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Chapter 1

General introduction

1.1 Nuclear quantum effects

Numerical simulations are now routinely used to investigate the properties of physical sys-
tems. In particular, since the pioneer work of Fermi, Pasta, Ulam and Tsingou [1, 2], Molec-
ular Dynamics (MD) has become a powerful tool to study condensed matter systems at
the atomic scale. MD allows the simulation of the trajectories of the atoms that composed
the system by numerically solving their equations of motion. Interatomic forces can be
described using different methods such as using force fields or ab initio methods from the
electronic structure of the atoms (using first-principle methods such as density-functional
theory), while the dynamics of the nuclei is described using classical mechanics (i.e. the
atoms follow Newton’s equations).

Thus, the quantum nature of the nuclei is not taken into account in standard MD simulations
and quantum effects such as quantum fluctuations and delocalization, zero-point energy
and quantification or tunnelling effect for example are neglected. However, these nuclear
quantum effects can have a major impact on the properties of the system, in particular at
low temperatures and/or for systems containing light atoms such as hydrogen. For example,
quantum effects are necessary to correctly describe the phase diagram of different systems
such as water [3] or ferroelectric crystals like BaTiO3 or SrTiO3 [4, 5]. The study of isotope
effects, observed in various systems, such as lithium hydride [6], ice [7, 8] or even biological
systems [9, 10], also requires the inclusion of nuclear quantum effects. Finally, as a last
example, the low temperature behavior of the heat capacity of solids, which vanishes at
T=0 K, cannot be reproduced if the quantum statistics of the atoms is not taken into
account.

In order to account for nuclear quantum effects in simulations, path integral methods, such as
path integral molecular dynamics (PIMD), are often used [11]. PIMD allows the computation
of exact quantum results for static equilibrium properties, however dynamical properties
are not directly accessible. Moreover, PIMD simulations are computationally demanding,
and thus, are generally limited to the study of rather small systems (in particular if the
interatomic forces are described using first principle methods). Approximate methods based
on a modified Langevin dynamics have been proposed as an alternative to PIMD [12, 13].
Among them, is the quantum thermal bath (QTB) method [12]. The method is particularly
appealing because of its computational cost that is equivalent to standard MD thus allowing
the study of large and complex systems. Although approximate in highly anharmonic cases,
the QTB method has been able to give satisfactory results for various anharmonic systems
[6, 14–19]. Moreover, dynamical properties are directly accessible in QTB-MD simulations.
The first part of this thesis is devoted to the study of the QTB method.
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Figure 1.1: Left: Schematic representation of the operating principle of a Proton Conducting Fuel Cell
(PCFC), Right: General perovskite structure (ABO3). The B-site cations are surrounded by oxygen (O2−)
octahedra represented in light red here.

1.2 Proton conduction in perovskite materials

In a second part of this thesis, we study proton (H+) conduction in perovskite materials.
Proton conduction in solids is a key process for various applications such as fuel cells, elec-
trolysers, sensors, gas separation... [20]. In particular, good proton conductors are needed for
application in hydrogen fuel cells or, more precisely, in proton conducting fuel cells (PCFC).
The operating principle of such fuel cells is schematically represented in figure 1.1 - left
panel. Perovskite materials can exhibit relatively high proton conductivities, and thus have
been extensively studied for application in fuel cells, in particular as electrolyte materials
in PCFC. These perovskite materials are oxides of formula ABO3 whose structure is repre-
sented in figure 1.1 - right panel. Among these oxides, doped barium zirconate (BaZrO3)
combines one of the highest proton conductivity with a good chemical stability which makes
it a promising material for future applications as electrolyte material in PCFC [21].

In these oxides, protons are generally introduced by doping the structure on the B site. A
fraction of the B site cations is substituted by another cation B’ of lower valence. This results
in an excess of negative charges which is compensated by the creation of oxygen vacancies
(V••

O in Kröger-Vink notation1). Then the compound is placed under wet atmosphere in
order to incorporate water molecules that will fill some of the vacancies and create protonic
defects in the structure (OH•

O) through the following hydration reaction:

H2O + V••
O + O×

O → 2OH•
O (1.1)

After hydration, the incorporated protons (H+) occupy interstitial positions close to the
oxygen sites and can potentially diffuse. The proton generally remains covalently bonded to
an oxygen atom creating a protonic defect OH−.

1Kröger-Vink notation : Mc
s - M represents the species which can be an atom (Ba,Ti, Zr...), a vacancy V,

an electron e ... c is the electronic charge with a • meaning one positive charge, a ′ one negative charge and
× means neutral. Finally s is the lattice site that the species occupies.

Ph.D. thesis - F. Brieuc - 2016
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Figure 1.2: Schematic illustration of proton motion in perovskite materials. The red points indicates a typical
proton trajectory and the blue octahedra are the standard oxygen octahedra of the perovskite structure. The
reorientation and transfer steps that result in long range diffusion of the proton are visible. Figure from
reference [21].

Long range migration of the proton in perovskite materials arise from a combination of two
motions: transfer and rotation (or reorientation) [21]. During the transfer step, the proton
jumps between two neighboring oxygen atoms, while during the rotation step, the proton
remains covalently bonded to the nearest oxygen atom and rotates around it. It is generally
accepted in the literature that the rotational motion of the proton is fast compared to the
transfer step, suggesting that proton transfer is rate limiting in these materials [21]. The
proton motion in perovskite materials is shown schematically on figure 1.2.

1.3 Quantum effects and proton conduction

In this thesis, we investigate in particular the importance of quantum effects on the dif-
fusion of hydrogen in perovskite materials. Since hydrogen is the lightest element, we ex-
pect quantum effects to have a significant impact on its diffusion. The role of quantum
effects on hydrogen diffusion has been mainly studied for hydrogen in metals and on metal-
lic surfaces [22–24], and it has been demonstrated, that the diffusion exhibits two different
regimes [25–27]. A classical regime, at high temperature, for which the diffusion coefficient
follows the classical Arrhenius law:

D(T ) = D0 exp(−βEa) (1.2)

with Ea the activation energy associated with the diffusion and a quantum regime, at low
temperature, where quantum effects becomes significant and leads to a deviation from the
previous Arrhenius law. This behavior can be seen in figure 1.3 for the experimental diffusion
coefficient of hydrogen in a niobium crystal. We clearly see that at low temperatures (i.e. for
T . 250 K) the diffusion coefficient deviates from the high temperature Arrhenius behavior.
This is associated to quantum effects, in particular zero-point energy and tunnelling effect,
that become non negligible at low temperatures. In this thesis, we study the diffusion of
protons (H+) in barium zirconate (BaZrO3), using PIMD and QTB-MD simulations, in
order to investigate if a similar behavior is to be expected for proton diffusion in perovskite
materials.

Ph.D. thesis - F. Brieuc - 2016
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Figure 1.3: Experimental diffusion coefficient for H, D and T in Nb. We clearly see the deviation from the
Arrhenius law at low temperature due to quantum effects for T . 250 K. Figure from reference [22].

1.4 Numerical tools development

An important part of the work during this Ph.D. has been devoted to the development
of different numerical tools in an in-house MD code, initially developed by Marc Hayoun
and Hichem Dammak. This code allowed to perform standard Langevin MD and QTB-MD
simulations with periodic boundary conditions in three dimensions. The interatomic forces
being described by coulombic interactions for the long-range part and Buckingham potentials
for the short-range interactions. During the Ph.D., I have developed the following features
inside the code:

• The Empirical Valence Bond model (EVB) to include chemical reactivity for the study
of proton diffusion based on the potential proposed by Raiteri et al. [28]

• The possibility to run PIMD and QTB-PIMD simulations

• The possibility to run constrained simulations using the SHAKE algorithm [29, 30] in
order to perform, in particular, free energy computation using thermodynamic integra-
tion in the blue moon ensemble [31, 32]

1.5 Construction of the manuscript

The manuscript is made up of six chapters organized in three parts. The first part is intro-
ductory and contains a general introduction (chapter 1) and the presentation of the different
numerical methods (Standard MD, PIMD and QTB-MD) used during the PhD (chapter
2). In the second part, we first study the QTB method focusing in particular on its major
limitation: the zero-point energy leakage problem (chapter 3). Then, we present another
way to use the QTB method as a thermostat for PIMD simulations (chapter 4). The last
part is devoted to the study of proton conduction in perovskite materials. First, we study
the impact of quantum effects on the diffusion of hydrogen in BaZrO3 (chapter 5). Then,
we study the proton diffusion mechanisms in GdBaCo2O5.5 (chapter 6) in which a strong
correlation between O and H diffusion is predicted.

Ph.D. thesis - F. Brieuc - 2016
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Chapter 2

Nuclear quantum effects in

molecular dynamics simulations

2.1 Introduction

As explained in the general introduction (chapter 1), nuclear quantum effects are generally
neglected in simulations. However, the quantum nature of the nuclei can play a major role on
the properties of the system in particular at low temperature and/or in systems containing
light atoms such as hydrogen. In these cases, quantum effects such as zero-point effects
or quantum fluctuation/delocalization need to be somehow included in simulations. Let us
already note that quantum effects associated with exchange of identical particles are not
taken into account in the following, and thus the fermionic or bosonic nature of the particles
is neglected.1

Since direct resolution of Schrödinger equation is only possible for a few degrees of freedom,
other methods are needed. A standard way to account for nuclear quantum effects is path
integral based methods [1, 2] such as Path Integral Molecular Dynamics (PIMD) or Path
Integral Monte Carlo (PIMC). These methods are based on Feynman path integral formu-
lation of quantum mechanics [3], and allows to exactly compute quantum static properties
even for highly anharmonic systems. However, one important drawback is that dynamical
quantities are not directly accessible in the path integral framework [4].

Computing quantum dynamical properties is still a great challenge in computational chem-
istry and physics nowadays. Over the years, several approximate techniques has been pro-
posed to deal with this issue. In particular, methods like Centroid Molecular Dynamics
(CMD) [5, 6] and Ring Polymer Molecular Dynamics (RPMD) [7] has been developed to go
beyond PIMD in order to compute time correlation functions. These two methods have been
able to give satisfactory results on several systems [8–11], but the computation time required
reduces their range of applicability2.

Another important class of methods uses semiclassical ideas to adapt classical methods such
as molecular dynamics to the quantum case. These semiclassical methods are widely used
because they provide a good ratio between computational cost and accuracy. Numerous
methods lies into this class [12] including for example the semiclassical initial value represen-
tation [13], in which semiclassical formulas are used to express the time evolution propagator
as a phase space average over the initial conditions of classical trajectories, the forward-
backward semiclassical dynamics [14], which uses similar semiclassical ideas with a combina-

1These effects are indeed negligible as long as delocalization is not too important ie. as long as the thermal
De Broglie wavelength of the particles remains small compare to the characteristic distance between these
particles. It will always be the case in the following.

2In particular when used in combination with first principles computation of interatomic forces.
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tion of the time evolution propagator and its adjoint to compute time correlation functions,
and the Liouville dynamics method [15, 16] based in particular on a quantum generalization
of the Liouville theorem.

Recently, alternative methods based on a modified Langevin equation have been proposed
[17, 18]. Among them is the quantum thermal bath (QTB) method which includes nuclear
quantum effects in MD simulations through a modified (quantum) Langevin thermostat.
Although only exact in the harmonic case [19, 20], the QTB method has been able to give
satisfactory results for various anharmonic systems [21–27]. A first advantage of the method
is its universal and clear formulation which makes its implementation in an existing MD code
quite straightforward. Moreover, the computational cost of QTB-MD simulations is similar to
standard MD simulations, and dynamical properties can, in principle, be computed directly.

In this chapter we first present the basics of molecular dynamics and introduce the Langevin
thermostat. Then, we present the basics of the QTB and PIMD methods. Finally, we study
the behavior of the QTB method on simple one-dimensional systems with increasing degree
of anharmonicity and compare the results to PIMD. Since the QTB method is only exact
for harmonic systems, we investigate in particular the limitations of the method for strongly
anharmonic cases.

2.2 Standard molecular dynamics

Molecular dynamics (MD) is a powerful numerical method to investigate the properties of
complex systems. The idea is to numerically solve the equations of motions of the atoms or
molecules that compose the system. As already explained in the general introduction, the
dynamics is classical i.e. the atoms follow Newton equations. These equations of motion can
be numerically solved using finite differences methods. The time is discretized with a time
step δt and the equations of motions can be integrated using the Verlet algorithm [28]

~ri(t + δt) = 2~ri(t) − ~ri(t − δt) +
δt2

mi

~fi(t) +O(δt4) (2.1)

with ~fi(t) the force that applies on the atom i at time t.

In simulations, we are interested in computing the values of some macroscopic quantities,
often called observables, which can be compared to experimental values. These observables
are ensemble average values 〈A〉. If the ergodicity hypothesis is valid, these statistical average
values can be computed using molecular dynamics

〈A〉 = lim
Ns→∞
δt→0

Ns
∑

n=1

An

Ns
(2.2)

where An represent the value of A evaluated at time t = nδt and the time duration of the
simulated trajectory is Nsδt. The typical output of an MD run is the trajectory of the atoms
i.e. the sequences {~ri(tn)}, {~vi(tn)}; n = 1, ...,Ns ; i = 1, ...,N from which average values
of any observable A({~ri}, {~vi}) can be computed using expression (2.2).

For now, we have considered an isolated system so its total energy is conserved. Thus
an accurate integration of the equations of motion is supposed to ensure a good energy
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conservation during the simulation. In order to achieve this, the time step δt needs to be
small compare to the smallest characteristic time of vibration in the system.

δt <<
1

νmax
(2.3)

with νmax the highest vibration frequency.

One often wants to study a system in the canonical ensemble (N,V, T ) i.e. in contact
with a thermal bath. In this case, a thermostat is needed to perform MD simulations at
constant temperature. Several types of thermostats exist [29] such as velocitiy rescaling,
the Nosé-Hoover thermostat or the Langevin thermostat. In all our simulations we use the
Langevin thermostat which samples correctly the canonical ensemble and ensures a very
good ergodicity. We describe this thermostat in details in the next section.

2.2.1 The Langevin thermostat

The Langevin thermostat is a well known and widely used thermostat based on the Langevin
equation

ṗ = f − γp+R (2.4)

This equation has been proposed in 1908 by P. Langevin [30] to described the Brownian
motion of a particle in a fluid (i.e. in the f = 0 case). More generally, the Langevin equation
describes the dynamics of a system (here for one particle in 1D) in contact with a thermal
bath. The last two terms are the forces associated to the interaction between the system and
the bath. The first term −γp is a friction force and the last term R(t) is a stochastic force.
In standard Langevin dynamics the random force R(t) is supposed to have the following
properties :

• It is a stationary process.

• Its distribution is Gaussian with zero mean :

〈R(t)〉 = 0 (2.5)

• Its autocorrelation function is

〈R(t)R(t + τ)〉 = 2mγkBTδ(τ) (2.6)

which means that the values of R(t) are uncorrelated.

Since R(t) is a stationary process, it obeys the Wiener-Khinchin theorem which states that
the power spectral density IR and the autocorrelation function of R(t) are related by Fourier
transform

IR =
∫ +∞

−∞
〈R(t)R(t + τ)〉 e−iωτ dτ (2.7)

Since the values of the stochastic force are supposed to be uncorrelated (eq. (2.6)), d the
power spectral density (PSD) of R(t) is a constant

IR = 2mγkBT (2.8)

Ph.D. thesis - F. Brieuc - 2016
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thus the stochastic force is a white noise. This expression for the spectral density comes from
the classical expression of the fluctuation-dissipation theorem [31] that relates the dissipation
in the system (γ) with the thermal fluctuations that come from the stochastic force IR.

With these properties for R(t) it can be shown that the system reaches thermal equilib-
rium with the proper canonical Boltzmann distribution [32]. In particular, the equipartition
theorem holds

〈

p2

2m

〉

=
kBT

2
(2.9)

Thus Langevin dynamics can be used as a tool to sample the canonical ensemble in MD
simulations. By adding friction and stochastic forces, it is possible to ensure the canonical
distribution at a fixed temperature T . In this case, the friction and stochastic forces are only
used as a tool to thermalise the system, and the friction coefficient is then a free parameter
which has to be correctly chosen.

Numerical aspect of the Langevin thermostat

First, the friction coefficient γ should be chosen small enough so that the forces of the
thermostat do not perturb the natural dynamics of the system. Thus the characteristic
times in the dynamics should be small compared to the characteristic time of exchange with
the thermostat (1/γ). In other words

γ << νc (2.10)

where νc is a characteristic vibrational frequency of the system.
Too high values of γ will results in an overdamped dynamics that will primarily affect time
correlation functions such as the diffusion coefficient or the vibrational spectrum.
In contrast, the time needed for the system to reach the equilibrium is of the order of a few
times 1/γ. Thus the duration of a trajectory should be very high compared to this time

Nsδt >>
1
γ

(2.11)

where Ns is the number of time steps used in the trajectory and δt the time step. A very
low value of γ thus means that very long trajectories will be needed.

A good value for the friction coefficient has to be found before launching production runs. In
practice, one studies the evolution of a physical quantity 〈O〉 with γ. If the friction coefficient
is low enough, the values of 〈O〉 should be independent of γ. Then, one chooses the highest
value of γ for which 〈O〉 remains almost constant.

Langevin dynamics can be numerically integrated using the standard Verlet algorithm (eq.
(2.1)). Since the friction force of the Langevin thermostat depends on v(t) one needs to
compute the velocity at time t which can be done using the following expression

v(t) =
3x(t) − 4x(t − δt) + x(t− 2δt)

2δt
+O(δt2) (2.12)

Ph.D. thesis - F. Brieuc - 2016
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The last thing one needs is to generate the random force R(t) with the correct properties. In
particular, the random force should have the correct spectral density IR. From the Wiener-
Khinchin theorem (eq. 2.7) one obtains that

〈R(t)R(t + τ)〉 =
∫ +∞

−∞
IR eiωτ dω

2π
(2.13)

and with the PSD given in equation (2.8)

〈R(t)R(t+ τ)〉 = 2mγkBT

∫ +∞

−∞
eiωτ dω

2π
(2.14)

In simulations, the time is discretized with t = nδt leading to the angular frequency step
δω = 2π/(Nsδt) with ωk = kδω. The inverse Fourier transform takes the standard discrete
form

〈R(nδt)R((n + n′)δt)〉 = 2mγkBT
1

Nsδt

Ns−1
∑

k=0

ei2πkn′/Ns (2.15)

〈R(nδt)R((n + n′)δt)〉 =
2mγkBT

δt

(

1
Ns

1 − ei2πn′

1 − ei2πn′/Ns

)

(2.16)

〈R(nδt)R((n + n′)δt)〉 =
2mγkBT

δt
δn′,0 (2.17)

One sees that after discretization of time the Dirac function δ(τ) becomes δn′,0/δt where δn′,0

is the Kronecker delta3. Thus the correct random force can be obtained by first generating
uncorrelated random numbers distributed with the normal distribution (N (0, 1)) and then
multiply those numbers by

√

2mγkBT/δt.

2.3 The quantum thermal bath method

The quantum thermal bath (QTB) method has been proposed by Dammak and coworkers
in 2009 [17]. The main idea is to modify the standard Langevin thermostat in order to
include quantum effects associated with the dynamics of the nuclei in MD simulations. In
this section we present the basics of this method.

The dynamics obtained using the Langevin thermostat is classical by construction. In par-
ticular, the equipartition theorem holds and thus every harmonic vibrational modes have
the same average energy (kBT ). In the quantum case, one expects the average energy of an
harmonic vibrational mode to be given by

θ(ω;T ) = ~ω

(

1
2

+
1

exp(β~ω) − 1

)

(2.18)

which depend on its angular frequency ω. The main idea of the QTB method is to modify the
Langevin thermostat to ensure the quantum energy distribution given by equation (2.18).

The properties of the dynamics obtained from Langevin type equations are directly related
to the properties of the random force, and in particular to its power spectral density IR. This
spectral density is obtained from the fluctuation-dissipation theorem which writes [31, 32]:

χ̂′′(ω) =
ω

2κ(ω;T )
Ix (2.19)

3δn′,0 = 1 if n′ = 0, δn′,0 = 0, if n′ 6= 0
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16 Chapter 2. NQE in MD simulations

with κ(ω;T ) the average energy of a vibrational mode of angular frequency ω at temperature
T , χ̂′′(ω) the imaginary part of χ̂(ω) and χ̂(ω) the susceptibility that connects the Fourier
transform of the position x̂(ω) to the Fourier transform of the stochastic force R̂(ω):

x̂(ω) = χ̂(ω)R̂(ω) (2.20)

Using the definition of the power spectral density4 we obtain

Ix = |χ̂(ω)|2IR (2.21)

and the fluctuation-dissipation theorem can be written in the form

IR =
2κ(ω;T )

ω

χ̂′′

|χ̂(ω)|2 (2.22)

The susceptibility χ̂(ω) is obtained by Fourier transform of the equation of motion (i.e. the
Langevin equation - eq. (2.4)). In the case of an harmonic oscillator of angular frequency
ω0 one finds that the susceptibility is given by

χ̂(ω) =
1

m
[

ω2
0 − ω2 − iγω

] (2.23)

and from equation (2.22), we obtain the following expression for the PSD of the stochastic
force

IR = 2mγκ(ω;T ) (2.24)

In the classical version of the fluctuation-dissipation theorem

κ(ω;T ) = kBT (2.25)

and the spectral density is thus a constant given by eq. (2.8) leading to the classical Langevin
dynamics of the previous section.

A generalization of the fluctuation-dissipation theorem for quantum systems developed by
Callen and Welton in 1951 [33] gives

κ(ω;T ) = θ(ω;T ) = ~ω

(

1
2

+
1

exp(β~ω) − 1

)

(2.26)

which leads to the following power spectral density for the random force

IR(ω) = 2mγθ(ω;T ) = 2mγ~ω
(

1
2

+
1

exp(β~ω) − 1

)

(2.27)

Several authors have proposed to use this expression for the spectral density of the random
force to design a Langevin equation valid for quantum systems [34, 35]. The quantum thermal
bath method apply this idea to MD simulations by modifying the Langevin thermostat: the
PSD of the random force is modified according to equation (2.27).

