
∑̀
k=1

φk(t)> adj(Φ(t))φk(t). (3.71)

Recall that the eigenvalues of an adjoint matrix can be estimated as follows. Let λ1,Φ,
. . . , λn,Φ denote the eigenvalues of Φ. Applying Schur’s Lemma, it is then straightforward
to show that the eigenvalues of adj(Φ) are given by

λi,adj(Φ) =
∏
j 6=i

λj,Φ, ∀i = 1, . . . , n,

and for all i ∈ 1, n it holds
λi,adj(Φ)λi,Φ = det(Φ) .

In particular
λm(adj(Φ))λM (Φ) = det(Φ) (3.72)

Since Φ(t) ≥ 0, then λM (Φ(t)) = 0 implies that all eigenvalues of Φ(t) are zeros, and
so are the eigenvalues of adj(Φ(t)). That implies for all t ≥ 0 and all k ∈ 1, `,

φk(t)> adj(Φ(t))φk(t) = 0.

On the other hand, if λM (Φ) > 0, then due to (3.72)

φ>k adj(Φ)φk ≥ λm(adj(Φ)) |φk|2 = |φk|2
det(Φ)
λM (Φ)

and for all t ≥ 0

∑̀
k=1

φ>k (t) adj(Φ(t))φk(t) ≥
∆(t)

λM (Φ(t))
∑̀
k=1
|φk(t)|2.

Recall that for the induced matrix norm ‖φ‖ it holds

∑̀
k=1
|φk|2 ≥ ‖φ‖2,

and substituting it in (3.71), we obtain for λM (Φ) > 0

∆̇(t) ≥
(
−an+ ‖φ(t)‖2

λM (Φ(t))

)
∆(t),

which completes the proof.
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4 Future Research Direction
My future research activities can be divided into two main lines, where the short/mid-
term research is a continuation of my current activities on the DREM procedure, and the
mid/long-term research is more oriented towards new challenges of energy management
applications.

First, in the short/mid-term, I continue working on the further development of the
DREM procedure. For this topic, the envisaged research directions are discussed in the
Open Questions section of Chapter 3 (see Section 3.7.3). It includes parameter estima-
tion under insufficient excitation, computationally-efficient formulation of the DREM
procedure, and other related topics. These activities benefit from my collaboration with
ITMO University and INRIA Lille. Particularly, the parameter estimation under
insufficient excitation is considered in the ongoing research on “Performance Improve-
ment in Adaptive and Learning Systems” by my Ph.D. student Marina KOROTINA;
Marina started her studies in December 2020. I believe that pursuing this direction will
yield interesting results, further extending the scope of the DREM procedure.

The DREM development research direction naturally follows from the materials dis-
cussed in the previous chapter, and I already discussed it briefly in Section 3.7.3. In this
chapter, I focus on presenting the mid/long-term research activities. As such, I intend
to orient the achieved results on parameter estimation and adaptation towards advanced
energy management challenges, including energy-efficient smart buildings.

This chapter is organized as follows. First, I discuss the energy transition context,
the related challenges, and my research objectives in Section 4.1. Section 4.2 describes
the state of the art and positioning, and I discuss the ongoing activities in Section 4.3.
Finally, in Section 4.4, I discuss the expected impacts of the proposed research.

4.1 Context, Challenges, and Research Objectives
Nowadays, vast concerns of sustainability, climate change, and carbon emission motivate
multiple research initiatives on the energy management front, including the Systems and
Control domain [143]. Due to the increasing penetration level and production share of
renewable sources, energy management becomes more sensitive to inevitable environ-
mental variations, such as weather conditions. On the other hand, renewable power
plants typically provide a faster response to control input, and they are now providing
more and more ancillary services balancing demand and supply in power grids. These
systems must be flexible to stay efficient; they must react and adapt to operating con-
ditions changes, such as weather or daily energy consumption patterns.

Another concept in energy management is building energy regulation; globally, build-
ings produce about 30% of CO2 emissions and consume approximately 40% of the world’s
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(a) Building energy consumption in selected coun-
tries

(b) Approximate energy consumption in commer-
cial buildings in Europe

Figure 4.1: Buildings energy consumption statistics [144].

total energy [144] (see Fig. 4.1a). That makes them one of the critical priorities in sus-
tainable energy developments. Approximately half of the buildings’ energy consumption
is associated with heating, ventilation, and air conditioning (HVAC) (see Fig. 4.1b).
However, energy savings should not compromise indoor comfort and air quality, impact-
ing inhabitants’ health, working efficiency, and general satisfaction. In various cases,
people may decline to work or live in a particular environment; moreover, poor indoor
conditions may cause a mix of illnesses called the sick building syndrome.