It is worth noting that, first the spectral density of R(t) now depends on ω: the random
force is not a white noise anymore and is referred to as a colored noise. Second, the function
θ(ω;T ) is the average energy of an harmonic oscillator of angular frequency ω. For high

4IX = 1
T

limT →∞ |X̂T (ω)|2 with XT (t) = X(t) for 0 < t < T ; XT (t) = 0 otherwise
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2.3. The quantum thermal bath method 17

temperatures (i.e. typically for temperature higher than the Debye temperature ΘD
5) we

reach the classical limit and θ(ω, T ) ≈ kBT . We recover the classical expression of the PSD
and thus the equipartition of the energy. On the contrary, for T . ΘD the function θ(ω;T )
diverges from the classical behavior and quantum effects become important. In particular,
in the limit T → 0 the function θ(ω;T ) → ~ω

2 and the average energy is different than zero
because of zero-point energy.

Note also that with the PSD of equation (2.27) the average kinetic energy obtained for a
vibrational mode of angular frequency ω is θ(ω;T )/2 which is only exact in the harmonic
approximation. Thus the QTB method is expected to give the exact energy distribution
only in the harmonic case. This is a first limitation of the quantum thermal bath: unlike
PIMD, the quantum thermal bath method becomes approximate for anharmonic systems.
Nevertheless, the quantum thermal bath method has been able to give satisfactory results in
various anharmonic systems [21–27]. But the method should still be used with caution for
strongly anharmonic systems, in particular because energy is transferred from vibrational
modes of high frequencies to vibrational modes of low frequencies leading to the zero-point
energy leakage problem. This limitation is studied in details in chapter 3.

Finally, in QTB-MD simulations, the equipartition theorem does not hold, the average kinetic
energy of any degree of freedom 〈K〉 includes quantum effects and thus is greater than kBT/2
(or 3kBT/2 in 3D). So the effective temperature T ∗ = 2 〈K〉 /kB (or 2 〈K〉 /3kB in 3D) of
QTB-MD simulations is generally greater than the target temperature T of the thermostat.
The effective temperature T ∗ becomes equal to T only in the classical limit (i.e. at high
temperatures).

Another method using colored noise in Langevin type equations has been proposed by Ceri-
otti and coworkers [18] to include quantum effects in MD simulations. This method is based
on a more general equation of motion called the Generalised Langevin Equation (GLE). In
this GLE method, the quantum effects are introduced through a frequency dependent fric-
tion coefficient whereas, in the QTB case, quantum effects are included through the power
spectral density of the random force. The two methods are basically equivalent although,
the GLE method requires careful and complex optimization of several parameters in order to
recover the quantum fluctuations. Thus the QTB method is simpler to use and to implement
in an existing MD code.

Numerical aspect of the quantum thermal bath method

In the QTB method, one needs to generate the random force with the correct power spectral
density. Since the stochastic force is not a white noise anymore, the standard way to generate
the random force in Langevin thermostat cannot be used. Thus we use a more general
procedure [36] to generate a random force with a target spectral density IR. Since in MD
simulations the time is discretized tn = nδt we want to generate the values Rn = R(tn).
The procedure is first to generate the stochastic force in the Fourier space R̂k = R(ωk)
with ωk = kδω and, for a trajectory of total duration Nsδt, the angular frequency step
δω = 2π/(Nsδt). Then the forces Rn are obtained using a discrete Fourier transform of R̂k.
This procedure is described in more details in ref. [37], here we only present the main steps
necessary to implement it.

5ΘD = ~ω
kB
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18 Chapter 2. NQE in MD simulations

• Generate independent Gaussian random numbers ak and bk for k = 1, ...,Ns/2 − 1

• Compute R̂k for k = 1, ...,Ns/2 − 1 using the following expression

R̂k =

√

Nsδt

2

√

IR(ωk) (ak + ibk) (2.28)

• Generate R̂k for k = Ns/2 + 1, ..,Ns − 1 using the following symmetry property

R̂k = R̂∗
Ns−k (2.29)

which comes from the fact that R(tn) has to be a real function.

• Set R̂0 and R̂Ns/2 to zero

• Compute the values for Rn using a discrete Fourier transform

Rn =
1

Nsδt

Ns−1
∑

p=0

R̂kei2πnk/Ns (2.30)

In this procedure, the random forces for the entire time duration of the trajectory are gen-
erated before launching the simulation. An alternative way to generate the stochastic forces
has been proposed by Barrat and Rodney which allows to generate the forces R(tn) "on the
fly" during the simulation [38]. In this paper, the authors also emphasize the importance of
using an angular frequency cut-off ωcut when generating the stochastic forces. So the QTB
method finally contains two parameters : the friction coefficient γ and the angular frequency
cut-off ωcut. The values for these two parameters have to be carefully chosen. Since the
QTB method is based on the Langevin thermostat the friction coefficient γ should be cho-
sen according to the same prescriptions. In particular, γ should be small enough to ensure
that the forces associated with the thermostat does not modify the natural dynamics of the
system.

Moreover, the angular frequency cut-off ωcut has to be higher than the highest angular
frequency observed in the system ωmax. However, ωcut can not be chosen arbitrarily high.
It should be chosen of the order of a few times ωmax to prevent the inclusion of too high
frequencies which could lead to the divergence of the energy. More precisely this divergence
behaves as γ ln(ωcut) [38] and so for a fixed value of ωcut the friction coefficient γ also has to
be small enough to avoid any divergence. We found in our simulations that ωcut ≈ 2ωmax is
an acceptable value which seems to avoid energy divergence for any reasonable values of γ.

2.4 Path integral molecular dynamics

Path integral formulation of quantum mechanics has been developed by R.P. Feynman, and
is described in details in the book he wrote with A.R. Hibbs in 1965 [39]. In this book, they
show that the canonical density matrix of a quantum system can be written in a path integral
form which is the basis of path integral molecular dynamics. Starting from this expression
for the density matrix, we present the basics of the PIMD method and how quantum static
properties can be numerically computed using this method.
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2.4. Path integral molecular dynamics 19

2.4.1 The classical isomorphism

For simplicity, we consider the case of one particle of mass m in one dimension (position x)
described by the Hamiltonian

Ĥ = K̂ + V̂ =
p̂2

2m
+ V (x̂) (2.31)

where K̂ and V̂ are the kinetic and potential energy operators, respectively. The gener-
alization to N particles in three dimensions is straightforward. In the canonical (N,V, T )
ensemble the density operator or density matrix of the system is given by

ρ̂(β) = e−βĤ (2.32)

whose matrix elements in position representation are

ρ(x, x′;β) = 〈x| ρ̂(β) |x′〉 = 〈x| e−β(K̂+V̂ ) |x′〉 (2.33)

The density matrix can be approximated using the Trotter product formula leading to the
following expression

ρ(x, x′;β) ≈
(

mP

2πβ~2

)P/2 ∫

dx1...

∫

dxP −1

exp

(

−
P
∑

s=1

[

mP

2β~2
(xs−1 − xs)2 +

β

P
V (xs)

]

)

(2.34)

called the discrete imaginary time path integral expression of the density matrix (for a
derivation of this formula see the complements of this chapter - section 2.7)

The canonical partition function Z is related to the canonical density matrix through

Z = Tr[ρ̂(β)] =
∫

dx 〈x| ρ̂(β) |x〉 =
∫

dx ρ(x, x;β) (2.35)

And the average value of any observable A is given by

〈A〉 =
1
Z
Tr[Aρ̂] (2.36)

Using expression (2.34) for the density matrix with a small change in notation writing x ≡ xP ,
we can express the canonical partition function as

Z ≈ ZP =
(

mP

2πβ~2

)P/2 ∫

dx1...

∫

dxP

exp

(

−
P
∑

s=1

[

mP

2β~2
(xs−1 − xs)2 +

β

P
V (xs)

]

)

(2.37)

with cyclic conditions on the path {xs} i.e. xP = x1 which comes from the trace operation.
Let us recall that expression (2.34) for the density matrix and thus this expression for the
canonical partition function are both exact in the limit P → ∞ so

Z = lim
P →∞

ZP (2.38)
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20 Chapter 2. NQE in MD simulations

The constant prefactor in the expression of ZP is actually the result of a P -dimensional
Gaussian integral and can be rewritten

(

mP

2πβ~2

)P/2

=
1

(2π~)P

∫

dp1...

∫

dpP exp

(

−β
P
∑

s=1

p2
s

2mP

)

(2.39)

=
1

(2π~)P

∫

dp1...

∫

dpP exp

(

−β
P
∑

s=1

p2
s

2m′

)

(2.40)

with m′ = mP . The value of this prefactor does not affect the results of any average value,
and thus the value for the parameter m′ can be chosen arbitrarily [4]. A natural choice for
m′ is the physical mass m of the particle but other standard (and more complex) choice for
m′ exist [40]. In the following we use m′ = m in all the PIMD calculations.

Finally, the quantum canonical partition function can be written in the following form

Z ≈ ZP =
1

(2π~)P

∫

dp1...

∫

dpP

∫

dx1...

∫

dxP exp (−βHP ) (2.41)

with

HP =
P
∑

s=1

[

p2
s

2m
+

1
2
mω2

P (xs−1 − xs)
2 +

1
P
V (xs)

]

(2.42)

which is the classical partition function of a system defined by the effective Hamiltonian HP .
So the quantum partition function is formally equivalent to the classical partition function
of an extended system : this is called the classical isomorphism. This extended system is
composed of P particles (called replicas or beads) that are submitted to the external potential
V/P . Each replica s interacts with its "nearest neighbour" (s± 1) via an harmonic coupling
of angular frequency ωP =

√
P/β~. In the case of a many-body system (i = 1, ..,N) the

extended system is composed of N × P replicas (or beads). Each particle i is described
by an ensemble of P beads (s = 1, .., P ) interacting with each other via the harmonic
coupling 1

2miω
2
P

∑

s(xi,s − xi,s−1)2. Then each replica s of particle i also interacts with
replica s of the other particles j 6= i through the effective potential V (|xj,s − xi,s|)/P .
The classical isomorphism is schematically represented in figure 2.1. Let us note that we
consider distinguishable particles here. If the particles are indistinguishable, then the effects
associated with the exchange of particles needs to be taken into account6. In the following,
we will only consider the case of distinguishable particles.

For a finite value of P , one can estimate quantum average values for any time-independent
observable 〈A〉 by exploiting the classical isomorphism

〈A〉 ≈ 〈A〉P =
1
ZP

∫

dp1...

∫

dpP

∫

dx1...

∫

dxPA(x, p) exp (−βHP ) (2.43)

These average values can be evaluated using standard molecular dynamics algorithms leading
to the Path Integral Molecular Dynamics (PIMD) method7. In practice, we run standard
MD simulations in the extended system composed of N × P particles to compute average
quantities.

6which is possible in the case of bosons [1] but more problematic for fermions [4]
7Average values can also be computed using Monte Carlo techniques which leads to methods called Path

Integral Monte Carlo (PIMC)
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V/P

V

ωP

ωP

Figure 2.1: Schematic representation of the classical isomorphism between a quantum system and the extended
classical system. Here for a system composed of N = 2 particles and for a Trotter number P = 6. Thus, in the
extended system each particle is represented by a "ring polymer" composed of P = 6 beads (or replicas). The
polymer is closed because of the cyclic conditions (xP +1 = x1) coming from the trace operation in equation
(2.36).

Note again that expression (2.41) is formally exact only in the P → ∞ limit which of course
is not accessible in simulations. However, the method converges to the exact result when the
number of replicas increases. Thus, one can use a finite number of beads P although one
has to be sure that P is high enough to ensure a good convergence. In practice, we compute
the quantities that we want to study for different values of P in order to find how many
replicas are needed to reach the convergence. An example of this convergence is presented in
figure 2.2. Once the correct value for P has been found for a calculation at temperature T ,
the product P × T should be kept constant for every simulations to keep the same level of
convergence. This is one important limitation of PIMD : when the temperature investigated
becomes very low, the number of beads necessary to converge becomes too high, and the
computation time becomes prohibitive.

Note also that here molecular dynamics is only used to explore the phase space and sample
the canonical distribution to compute time-independent average values. The dynamics in
the extended system cannot be used to compute time-dependent quantities [4]. Indeed,
expression (2.34) for the density matrix, and thus expression (2.41) for the partition function
comes from a path integral formulation in imaginary time. So the time associated with
the dynamics in the extended classical system is not the physical time. For this reason,
dynamical quantities such as diffusion coefficent or vibrational spectrum are not directly
accessible in the path integral framework. This is probably the major limitation of the
PIMD method. Several approximate methods such as ring polymer molecular dynamics [7]
or centroid molecular dynamics [5, 6] has been designed to solve this problem. These methods
have been able to give satisfactory results on several systems however their computational
cost is even higher than that of PIMD which reduces their range of applicability.

Finally, it has been shown that ergodicity can sometimes be difficult to reach in PIMD when
using an important number of beads [41]. This problem can generally be avoided by using a
stochastic thermostat. For this reason, we use the Langevin thermostat to ensure ergodicity
and the canonical distribution at the target temperature8. Thus the equation of motion of

8Let us note that other type of thermostats are also used, in particular Nose-Hoover chains thermostat.
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22 Chapter 2. NQE in MD simulations

a replica s in our PIMD simulations finally writes

ṗs = fs −mω2
P (2xs − xs+1 − xs−1) − γps +Rs (2.44)

where fs = −(1/P )∂V/∂xs is the external force exerted on replica s and the two last terms
are the frictional (friction coefficient γ) and stochastic forces of the Langevin thermostat.

2.4.2 Computation of macroscopic properties

In simulations we are interested to compute macroscopic quantities which are given by av-
erage values of the form given in equation (2.36). In the previous section we saw that, in
the PIMD method, average values are obtained using equation (2.43). In the following, we
will review some standard expressions to compute average values in PIMD. For simplicity
in notations we will drop the subscript for PIMD average so that 〈..〉 ≡ 〈..〉P . Thus average
values now are computed in the extended phase space of the system with P replicas. The
details for the derivation of these expressions are given in the complements of this chapter -
section 2.7.

Starting from the usual thermodynamic relation for the average energy

〈E〉 = − 1
ZP

∂ZP

∂β
(2.45)

one obtains the following expression for the average total energy

〈E〉 =

〈

P
∑

s=1

p2
s

2m
− 1

2
mω2

P

P
∑

s=1

(xs−1 − xs)
2

〉

+

〈

P
∑

s=1

1
P
V (xs)

〉

(2.46)

The last member of this expression is the average potential energy

〈U〉 =

〈

P
∑

s=1

1
P
V (xs)

〉

(2.47)

thus the average kinetic energy is given by

〈K〉 =

〈

P
∑

s=1

p2
s

2m
− 1

2
mω2

P

P
∑

s=1

(xs−1 − xs)
2

〉

(2.48)

So the kinetic energy can be computed using the following expression called the primitive
estimator of the kinetic energy

Kprim =
P
∑

s=1

p2
s

2m
− 1

2
mω2

P

P
∑

s=1

(xs−1 − xs)2 (2.49)

Since we have equipartition of the energy 〈p2
s/2m〉 = 1/2β the primitive estimator can also

be written

Kprim =
P

2β
− 1

2
mω2

P

P
∑

s=1

(xs−1 − xs)2 (2.50)

This estimator indeed converges to the exact quantum value of the kinetic energy in the
limit P → ∞. But its fluctuations increase with P [4, 42] so that it can become inaccurate
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for high Trotter numbers. Thus another estimator for the average kinetic energy called the
virial estimator has been proposed [42]. This estimator is obtained by using a path-integral
version of the virial theorem

P

2β
−
〈

P
∑

s=1

1
2
mω2

P (xs−1 − xs)2

〉

=

〈

1
2P

P
∑

s=1

xs
∂V

∂xs

〉

(2.51)

whose demonstration is given in the complements of this chapter - section 2.7. From this,
one directly obtains another expression for the kinetic energy called the virial estimator of
the kinetic energy

Kvir =
1

2P

P
∑

s=1

xs
∂V

∂xs
(2.52)

Finally, this estimator is not translationnally invariant which is a problem for unbounded
systems. Thus a generalization valid for both bounded and unbounded systems is generally
used [43]

KCvir =
1

2β
+

1
2P

P
∑

s=1

(xs − xc)
∂V

∂xs
(2.53)

which is sometimes called the centroid-virial estimator of the kinetic energy. With xc the
position of the centroid of the ring polymer

xc =
1
P

P
∑

s=1

xs (2.54)

In figure 2.2 the convergence of those different estimators with the Trotter number P for a
simple one-dimensional harmonic oscillator is shown. One clearly see that all the estimators
of course give the same average value, and converge to the expected exact quantum value.

All these estimators are for one particle (N = 1) in one dimension. In the more general case
of N particles in 3 dimensions the estimators becomes

Kprim =
3NP
2β

−
N
∑

i=1

P
∑

s=1

1
2
miω

2
P (~ri,s−1 − ~ri,s)

2 (2.55)

Kvir =
1

2P

N
∑

i=1

P
∑

s=1

~ri,s · ~∇~ri,s
V (2.56)

KCvir =
3N
2β

+
1

2P

N
∑

i=1

P
∑

s=1

(~ri,s − ~rc) · ~∇~ri,s
V (2.57)

One can derive in the same way estimators for other quantities such as the pressure P for
example

P =
NP

βΩ
− 2

3Ω

N
∑

i=1

P
∑

s=1

1
2
miω

2
P (~ri,s−1 − ~ri,s)

2 − 1
3Ω

1
P

N
∑

i=1

P
∑

s=1

~ri,s · ~∇~ri,s
V (2.58)

PΩ =
2
3
Kprim − 1

3P

N
∑

i=1

P
∑

s=1

~ri,s · ~∇~ri,s
V (2.59)

for an N -body system in 3D and with Ω the volume of the simulation box.
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Figure 2.2: Convergence of kinetic (top panel) and potential (bottom panel) average energies with the number
of replicas P for a one-dimensional harmonic oscillator. The energies are obtained using PIMD and are given
in units of ~ω. Here ~ω/kT ≈ 13 >> 1 i.e. the temperature T is low compared to the Debye temperature and
so one expect the system to be mainly in its ground state. Thus the average kinetic and potential energies are
expected to be close to ~ω/4 which is equal to 0.25 in units of ~ω. For the kinetic energy the values obtained
with the different estimators (see equations (2.49),(2.52) and(2.53)) are plotted. One can see that all the
estimators give the same average value as expected. Finally, convergence in this case is reach for P ≈ 40.
Error bars are smaller than the symbols size and thus are not displayed here.

2.5 Results on one-dimensional systems

In this section we apply the QTB method on simple one-dimensional systems. Since the
quantum thermal bath is only exact in the harmonic case, we are particularly interested to
study systems where anharmonicity is important. We first study the case of an harmonic
oscillator before switching to the Morse potential with increasing anharmonicity. Finally, we
focus on the quartic double-well potential. In each case, we compare the QTB-MD results
to PIMD which is known to give the exact results and focus on two important quantities :
the average energy and the position density probability (or position distribution).

2.5.1 Harmonic oscillator

Let’s first verify that the quantum thermal bath is indeed able to give exact results in the
harmonic case. The system is an hydrogen atom in an harmonic potential well

V (x) =
1
2
mω2x2 (2.60)

The temperature T and the angular frequency ω are chosen such that ~ω/kBT >> 1 more
precisely ~ω/kBT ≈ 13 so the system is mainly in its ground state and T << ~ω/kB thus
quantum effects are expected to be significant. Figure 2.3 shows the probability density of
position ρ(x) obtained in the classical case (i.e. with the standard Langevin thermostat), and
using QTB-MD and PIMD. As expected the QTB method gives the exact probability density
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2.5. Results on one-dimensional systems 25

in this case. One can see that the quantum probability density is significantly different than
the classical one thus quantum effects indeed are important here. The average energies in
reduced units are given in table 2.1. We see that QTB-MD gives the same energy as PIMD
and thus gives the exact quantum energy. As expected, the QTB method is exact in the
harmonic case.
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Figure 2.3: The probability density ρ(x) of finding the particle (hydrogen) at position x. Here x is in reduced
units form x → x/σ with σ =

√

m/~ω. For the PIMD calculation convergence was obtained for P ≈ 40.
V(x) shows the form of the harmonic potential well.

QTB-MD PIMD

〈K〉 /~ω 0.250 ± 1.2 × 10−3 0.249 ± 4.2 × 10−4

〈U〉 /~ω 0.249 ± 1.2 × 10−3 0.249 ± 5.4 × 10−4

Table 2.1: Average energy obtained from QTB-MD and PIMD simulations averaged over 10 different trajec-
tories of time duration Nsδt = 5000/γ with δt = 0.01/νmax and γ = 0.1νmin. The exact energy can easily be
computed and is 0.25 at this temperature. The total energy is 0.5 (~ω/2).
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26 Chapter 2. NQE in MD simulations

2.5.2 Morse potential

We now consider the case of an anharmonic potential : the Morse potential

V (x) = D
(

1 − e−αx)2 (2.61)

The eigenvalues En for this potential can be expressed in the following form [44]

εn =
En

D
=

~ω

D

(

n+
1
2

)

− 1
λ2

(

n+
1
2

)2

(2.62)

where εn are the energies in reduced form and ω = α
√

2D/m is the angular frequency in the
harmonic approximation. The dimensionless parameter λ is defined as

1
λ2

=
~

2α2

2mD
(2.63)

This is a standard potential to model the vibration of diatomic molecules for example. The
anharmonicity of the Morse potential can be expressed as the difference between the ground-
state energy and its harmonic approximation value, this difference is 1/(4λ2). In this section
we will study three different cases with increasing anharmonicity: the first case is weakly
anharmonic (1/λ2 = 0.0015 as for the HCl molecule), in the second case the anharmonicity is
increased (1/λ2 = 0.004) and in the last case the anharmonicity is strong (1/λ2 = 0.024). The
simulations are carried out at a temperature T = 0.02D/kB . Figure 2.4 shows the position
probability density for the three cases and table 2.2 gives the average energies in reduced
units obtained by QTB-MD and PIMD. Clearly the QTB-MD method becomes approximate
when anharmonicity increases. Nevertheless we see that the position distributions obtained
with the QTB method are similar to the ones obtained with PIMD. In particular in the
weakly anharmonic case the PIMD and QTB-MD results are very close. These results shows
that the QTB method is approximate when anharmonicity is strong. This is confirmed by
the results on the energy: one can see that the QTB-MD and PIMD energies in the first two
cases (1/λ2 = 0.0015 and 1/λ2 = 0.004) with low or moderate anharmonicity are very close.
But when anharmonicity is strong (1/λ2 = 0.024) the two methods do not give the same
energy anymore.

1/λ2 〈K〉 /D 〈U〉 /D
QTB-MD 0.0015 1.983 × 10−2 ± 8 × 10−5 2.057 × 10−2 ± 9 × 10−5

0.004 3.07 × 10−2 ± 2 × 10−4 3.26 × 10−2 ± 3 × 10−4

0.024 6.75 × 10−2 ± 7 × 10−4 0.1 ± 1 × 10−2

PIMD 0.0015 1.976 × 10−2 ± 2 × 10−5 2.025 × 10−2 ± 7 × 10−5

0.004 3.069 × 10−2 ± 5 × 10−5 3.177 × 10−2 ± 7 × 10−5

0.024 7.025 × 10−2 ± 7 × 10−5 7.62 × 10−2 ± 2 × 10−4

Table 2.2: Average energy obtained from QTB-MD and PIMD simulations averaging over 10 different trajec-
tories of time duration Nsδt = 5000/γ with δt = 0.01/νmax and γ = 0.1νmin.
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Figure 2.4: Position probability density obtained using QTB-MD and PIMD for the three cases : 1/λ2 = 0.0015
(top panel), 1/λ2 = 0.004 (middle panel) and 1/λ2 = 0.024 (bottom panel). For the PIMD simulations, the
number of replicas necessary to converge is P = 30 in the weakly anharmonic case (1/λ2 = 0.0015), P = 40
in the midly anharmonic case (1/λ2 = 0.004) and P = 50 for the highly anharmonic case (1/λ2 = 0.024).
The simulations are carried out at a temperature T = 0.02D/kB . The form of the Morse potential V (x) is
also shown.
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2.5.3 Quartic double-well

Finally, we study the case of a strongly anharmonic potential: the symmetric quartic double-
well

V (x) = V0

[

(

x

a

)2

− 1

]2

(2.64)

The double-well potential appears in many areas of science such as physics, chemistry or
biology. It is used in particular to model thermally activated processes such as chemical
reactions. The diffusion of point defects in solids is a thermally activated process, and in
general, the microscopic mechanisms associated with this diffusion are well described by
double well potentials. In the particular case of the hydrogen diffusion in oxide, the proton
(H+) has to overcome a barrier (V0) to jump from one oxygen atom to another. The potential
energy associated with this process has the shape of a double well. In the classical case, the
proton can only cross the barrier by jumping over, which will only be possible if its energy
is sufficient (i.e. if kT & V0). On the contrary, in the quantum case, the proton can tunnel
through the barrier and thus cross it even if its energy is lower than V0. Moreover, because of
zero-point energy, the effective barrier height is lower than V0 and becomes V0 − ~ω/2 in the
harmonic approximation. The double-well potential is thus particularly interesting because
it allows us to study the behavior of the QTB in cases where tunnelling is possible.

The time-independent Schrödinger equation in the case of the quartic double-well can be
written in a dimensionless form

− C
d2φ

dy2
+ (y2 − 1)2 = εφ (2.65)

where φ(y) are the stationary wavefunctions, y = x/a is the position in a reduced form,
ε = E/V0 is the energy in reduced units and

C =
~

2

2ma2V0
(2.66)

A numerical resolution of equation (2.65) shows that there is a critical value for the constant
C (C0 = 0.731778) for which the ground state energy is equal to the barrier height V0 (i.e.
ε0 = 1). Then for C < C0, the ground state energy is lower than V0 (i.e. ε0 < 1), and for
C > C0, the ground state energy is higher than the height of the barrier (i.e. ε0 > 1). In
the following we will study three cases. A first one where C = 1 which is greater than C0

and two cases for which C < C0 : C = 0.1 and C = 0.3. Figure 2.5 shows the results on the
position distribution obtained using PIMD, QTB-MD and Langevin MD.

We clearly see that the quantum thermal bath is approximate in this case. More precisely,
the QTB method becomes approximate when the value of the constant C increases and fail
to give the correct position distribution for high values of C. Again the quartic double-well
potential is interesting here because it allows the investigation of the ability of the quantum
thermal bath to describe quantum tunnelling. It is worth noting that there is no reason to
expect the QTB method to correctly describe the tunnel effect a priori. Indeed the QTB
is only constructed in order to impose the quantum (harmonic) energy distribution while
tunnelling is a complex quantum mechanical phenomenon. If the average total energy of
the particle 〈E〉 is higher than the barrier height V0, the particle will mainly transit from
one well to the other through over barrier motion and tunnelling will be negligible. On the
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Figure 2.5: Position distribution of an hydrogen atom in the three double well potentials investigated here :
C=0.1 (top panel), C=0.3 (middle panel) and C=1.0 (bottom panel). The simulations are carried out at a
reduced temperature T ∗ = kBT/V0 = 0.4. The horizontal gray line represent the average total energy of the
system (computed by PIMD) to be compared to the height of the potential barrier V0 of the double-well V (y).
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C 〈K〉 /V0 〈U〉 /V0

QTB-MD 0.1 0.282 ± 1 × 10−3 0.2857 ± 6 × 10−4

0.3 0.416 ± 2 × 10−3 0.382 ± 1 × 10−3

1.0 0.737 ± 3 × 10−3 0.512 ± 1 × 10−3

PIMD 0.1 0.2465 ± 3 × 10−4 0.3268 ± 9 × 10−4

0.3 0.3223 ± 3 × 10−4 0.4963 ± 6 × 10−4

1.0 0.531 ± 1 × 10−3 0.6411 ± 6 × 10−4

Table 2.3: Average energy obtained from QTB-MD and PIMD simulations averaging over 10 different trajec-
tories of time duration Nsδt = 5000/γ with δt = 0.01/νmax and γ = 0.1νmin.

contrary, when 〈E〉 < V0, tunnelling can become important. In the cases we studied here
that corresponds to C = 0.1 and C = 0.3. For C = 0.1, the probability density obtained
using the QTB method is similar to that obtained by PIMD. In contrast, for C = 0.3,
the QTB method is unable to give the correct position distribution. Tunnelling increases
when the barrier height V0 and/or the inter-well distance 2a decreases which corresponds
to an increase of C. Thus quantum tunnelling is especially important for high values of C
(with 〈E〉 < V0). So the QTB method gives the correct position distribution in cases where
tunnelling effect remains low but becomes approximate when tunnelling is important.

When the value of C increases, the particle is able to visit more frequently the anharmonic
parts of the potential. Since we know that the QTB becomes approximate when anharmonic-
ity increases, it is not very surprising to find that the QTB method fails for high values of C.
Two main features appears when comparing PIMD and QTB position distributions: 1 - the
QTB method seems to underestimate the probability of finding the particle at the barrier
top and 2 - the QTB method is unable to reproduce the correct position of the two peaks in
the probability density : In the exact density the distance between the two peaks decreases
when C increases. On the contrary, in the QTB case, the two peaks always corresponds to
the bottom of the wells thus the distance between them is constant for any value of C.

Finally, table 2.3 gives the average energy in reduced units obtained using QTB and PIMD
in the three cases. We see that, in terms of energy, QTB and PIMD results are comparable
for any value of C. In particular, the total energy (K+U) obtained by the QTB and PIMD
methods are basically the same. This can be surprising at first since we found for the highly
anharmonic case of the Morse potential that the QTB and PIMD energies were different.
Although, if we analyse the trajectories obtained in this highly anharmonic Morse potential,
we find that, in the QTB case, the particle is sometimes able to escape from the well but
not on the PIMD case. In contrast, this cannot happen in the double-well case.

2.6 Conclusion

When quantum effects are important and needs to be taken into account the PIMD and QTB
methods are two possible options. These two methods are different in their formulation
and theoretical basis, and they have different advantages and drawbacks. Path integral
molecular dynamics gives exact results even for highly anharmonic systems. However, only
static quantities can be obtained, and the number of beads required at low temperatures
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2.6. Conclusion 31

becomes large leading to costly calculations. On the contrary, the computational cost of the
QTB method is similar to the computational cost of standard MD simulations. Moreover
dynamical quantities are directly accessible. However, we saw that the QTB method is
approximate when dealing with highly anharmonic cases. Let us note that, at least in the
cases studied here, the QTB-MD results are always closer to the exact quantum results than
are the classical MD results. Except in strongly anharmonic systems, the QTB method is
expected to give at least qualitatively correct results, and indeed, the method has been able
to give satisfactory results in various anharmonic systems [21–27].
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2.7 Complements of chapter 2

Path integral formulation of the density matrix

We continue to consider the case of one particle of mass m in one dimension (position x)
described by the Hamiltonian

Ĥ = K̂ + V̂ =
p̂2

2m
+ V (x̂) (2.67)

where K̂ and V̂ are the kinetic and potential energy operators, respectively. The gener-
alization to N particles in three dimensions is straightforward. In the canonical (N,V, T )
ensemble the density operator or density matrix of the system is given by

ρ̂(β) = e−βĤ (2.68)

whose matrix elements in position representation are

ρ(x, x′;β) = 〈x| ρ̂(β) |x′〉 = 〈x| e−β(K̂+V̂ ) |x′〉 (2.69)

Now, we would like to split the density matrix in a kinetic and a potential part. Since the
kinetic and potential operator do not commute

e−β(K̂+V̂ ) 6= e−βK̂e−βV̂ (2.70)

However, we can use the Trotter product formula [45] which allows us9 to write

e−β(K̂+V̂ ) = lim
P →∞

[

e− β
P

K̂e− β
P

V̂
]P

(2.71)

The density matrix then becomes

ρ(x, x′;β) = lim
P →∞

〈x|
[

e− β
P

K̂e− β
P

V̂
]P

|x′〉 (2.72)

Now, one can decide to use the following approximation for high values of P

ρ(x, x′;β) ≈ 〈x|
[

e− β
P

K̂e− β
P

V̂
]P

|x′〉 (2.73)

which is known as the "primitive" approximation. This procedure is often called Trotter
decompositions and P is referred to as the Trotter number. The error associated with this
particular approximation is of order P−2. Other (higher order) Trotter decomposition to go
beyond the primitive approximation are sometimes used [46, 47].

To simplify notation let us introduce the operator α̂ = e− β
P

K̂e− β
P

V̂ so that the density matrix
is

ρ(x, x′;β) ≈ 〈x| α̂P |x′〉 (2.74)

9The Trotter product formula

e−τ(Â+B̂) = lim
P →∞

[

e− τ

P
Âe− τ

P
B̂
]P

is only valid under several conditions. The two operators Â, B̂ and their sum Â + B̂ have to be self-adjoint,
moreover the two operators have to be lower bounded. In the case of the kinetic and potential energy operators
these conditions are satisfied.
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Then, by introducing P − 1 times the identity operator 1̂ =
∫

dx |x〉 〈x|, one obtains the
following expression for the canonical density matrix

ρ(x, x′;β) ≈
∫

dx1

∫

dx2...

∫

dxP −1 〈x| α̂ |x1〉 〈x1| α̂ |x2〉 ... 〈xP −1| α̂ |x′〉 (2.75)

Now we want to evaluate the term

〈xi−1| α̂ |xi〉 = 〈xi−1| e− β
P

K̂e− β
P

V̂ |xi〉 (2.76)

Since the potential operator V̂ is diagonal in position representation, we can directly write

〈xi−1| α̂ |xi〉 = 〈xi−1| e− β
P

K̂ |xi〉 e− β
P

V (xi) (2.77)

For the kinetic operator, let us introduce the identity operator 1̂ =
∫

dk |k〉 〈k| in the basis
of the eigenvectors |k〉 of the momentum operator

〈xi−1| α̂ |xi〉 =
∫

dk 〈xi−1| e− β
P

K̂ |k〉 〈k|xi〉 e− β
P

V (xi) (2.78)

The kinetic operator is diagonal in momentum space and the eigenvalues are ~
2k2/2m thus

〈xi−1| α̂ |xi〉 =
∫

dk 〈xi−1|k〉 〈k|xi〉 e−β~2k2/2mP e− β
P

V (xi) (2.79)

Now recalling the relation between momentum an position space

〈x|k〉 =
1√
2π

eikx (2.80)

one finds

〈xi−1| α̂ |xi〉 =
1

2π

∫

dk eik(xi−1−xi)e−β~2k2/2mP e− β
P

V (xi) (2.81)

The integral over k is a Gaussian integral and we obtain after integration

〈xi−1| α̂ |xi〉 =
(

mP

2πβ~2

)1/2

exp
[

− mP

2β~2
(xi−1 − xi)

2 − β

P
V (xi)

]

(2.82)

Finally, by introducing this expression in equation (2.75), we obtain the following expression
for the density matrix

ρ(x, x′;β) ≈
(

mP

2πβ~2

)P/2 ∫

dx1...

∫

dxP −1

exp

(

−
P
∑

s=1

[

mP

2β~2
(xs−1 − xs)2 +

β

P
V (xs)

]

)

(2.83)

With starting point x0 fixed at position x0 = x and ending point xP fixed at xP = x′. This is
sometimes called a "discrete imaginary time path integral" formulation of the density matrix.

The connection between this expression and path integrals with imaginary time can be
understood by first recalling that the time evolution of a quantum system is directly related
to the propagator (or evolution operator) Û(t) = e−iĤt/~. In particular, if we consider
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a particle initially prepared in an eigenstate of the position operator |x〉, the probability
amplitude A of finding the particle in the eigenstate |x′〉 after the time t is

A = 〈x′| Û(t) |x〉 = U(x, x′; t) (2.84)

Then, Feynman path integral formulation of quantum mechanics tells us that this probability
amplitude and thus the propagator U(x, x′; t) can be written as a sum over all possible paths
to go from x to x′ in a time t:

U(x, x′; t) =
∫ x′

x
Dx(t) eiS[x]/~ (2.85)

with
∫ x′

x Dx(t) that corresponds to a functional integral with respect to a path x(t) with
starting point fixed at position x and ending point fixed at x′. Each path contributes by a
phase factor exp(iS[x]/~) with S[x] the classical action:

S[x] =
∫ t

0
L(x, ẋ, t) dt =

∫ t

0

1
2
mẋ2 − V (x) dt (2.86)

One can notice the similarity between the density matrix ρ̂(β) = exp(−βĤ) and the propa-
gator Û(t) = exp(−iĤt/~), so that

ρ̂(β) = Û(−iβ~) (2.87)

thus the density matrix is equivalent to the propagator of the system evolving in imaginary
time t̄ ∈ [0,−iβ~]. Since the propagator can be written as a path integral, it is also possible
to write the density matrix in a path integral form.

If we go back now to expression (2.83) for the density matrix and take the continuous limit
P → ∞ we obtain

ρ(x, x′;β) = lim
P →∞
δτ→0

(

m

2πδτ~2

)P/2 ∫

dx1...

∫

dxP −1

exp

(

−δτ
P
∑

s=1

[

m

2~2

(

xs−1 − xs

δτ

)2

+ V (xs)

])

(2.88)

where we have used δτ = β/P so that the limit P → ∞ is equivalent to δτ → 0. In
this limit, the number of points that connect x to x′ goes to infinity, and the sequence
{x0, x1, x2...xP −1, xP } becomes a continuous path x(τ) from x0 = x to xP = x′. The P − 1
integrals now are represented by an integral over the whole function x(τ) which is called a
functional integral. This is formally written using the sign Dx(τ) so that

lim
P →∞
δτ→0

(

m

2πδτ~2

)P/2 ∫

dx1...

∫

dxP −1 ≡
∫ x′

x
Dx(τ) (2.89)

Moreover, the argument of the exponential when P → ∞ becomes a standard (Riemann)
integral

lim
P →∞
δτ→0

δτ
P
∑

s=1

[

m

2~2

(

xs−1 − xs

δτ

)2

+ V (xs)

]

=
∫ β

0

[

m

2~2

(

dx
dτ

)2

+ V (x)

]

dτ (2.90)
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Thus the density matrix can be written as follows

ρ(x, x′;β) =
∫ x′

x
Dx(τ) exp

(

−
∫ β

0

[

m

2~2

(

dx
dτ

)2

+ V (x)

]

dτ

)

(2.91)

Finally, by performing the transformation from τ to imaginary time t̄ = −i~τ , one finds the
following expression for the density matrix

ρ(x, x′;β) =
∫ x′

x
Dx(τ) exp

(

i

~

∫ −iβ~

0

[

m

2

(

dx
dt̄

)2

− V (x)

]

dt̄

)

(2.92)

which has the expected form

ρ(x, x′;β) =
∫ x′

x
Dx(τ) exp

i

~
S[x] (2.93)

with S[x] being the classical action in imaginary time t̄ ∈ [0,−iβ~]. Since the density matrix
is formally equivalent to a propagator, it can indeed be written as a path integral but in
imaginary time. In simulation, the continuous limit, for which P → ∞, is not accessible.
The imaginary time axis is discretized in P slices leading to the discrete imaginary time path
integral expression of the density matrix (2.34).

PIMD estimators for the kinetic energy

In the following we give more details about the derivation of the standard estimators to
compute average values of the kinetic energy in PIMD. We will drop the subscript for PIMD
average values so that 〈..〉 ≡ 〈..〉P .

Primitive estimator

Starting from the usual thermodynamic relation for the average energy and using equation
(2.43) one can write 〈E〉 as

〈E〉 = − 1
ZP

∂ZP

∂β
(2.94)

which gives using the expression for ZP (eq. (2.41))

〈E〉 =
1
ZP

1
(2π~)P

∫

dp1...

∫

dpP

∫

dx1...

∫

dxP

(

HP + β
∂HP

∂β

)

exp (−βHP ) (2.95)

〈E〉 =
〈

HP + β
∂HP

∂β

〉

(2.96)

with the expression of HP given in equation (2.42).

HP =
P
∑

s=1

[

p2
s

2m
+

1
2
mω2

P (xs−1 − xs)
2 +

1
P
V (xs)

]

The derivative of ∂HP/∂β is different from zero since ωP =
√
P/β~ depends on β and we

obtain

〈E〉 =

〈

P
∑

s=1

p2
s

2m
− 1

2
mω2

P

P
∑

s=1

(xs−1 − xs)
2

〉

+

〈

P
∑

s=1

1
P
V (xs)

〉

(2.97)
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The last member of this expression is the average potential energy

〈U〉 =

〈

P
∑

s=1

1
P
V (xs)

〉

(2.98)

thus the average kinetic energy is given by

〈K〉 =

〈

P
∑

s=1

p2
s

2m
− 1

2
mω2

P

P
∑

s=1

(xs−1 − xs)
2

〉

(2.99)

The kinetic energy can be computed using the following expression called the primitive
estimator

Kprim =
P
∑

s=1

p2
s

2m
− 1

2
mω2

P

P
∑

s=1

(xs−1 − xs)2 (2.100)

Since we have equipartition of the energy 〈p2
s/2m〉 = 1/2β the primitive estimator can also

be written

Kprim =
P

2β
− 1

2
mω2

P

P
∑

s=1

(xs−1 − xs)2 (2.101)

As already explained before, this estimator indeed converges to the exact quantum value of
the kinetic energy in the limit P → ∞. But its fluctuations increase with P [4, 42] so that
it can become inaccurate for high Trotter numbers. Thus another estimator for the average
kinetic energy called the virial estimator has been proposed [42].

Virial estimators

In PIMD the extended system is described by the effective Hamiltonian HP whose expression
is given by (2.42).

HP =
P
∑

s=1

[

p2
s

2m
+

1
2
mω2

P (xs−1 − xs)
2 +

1
P
V (xs)

]

We define the effective potential

φP =
P
∑

s=1

[

1
2
mω2

P (xs−1 − xs)2 +
1
P
V (xs)

]

= αP + U (2.102)

with αP =
∑P

s=1mω
2
P (xs−1 − xs)2 /2 the energy associated with the interaction between

replicas and U =
∑P

s=1 V (xs)/P the potential energy.

Now we are interested in calculating the following expression

〈

P
∑

s=1

xs
∂φP

∂xs

〉

=
1
ZP

1
(2π~)P

∫

dp1...

∫

dpP exp

(

−β
P
∑

s=1

p2
s

2m

)

∫

dx1...

∫

dxP

(

P
∑

s=1

xs
∂φP

∂xs

)

exp (−βφP ) (2.103)

One can notice that

xs
∂φP

∂xs
e−βφP = − 1

β
xs

∂

∂xs
e−βφP (2.104)
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so that
∫

dx1...

∫

dxP

(

P
∑

s=1

xs
∂φP

∂xs

)

exp (−βφP ) = − 1
β

∫

dx1...

∫

dxP

P
∑

s=1

(

xs
∂

∂xs
e−βφP

)

(2.105)
which can be integrated using an integration by parts

∫

dxs xs
∂

∂xs
e−βφP =

[

xse−βφP

]+∞

−∞
−
∫

dxs e−βφP (2.106)

Now if we consider that
[

xse−βφP

]+∞

−∞
= 0 because lim

xs→±∞
e−βφP = 0

we obtain
〈

P
∑

s=1

xs
∂φP

∂xs

〉

=
1
β

1
ZP

P
∑

s=1

[

1
(2π~)P

∫

dp1...

∫

dpP exp

(

−β
P
∑

s=1

p2
s

2m

)

∫

dx1...