At the same time, the study [145] shows that climate regulation systems based on
prescribed temperature profiles are not as efficient as expected since users do not typically
update the schedule when circumstances change; thus, either energy consumption is not
optimal, or the indoor comfort level degrades.

Control Theory or, more precisely, adaptive and learning control can address these
challenges. However, to obtain the real added value to existing solutions, the adaptation
and learning must be fast and accurate, providing at the same time transparent and
straightforward tuning rules. As discussed in Chapter 3, these requirements can be
addressed by empowering existing learning and adaptive methods with the performance-
improving DREM procedure. Thus, it is an exciting challenge to orient the DREM
procedure towards providing an efficient solution for advanced control of modern energy
management systems.

Specifically, my research objective is to contribute to advanced control strategies for
energy management by developing appropriate adaptive and learning-based approaches
enhancing the overall control performance. To achieve the objective, I aim at applying
parameter learning-based solutions in the following scenarios: adaptive model-predictive
climate control with the online estimation of model parameters and estimation, learning,
and prediction of building occupants’ behavior.
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Figure 4.2: Distribution of regulation methods based on the survey [151].

4.2 State of the Art, Positioning, and Ongoing Activities
Energy management of recent buildings poses challenging control problems [146], such
as the automated load shaping to reduce the peak consumption or the simultaneous
control of all climate variables (indoor temperature and humidity, airflow, or CO2 con-
centration). Conventional PID controllers and simple ON-OFF structures cannot cope
with these challenges, and advanced control methods are applied.

Model predictive control (MPC) is probably the most popular advanced control method
used in buildings energy management; see, e.g., [147–150]. According to the survey [151],
the MPC is used in approximately 20% of all applications, whereas for PID this value
is 22% and 14% for ON/OFF control (see Fig.4.2). Other regulation methods include
heuristic designs [152], feedback linearization [153], robust and quadratic-optimal con-
trol of linearized systems, adaptive control for real-time energy balancing [154], optimal
feedforward control [155], and other solutions; however, the frequency of use of each of
these methods is relatively low compared with MPC.

MPC relies on a model of building dynamics. It naturally handles multiple variables
and explicitly manages constraints on input and output signals. However, one of the
main obstacles to the practical implementation of predictive control is the need for a
sufficiently accurate building model. Model uncertainty (in a broad sense, including
perturbations) is generally cited as the most critical issue for the control performance
[146]. Mitigating this uncertainty requires adaptation because model parameters always
drift with time, e.g., due to changes in occupants’ behavior. Therefore, predictive control
should be combined with adaptive online estimation of model parameters yielding the
indirect adaptive model predictive control.

Several successful results are reported on adaptive MPC, e.g., in [156], an adaptive
MPC solution is applied to building climate control, and in [157], another adaptive MPC
is used for energy management, where load fluctuations are estimated online using least-
squares estimation. In [158], the underlying model parameters of a linear discrete-time
system are estimated online and used to update the MPC gains adaptively. In [159],
adaptive predictive control is performed for a hybrid model that incorporates the heating
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effects due to occupancy, and in [160], a model is approximated by a neural network
trained by the recursive least-squares algorithm. However, the adaptive MPC designs
used nowadays, like those listed above, typically use standard adaptation techniques
like gradient-based or recursive least-squares update laws. Thus, these designs suffer
from the drawbacks discussed in Chapter 3 and related to transient performance and
excitation conditions. From this perspective, the DREM procedure is the right
tool to address these challenges and enhance adaptive MPC solutions used in buildings’
control systems.

Another family of adaptive/learning methods worth noting in energy management
and smart buildings is Reinforcement Learning (RL). In [161], the problem of power
allocation in hybrid energy storage was considered, and the RL-based real-time power
management strategy was shown to be more efficient than a rule-based solution. An RL-
based control was successfully used in building applications in [162], achieving comfort
in buildings with minimal energy consumption. Also, a promising hybrid between MPC
and RL named “Direct MPC” was recently proposed for energy management [163]; it uses
a short-horizon MPC for its natural ability to handle constraints along with a Bellman-
like penalization of the final state to bring optimality related to uncertain inputs. In
my mid/long-term research, I intend to explore this direction, and specifically to pay
attention to the concept of “safe RL,” which is based on the Lyapunov function approach
and was introduced in the machine learning community [164] to tackle the issue of the
respecting constraints during the learning phase.