∫

dxP exp (−βφP )
]

(2.107)

〈

P
∑

s=1

xs
∂φP

∂xs

〉

=
1
β

1
ZP

P
∑

s=1

ZP =
P

β
(2.108)

Now if we split the expression of φP in contributions from replicas αP and from potential
energy U (see eq. (2.102)) we obtain

〈

P
∑

s=1

xs
∂φP

∂xs

〉

=

〈

P
∑

s=1

xs
∂αP

∂xs

〉

+

〈

1
P

P
∑

s=1

xs
∂V (xs)
∂xs

〉

(2.109)

And one can easily show that
∑P

s=1 xs(∂αP /∂xs) = 2αP so that

〈2αP 〉 +

〈

1
P

P
∑

s=1

xs
∂V (xs)
∂xs

〉

=
P

β
(2.110)

So we finally obtain

P

2β
−
〈

P
∑

s=1

1
2
mω2

P (xs−1 − xs)2

〉

=

〈

1
2P

P
∑

s=1

xs
∂V

∂xs

〉

(2.111)

which is a generalization of the virial theorem to the path integral framework (eq. 2.51).

Now from the expression of the primitive estimator (eq. 2.101) and using equation (2.111)
we obtain the virial expression of the kinetic energy estimator

Kvir =
1

2P

P
∑

s=1

xs
∂V

∂xs
(2.112)

Finally, this estimator is not translationnally invariant which is a problem for unbounded
system. Thus a generalization valid for both bounded and unbounded systems is generally
used [43]

KCvir =
1

2β
+

1
2P

P
∑

s=1

(xs − xc)
∂V

∂xs
(2.113)
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which is sometimes called the centroid-virial estimator of the kinetic energy, with xc the
position of the centroid of the ring polymer. This expression is obtained by developing a
similar virial theorem than equation (2.111)

P − 1
2β

−
〈

P
∑

s=1

1
2
mω2

P (xs−1 − xs)2

〉

=

〈

1
2P

P
∑

s=1

(xs − xc)
∂V

∂xs

〉

(2.114)

which can be obtained in the same way as equation (2.111) but starting with calculating

〈

P
∑

s=1

(xs − xc)
∂φP

∂xs

〉

(2.115)
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Chapter 3

Limitations of the QTB method:

zero-point energy leakage

3.1 Introduction

In the previous chapter we have seen that, despite being approximate for highly anharmonic
systems, the quantum thermal bath method is a good alternative to path integral methods
to account for nuclear quantum effects in simulations. Indeed, the method has been able to
give satisfactory results in several anharmonic cases [1–7]. In addition, QTB-MD simulations
do not require any additional computational cost compared to standard MD and dynamical
properties are directly accessible. However, it has been recently pointed out [8, 9] that the
QTB method is prone to zero-point energy leakage (ZPEL) in anharmonic systems. ZPEL
is a well known problem in methods based on classical trajectories [10–12] where part of the
energy of high frequency modes are transferred to low frequency ones leading to a wrong
energy distribution. In particular, zero-point energy can be transferred leading to some
vibrational modes having an energy lower than their zero-point energy. In some cases, this
leakage can have dramatic consequences on the computed properties of the system [8, 9, 13].

In practice, the obtained energy distribution is the result of a competition between the
quantum thermal bath and the zero-point energy leakage. On one hand, the QTB gives more
energy to high frequency modes than low frequency ones, while on the other hand, energy
transfer between the modes tends to homogenize the energy distribution. If the QTB is not
able to fully counterbalance the leakage, the obtained energy distribution is intermediate
between a completely homogeneous distribution and the expected QTB distribution θ(ω, T )
(eq. 2.18). Zero-point energy leakage occurs in several sytems (such as liquid water, Lennard-
Jones systems, diamond crystal...) [8, 13, 14]. In the particular case of the QTB, it has been
first pointed out by Bedoya-Martínez and coworkers in aluminium and argon crystals [8].

In this chapter, we investigate in details the conditions leading to ZPEL and the parameters
that influence it. We find, in particular, that increasing the friction coefficient in QTB-MD
simulations can significantly reduce ZPEL and even completely remove it. It is worth noting
that solutions to the ZPEL problem in QTB-MD simulations has already been proposed
[8, 15]. In particular, Bedoya-Martńinez et al. proposed to modify the spectral density of
the random force in order to counterbalance the leakage. Since the leakage leads to low
frequency modes with too much energy and high frequency modes with too low energy, the
authors tried to decrease the power spectral density at low frequencies and increase it a high
frequencies. This solution has been able to limit the zero-point energy leakage in weakly
anharmonic systems. Unfortunately it does not work for strongly anharmonic systems and
the procedure is system dependent [8]. Here, we first study a simple model system composed
of two one-dimensional harmonic oscillators coupled by anharmonic couplings. This model
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provides a very clear illustration of the leakage and thus allows the investigation of the
parameters driving this phenomenon. Then, we focus on another model system: a one
dimensional chain of atoms. This model has been designed to reproduce the basic features
of hydrogen bonded systems with realistic orders of magnitude. Here, we focus in particular
on the consequences of ZPEL for the computed properties of the system.

This work is the result of a collaboration with Y. Bronstein, P. Depondt, F. Finocchi (INSP,
UPMC) and M. Hayoun (LSI, École Polytechnique) and has been accepted for publication in
the Journal of Chemical Theory and Computation.

3.2 Coupled harmonic oscillators

The first model we study here is composed of two harmonic oscillators coupled by cubic or
quartic anharmonic couplings. This system is interesting because it provide a very simple
description of vibrational modes coupled by anharmonic coupling terms. The first oscillator is
associated with the high frequency modes and the second to low frequency modes (ω1 > ω2).
The Hamiltonian of the system writes

H =
1
2
mẋ2

1 +
1
2
mω2

1x
2
1 +

1
2
mẋ2

2 +
1
2
mω2

2x
2
2 + C3(x1 − x2)3 + C4(x1 − x2)4 (3.1)

where x1, x2 are the positions of oscillators 1 and 2 respectively; ω1, ω2 are the angular
frequencies of oscillators 1 and 2; m is their mass and C3, C4 are the coupling constants
associated with cubic and quartic couplings, respectively. This Hamiltonian can be written
in a dimensionless form H̃ = H/ω1, so that

H̃ =
q̇2

1

2
+
q2

1

2
+
q̇2

2

2
+ Ω2 q

2
2

2
+ c3(q1 − q2)3 + c4(q1 − q2)4 (3.2)

where the following change of variables has been used:

Ω =
ω2

ω1
=
ν2

ν1

qi =
xi

ξ
ξ =

√

~

mω1

q̇i =
dqi

dt∗
t∗ = ω1t

c3 =
C3ξ

3

~ω1
c4 =

C4ξ
4

~ω1

(3.3)

with q1 and q2 being the reduced position of the two oscillators and Ω the ratio of their
frequencies. We study here the influence of the coupling constant c3 and c4 on the average
energy of the oscillators

ε1 =

〈

q̇2
1

2

〉

+

〈

q2
1

2

〉

, ε2 =

〈

q̇2
2

2

〉

+ Ω2

〈

q2
2

2

〉

. (3.4)

The QTB-MD simulations are performed with a friction coefficient γ = 4 × 10−4ω1, an
angular frequency cut-off ωcut = 2ω1 and a time step δt = 0.05ω−1

1 . Average values are
obtained using 30 independent trajectories of 107 time steps long. The QTB-MD results are

Ph.D. thesis - F. Brieuc - 2016



3.2. Coupled harmonic oscillators 47

 0.2

 0.3

 0.4

 0.5

 0  2  4  6  8  10  12  14

av
er

ag
e 

en
er

gy

c3 ( x 10-4)

Ω=0.5

 0

 0.2

 0.4

 0.6

 0  5  10  15  20  25  30  35  40

av
er

ag
e 

en
er

gy

c4 ( x 10-4)

Ω=0.25

ε1
QTB ε2

QTB εc
QTB Exact

Figure 3.1: Average energies ε1 and ε2 of the two oscillators, and average coupling energy εc computed by
QTB-MD as a function of the intensity of the coupling constants c3 and c4. Top panel : cubic coupling only
(c3 6= 0, c4 = 0) with Ω = 0.5, Lower panel : quartic coupling only (c3 = 0, c4 6= 0) with Ω = 0.25. Let us
note that by symmetry εc = 0 in the cubic case.

compared to the exact results obtained by numerically solving Schrödinger equation1 which
is possible here because of the small number of degrees of freedom. The ratio Ω is varied
in the range 0.05 − 0.8 and the values of the coupling constants c3 and c4 lies in the range
0−25×10−4 and 0−40×10−4 respectively, so that we cover a large range of coupling energies
while remaining in a rather weak coupling regime. The temperature is set to kBT = 0.03~ω1

in order to ensure that the thermal energy contribution of the two oscillators remains small
compared to their zero-point energies. Indeed, the exact calculation shows that the energies
of the oscillators are basically equal to their zero-point energies (ε1 = 0.5 and ε2 = Ω/2) and
are almost independent of the coupling constants c3 and c4 for the range of values studied
here. Figure 3.1 shows the values of ε1 and ε2 obtained by QTB-MD as a function of c3

and c4 for two distinct cases: the case of cubic coupling only (c4 = 0) and Ω = 0.5 (top
panel) and the case of quartic coupling only (c3 = 0) and Ω = 0.25 (bottom panel). As
expected, in the uncoupled case (i.e. c3 = c4 = 0 ) the QTB method gives the exact results.
However, when the coupling constant c3 or c4 increases, the QTB-MD energies diverge from
the exact results. More precisely, the energy of oscillator 1 is underestimated and the energy
of oscillator 2 is overestimated: a part of the energy from the high frequency oscillator has
been transferred to the low frequency oscillator. This is a clear illustration of the ZPEL
problem in QTB-MD simulations.

This simple model only depends on 3 independent parameters Ω, c3 and c4 and we will now
investigate their effect on ZPEL. In order to quantify the leakage, we define the following

1This is done in practice by solving the time independent Schrödinger equation using a finite differences
method that allow us to rewrite the problem as a matrix equation. Then the eigenenergies and eigenvectors are
obtained through a matrix diagonalization. Finally, the effect of temperature is accounted for by occupying
the resulting eigenstates with the proper Boltzmann factor.
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deviation factor ζ :

ζ =
∆εexact − ∆εQTB

∆εexact
=

(εexact
1 − εexact

2 ) − (εQTB
1 − εQTB

2 )
εexact

1 − εexact
2

(3.5)

In this definition, the leakage is maximum for ζ = 1: the system has reached an equipartition
of the energy εQTB

1 = εQTB
2 . On the contrary, there is no leakage for ζ = 0 since in this case

εQTB
1,2 = εexact

1,2 . Figure 3.2 presents the evolution of ζ as a function of Ω in the cubic case for
different values of c3 (top panel) and in the quartic case for different values of c4 (bottom
panel). We see that the zero-point energy leakage is highly sensitive to the value of Ω.
Clearly, in the cubic case, ZPEL only occurs for Ω ≈ 0.5. This behavior can be understood
by the fact that cubic couplings are responsible for frequency doubling i.e. the creation of
additional modes at 2ω. Indeed additional peaks appears in the vibrational spectrum (see
figure 3.3 (a)) at 2ω2, ω1 − ω2 and ω1 + ω2. The leakage occurs in the particular case of
Ω = 0.5 for which there is a clear resonance between the modes 2ω2 and ω1 and between
the modes ω1 − ω2 and ω2. Thus ZPEL seems to be directly related to resonances between
different vibrational modes in the system. The quartic case however is more complicated.
We expect significant ZPEL for Ω ≈ 1/3 since quartic couplings are responsible for the
generation of modes with frequency 3ω. There should be, in particular, a resonance between
the modes at 3ω2 and ω1 for Ω = 1/3. Significant ZPEL is indeed observed at Ω ≈ 1/3 which
confirm the link between the leakage and the resonances. However, we note that important
leakage is also observed for Ω < 1/3. Figure 3.3 (b) shows the vibrational spectrum of the
two oscillators for Ω = 0.2 and c4 = 15.4×10−4 , we see that many additional modes appears
in the spectrum. Thus multiple resonances are likely to occurs leading to important ZPEL
for Ω < 1/3.
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For now, all the QTB-MD simulations have been carried out with a fixed value of the friction
coefficient γ = 4 × 10−4ω1. This value has been chosen to be small compared to the lowest
angular frequency (ω2) in order to ensure that the thermostat does not perturb the natural
dynamics of the system as it is explained in the first chapter. The friction coefficient γ is
directly related to the strength of the coupling between the system and the thermostat. Thus
one can expect that, if γ increases, the QTB will be able to better counterbalance the leakage.
And, for a value of γ that is high enough, the QTB should be able to fully counterbalance
the leakage and thus impose the correct energy distribution. In the following, the friction
coefficient γ is varied from 4 × 10−4ω1 to 2 × 10−2ω1 and we focus on the cases where ZPEL
is important i.e Ω = 0.5 in the cubic case and Ω = 0.25 in the quartic case. Figure 3.4 shows
that indeed the leakage strongly depends on the value of the friction coefficient and increasing
γ reduces the ZPEL. This is particularly clear in the cubic case for which the increase of γ
can completely remove the leakage. Figure 3.3 (c) shows the vibrational spectra obtain with
a higher value of γ in the cubic case; we see that the additional modes corresponding to the
resonances have disappeared which further confirms the relation between ZPEL and mode
resonances. In the quartic case however, increasing γ is not sufficient to completely remove
the leakage. Figure 3.3 (d) shows the vibrational spectra in this case and indeed increasing
γ is not sufficient to suppress all the additional peaks in the spectrum. Thus resonances are
still possible and ZPEL remains.

In conclusion, we have seen that ZPEL is directly related to resonances between vibrational
modes. In a realistic system composed of a large number of degrees of freedom these mode
resonances are of course very likely to occur and will be almost impossible to avoid in
practice. However, we have found that increasing the friction coefficient can largely help
to limit the impact of ZPEL in particular in the case of cubic coupling terms. Of course
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realistic interaction potentials will consist of all the higher-order terms (not just cubic or
quartic terms) and thus the question whether the increase of γ will still be helpful in realistic
systems arises. For this reason, we study in the next section another model system with
realistic interaction potentials (Morse type) between the atoms. Finally, increasing γ raises
the issue that usually, in standard Langevin dynamics, the friction coefficient should remain
low enough in order not to perturb the dynamics. A high value of γ will for example results
in important broadening of the peaks in the vibrational spectrum. In the next section, we
focus in particular on the effect of the leakage and of the increase of γ on the properties of
the system.

3.3 One-dimensional chain of atoms

We now study a one dimensional chain of atoms O-H–O-H–O-H composed of NO = 3 oxygen
atoms and NH = 3 hydrogen atoms with periodic boundary conditions. The O-H interaction
is described using a Morse type potential proposed by Johannsen [16] that has the following
form:

VOH(r) =
u0

a+ bea(r−r0)

[

a
(

e−b(r−r0) − 1
)

+ b
(

ea(r−r0) − 1
)]

− u0 (3.6)

with r the O-H distance, u0 the depth of the potential well, a and b parameters related to the
width of the potential well and r0 the equilibrium O-H distance. The values of the parameters
are set to r0 = 0.96 Å which corresponds to a typical OH bond length, a ≈ 7.11 Å−1,
b ≈ 2 Å−1 and u0 = 2.73 eV so that the O-H stretching frequency νOH approximately equal
100 THz which corresponds to a typical value for OH stretching frequencies in hydrogen-
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bonded materials. The O-O interactions are modelled by a standard Morse potential

VOO(R) = C0

(

1 − e−α0(R−R0)
)2

− C0 (3.7)

with R the O-O distance, C0, α0 the depth and the width of the potential well, respectively
and R0 the equilibrium O-O distance. The values of the parameters are set to C0 = 3.81 eV
and R0 = 2.88 Å. The frequency associated with the O-O interactions can be computed in
the harmonic approximation of VOO :

νOO =
1

2π

√

4C0α
2
0

mO
(3.8)

with mO the mass of the oxygen atom. The value of α0 is varied so that νOO lies between 10
and 70 THz. Clearly, this model cannot be used to accurately represent hydrogen-bonded
systems such as ice or liquid water for example. However, it exhibits the basic features of
those type of systems with realistic orders of magnitude i.e. high-frequency modes related
to O-H vibrations (with frequencies around 100 THz) and low frequency modes related to
O-O vibrations (with frequencies of several tens of THz).

The potential energy of an hydrogen atom in the O-H–O group is given by VOH(r)+VOH(R−r)
which has a double-well potential shape. A normal mode analysis of this system reveals one
low frequency mode (of frequency ν2) associated with O-O vibrations and two high frequency
modes (of very similar frequencies ν1) that corresponds to O-H stretching modes (see figure
3.5). In analogy with the previous model, the O-H stretching modes can be considered to
play the role of the high frequency oscillator while the O-O lattice mode corresponds to the
low frequency oscillator. In the following, we are first interested to study the influence of
the parameter Ω = ν2/ν1 and the friction coefficient γ on the ZPEL. We want in particular
to see if the results obtained for the two oscillators model are confirmed in this system.

The QTB-MD simulations are carried out at T = 600 K with a time step δt = 0.1 fs and
average values are obtained using 12 independent trajectories of 3 ns each. The frequency
ν2 is varied through the parameter α0 while νOH is kept constant (thus ν1 remains almost
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constant). The QTB-MD results are compared to PIMD results obtained with a Trotter
number P = 20 which ensures a good convergence in all the cases studied here.

To study the leakage in this case, we choose to compare the kinetic energy of the light atoms
(H) which are mainly involved in high frequency modes to the kinetic energy of the heavier
atoms (O) which mainly participate in low frequency modes. In order to do this we define
the effective temperatures (TH and TO) of hydrogen and oxygen atoms from their kinetic
energies:

kBTH

2
=

1
NH

NH
∑

i=1

〈Ki〉,
kBTO

2
=

1
NO

NO
∑

i=1

〈Ki〉 (3.9)

where 〈Ki〉 is the average kinetic energy of atom i. In standard MD simulations, the equipar-
tition of the energy results in TH = TO since kinetic energy is equally distributed among all
the modes. However, in a quantum system (i.e. for PIMD and QTB-MD simulations), the
average kinetic energy is higher for high frequency modes than for low frequency ones and
therefore TH > TO. Moreover, the modes have higher kinetic energy than in the classical case
(mainly because of their zero-point energy) and thus TH and TO are expected to be higher
than T = 600 K. Figure 3.6 shows the values of these effective temperatures during the sim-
ulation. We see that the QTB-MD simulations tend to underestimate TH and overestimate
TO: this a signature of ZPEL. As expected, the leakage tends to increase the kinetic energy
of low frequency modes and decrease the kinetic energy of high frequency ones.

Now in order to quantify the leakage we define the following deviation factor

ζ =
(TH − TO)(PIMD) − (TH − TO)(QTB)

(TH − TO)(PIMD)
(3.10)

Similarly to the previous model, ZPEL is maximum for ζ = 1 and there is no leakage for
ζ = 0. The evolution of ζ as a function of Ω is represented in figure 3.7. We see that ZPEL is
strongly dependent on Ω and that, as in the previous model, significant leakage mostly arises
for Ω ≈ 1/2. This is reminiscent of the resonances effect that we have seen on the previous
model. However, we also observe important ZPEL for Ω ≈ 0.1: this case corresponds to a
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highly anharmonic regime where a structural transition occurs and therefore corresponds to a
different physical situation than for the other values of Ω. This transition is characterized by
a splitting of the O-O distance as it can be seen in figure 3.8 which presents the distribution
of distances: two different equilibrium O-O distances are observed for Ω = 0.1 (figure 3.8
(d)). We did not study this transition in details here however we now focus on the cases for
which ZPEL is strong i.e. Ω = 0.1 and Ω = 0.5. Figure 3.7 also shows that increasing γ

can indeed tremendously help to limit ZPEL in this case: for γ = 20 THz, zero-point energy
leakage is lower than 0.2 for any value of Ω, even Ω = 0.1 and Ω = 0.5.

We now study the impact of the ZPEL and of the increase of γ on the properties of the
system. First, we focus on the distribution of distances presented in figure 3.8. We see that,
in the case of Ω = 0.5 (top panel), the impact of ZPEL on the O-H distance (figure 3.8 (a)) is
relatively small. In contrast, the effect of the leakage is more substantial on the distribution
of O-O distances (figure 3.8 (b)). In particular, the distribution is too broad because of
the excess of kinetic energy coming from the ZPEL. Increasing the friction coefficient γ
clearly eliminates the effects of the leakage: for a value of γ = 20 THz the QTB and PIMD
distributions coincides. In the case of Ω = 0.1 (bottom panel), we see that the impact of
ZPEL on the distribution of distances seems to be more important compared to the Ω = 0.5
case. However, one should be careful with the analysis of this case since it corresponds to a
highly anharmonic case. Indeed, the QTB method is known to be approximate in strongly
anharmonic cases even if no leakage occurs. The increase of γ here seems to be less efficient
since there still is an important difference between the PIMD and the QTB distributions
for γ = 20 THz (figure 3.8 (c) and (d)). It is worth noting that for a very high value of γ
(200 THz) the QTB and PIMD distributions almost coincide. Thus it seems that the major
part of the failure of the QTB in this case is indeed coming from ZPEL and the impact of
the leakage can also be removed by increasing γ. However, this value of γ is higher than
the typical frequencies in the system, thus dynamical quantities cannot be used in this case.
We enter a regime where the QTB-MD simulations are overdamped and thus the thermostat
is now only used to sample the phase space and the dynamics of the system is strongly
perturbed by the thermostat.
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Figure 3.8: Distribution of O-H (left) and O-O(right) distances for a low and a high value of γ in the case
Ω = 0.5 (top) and Ω = 0.1 (bottom)
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As already said, one normally should decrease and not increase γ in Langevin dynamics
and thus increasing γ to very high values will have consequences in particular on dynamical
properties. Figure 3.9 shows the vibrational spectra obtained from QTB-MD trajectories for
two values of γ in the case of Ω = 0.5. For the low value of γ (0.2 THz) ZPEL is present in the
system while for the higher value of γ (10 THz) the leakage is almost completely removed.
As expected, increasing γ leads to a broadening of the peaks however the positions of these
peaks and thus the values of the mode frequencies remains unchanged with the increase of
the friction. Thus, even with a rather large value of γ, vibrational spectra computed using
QTB-MD contain some useful information.

3.4 Practical discussions

We have seen that the ZPEL is related to resonances between vibrational modes. These
resonances will generally be unavoidable in realistic systems with many degrees of freedom.
However, we have seen that increasing the friction coefficient significantly reduces the leakage.
Thus, before launching QTB-MD simulations to compute average values, one should first try
to evaluate the impact of ZPEL for the particular system under study. And then choose
the value for the friction coefficient γ that allows one to sufficiently reduce the leakage. For
systems containing different chemical elements the ratio of their kinetic energies can be used
to quantify the leakage. Another more general method is to compute the kinetic energy
distribution among the modes and compare it to the expected distribution θ(ω, T ). This is
the procedure that Bedoya-Martínez and coworkers have used in their paper (figure 1 and
5 in ref. [8]) to illustrate the ZPEL within QTB-MD simulations (see also figure 3.11 in
the complements of this chapter). In order to choose the value of the friction coefficient
one can for example monitor the evolution of the kinetic energy distribution with γ. One
can also compute different properties of interest using QTB-MD and study their evolution
with the increase of the friction coeffcient. When it is possible comparing the results of
QTB-MD method with results from PIMD is very useful to assess the impact of ZPEL. The
PIMD calculations could be done on a smaller simulation box before launching QTB-MD
simulations on larger cells once a good value of γ is found.

High values of γ will have consequences on the vibrational properties such as the vibrational
spectrum. At the end, one needs to find the best compromise between the impact of ZPEL
and the quality needed for the spectrum. It is worth noting that, vibrational spectra gener-
ally are computed in the NVE ensemble using standard (classical) MD. Thermostatted MD
simulations are used to generate initial conditions and then the spectrum is computed using
NVE trajectories starting from these thermostated initial conditions [3, 9]. This procedure
allows one to completely remove the impact of the thermostat when computing the spec-
trum and thus one could try to use it with QTB-MD simulations. However this procedure
should not be used to compute spectra using the QTB method. Indeed, one could generate
initial conditions using QTB-MD, possibly with a high friction coefficient to limit the effect
of ZPEL, and then remove the thermal bath to compute the spectrum. However, once the
thermal bath is removed the system follows a classical dynamics and thus will naturally reach
an equipartition of the energy in a similar way as for the ZPEL. Thus one should not use
NVE trajectories to compute vibrational spectra.

It is worth noting that increasing γ can also have consequences on the energy of the system.
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In particular, high values of γ can lead to the divergence of the total energy as already
emphasized by Barrat and Rodney [17]. The top panel of figure 3.10 shows the relative
deviation of the kinetic and potential parts of the QTB-MD energies from their exact values
as a function of γ and for an harmonic oscillator. We clearly see that for high values of γ,
the energies computed using QTB-MD diverges from the exact values. In particular, the
kinetic part of the energy is very sensitive to the increase of γ. In contrast, the potential
part of the energy is less sensitive to the value of the friction coefficient and diverges only for
high values of γ (for γ > 0.1ω0 i.e. γ > 0.6ν0). The average kinetic and potential energies
obtained using the QTB method in the case of an harmonic oscillator can be expressed in
the following form:

〈K〉 =
∫

K̂(ω)
dω
2π

=
∫

1
2
m|v̂(ω)|2 dω

2π
(3.11)

〈V 〉 =
∫

V̂ (ω)
dω
2π

=
∫

1
2
mω2

0|x̂(ω)|2 dω
2π

(3.12)

with K̂(ω), V̂ (ω) the Fourier transform of the kinetic and potential energy respectively and
x̂(ω), v̂(ω) the Fourier transform of the position and the velocity which can be computed
from the Fourier transform of the equation of motion:

x̂(ω) =
−1

m
(

ω2 − ω2
0 + iγω

) R̂(ω) (3.13)

v̂(ω) =
iω

m
(

ω2 − ω2
0 + iγω

) R̂(ω) (3.14)

Thus we find that the kinetic and potential energies writes:

〈K〉 =
∫

K̂(ω)
dω
2π

=
∫

γ
ω2

(

ω2 − ω2
0

)2 + γ2ω2
θ(ω, T )

dω
2π

(3.15)

〈V 〉 =
∫

V̂ (ω)
dω
2π

=
∫

γ
ω2

0
(

ω2 − ω2
0

)2 + γ2ω2
θ(ω, T )

dω
2π

(3.16)

K̂(ω) and V̂ (ω) are plotted for different value of γ on the bottom panel of figure 3.10 we
first see that increasing γ leads to a broadening of K̂(ω) and V̂ (ω). Moreover, for high
values of γ, both K̂(ω) and V̂ (ω) become asymmetric and their maximum is shifted from
ω0. For the potential part V̂ (ω), the tail for ω < ω0 is longer than the tail for ω > ω0. In
addition, the maximum is displaced towards lower values than ω0. This behavior explains
why the potential energy gives values lower than the exact ones for high γ. In contrast, for
the kinetic part K̂(ω), the tail for ω > ω0 is longer than the tail for ω < ω0 and the maximum
is displaced towards higher values than ω0. Thus explaining why the kinetic energy tends to
be overestimated for high values of γ. Moreover, we see that the asymmetry is stronger for
K̂(ω) than for V̂ (ω) which explains why the kinetic energy is more sensitive to the increase of
γ than the potential energy. We also see, in figure 3.10, that reducing the angular frequency
cut-off ωcut allows to reduce the divergence of the kinetic energy. The effect of the cut-off is
to remove a part of the high frequency modes thus compensating for the asymmetry of K̂(ω)
and leading to a decrease of the kinetic energy. Thus, decreasing ωcut limit the divergence
of the kinetic energy. In contrast, decreasing ωcut does not impact the divergence of the
potential energy since the cut-off only acts on the high frequencies. Let us note that ωcut can
not be chosen arbitrarily small and should of course remain higher than all the frequencies
in the system. In practice, ωcut should be equal to a few times the highest angular frequency.
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kinetic energy K̂(ω) (eq. 3.15) and potential energy V̂ (ω) (eq. (3.16)) for different values of γ.
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From figure 3.10 we see that ωcut = 2ω0 or lower seems to be a good choice which avoid any
divergence of the energy up to γ ≈ 0.05ω0 ≈ 0.3ν0. Thus, we generally choose ωcut = 2ωmax

or lower in our QTB-MD simulations (with ωmax being the highest angular frequency in the
system). Finally, it is worth noting that the kinetic energy can also be computed using the
virial theorem so that:

〈K〉vir = −1
2

〈

N
∑

i=1

~ri · ~fi

〉

=
1
2

〈

N
∑

i=1

~ri · ∂V
∂~ri

〉

(3.17)

with ~fi the internal force that applies on the atom i and ~ri its position. Of course, for one
degree of freedom the expression simply becomes 〈K〉vir = −1/2 〈f · r〉. Since this expression
is based on the potential energy its behavior with increasing γ is the same as the potential
energy (figure 3.10 top panel). For this reason, computing the kinetic energy in this way
generally is more robust than using the velocities, in the sense that it is independent of the
choice of ωcut. Moreover the virial expression leads to better estimation of the kinetic energy
if ωcut has been chosen too high. It is thus preferable to compute the kinetic energy both
using the velocities and the virial theorem in QTB-MD simulations and compare these two
values which should be equal if there is absolutely no divergence of the energy.

3.5 Conclusion

In this chapter we have studied in details the ZPEL problem in QTB-MD simulations. We
first found that ZPEL is directly related to resonances between vibrational modes. These
resonances will hardly be avoidable in any realistic system. However, we also found that
increasing the friction coefficient γ can significantly reduce the leakage and even completely
remove it in some cases. This can be understood by recalling that the QTB tries to ensure
an energy distribution in which high frequency modes have more energy than low frequency
ones while MD tends to homogenize the energy among the modes. The ZPEL comes from
the energy transfer between the modes resulting in an intermediate energy distribution be-
tween the QTB distribution (θ(ω, T )) and a completely homogeneous one. When the friction
coefficient is increased the system becomes more strongly coupled to the thermal bath and
thus the QTB is able to better counterbalance the leakage. For a sufficiently high value of γ
the QTB ensures the correct energy distribution.

ZPEL can have important consequences on the energy distribution among the modes and
on the computed properties such as the distribution of distances. In all the systems studied
here, increasing γ have been able to limit the impact of ZPEL for the structural properties.
In some cases, such as in the one-dimensional chain of atoms with Ω = 0.1, a very high
value of γ was necessary. In this case, vibrational properties are significantly affected by
the friction coefficient and thus can not be used anymore. However, we have seen that,
even though increasing γ implies an important broadening of the peak in the vibrational
spectrum, it seems that useful informations can still be obtained for rather large values of γ.
In particular, mode frequencies are not dramatically affected by the increase of the friction.
We expect the low frequency part of the spectrum to be much more altered by a high value of
γ than the high frequency part. Thus, if we focus for example on OH stretching and bending
modes in hydrogen-bonded materials, it should be possible to use a relatively high value of
the friction coefficient since the frequencies of these modes will usually remain larger than γ.
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Increasing γ seems to be a simple and yet effective way to remove or at least limit the impact
of zero-point energy leakage in QTB-MD simulations. This has been further confirmed on two
different realistic systems: a model crystal of aluminium and a ferroelectric crystal (BaTiO3).
On both systems, increasing γ has proved to be an efficient method to limit ZPEL. The results
are presented in the complements of this chapter. In strongly anharmonic cases, the value of
γ necessary to remove the leakage might be of the same order of magnitude or even higher
that the typical frequencies in the system. In this case, the computed vibrational properties
becomes unusable and we enter an overdamped regime. However, it seems that overdamped
QTB-MD simulations might still be able to provide valuable results for structural properties
(see the 1D chain of atom with Ω = 0.1 for example).
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3.6 Complements of chapter 3

The results briefly presented here have been obtained by H. Dammak and M. Hayoun.

Aluminium

The ZPEL problem in QTB-MD simulations have been first pointed out by Bedoya-Martínez
and coworkers [8] on a perfect crystal of aluminium modelled by a Lennard-Jones potential

V (r) = 4ε

[

(

σ

r

)12

−
(

σ

r

)6
]

(3.18)

with ε = 0.125 eV, σ = 2.54 Å and a cutoff of 1.37σ. In their paper, Bedoya-Martínez
et al. showed that the kinetic energy distribution obtained by QTB-MD simulations at
T = 10 K and using a friction coefficient γ = 1 THz is not the expected QTB distribution
θ(ν, T ). Indeed, the leakage leads to an energy flow from high frequency modes to low
frequency ones and the QTB is unable to fully counterbalance this leakage. We confirm
this results for γ = 0.9 THz as we can see in figure 3.11 (full circles). The energy of low
frequency modes is overestimated while the energy of high frequency modes is underestimated
because of the leakage. However, increasing γ allows to remove the ZPEL. Indeed, the energy
distribution obtained by QTB-MD when γ is increased to 10 THz is very close to the correct
QTB distribution θ(ν, T ) (open circles in figure 3.11). The inset of figure 3.11 shows the
convergence of the QTB-MD energy distribution with γ, we see that for γ & 9 THz the
leakage is removed.
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Figure 3.11: Kinetic energy distribution of an aluminium crystal at T = 10 K as obtained from QTB-MD with
a friction coefficient γ = 0.9 THz (full circles) and with γ = 10 THz (open circles). The angular frequency
cut-off is ωcut = 2ωmax with ωmax/2π = 10 THz. The solid line corresponds to the exact distribution θ(ν, T ).
The inset present the evolution of the slope of the energy distribution as a function of γ.
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Barium Titanate

Barium titanate (BaTiO3) is a ferroelectric material described by a complex energy land-
scape. More details on this material are given in the next chapter. In summary, BaTiO3

exhibit a complex sequence of phase transitions with increasing temperature: from a low
temperature rhombohedral (R) phase to an orthorhombic (O) phase to a tetragonal (T)
phase and finally to a high temperature cubic (C) phase. In the first three phases (R,O and
T) the system is ferroelectric i.e. it exhibit a macroscopic electric polarization. Quantum
effects in this material has been shown to significantly decrease the transition temperatures
by ∼ 30 − 50 K [18] and to strongly modify the shape of the pressure-temperature phase
diagram [19, 20]. The system is modelled here using an effective Hamiltonian proposed by
Zhong et al. [21, 22] and derived from density functional theory calculations. QTB-MD
and PIMD simulations have been performed in the isothermal-isobaric ensemble (using a
Langevin barostat [23]) with different values of the friction coefficient γ for QTB-MD sim-
ulations and for temperatures ranging from 1 K to 270 K. Figure 3.12 presents the values
of the polarization as a function of the temperature. The different phases are visible and
transition temperatures are indicated by dashed lines. We see that in the cubic phase the
polarization is zero since the phase is not ferroelectric. The QTB method with a small value
of γ (0.1 THz) fails to reproduce the correct sequence of phase transitions (see the inset of
figure 3.12). More precisely, only tetragonal and cubic phases are predicted (i.e. the system
is predicted to be in the tetragonal phase even at T = 1 K). This failure is attributed to
ZPEL. Indeed, when γ is increased, the complete sequence of phase transitions is retrieved.
Moreover, for γ ≈ 16 THz the effect of ZPEL is suppressed and we see in figure 3.12 that we
obtain the correct phases along with transition temperatures that are very similar to those
obtained using PIMD, in this case.

Figure 3.12: Temperature evolution of the reduced polarization of BaTiO3 as obtained from QTB-MD with a
friction coefficent γ = 16 THz and from PIMD with a product P × T = 1920 which corresponds to P = 16 at
T = 120 K. Vertical dashed lines indicates the temperatures of the different transitions. The inset presents the
evolution with γ of the different transitions temperatures obtained from QTB-MD simulations. The dashed
grey lines indicates the values obtained by PIMD.
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Chapter 4

Quantum thermal bath for path

integral molecular dynamics

simulation

The work presented in this chapter has been published in [1]. The structure of the chapter
and the majority of the figures it contains are based on this publication

4.1 Introduction

Path integral molecular dynamics allows one to account for nuclear quantum effects in sim-
ulations, and gives exact results even for strongly anharmonic systems. But computational
cost is an important limitation of the method. In particular, at low temperatures, the num-
ber of replicas necessary to reach the convergence becomes high, and thus the computation
time becomes prohibitive. For this reason, PIMD simulations on large systems are difficult
to achieve, in particular using first-principles description of the interatomic forces. Several
methods have been designed to reduce the computational cost of standard PIMD. Among
them are methods based on higher-order Trotter discretisation [2, 3] or ring polymer contrac-
tion schemes where the slowly varying (long-range) contributions of the interaction potential
are treated with fewer beads than the rapidly varying (short-range) contributions [4] and
which have been recently generalized for ab initio simulations [5–7].

The quantum thermal bath is a good alternative to PIMD that allows one to include nuclear
quantum effects at no additional cost compared to standard MD. Moreover time dependent
quantities are directly accessible. However, the method becomes approximate when dealing
with strongly anharmonic systems and, more problematic, is prone to zero-point energy
leakage. In this section we present another way to use the QTB method. More precisely,
we show how the quantum thermal bath can be combined with path integral molecular
dynamics in order to decrease the computational cost of PIMD simulations [1]. In this
combined QTB-PIMD method, the classical thermostat of standard PIMD simulations is
replaced by the quantum thermal bath. A part of the quantum effects is introduced through
the QTB leading to a faster convergence with the number of beads than standard PIMD.
Fewer replicas are needed to converge so the computation time is decreased. In this chapter
we first describe the procedure to combine the quantum thermal bath with PIMD. Then we
compare the QTB-PIMD method to standard PIMD in several test cases.
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4.2 Combining the quantum thermal bath with path integral

molecular dynamics

This section describes in details the procedure to combine the QTB with PIMD. This pro-
cedure has been first proposed by Ceriotti and coworkers [8] to combine their GLE method
with path integral molecular dynamics. Here we show that the combination procedure can
been adapted to the QTB case. The main idea is to use the quantum thermal bath as a
thermostat for path integral molecular dynamics simulations. In order to achieve this, the
QTB method needs to be adapted to the PIMD case. The quantum thermal bath is basically
defined by the power spectral density of the random force. Thus the spectral density needs
to be adapted to the PIMD case, in particular it will now depend on the number of replicas
used during the simulation.

4.2.1 Modified power spectral density

In both PIMD (with a Langevin thermostat) and the combined QTB-PIMD methods the
equations of motion are the same. Considering, for simplicity, the case of one particle (N=1)
of mass m moving in one dimension, the equation of motion for one bead s of the polymer
is given by equation (2.44) and writes

ṗs = fs −mω2
P (2xs − xs+1 − xs−1) − γps +Rs

where fs = −(1/P )∂V/∂xs is the internal force exerted on replica s and the two last terms are
the frictional (friction coefficient γ) and stochastic forces of the thermostat, respectively. As
explained in the first part (see section 2.3), the random force is defined by its power spectral
density IR. This spectral density is obtained from the fluctuation-dissipation theorem which
can be written in the following form (equation (2.24))

IR(ω, T ) = 2mγκ(ω, T ) (4.1)

In standard PIMD, the thermostat applied on each bead of the polymer is classical and thus
κ(ω, T ) = kBT . In the case of the QTB-PIMD method, the spectral density of the force
depends on ω but also on the number of beads P used in the simulation. When P = 1 we
are in the case of the bare QTB method, and thus we know that κ(ω, T ) = θ(ω, T ) which is
the average energy of a quantum harmonic oscillator. Now we need to determined κ(ω, T )
for P > 1.

For this, let us consider the case of an harmonic oscillator: V (x) = 1
2mω

2x2. The position
fluctuation for this system is given by

〈

x2
〉

=
θ(ω, T )
mω2

=
~

mω

(

1
2

+
1

exp(β~ω) − 1

)

(4.2)

which can be rewritten
〈

x2
〉

=
~

2mω
coth

(

β~ω

2

)

(4.3)

In PIMD one can transform the coordinates xs (s = 1, ..., P ) into normal modes coordinates
qk (k = 0, ..., P − 1) of the ring polymer. In the simple harmonic case, these normal modes
are independent harmonic oscillators of angular frequency ωk given by

ω2
k =

ω2

P
+ 4ω2

P sin2
(

kπ

P

)

(4.4)
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These two coordinate systems are formally related to each other through (discrete) Fourier
transform so that

xs =
1√
P

P −1
∑

k=0

qk ei2πks/P (4.5)

And the position fluctuation of one bead s is given by

〈

x2
s

〉

=
1
P

P −1
∑

k=0

〈

q2
k

〉

(4.6)

If the quantum thermal bath (with a spectral density of equation (4.1)) is applied on the nor-
mal mode coordinates their average kinetic energy is κ(ω, T )/2 and their position fluctuation
is

〈

q2
k

〉

=
κ(ωk, T )
mω2

k

(4.7)

Now, if the QTB method is correctly applied to the system, each bead should have the
correct quantum position fluctuation1 (equation (4.3)) so that

〈

x2
s

〉

=
1
P

P −1
∑

k=0

〈

q2
k

〉

=
~

2mω
coth

(

β~ω

2

)

(4.8)

Then using equation (4.7) we obtain the following relation

1
P

P −1
∑

k=0

κ(ωk, T )
mω2

k

=
~

2mω
coth

(

β~ω

2

)

(4.9)

We now need to determine the function κ(ω, T ) solution of this equation. Defining the
following dimensionless quantities

u =
β~ω

2
h(u) = u coth(u)

f
(0)
P (u) =

β

P
κ

(

2u
β~

)

(4.10)

Equation (4.9) can be rewritten in the following dimensionless form

P −1
∑

k=0

u2

u2
k

f
(0)
P (uk) = h(u) (4.11)

with uk the reduced angular frequency which, according to equation (4.4) and (4.10), reads

u2
k =

u2

P
+ P sin2

(

kπ

P

)

(4.12)

Equation (4.11) can be numerically solved using the self-consistent iterative technique pro-
posed in [8] and described in the complements of this chapter (section 4.6). Then the function
κ(ω, T ) can be obtained from f

(0)
P using

κ(ω, T ) =
P

β
f

(0)
P

(

β~ω

2

)

(4.13)

1The quantum thermal bath method is exact in the harmonic case
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So the quantum thermal bath can be applied to the normal mode coordinates of the ring
polymer {qk}. Using a random force with power spectral density IR = 2mγκ(ω, T ) and
κ(ω, T ) obtained from equation (4.13) will ensure the correct quantum position fluctuation
〈x2〉 for an harmonic oscillator (eq. (4.3)) and thus the correct average potential energy

〈U〉 =
θ(ω, T )

2
(4.14)

where U =
∑

s V (xs)/P .
In the path integral framework, the kinetic energy is generally computed using the centroid
virial estimator (eq. (2.53)) which writes

〈K〉 =
1

2β
+

1
2P

P
∑

s=1

(xs − xc)
∂V

∂xs

where xc = 1
P

∑P
s=1 xs is the position of the centroid. In the harmonic oscillator case, the

centroid virial estimator can be rewritten by replacing V (x) by its expression

〈K〉 =
1

2β
+

〈

1
P

P
∑

s=1

1
2
mω2x2

s

〉

−
〈

1
2
mω2x2

c

〉

(4.15)

〈K〉 =
1

2β
+ 〈U〉 −

〈

1
2
mω2x2

c

〉

(4.16)

Of course in the harmonic case 〈K〉 = 〈U〉 thus we should have
〈

1
2
mω2x2

c

〉

=
1

2β
(4.17)

This relation holds in standard PIMD since the dynamics of the beads is classical but not
when the quantum thermal bath is applied. Thus if we want to compute the kinetic energy
using the centroid virial estimator we need to ensure this relation. In ref. [9] Ceriotti and
coworkers proposed to do so by treating the k = 0 normal mode classically. Indeed the k = 0
normal mode is related to the centroid and in particular q2

0 = Px2
c . Moreover, its angular

frequency is ω0 = ω/
√
P thus one finds that

〈

1
2
mω2x2

c

〉

=
〈

1
2
mω2

0q
2
0

〉

(4.18)

So we see that the centroid mode has to follow a classical dynamics if we want expression
(4.17) to hold. This can be achieved by applying a classical thermostat to the k = 0 normal
mode, using the other k > 0 normal modes to impose the correct quantum fluctuations.