4.3 Ongoing Activities
Regarding the proposed research directions, I coordinate the project entitled “Adaptation
and Learning for Smart Buildings.” The project aims to initiate collaborative research
activities and networking establishing; Rennes Metropole supported the project in 2019.
Unfortunately, due to the pandemic, all project-related travel activities were suspended
in 2020, and the project will hopefully resume in 2021/2022.

The learning-based temperature regulation in a building is also a part of the research
track-student Ricardo EHLERS BINZ’s project entitled “Data-driven and learning-based
control,” where I am the only supervisor.

Moreover, I believe that my current position is well-suited for the envisaged research
activity. Members of the Automatic Control Team work in the control for energy man-
agement domain, including the predictive and optimal frameworks, and the energy tran-
sition and sustainable development are in the focus of Rennes Campus of CentaleSupélec.
From 2019, the campus participates in the joint project of “Smart and Secure Room.” In
this project, a room at the campus is equipped with a renewable energy source, namely
solar panels, multiple sensors, and corresponding power electrons and interfaces. After
finishing the installations, this room will serve as a comprehensive testbed for experi-
ments on advanced control for smart energy.
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4.4 Impact and benefits
My future research direction benefits from combining fundamental scientific aspects and
clear application domain orientation addressing social challenges. Thus, I firmly believe
it will be attractive for Ph.D. students and give rise to outstanding theses. Besides this
educational aspect, my research direction also has the following impacts.

Scientific impact. Despite a clear relevance to industry concerns in the sustainable
energy domain, my planned research activity is essentially fundamental research consid-
ering the problems of adaptive and learning systems. The expected scientific results will
contribute to the theoretical basis of the field, making adaptive control more attractive
for practical applications.

Economic and social impact. The envisaged research activities will establish an
interdisciplinary link between control theory and energy management applications, such
as energy production/storage/distribution and energy-efficient buildings.

An excellent opportunity is the SMILE (Smart Ideas to Link Energies) initiative
launched in 2016 in the Region Brittany, France. This initiative involves numerous
enterprises working in the field of smart energy, and in the mid/long-term perspective,
my research activities may trigger academia-industry collaboration.

Regarding the social impact, I address the social challenge of clean, safe, and efficient
energy. The development of smart and energy-saving buildings is essential to reduce
the households’ costs, while the implementation of energy-efficient control strategies will
also increase the energy autonomy of small cities and isolated areas.

General public dissemination. The topic of sustainable and efficient energy is
timely and attractive, and the envisaged research is a good way to present and advertise
control theory and its possible applications to a broad audience easily and convincingly.
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A Notation

• R is the set of reals, and R+ is the set of nonnegative reals;

• N is the set of positive integers;

• In is the n × n identity matrix, for all n ∈ N (when clear form the context, the
subscript n can be omitted);

• for m,n ∈ N, m,n := {p ∈ N | m ≤ p ≤ n} if m ≤ n and ∅, otherwise;

• for a symmetric matrix P , λm(P ) and λM (P ) are the minimum and the maximum
eigenvalues of P , respectively;

• for a square matrix A, we denote the adjugate matrix as adj(A);

• for a square matrix A, we denote its trace as tr(A);

• for a vector x ∈ Rn, |x| is the Euclidean vector norm, and for a positive definite
matrix W , we denote the weighted norm as ‖x‖W :=

√
x>Wx;

• for a square matrix A, we denote the induced matrix norm as ‖A‖, ‖A‖ :=
sup|x|=1 |Ax|;

• for a signal x : R+ → Rn, we denote

‖x‖1 :=
∫ ∞

0
|x(s)|ds, ‖x‖2 :=

(∫ ∞
0
|x(s)|2ds

) 1
2
, and ‖x‖∞ := ess sup

t≥0
|x(t)|;

• the set of all signals x : R+ → R, such that ‖x‖p is finite, where p ∈ {1, 2,∞}, we
denote as Lp;

• an operator H : L∞ → L∞ applied to a signal x : R+ → R, we denote as H [x(t)];
if x : R+ → Rn, then H[x(t)] denotes the element-wise application of the operator.
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