In this case, equation (4.9) is modified as follows

1
P

kBT

mω2
0

+
1
P

P −1
∑

k=1

κ(ωk, T )
mω2

k

=
~

2mω
coth

(

β~ω

2

)

(4.19)

Using the same dimensionless quantities defined in equations (4.10) we obtain

P −1
∑

k=1

u2

u2
k

f
(1)
P (uk) = h(u) − 1 (4.20)
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where f (0)
P , f (1)

P are used to differentiate between the two cases. The f (0)
P function is associated

with the case where all the normal modes are treated in the same way and the f (1)
P with

the case where the k = 0 normal mode is classically considered. Equation (4.20) can also
be solved using the iterative self consistent technique described in the complements of this
chapter (section 4.6). Note that all the masses m in the equations are the physical masses
and thus the combination requires the use of physical bead masses and not fictitious ones.

Finally, let us summarize the main steps of the QTB-PIMD method :

• We first solve equation (4.11) or (4.20) to obtain the functions f (0)
P or f (1)

P from which
we get κ(ω, T ) using

κ(ω, T ) =
P

β
f

(0/1)
P

(

β~ω

2

)

(4.21)

• Then we generate the random forces Rk(t) with a power spectral density given by
equation (4.1) :

IR(ω, T ) = 2mγκ(ω, T )

using the same method as for the standard QTB method. Of course, in the f (1)
P case,

the random force associated with the k = 0 normal mode is classical and thus generated
with a power spectral density equal to 2mγkBT .
Let us note that the random forces Rk are the forces to be applied on the normal
modes of the ring polymer. In the f (0)

P case, one can show that the power spectral
density that applies to the beads or to the normal modes are equivalent and thus the
random forces Rk can be directly applied to the beads. But this is not the case with
the f (1)

P function since the centroid mode (k = 0) is not addressed in the same way as
the others. In this case one needs to transform the random forces Rk that applies to
the normal modes to the random forces that applies on the beads, Rs. This can be
done using the following real transformation

Rs =
∑

k

Cs,kRk (4.22)

with the matrix Cs,k given by

Cs,k =



























1/
√
P k=0

2/
√
P cos (2πsk/P ) 0<k<P/2

1/
√
P (−1)s k=P/2

2/
√
P sin (2πsk/P ) k=P/2<k<P

(4.23)

Of course the case k = P/2 is only possible for even values of P and thus is not treated
in the case of odd values of P .

• Finally we apply the quantum thermal bath on the beads using the random forces Rs.

4.2.2 Computation of macroscopic properties

In chapter 2 we have seen that several estimators exists to compute macroscopic quantities
in PIMD. In particular, the kinetic energy can be computed using different estimators : the
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primitive estimator (eq. (2.49)), the virial estimator (eq. (2.52)) and the centroid virial
estimator (eq. (2.53)) that write

Kprim =
P
∑

s=1

p2
s

2m
− 1

2
mω2

P

P
∑

s=1

(xs−1 − xs)2

Kvir =
1

2P

P
∑

s=1

xs
∂V

∂xs

KCvir =
1

2β
+

1
2P

P
∑

s=1

(xs − xc)
∂V

∂xs

Generally, in standard PIMD, the first term of the primitive estimator is rewritten using
the equipartition of the energy. But in QTB-PIMD simulations, the dynamics of the beads
is not classical so the equipartition theorem no longer holds. Since a part of the quantum
fluctuations are included in the momenta we have

〈

p2
s

2m

〉

≥ 1
2β

(4.24)

Thus the general expression of the primitive estimator given in (eq. (2.49)) should be used
in QTB-PIMD simulations.

As we have already seen the centroid virial estimator in its standard form (eq. (2.53)) is not
directly adapted to QTB-PIMD simulations. To avoid this problem a second formulation
(using the f (1)

P function) has been designed in order to ensure, in particular, that 〈K〉 = 〈U〉
in the harmonic case. In this formulation, the k = 0 normal mode is treated classically.
Thus the standard centroid virial estimator cannot be used with the f

(0)
P formulation of

the QTB-PIMD method and should only be used in the f (1)
P case. In the purely harmonic

case, the normal modes of the ring polymer are uncoupled harmonic oscillators thus the
standard centroid virial estimator works perfectly in this case and with the f (1)

P formulation.
However, when anharmonicity is introduced the normal modes are coupled and thus can
exchange energy. In analogy with zero-point energy leakage, an energy flow from the k > 0
modes (with more energy) to the k = 0 mode arise. Thus the centroid kinetic energy can
become greater than 1/2β and the centroid virial estimator can become approximate even
with the f (1)

P function.

If we now go back to the harmonic case, there is another way to ensure that 〈K〉 = 〈U〉
(equation (4.17)). We have seen that the k = 0 normal mode is related to the centroid, in
particular

〈

1
2
mω2x2

c

〉

=
〈

1
2
mω2

0q
2
0

〉

and, since the normal modes are harmonic oscillators in this case, their average potential
energy and average kinetic energy are equal thus

〈

1
2
mω2x2

c

〉

=
〈

1
2
mq̇2

0

〉

(4.25)

Finally, one can easily show that q̇2
0 = Pẋ2

c and we obtain
〈

1
2
mω2x2

c

〉

= P

〈

1
2
mẋ2

c

〉

(4.26)
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So if one modify the standard centroid virial estimator by replacing 1/2β by P
〈

1
2mẋ

2
c

〉

the relation 〈K〉 = 〈U〉 is directly ensured even in the f (0)
P case. This modified estimator

should also be correct in the f (1)
P case and for anharmonic cases. The modified centroid virial

estimator reads

KmCvir = P
1
2
mẋc

2 +
1

2P

P
∑

s=1

(xs − xc)
∂V

∂xs
(4.27)

Finally, the standard virial estimator2 (equation (2.52)) is correct in any cases (i.e. f (0)
P or

f
(1)
P ) and directly leads to 〈K〉 = 〈U〉 in the harmonic case. However, as already explained, it

is only valid for bounded system and thus the centroid virial estimator is generally preferred.

Now we want to compare the two formulations
(

f
(0)
P and f

(1)
P

)

of the QTB-PIMD method
and to choose the adequate kinetic energy estimator between equations (2.49), (2.53) and
(4.27). The standard virial estimator is used as a reference here to validate the other estima-
tors. The tests are performed on two cases of the one-dimensional Morse potential already
studied in section 2.5 with increasing anharmonicity (1/λ2 = 0.0015 and 1/λ2 = 0.024).
Figure 4.1 shows the comparison between PIMD and QTB-PIMD. The kinetic energy is
computed with the different the estimators. We first notice that, as expected, the QTB-
PIMD method clearly allows a significantly faster convergence with the number of beads
than standard PIMD.

For both methods, the convergence is slower when anharmonicity is increased. In the weakly
anharmonic case (1/λ2 = 0.0015), the potential energy (Figure 4.1 (a)) remains almost
constant with the number of replicas P . Since the anharmonicity is weak, the bare QTB
method (for P = 1) already provides a value very close to the exact one. The kinetic energy
(Figure 4.1 (b)) depends on the estimator. Note that in the two cases of the Morse potential
Kprim and KCvir systematically give the highest and lowest values for the kinetic energy,
respectively. As expected, we clearly see that KCvir fails to give the correct kinetic energy
in the more anharmonic case. To conclude, this example shows that both definitions of the
fP function results in similar convergence with the number of beads. The primitive, virial
and the modified centroid virial estimator can be used in QTB-PIMD simulations. But the
standard centroid virial estimator is not adapted to the QTB-PIMD method even with the
f

(1)
P function.

Figure 4.2 shows the influence of the friction coefficient γ on the primitive Kprim and the
modified centroid virial estimator KmCvir. We first see that KmCvir is clearly less sensitive
to γ than Kprim. Moreover, KmCvir gives the closest estimation to Kvir which serve as a

reference here. In particular, when used with the f (1)
P function, KmCvir gives exactly the

same values as Kvir and is particularly insensitive to γ. Thus the best combination here
seems to use the modified centroid virial estimator with the f (1)

P function.

2Let us note that, in the general case of a system of volume Ω and composed of N particles in three
dimensions, the standard virial estimator can be obtained from the general expression of the pressure P :

PΩ =
2
3

K +
1

3P
〈
∑

i,s

~ri,s · ~fi,s〉

In the case of a system for which the pressure is zero, we obtain Kvir = − 1
2P

∑

i,s
~ri,s · ~fi,s
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Figure 4.1: Convergence of the average potential and kinetic energy as a function of the Trotter number P

for PIMD and QTB-PIMD simulations using the f
(0)
P and f

(1)
P functions referenced here as "(0)" and "(1)"

respectively. The Morse potential with 1/λ2 = 0.0015 is shown on panel (a) and (b) and with 1/λ2 = 0.024
is shown on panel (c) and (d). The energies are normalized by the well depth D and calculations have been
carried out at T = 0.02D/kB . The exact values have been obtained by numerically solving the Schrödinger
equation.
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Figure 4.2: Effect of the friction coefficient γ on the kinetic energy obtained using the primitive estimator
(prim) and the modified centroid-virial (mCvir) estimator. "(0)" and "(1)" corresponds to the two cases with
functions f

(0)
P and f

(1)
P . Here the relative deviation from the virial estimator (K − Kvir)/Kvir is plotted. The

friction coefficient γ is normalised by the angular frequency ωmin given by the centroid angular frequency in
the harmonic approximation (normal mode k = 0) ωmin = ω0 = ω/

√
P . The Morse potential used here is the

weakly anharmonic one (1/λ2 = 0.0015).
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4.3 Results on simple one-dimensional systems

Now we first compare the convergence of the QTB-PIMD and PIMD methods on one-
dimensional systems: a simple harmonic potential and a double well potential.

4.3.1 Harmonic oscillator

As as first example and test case, we consider the same harmonic oscillator as in chapter 2.
The system is an hydrogen atom in an harmonic potential well. The temperature T and the
angular frequency ω are chosen such that ~ω/kBT >> 1 more precisely ~ω/kBT ≈ 13 so the
system is mainly in its ground state and T << ~ω/kB thus quantum effects are expected to
be significant. Figure 4.3 shows the kinetic and potential energy convergence with respect to
the Trotter number P . Since the bare QTB method is exact in the harmonic case, we see as
expected that the QTB-PIMD is already converged for P = 1. When the number of beads
increases the QTB-PIMD continue to give the exact results. Note that, in the particular
case of the f (1)

P function and P = 1 we are in the classical case and thus we find as expected
that the average total energy is kBT .
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Figure 4.3: Kinetic and potential energy convergence with respect to the number of beads P otbained by QTB-
PIMD and PIMD for an harmonic oscillator of angular frequency ω. The energies are given in units of ~ω.
The gray line is the exact quantum result for comparison. Error bars are smaller than the symbols size and
thus are not included here.

4.3.2 Double-well potential

We study here the same double well as in section 2.5. We investigate in particular the
position distribution of an hydrogen atom in this double-well. As we already saw in section
2.5, the time-independent Schrödinger equation can be written in a dimensionless form (eq.
(2.65)) and we find that the problem is governed by the following dimensionless constant

C =
~

2

2ma2V0
(4.28)
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Figure 4.4: Divergence factor (dP ) as a function of the number of beads for the double-well potential. Three
cases are investigated : (a) C = 1.0, (b) C = 0.3 and (c) C = 0.1. The arrows indicates the smallest number
of beads obtained for dP < 2%. The position distributions corresponding to the QTB-PIMD case are shown
(blue solid line) for P = 16 (d), P = 7 (e) and P = 4 (f) together with the exact solution (black dashed line)
and the distibution obtained with the bare QTB-MD (P = 1) (red dotted line). The V0 values are deduced
from the expression of C and the distance between the well is fixed at 2a = 0.8Å . The simulations are carried
out at a reduced temperature T ∗ = kBT/V0 = 0.4.

where V0 is the height of the barrier and 2a is the distance between the two wells. A
numerical resolution of equation (2.65) shows that there is a critical value for the constant
C (C0 = 0.731778) for which the ground state energy is equal to the barrier height V0 (i.e.
ε0 = 1). Then for C < C0 the ground state energy is lower than V0 (i.e. ε0 < 1) and for
C > C0 the ground state energy is higher than the height of the barrier (i.e. ε0 > 1). In
the following, we study the same three cases as in section 2.5 : a case where C = 1 which is
greater than C0 and two cases for which C < C0 : C = 0.1 and C = 0.3.

Figure 4.4 shows the position probability density ρ(y) obtained by QTB-PIMD and Stan-
dard PIMD (right panel). The simulations are carried out at a reduced temperature
T ∗ = kBT/V0 = 0.4. The convergence of the density probability with the number of beads
P is evaluated by calculating the divergence factor

dP =

√

√

√

√

∫+∞
−∞ (ρ− ρ0)2 dy
∫+∞

−∞ ρ2
0 dy

(4.29)

which quantifies the difference between the position distribution ρ(y) and the exact one ρ0(y)
obtained by numerically solving the Schrödinger equation. We first see that, as expected,
the QTB-PIMD method converges faster than the standard PIMD method. In the first case
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Figure 4.5: Convergence of the total energy with the Trotter number for the three double well potentials
(C = 1.0, 0.3, 0.1) . Comparison between QTB-PIMD with f

(1)
P (blue points) and Standard PIMD (red

square). The kinetic part of the energy is computed using the modified centroid virial estimator for QTB-
PIMD and using the standard centroid virial estimator for Standard PIMD.

(C = 1), the distributions obtained with the QTB-PIMD and PIMD methods converge to
the exact one (within an error dP ≈ 2%) at P=16 and P=21, respectively. In this case, the
exact distribution shows only one maximum when the bare QTB method gives a distribution
with two maxima and clearly fails with an error of dP ≈ 40% . In the other cases, the bare
QTB method is already able to give a reasonable approximation to the exact distribution
thus the convergence of QTB-PIMD is quite fast: P = 7 for C = 0.3 and P = 4 for C = 0.1
(within an error of dP ≈ 2%). In the latter case, the gain obtained by QTB-PIMD compared
to PIMD is not very important (lower than a factor of 2). In constrast, the advantage of
the QTB-PIMD is more substantial (around a factor of 3) on the convergence of the total
energy (see figure 4.5).

4.4 Results on realistic systems

We now compare PIMD and QTB-PIMD on more realistic systems. We focus on a ferroelec-
tric transition in BaTiO3 and the position distribution of a proton in the proton conductor
material BaZrO3.

4.4.1 Ferroeletric-paraelectric phase transition in BaTiO3

These calculations have been carried out by H. Dammak

Barium titanate (BaTiO3) is a prototypical ferroelectric crystal described by a complex en-
ergy landscape with multiple wells. It is an ionic crystal with a perovskite structure (ABO3)
represented in figure 4.6. Ferroelectricity is the property of certain materials to exhibit a
spontaneous electric polarization which can be reversed by the application of an electric
field. In BaTiO3 (BTO), the spontaneous polarization is related to atomic displacements
leading to different positions for the barycenters of the positive and negative charges. This
results in the creation of an electric dipole moment ~P in the unit cell. Most ferroelectric
materials only exhibit this ferroelectric behaviour on a certain range of temperature. In the
particular case of BTO, the material becomes paraelectric (i.e. no spontaneous polarization)
when temperatures becomes higher than a critical temperature Tc. This temperature is the
critical temperature associated with a phase transition between the tetragonal and the cubic
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Ba2+  

Ti4+

O2-

Cubic Tetragonal
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Figure 4.6: Schematical view of the structure of barium titanate (BaTiO3) in the cubic and the tetragonal
phase. The general structure of BaTiO3 is the perovskite structure with Ba2+ cations on the A-site and Ti4+

on the B-site, finally O2− form the standard oxygen octahedras (indicated in ligth red on the figure) surrounding
the Ti4+ ions. Transition from cubic to tetragonal phase is associated to an atomic displacement (indicated
by the arrows) that breaks the inversion symetry. The positions of the barycenter of the positive and negative
charges are different which leads to the apparition of an electrical dipole ~P in the unit cell : the material thus
becomes ferroelectric. So the cubic-tetragonal phase transition is also called the paraelectric-ferroelectric phase
transition.

phase (see figure 4.6). At temperature higher than Tc the material is in the cubic phase
and is paraelectric (~P = ~0) and for temperature lower than Tc the material is in the tetrag-
onal phase and is ferroelectric (~P 6= ~0). BTO exhibits other ferroelectric phases at lower
temperatures and undergoes a sequence of phase transitions with increasing temperature:
rhombohedral (R) - orthorhombic (O) - tetragonal (T) - cubic (C). Here we only consider
the ferroelectric-paraelectric (T-C) phase transition.

Quantum effects in this material have been shown to significantly decrease the transition tem-
peratures by ∼ 30 − 50 K [10] and to strongly modify the shape of the pressure-temperature
phase diagram [11, 12]. The ferroelectric properties of BTO are described here using the
effective Hamiltonian of Zhong et al. [13, 14] whose parameters have been obtained from
first-principles calculations. In this description, the degrees of freedom are the dipole mo-
ment (or "local modes") of every unit cell and the components of the strain tensor. This
approach has been able to yield an excellent description of the sequence of structural phase
transitions that BTO undergoes with temperature [13, 14]. The critical temperature (Tc) for
the T-C transition (i.e the ferroelectric-paraelectric transition) is equal to 300 K and 260 K
when computed using standard MD or PIMD, respectively [15].

Figure 4.7 presents the reduced polarization calculated by PIMD and QTB-PIMD as a func-
tion of the temperature around the T-C phase transition. We see that when the temperature
becomes higher than a certain temperature the polarization goes to zero which indicates the
transition from the tetragonal-ferroelectric phase to the cubic-paraelectric one. In this work,
we investigate the convergence of the phase-transition temperature (Tc), as a function of the
number of beads, by performing QTB-PIMD and PIMD simulation in the isothermal-isobaric
ensemble (using a Langevin thermostat and a Langevin barostat [15]) at zero pressure.

Clearly the QTB-PIMD method provides a faster convergence in this case since the critical
temperature Tc = 257K obtained with only two beads is very close to the temperature
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Figure 4.7: Evolution of the reduced polarization with temperature in BaTiO3. Here we focus on the transition
between the tetragonal-ferroelectric and the cubic-paraelectric phases. The polarization is obtained by PIMD
(with P = 16) and QTB-PIMD using either f

(0)
P and f

(1)
P functions referenced as "(0)" and "(1)" here.

Vertical dashed lines indicates the critical temperatures obtained by QTB-PIMD: 202K(P=1), 257K(P=2)
and 259K(P=3). The inset provides the convergence of the polarization in the ferroelectric phase with respect
to the number of beads for the three methods.

obtained using PIMD with a Trotter number P = 16 (259K). In addition, the inset in figure
4.7 shows that the convergence of the polarization with respect to the number of beads in
the ferroelectric phase is faster when using the f (1)

P function within the QTB-PIMD method.
We see that the bare QTB method (i.e. QTB-PIMD with P = 1) strongly underestimates
the critical temperature by ∼ 55 K. When using QTB-PIMD (even with only P = 2) the
failures of the QTB method are fixed. In chapter 3 we have seen that the failure of the QTB
method on this system are related to the zero-point energy leakage (ZPEL) problem. Thus
the effect of the ZPEL are suppressed by the QTB-PIMD combination.

4.4.2 Proton position distribution in BaZrO3

We now focus on the proton disorder in another perovskite material. More precisely, we
investigate the position distribution of a proton (H+) in the cubic phase of barium zir-
conate (BaZrO3). Indeed perovskite-type materials (ABO3) have been shown to exhibit
high protonic conductivity [16]. Consequently, these materials are interesting for various
technological applications in fuel cells, electrolysers, sensors, gas separators... [17] Among
these oxides, doped BaZrO3 (BZO) exhibits one of the highest conductivities combined with
a good chemical stability [16, 17] which makes it, in particular, a good potential candidate
as electrolyte material for proton conducting fuel cells.

Proton conduction in these perovskite materials has been widely studied and it has been
shown that the long-range migration is a combination of transfer and reorientation processes
[16]. During the transfer step, the hydrogen atom jumps between the two neighbouring O
atoms (Grotthuss mechanism) while, during the reorientation stage, the proton performs a
rotation around the nearest O atom. There are two possible rotations: one around the Zr-O-
Zr axis and one around an axis orthogonal to the Zr-O-Zr axis, with the H atom remaining
in the same O-Zr-O plane.
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Figure 4.8: Position distribution of the proton in the Zr-O-Zr plane at T = 300 K obtained using PIMD and
QTB-PIMD simulations. The top image displays an example of the distribution in the unit cell (PIMD with
P = 1), where one can distinguish the eight equivalent positions for the proton. Let us note that the distribution
has been symmetrized using the symmetry of the unit cell in order to obtain the eight equivalent positions since
proton transfer is rare at this temperature. The other images are enlargements of the distribution.

The interatomic forces are obtained using a reactive force field [18] that reproduces the
ab initio computed activation energies for the transfer and reorientation processes in BZO
[18, 19] (see chapter 5). Reactivity for the proton is introduced using the empirical valence
bond model (see chapter 5 for more details). No dopant is introduced here so the simulations
illustrate the situation far from the dopant atoms. To ensure electrical neutrality in the
calculations, a uniform background charge is added to compensate for the proton charge.
The simulations are performed on a 3×3×3 simulation box containing 136 atoms. The three-
dimensional position distribution of an hydrogen atom in BZO at T = 300 K is computed
using PIMD and QTB-PIMD. The distributions in the O-Zr-O plane for increasing values
of P are displayed in figure 4.8. The classical distribution obtained by standard MD is also
displayed on the top part of the figure as an illustration. Quantum effects are important
here since the classical and the quantum distributions are clearly different. In the classical
case, the distribution exhibits two peaks thus there is two equilibrium positions for the
proton. In contrast, in the quantum case, there is only one broad peak in the distribution
thus the proton is able to freely rotate around the nearest oxygen atoms and there is only
one equilibrium position for the proton. In addition, proton transfer is rarely observed at
T = 300 K.

Now we see on figure 4.8 that for QTB-PIMD the two peaks disappear for P = 3 and the
distribution is almost converged for P = 4. In contrast, standard PIMD requires a value of
at least P = 8 to converge in this case. In order to perform a more accurate comparison of
the two methods we compute the divergence factor dP (a generalisation of eq. (4.29) to 3D
distributions): the results are presented on figure 4.9. The PIMD calculations are converged
within an error of dP = 8% for P = 6, while the QTB-PIMD method requires a smaller
number of beads, P = 4. We conclude, as expected, that QTB-PIMD is more efficient than
standard PIMD, since fewer replicas are needed for convergence.
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Figure 4.9: Divergence factor dP as a function of the Trotter number P . We see that PIMD is converged
within an error of dP = 8% for P = 6 while QTB-PIMD is converged within the same error for P = 4. The
calculations are performed using the f

(0)
P function. Two values of dP obtained with the f

(1)
P function are also

added to illustrate that the convergence obtained with both f
(0)
P or f

(1)
P function is similar in this case.

4.5 Conclusion

We have combined the PIMD method with the QTB approach: the QTB is used as a
thermostat for standard PIMD in order to improve the PIMD convergence. Compared to
standard PIMD, this combination needs less replicas to converge since a part of the quantum
effects is included directly in the dynamics of the beads through the QTB. The gain generally
is a factor of 2 or 3 but strongly depends on the system and the physical quantities under
study. This combination can also be seen in another way where a small number of replicas in
QTB-PIMD is able to correct the failures of the QTB-MD (essentially the zero-point energy
leakage). The main advantage of the QTB-PIMD method is its ability to give exact results
using less replicas than standard PIMD. Unfortunately, as in PIMD, the major drawback of
the new method is that the time-dependent correlation functions are not directly accessible.

The combination with PIMD requires the modification of the power spectral density of the
random force within the QTB. This spectral density is proportional to a reduced function
(fP ), which can be defined in two ways. In one way (f (0)

P ), random forces are applied in the

same way to all of the normal modes of the polymer. In the other way (f (1)
P ), the centroid

mode (k = 0) is addressed with a (classical) Langevin thermostat. In the cases studied here,
the f (1)

P functions seems to give better convergence of the macroscopic quantities with the
number of beads. Considering that some of the quantum fluctuations are included in the
momenta through the QTB contribution, a modified centroid-virial estimator of the kinetic
energy is proposed.

For future works it would be interesting to investigate the possibility of combining in the
same way the QTB with methods such as ring polymer molecular dynamics (RPMD) or
centroid molecular dynamics (CMD) to compute time-dependent quantities.
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4.6 Complements of chapter 4

Derivation of equation (4.6)

As we have seen in this chapter PIMD can be performed on the direct coordinates xs or
on the normal modes of the ring polymer qk. During the presentation of the combination
QTB-PIMD we have used the following relation (eq. (4.6))

〈

x2
s

〉

=
1
P

P −1
∑

k=0

〈

q2
k

〉

which relates the fluctuations of the beads to the fluctuations of the normal modes. Let us
derive this formula. Since direct coordinates and normal modes are formally related using a
discrete Fourier transform we have

〈

x2
s

〉

=

〈(

1√
P

P −1
∑

k=0

qke2iπks/P

)2〉

(4.30)

〈

x2
s

〉

=
1
P

〈(

q0 +
P −1
∑

k=1

qke2iπks/P

)(

q0 +
P −1
∑

k′=1

qk′e2iπk′s/P

)〉

(4.31)

where we have isolated the first k = 0 term in each sum. Let us now make a small change of
variables in the second sum so that k′′ = P − k′. We obtain

〈

x2
s

〉

=
1
P

〈(

q0 +
P −1
∑

k=1

qke2iπks/P

)(

q0 +
P −1
∑

k′′=1

qP −k′′e2iπ(P −k′′)s/P

)〉

(4.32)

〈

x2
s

〉

=
1
P

〈(

q0 +
P −1
∑

k=1

qke2iπks/P

)(

q0 +
P −1
∑

k′′=1

qP −k′′e−2iπk′′s/P

)〉

(4.33)

where we have used the fact that e2iπs = 1 ∀s. Now to impose that xs are real we need to
impose that qP −k′′ = q∗

k′′. And we also need to impose qk to be real thus qP −k′′ = qk′′ . A real
transformation between normal modes and direct coordinates is given in equation (4.23). We
then obtain

〈

x2
s

〉

=
1
P

〈

P −1
∑

k=0

qke2iπks/P
P −1
∑

k′′=0

qk′′e−2iπk′′s/P

〉

(4.34)

where we have reintroduced the k = 0 terms in the sums and thus we have

〈

x2
s

〉

=
1
P

P −1
∑

k=0

P −1
∑

k′′=0

〈qkqk′′〉 e2iπ(k−k′′)s/P (4.35)

Finally the normal modes are uncoupled harmonic oscillators (in the harmonic case only)
thus 〈qkqk′′〉 = 〈qk〉 〈qk′′〉. Since 〈qk〉 = 〈qk′′〉 = 0 we finally obtain

〈

x2
s

〉

=
1
P

P −1
∑

k=0

〈

q2
k

〉

(4.36)

which is equation (4.6).
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Self-consistent resolution of equations (4.11) and (4.20)

In order to generate the random forces for the QTB-PIMD simulations one needs the function
f

(0)
P (ω) which is solution of (4.11) or the function f

(1)
P (ω) which is solution of equation

(4.20). In this section we present in details the self-consistent method used to numerically
solved these two equations. The self-consistent technique has been proposed by Ceriotti and
coworkers [8].

Solving equation(4.11)

We want to solve
P −1
∑

k=0

u2

u2
k

f
(0)
P (uk) = h(u)

We can first isolate the first term and using the fact that u0 = u/
√
P we obtain

f
(0)
P

(

u√
P

)

=
1
P

[

h(u) −
P −1
∑

k=1

u2

u2
k

f
(0)
P (uk)

]

(4.37)

Before solving, let us rewrite the equation using the function

FP (u) = f
(0)
P

(

u√
P

)

(4.38)

so that equation (4.37) becomes

FP (u) =
1
P

[

h(u) −
P −1
∑

k=1

u2

u2
k

FP

(

uk

√
P
)

]

(4.39)

we drop the superscript for simplicity in the notation. We first need to choose an initial
(guess) solution with good asymptotic behavior :

F
(0)
P (u) =

1
P
h(u/P ) (4.40)

which is the exact solution in the case P = 1. From this initial solution, the equation (4.39)
is iteratively solved as

F
(i+1)
P (u) =

α

P

[

h(u) −
P −1
∑

k=1

u2

u2
k

F
(i)
P

(

uk

√
P
)

]

+ (1 − α)F (i)
P (u) (4.41)

where α is a "weighting parameter" whose value giving the best convergence has been empir-
ically found to be close to 1/P . This method converges to the exact solution FP (u) with a
good accuracy after around 30 iterations. The function f (0)

P (u) is obtained from the function
FP (u):

f
(0)
P (u) = FP

(

u
√
P
)

(4.42)

Then we generate the stochastic forces from the power spectral density

IR(ω, T ) = 2mγκ(ω, T )
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with

κ(ω, T ) =
P

β
f

(0)
P

(

β~ω

2

)

=
P

β
f

(0)
P (u)

In practice, the random forces are generated in the angular frequency space on a range
[ωmin, ωmax] with ωmax being the cut-off frequency for the random force generation (see
section 2.3) so ωmax = ωcut and ωmin is related to the time step δt and the number of steps
used in the simulation Ns so that ωmin = 2π/(Nsδt). This angular frequency range then
defines the range [umin, umax] = [β~ωmin/2, β~ωmax/2] on which the function FP (u) needs
to be determined. Equation (4.41) needs the function FP to be evaluated at uk

√
P which

reaches a maximum value of
√

u2
max + P 2, greater than umax. To overcome this problem, the

values of FP for u > umax are linearly extrapolated from the last 20% of the u range. The
functions f (0)

P obtained for different values of P are presented in figure 4.10 - left panel. We
see that the functions approaches 1/P for u → 0 and u/P 3/2 for u → ∞.

Solving equation(4.20)

We now want to solve
P −1
∑

k=1

u2

u2
k

f
(0)
P (uk) = h(u) − 1

which can be solved in a very similar way as equation (4.11). This time we can isolate the
k = 1 term from the sum and using the fact that u1 = u2

P + P sin2
( π

P

)

we obtain

u2

u2
1

f
(1)
P (u1) =

[

h(u) − 1 −
P −1
∑

k=2

u2

u2
k

f
(1)
P (uk)

]

(4.43)

Before solving, let’s rewrite the equation using the function

FP (u) = f
(1)
P (u1) (4.44)

so that equation (4.43) becomes

FP (u) =
u2

1

u2

[

h(u) − 1 −
P −1
∑

k=2

u2

u2
k

FP

(

√

Pu2
k − P 2 sin2 (π/P )

)

]

(4.45)

again we drop the superscript for simplicity in the notation. We choose an initial (guess)
solution with good asymptotic behavior :

F
(0)
P (u) =

1
P − 1

[

h

(

u

P

)

− 1
P

]

(4.46)

Then equation 4.39 is iteratively solved from this initial solution using

F
(i+1)
P (u) = α

u2
1

u2

[

h(u) − 1 −
P −1
∑

k=2

u2

u2
k

F
(i)
P

(

√

Pu2
k − P 2 sin2 (π/P )

)

]

+(1−α)F (i)
P (u) (4.47)

where α is also giving the best convergence for values close to 1/P . The method converges
to the exact solution FP (u) with a good accuracy after around 30 iterations. The function
f

(1)
P (u) is obtained from :

f
(1)
P (u) = FP

(

√

Pu2 − P 2 sin2 (π/P )
)

(4.48)
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Then we generate the stochastic forces from the power spectral density

IR(ω, T ) = 2mγκ(ω, T )

with

κ(ω, T ) =
P

β
f

(1)
P

(

β~ω

2

)

=
P

β
f

(1)
P (u)

In the same way, the random forces are generated on a range [ωmin, ωmax] which defines
the range [umin, umax] = [β~ωmin/2, β~ωmax/2] on which the function FP (u) needs to be

determined. Equation (4.47) needs the function FP to be evaluated at
√

Pu2
k − P 2 sin2 (π/P )

which, for the highest u value umax, gives
√

Pu2
max + P 2

(

1 − sin2 (π/P )
)

which is greater
or equal than umax. To overcome this problem, the values of FP for u > umax are linearly
extrapolated from the last 20% of the u range in the same way as for f (0)

P . Another practical

problem also arise for the low values of u, from eq.(4.48) one see that that f (1)
P (u) cannot

be generated for values of u lower than
√
P sin

( π
P

)

. For lower values of u we arbitrarily put

the function f
(1)
P (u) to zero which does not have a significant impact on the final result in

practice. The functions f (1)
P obtained for different values of P are presented in figure 4.10 -

right panel. We see that the functions approaches u/[
√
P (P − 1)] for u → ∞.
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Figure 4.10: Example of fP functions for some values of P . Left: f
(0)
P as a function of u∗ = u/P 3/2, Right:

f
(1)
P as a function of u∗ = (

√
Pu − 1)/(P − 1). The insets shows the asymptotic behavior at large values of

u∗.
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Chapter 5

Quantum effects on the proton

conduction in BaZrO3

5.1 Introduction

Proton1 conduction in solids is a key process for various applications. In particular, per-
ovskite type oxides have been shown to exhibit high protonic conductivity [1], and conse-
quently are promising electrolyte materials for proton conducting fuel cells (PCFC). Among
the large number of proton conducting oxides, doped barium zirconate (BaZrO3) exhibits
one of the highest conductivity coupled with a good chemical stability [2] which makes it
one of the most promising candidate for application as electrolyte material for PCFC [1].
Moreover, barium zirconate (BZO) is a perfectly cubic perovskite on a wide range of tem-
perature [3, 4]. This highly symmetric structure greatly reduces the number of stable sites
for the proton and thus simplify the proton diffusion mechanisms in the material. For all
these reasons, BZO is a very good model system to study the quantum effects on the proton
conduction in perovskite type oxides.

Since hydrogen is the lightest element of the periodic table, it is expected to exhibit a very
strong quantum behaviour compared to the other atoms. In this chapter, we investigate
the impact of quantum effects on the protonic diffusion in BZO. As discussed in the general
introduction, the importance of quantum effects on the diffusion of hydrogen in solids has
been demonstrated in particular for hydrogen in metals [5, 6]. It has been shown, both
experimentally and numerically, that diffusion in these systems exhibits two different regimes:
a classical or semiclassical regime for temperatures higher than a crossover temperature Tc

where the diffusion is well described by the classical Arrhenius law and a quantum regime for
temperatures lower than Tc where tunelling becomes important leading to a deviation from
the Arrrhenius law [5, 6]. A lot of numerical studies have already investigated the diffusion
of hydrogen in perovskite oxides in general (see [1, 2] for a review) and in barium zirconate
in particular [7–18]. However, few studies have taken into account the quantum nature of
the proton [17–20]. Among them, Zhang and coworkers [18] have studied proton transport
in barium zirconate using ab initio PIMD. Their results show that quantum effects becomes
important on the diffusion coefficient for temperatures lower than a crossover temperature
Tc ≈ 600 K.

In this chapter, we study the diffusion of an interstitial proton (H+) in barium zirconate
(BZO) and investigate the importance of nuclear quantum effects. We are particularly inter-
ested to see if the QTB method is able to give valuable results on this type of system and if
the obtained results are comparable with those from Zhang and coworkers [18]. First, Section

1In this chapter and the next one, proton and hydrogen are used equivalently and both referred to the H+

ion.
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5.2 gives a description of the elementary processes responsible for the long range diffusion
of the proton in BZO. Then, in section 5.3, we give the simulation details and in particular
describe the force field used to compute the interatomic interactions. Section 5.4 presents
some preliminary results on the structure of BZO and on the diffusion of the proton. Finally,
section 5.5 presents the results on the diffusion coefficient as obtained using QTB-MD and
the impact of quantum effects on free energy barriers associated to the transfer step obtained
using PIMD both for hydrogen and deuterium.

5.2 Elementary processes for proton diffusion

As explained in the general introduction (chapter 1), long range migration of protons in
perovskites arises from a combination of two types of elementary processes: transfer and
reorientation (or rotation) [1, 7] (see figure 5.1). During the transfer step (T), the proton
jumps between two neighbouring oxygen atoms (Grotthuss mechanism). In contrast, during
the reorientation steps, the proton remains covalently bonded to the nearest oxygen atom
and performs a rotation around it. In the first rotation (R1), the proton rotates by 90◦

around the Zr-O-Zr axis and thus changes to another O-Zr-O plane, while in the second
rotation (R2), the proton rotates around an axis orthogonal to the Zr-O-Zr axis and remains
in the same O-Zr-O plane. The second reorientation process (R2) is a very fast process and
thus is not limiting for the long range migration of the proton. For this reason, this rotation
is generally discarded of the analysis and the proton is globally considered to be free to rotate
in the same O-Zr-O plane. The proton distribution obtained from classical Langevin MD at
relatively low temperature (T = 300 K) is shown in figure 5.2: we see that the probability
of finding the proton between the two equilibrium positions associated with rotation R2 is
high. The rotation of the proton in the same O-Zr-O plane (R2) is indeed a fast process and
thus is not limiting for the proton diffusion.

Figure 5.1: Representation of the elementary processes for the long range diffusion of protons in barium
zirconate. There is one transfer step (T) and two types of reorientations (R1 and R2).
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Figure 5.2: Proton distribution in the O-Zr-O plane calculated from standard (Langevin) MD simulations at
T = 300 K. Let us note that the distribution has been symmetrized using the symmetry of the unit cell in
order to obtain the eight equivalent positions since proton transfer is rare at this temperature.

5.3 Simulations Details

5.3.1 Force field description

The interatomic interactions are described using an ab initio based force field proposed by
Raiteri et al. [13]. This force field reproduces the potential energy barriers associated with
the transfer and reorientation mechanisms computed using density functional theory [13, 16].
In the following, O1 represents the nearest oxygen atom to the proton, O2 the second nearest
one (see figure 5.3) and O represents all the other oxygen atoms.

The short range interatomic interactions are described using Born-Mayer potentials of the
form

A exp
(

−r

ρ

)

(5.1)

with the following parameters:

Buckingham A (eV) ρ (Å)

Ba O1 688.2166 0.392014
Ba O2 972.1995 0.392014
Ba O 972.1995 0.392014
Zr O1 2195.8712 0.298760
Zr O2 3250.8545 0.298760
Zr O 3250.8545 0.298760
O O1 22764.0 0.149
O O2 22764.0 0.149
O O 22764.0 0.149

The long range interactions are given by coulombic interactions using nomimal charges:
qBa = +2e, qZr = +4e and qO = −2e. With e being the elementary electric charge. The Van
der Waals interactions between oxygens are neglected in this force field [13].
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Figure 5.3: Schematic representation of the two states used in the EVB model for the transfer step. The thick
line represent the covalent bond and the dashed line represent the hydrogen bond. Let us emphasize that ths is
is only a schematic representation. In particular, the proton is generally not on the O1-O2 line in practice.

The empirical valence bond model

We need to include chemical reactivity for the hydrogen (i.e. the possibility of bond breaking)
to describe the transfer step. This is done through the empirical valence bond (EVB) [21, 22]
model which has been previously used to simulate proton transfer in various systems [13,
21–24].
In this model, the potential energy is constructed as a combination of potential energies (V1

and V2) associated with the proton being in an initial state (reactant state) |1〉 and in an
final state (product state) |2〉. This is done in a way reminiscent of the superposition of
states in quantum mechanics so that the state vector of the proton would be

|ψ〉 = c1 |1〉 + c2 |2〉 (5.2)

and the corresponding Hamiltonian could be written in matrix form in the {|1〉 , |2〉} basis
set as

Ĥ =

(

V1 V12

V12 V2

)

(5.3)

with V1 = 〈1| Ĥ |1〉, V2 = 〈2| Ĥ |2〉 and V12 = 〈1| Ĥ |2〉 = 〈2| Ĥ |1〉. In the initial state |1〉,
the proton is covalently bonded to the nearest oxygen atom O1 while, in the final state |2〉,
the proton is covalently bonded to the next nearest oxygen atom O2 (see figure 5.3). V1 is
the total potential energy of the system computed with H covalently bonded to O1 and V2

is the total potential energy of the system computed with H covalently bonded to O2. The
two states are coupled through the coupling term V12 and the total potential energy of the
system V is given by the lowest eigenvalues of the matrix Ĥ:

V =
(V1 + V2) −

√

(V1 − V2)2 + 4V 2
12

2
(5.4)

The coupling term V12 is a function of the reaction coordinate associated with the transfer
step ξ(~r1, ~r2) = r2 − r1 with r1 and r2 being the distance O1-H and O2-H, respectively (see
figure 5.3):

V12 = λ exp(−α ξ2) (5.5)

with the parameters λ = 0.7998 eV and α = 16 Å−2 whose values have been fitted to
reproduce the energy barrier for the transfer step computed using density functional theory
[13].
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Figure 5.4: Schematic representation of the potential energy within the O-H–O group along the transfer
reaction coordinate ξ = r2 − r1 as obtained with the EVB model for a typical value of the O1-O2 distance
(3.2 Å). The red curve is the potential energy for the proton in the |1〉 state and the green is the potential
energy for the proton in the |2〉 state. Finally the blue curve is the coupling between the two states. We see
that the EVB construction gives a total energy with a symmetric double well shape (dashed black line).

Finally, the interactions within the O-H–O complex are described differently than the oth-
ers. Partial charges are used for the hydroxide ion qO1 = −1.308698e and qH = 0.308698e.
The O1-H interaction (covalent bond) consists only of an harmonic interaction with a force
constant k = 46.016 eV·Å−2 and an equilibrium distance r0 = 0.985357 Å (no coulombic or
other interactions). The H–O2 interaction (hydrogen bond) consists of a coulombic interac-
tion using the charges qH = 0.308698e, qO2 = −2e and a repulsive interaction of the form
B/r2

12 with B = 6.391 eV·Å−12.

To summarize, the total potential energy of the system for the proton in state |1〉 is first
computed:

V1 =
k

2
(r1 − r0)2 +

B

r2
12

+
1

4πε0

qHqO2

r2
+ U (5.6)

with qO1 = −1.308698e and qO2 = −2e. The last term U represents all the other interactions
(i.e. coulombic and Buckingham type interactions).
Then the total potential energy of the system with the proton in state |2〉 is computed:

V2 =
k

2
(r2 − r0)2 +

B

r1
12

+
1

4πε0

qHqO1

r1
+ U ′ (5.7)

The role of O1 and O2 is interchanged and in particular the electric charges used in the
coulombic interactions now are qO1 = −2e, qO2 = −1.308698e.
Finally, the total potential energy V is obtained according to equation (5.4). Let us note that
the role of O1 and O2 is interchanged for all the interactions thus even for the coulombic and
the Buckingham ones so that the interactions between Ba-O1 and Ba-O2 are interchanged,
same for Zr-O1 and Zr-O2 or O-O1 and O-O2. Thus the last term U ′ represents all these
other interactions (i.e. coulombic and Buckingham type interactions) with the role of O1

and O2 interchanged. Figure 5.4 schematically represent the potential energy associated
with the interaction within the O-H–O complex. One see that, as expected, the EVB model
gives a potential energy surface with a double well shape along the reaction coordinate for
the transfer step ξ.
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5.3.2 Choice of the parameters and details of MD simulations

We have performed Langevin MD, QTB-MD and PIMD simulations on a 3×3×3 simulation
box of cubic BaZrO3 with one proton (H+) containing 136 atoms (27 Ba, 27 Zr, 81 O and
1 H). Even though doping the structure is necessary to include protons in practice, we did
not include any dopant atoms in our calculations. Thus the following results describe the
situation in regions far from the dopant. Of course, removing the dopant atom of the study is
an important approximation since it is well known that dopant can have a significant impact
on the diffusion of the protons [9, 12, 25]. In particular, the effect of trapping of the proton
by the dopant cannot be investigated here. However, the trapping effect is important for high
concentration of dopant. At low concentration (lower than ≈ 15%), the effect of the dopant
atom on the protonic conduction in Y-doped BaZrO3 is negligible [1]. Indeed, Raiteri and
coworkers have computed the proton diffusion coefficient without dopant and with a small
concentration of yttrium and have found very similar values of the diffusion coefficient in
both cases [13]. A more complete study should also include dopant atoms. Finally, since no
dopant is included, we need to compensate for the proton charge thus a uniform background
charge is added to ensure electrical neutrality in the simulation box. Let us also emphasize
the fact that we included only one hydrogen atom in our calculations. Thus possible effects
coming from interactions between protons are not taken into account in our study. This
approximation is reasonable since the proton concentration in these type of compounds is
generally rather low (5-20%) [1] so that proton interactions should be negligible at least in
first approximation.

5.4 Preliminary study and tests

Before carrying out the simulations, we want to check the ability of the force field to cor-
rectly describe the system. Even though, Raiteri and coworkers already verify the results
obtained during the development of the force field [13], we want in particular to test that our
implementation is correct. We first check that some of the basic properties of pure barium
zirconate are correctly reproduced, then we include the proton and test that we obtain the
correct dynamics. Finally, before including quantum effects we study in details the classical
dynamics of the proton and its diffusion.

5.4.1 Structure of barium zirconate

Since we want to compare our results with the results obtained by Raiteri et al. [13], the
simulations in this section are carried out with the same size for the simulation box (6×6×6).
We focus on the structure of pure BZO and plot the evolution of the relaxed energy (at
T = 0K) as a function of the unit cell volume (see figure 5.5). We can then fit the curve
with the Murnaghan equation of state [26]:

E(Ω) = E0 +
B0Ω
B′

0

(

(Ω0/Ω)B′
0

B′
0 − 1

+ 1

)

− B0Ω0

B′
0 − 1

(5.8)

where Ω is the unit cell volume, B0 and B′
0 are the bulk modulus and its pressure derivative

at the equilibrium volume Ω0 and E0 is the relaxed energy at the equilibrium volume. We

Ph.D. thesis - F. Brieuc - 2016



5.4. Preliminary study and tests 95

−146.202

−146.2

−146.198

−146.196

−146.194

−146.192

 73  73.5  74  74.5

E
ne

rg
y 

/ u
ni

t c
el

l (
eV

)

Volume (Å3)

V0 = 73.5984 ± 0.0007 Å3

B0 = 213.7 ± 0.6 GPa

Murnaghan fit

Figure 5.5: Relaxed energy (T = 0K) per unit cell as a function of the unit cell volume for pure barium
zirconate. We see that the Murnaghan equation of state fits the results and we obtain an estimation of the
equilibrium unit cell volume Ω0 ≈ 73.6Å3 and the bulk modulus B0 ≈ 213.7 GPa.

BaZrO3 Experimental Raiteri et al. [13] This work

Cell parameter a0 (Å) 4.191 [4]/4.192 [27] 4.1898 4.1907
Bulk modulus B0 (GPa) 127 [27] 214 213.7

Table 5.1: Equilibrium cell parameter a0 and bulk modulus B0 values obtained from the Murnaghan fit and
comparison with values obtained experimentally and by Raiteri and coworkers.

obtain, from the fitting, an estimation for the equilibrium cell parameter a0 = Ω1/3
0 and

for the bulk modulus B0. The results are given in table 5.1 and compared to experimental
results and the results obtained by Raiteri and coworkers. We see that the force field
reproduces the experimental cell parameter a0 and that we obtain a value very close to that
of Raiteri and coworkers. For the bulk modulus B0, we obtain the same value as Raiteri
et al. and we see that the force field tends to overestimate the bulk modulus compared to
experimental values. This overestimation will not have any impact in the following since all
the simulations are carried at zero pressure.

5.4.2 Proton diffusion

We now include a proton in the structure and study in details its dynamics using standard
(Langevin) MD. The simulations have been performed with a time step of δt = 0.3 fs and
average values have been obtained using 8 independent trajectories of 25×106 steps computed
after 1×106 steps of equilibration. Let us first note that the inclusion of the proton results in a
slight increase of the equilibrium cell parameter (∼ 0.01%) whose value is now a0 ≈ 4.1911Å.
Before computing the proton diffusion coefficient we study the elementary processes of the
proton diffusion.
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Figure 5.6: Position distribution of a proton in BZO at T= 1500 K as obtained from Langevin MD. We
clearly see the two types of elementary processes: rotation (red arrows) and transfer (black arrows). Here only
rotation R1 is shown and we see that indeed the proton is free to rotate in the O-Zr-O plane (rotation R2).
See also figure 5.1.

Elementary processes of diffusion

Figure 5.6 shows the proton position distribution in BZO at high temperature (T = 1500 K).
One can see the two types of elementary processes, rotation and transfer, described in section
5.2. The arrows on the figure indicate a possible diffusion pathway for the proton and we see
that a combination of rotation and transfer is necessary for long range diffusion. In order
to study these processes more precisely we compute the static potential energy barriers
associated with these two processes. Figure 5.7 shows the static potential energy barriers
calculated along the reaction coordinates associated with the rotation (R1) and transfer
steps. These barriers are obtained by relaxing the system with the reaction coordinate
constrained to a certain value. For the transfer step, we choose a standard form for the
reaction coordinate ξ(~r1, ~r2) = r2 − r1 with r1 being the O1-H distance and r2 the O2-H
distance. For the rotation step, we define the reaction coordinate θ as the dihedral angle
between the initial O1-Zr-O2 plane and the O1-Zr-H plane. The constraints have been
included using the SHAKE algorithm [28, 29] (see the complements of the chapter for more
details). The energy barrier associated with the transfer is higher than the one associated
with rotation, indicating that the transfer step might be the limiting step for the diffusion
of the proton as it is generally accepted [2]. These energy barrier values (0.38 eV for the
transfer and 0.29 eV for the rotation) are higher than the typical values reported in the
litterature [9, 17, 18]. Sundell and coworkers [17] for example report values of around 0.2 eV
for the transfer step and around 0.18 eV for the rotation step. However, higher values have
also been reported for example Gomez and coworkers [12] report transfer barriers of around
0.4-0.5 eV far from the dopant in Y-doped barium zirconate2. In their paper, Raiteri and
coworkers surprisingly report a static barrier for the transfer of around 0.038 eV (We think
that it is a typing error).

2It is worth noting that all these values of the barriers have been obtained using Density Functional
Theory within the Generalized Gradient Approximation which is known to underestimate hydrogen reaction
barriers [30].
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Figure 5.7: Static potential energy associated with the two elementary processes of diffusion : transfer (left
panel) and rotation (right panel).

Diffusion coefficient

As explained in more details in the complements of this chapter (section 5.7), the diffusion
coefficient can be computed in different ways. One standard method is to compute the
mean square displacement (MSD), which is related to the diffusion coefficient D through the
Einstein relation:

lim
t→∞

〈(~r(t+ t0) − ~r(t0))2〉 = 6Dt (5.9)

which, in this form, is only valid for a three dimensional isotropic diffusion. This is the case
here since we study barium zirconate in the cubic phase3. The quantity 〈(~r(t) − ~r(t− t0))2〉
is the mean square displacement. In practice, we compute the MSD of the proton and then
evaluate the diffusion coefficient from a linear fit in the long time limit. The computed diffu-
sion coefficient of the proton computed from the MSD is compared to the results of Raiteri
and coworkers in figure 5.8. Since it is known that the diffusion coefficient can sometimes
exhibit a strong dependence on the size of the simulation box [31] we have computed here
the diffusion coefficient for two different sizes 3 × 3 × 3 and 6 × 6 × 6. We see that the results
are very similar so reducing the size of the box to 3×3×3 does not have a significant impact
on the diffusion coefficient, and thus simulations will now always be done on the 3 × 3 × 3
simulation box. Moreover, the results are very close to those obtained by Raiteri et al. thus
validating our implementation of the force field. We obtain, in particular, the same activa-
tion energy Ea ≈ 0.43 eV but there is a small discrepancy on the prefactor D0 which seems
to be underestimated in our calculations. Raiteri and coworkers have evaluated the diffusion
coefficient in a different way based on the jump frequency of the proton. Indeed, since the
diffusion of the proton is relatively simple here, the diffusion coefficient can be evaluated
by computing the frequencies associated with the rotation (Γrot) and the transfer (Γtr) of
the proton [13]. Figure 5.9 shows the evolution of these two frequencies Γrot and Γtr with
temperature.

We see that the rotation frequency is significantly higher than the transfer frequency hence
the transfer step is indeed the rate limiting step as it is generally accepted in the littera-
ture. This is consistent with the higher static energy barrier obtained for the transfer step.
Moreover, from these jump frequencies, we find activation energies of around 0.26 eV and

3We have tested this assertion and we indeed find that, on average, Dx = Dy = Dz.
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Figure 5.8: Diffusion coefficient for the proton in barium zirconate obtained using Langevin MD and computed
from the MSD (eq. (5.9)) for a simulation box of size 3 × 3 × 3 and 6 × 6 × 6. The results of Raiteri et al.
is also plotted for comparison. We see that the three calculations gives almost the same activation energy
Ea ≈ 0.43 eV but there is a small difference on the prefactor which is explained in the following.
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Figure 5.9: Jump frequencies for the rotation and transfer steps as obtained from Langevin MD. The two
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transfer frequencies on this temperature range thus the transfer step is the limiting step.
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0.43 eV for the rotation and the transfer steps respectively, that are comparable with the
static energy barriers (T = 0 K) of 0.29 eV for rotation and 0.38 eV for transfer. Moreover,
since Γrot >> Γtr, the proton can be considered to almost freely rotate around the oxygen
atom. Thus the diffusion coefficient is directly related to Γtr [8, 13, 32] via the following
relation:

D =
1
6

Γtrd
2 (5.10)

where d is the jump length associated with the transfer. A derivation of this formula is
given in the complements of this chapter. Let us note that this relation only holds if the
proton diffusion can be well decribed by a three dimensional uncorrelated random walk. In
their paper, Raiteri and coworker have used this formula to evaluate the diffusion coefficient
with a jump length d equal to the cell parameter a (equation (14) in ref. [13]). However,
the correct jump length associated with the transfer step here is a/

√
2 and indeed we see in

figure 5.10 that the diffusion coefficient computed using the MSD or the transfer frequencies
(eq. 5.10) are equivalent when using d = a/

√
2. This indicates that, the proton diffusion

in this material is well described by an uncorrelated random walk. This difference in the
definition of the jump length is responsible for the small discrepancy in the prefactors we
found (figure 5.8). We see in figure 5.10 that if we adapt the results of Raiteri et al. using the
correct definition of the jump length (d = a/

√
2) we indeed obtain the same results and the

difference in prefactors have now disappeared. The obtained activation energy and prefactor
are given in table 5.2 along with some other values from experimental and numerical studies
for comparison. We see that the diffusion coefficient obtained using the force field compare
quite well with experimental and previous numerical results, in particular the value of the
activation energy.

BaZrO3 This work Experimental Numerical

Ea (eV) 0.43 0.43 0.45
D0 (cm2/s) 3.5 × 10−4 2.47× 10−3 2.77× 10−4

Table 5.2: Comparison of the obtained activation energy and prefactor for the proton diffusion coefficient
with some experimental and numerical values from litterature. Experimental values have been obtained for
Y-doped BaZrO3 with a small dopant concentration (10%) and are taken from [1]. Numerical values have
been obtained using the ReaxFF force field and are taken from [10].
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Figure 5.10: Diffusion coefficient as obtained from the MSD (eq. (5.9)) and from the jump frequencies (eq.
(5.10)) compared to the results of Raiteri et al. modified to be consistent with the correct jump length d = a/

√
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5.5 Quantum effects on proton diffusion

We now switch to the question of the impact of nuclear quantum effects on the diffusion of
the proton. In a first part, we present and analyse the results on the diffusion coefficient as
obtained from QTB-MD. Then, in a second part, we study the impact of quantum effects on
the free energy barriers associated with the transfer step obtained using PIMD.

5.5.1 Diffusion coefficient from QTB-MD

The QTB-MD simulations have been performed with a time step of δt = 0.3 fs and a friction
coefficient of γ = 0.02 THz. The friction coefficient value has been chosen small enough
to ensure that the dynamics of the proton is not significantly affected by its value. This is
of crucial importance here since we want to study the diffusion of the proton (i.e. we are
directly interested in dynamical properties). In practice, we have chosen γ small enough to
ensure that the peak in the vibrational density of state associated with vibrations of H is
unaffected by the friction. Finally, average values have been obtained using 8 independent
trajectories of 25 × 106 steps computed after 1 × 106 steps of equilibration.

Figure 5.11 shows the diffusion coefficient obtained using Langevin MD and QTB-MD. We
see that, as expected, the QTB-MD results deviate from the classical results for temperatures
lower than around 800 K. As expected, the impact of the quantum effects is to increase the
overall diffusion coefficient.

These results, however, should be regarded with caution: as we have previously seen, a
small value of γ as we have used here, could mean that strong zero-point energy leakage
(ZPEL) was present in the simulations. In order to verify the presence of ZPEL, we have
computed the density of states and the kinetic energy distribution shown in figure 5.12. The
presence of ZPEL is clear: the number of high frequency modes in the DOS obtained from
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Figure 5.11: Diffusion coefficient, D(T ), as obtained from the MSD using standard (Langevin) MD and
QTB-MD.

QTB-MD is underestimated while the number of low frequency modes is overestimated. The
QTB method is not able to counterbalance the leakage and the resulting energy distribution
(bottom panel of figure 5.12) is not the expected QTB distribution. We reach an intermediate
and almost homogeneous distribution with the small value of γ used here (0.02 THz). As we
have seen in chapter 3, increasing γ would reduce this leakage. However, we are interested
in dynamical properties here and increasing γ will have an important effect on the computed
values of the diffusion coefficient. Thus, increasing γ is not really an option here. It would
be useful to define to what extent these results are valuable or not, even with the presence of
this strong ZPEL. In order to do this, we compute, in the following section, the free energy
barriers associated with the transfer step using both PIMD and standard MD. We want,
in particular, to compare the temperature at which quantum effects becomes important on
these free energy barriers with the temperature at which the diffusion coefficient starts to
deviate from the classical results in QTB-MD simulations (i.e. ≈ 800 K).
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Figure 5.12: Bottom panel: kinetic energy distribution among the modes as obtained from QTB-MD (green
line and circles) and compared to the expected distribution θ(ν, T ) (black line) zoom around the low frequency
modes - Middle panel: vibrational density of state (DOS) - Top panel: zoom of the DOS as obtained from
QTB-MD (green line) and from standard MD (purple line) around the low frequency region (left) and around
the high frequency (OH) modes (right). The DOS are obtained from the Fourier transform of the velocity
autocorrelation function normalised by kBT in the case of Standard (Langevin) MD and by θ(ν, T ) for QTB-
MD.
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5.5.2 Free energy barriers from PIMD

Like any other dynamical quantities, the diffusion coefficient is not directly accessible in
PIMD. However, it can be estimated using transition state theory [18, 20, 32, 33] which
provides an approximate expression for the jump rate Γ. As we have seen previously the
diffusion coefficient can be related to the jump rate (or jump frequency) through:

D =
1
6

Γd2 (5.11)

since the diffusion is well described by an uncorrelated random walk in this system. The
jump length d = a/

√
2 and Γ is the total jump frequency thus containing both the rotation

frequency (Γrot) and the transfer frequency (Γtr) through the following relation [8]:

1
Γ

=
1

Γtr
+

1
Γrot

(5.12)

Since the reorientation step is very fast compared to the transfer step Γrot >> Γtr, the proton
can be consider to freely rotate and the diffusion is basically governed by the transfer rate
Γtr leading to equation (5.10). Thus the diffusion coefficient can finally be written as :

D =
a2

12
Γtr (5.13)

Classical transition state theory allows one to express the jump rate Γtr as [18, 32]:

Γtr = Γ0 exp(−β∆F ‡) (5.14)

With ∆F ‡ = F (ξ‡) − F (ξ0) the free energy barrier height associated with the reaction: in
our case proton transfer. ∆F (ξ) is the free energy profile along the reaction path defined
by the reaction coordinate ξ({~r}) (schematically represented in figure 5.13). The saddle
point (barrier top) is located at ξ = ξ‡ while ξ0 corresponds to the stable site (bottom of
the well). The prefactor Γ0 is generally considered to be independent or weakly dependent
on temperature and is often related to an attempt frequency which can be defined as the
vibration frequency in the bottom of the well along the reaction coordinate ξ [32].

Here we compute free energy profile ∆F (ξ) along the reaction coordinate for the transfer
step ξ(~r1, ~r2) = r2 − r1 with r1 and r2 the O1-H distance and the O2-H distance, respectively

saddle point

Figure 5.13: Schematic representation of a typical free energy profile ∆F (ξ) along a reaction path described
by the reaction coordinate ξ({~r}). Quantities associated to the saddle point (barrier top) are represented with
a ‡ superscript and quantities associated with the bottom of the well are represented with a 0 superscript.
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104 Chapter 5. NQE on the proton conduction in BZO

(see figure 5.3). This expression for ξ({~r}) is widely used to describe proton transfer [13, 18,
34, 35]. Within this definition the saddle point is located at ξ‡ = 0. The PIMD simulations
are carried out at a constant volume (cell parameter a = 4.975 Å) and at a constant product
P × T = 3000 which ensure a good level of convergence of the free energy barriers. The free
energy profiles are computed using the thermodynamic integration method which is based
on the following relation:

∆F (ξ) = F (ξ) − F (ξ0) =
∫ ξ

ξ0

∂F

∂ξ

∣

∣

∣

ξ=ξ′
dξ′ (5.15)

In order to obtain the free energy profile, one needs to compute the free energy derivative
along the reaction coordinate at fixed values of ξ. This is done using constrained MD
simulations (using the SHAKE algorithm [28, 29]) with the free energy derivative computed
using the blue moon ensemble [36, 37] method. More details about free energy computation
using this method are available in the complements of this chapter.

In this section, we want to investigate the impact of quantum effects on the free energy
barrier for the transfer step. However, transition state theory is a classical theory and
thus the expression of Γtr presented in equation (5.14) is only valid for a classical system.
Gillan has proposed a generalisation of transition state theory in the framework of path
integrals [38, 39] which relates the jump rate Γ to the free energy barrier that the centroid of
the ring polymer has to overcome (∆F ‡

c ). In practice, the generalized theory is very similar
to the classical transition state theory but with the reaction coordinate ξ replaced by the
centroid reaction coordinate ξc = r2,c − r1,c

4. So that the jump rate can be written

Γtr = Γc
0 exp(−β∆F ‡

c ) (5.16)

Free energy barrier associated to the centroid ∆F ‡
c can be computed using thermodynamic

integration exactly in the same way as in the classical case using equation (5.15) but with
the reaction coordinate ξ replaced by the centroid reaction coordinate ξc.

Figure 5.14 present the classical free energy profiles ∆F (ξ) as obtained from constrained
standard MD (top panel) and the quantum (centroid) free energy profiles ∆F (ξc) as obtained
from constrained PIMD (bottom panel) associated with the transfer step. We see first that
the free energy barrier, in the classical case, is almost independent of temperature which
is consistent with the Arrhenius behavior that we found earlier for the classical diffusion
coefficient. Moreover, we find a free energy barrier which is around 0.4 eV consistently with
the activation energy of 0.43 eV that we found from the MSD. This further confirmed that
the diffusion is mainly governed by the transfer step. As expected, when temperature is
lowered, quantum effects become significant and tend to lower the free energy barrier. At
100 K, the classical free energy barrier is ≈ 0.395 eV while the quantum free energy is found
to be ≈ 0.274 eV thus quantum effects are responsible for a lowering of 30% of the barrier
at this temperature.

4With r1/2,c the distance between the centroid of the H atom and the centroid of the O1/2 oxygen atoms
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Figure 5.14: Free energy profiles as obtained using standard MD with constrained reaction coordinate ξ (top
panel) and PIMD with constrained centroid reaction coordinate ξc(bottom panel).
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Figure 5.15: Evolution of the free energy barrier (−β∆F ‡) for standard MD and (−β∆F ‡
c ) for PIMD as a

function of 1000/T .

Quantum-Classical crossover

Since the dependence of the jump rate with temperature mainly comes from the exponential
part of equation (5.14) and (5.16), we have plotted −β∆F ‡ as a function of the inverse
temperature in figure 5.15. We see that, for temperatures higher than 300 K, the PIMD
and standard MD barrier heights coincides while, for T < 300 K, quantum effects leads to
smaller barriers. Thus we expect two different diffusion regimes for the proton: a classical
regime at high temperatures, where the diffusion is well described by the Arrhenius law
and a quantum regime at low temperatures associated with a deviation from the previous
Arrhenius behavior. The transition between this two regimes is around Tc = 300 K. This
crossover from a classical to a quantum regime has been observed experimentally in the case
of hydrogen diffusion in metals [40, 41] or on metal surfaces [42, 43]. It has also been pre-
dicted numerically for various systems including diffusion of hydrogen in metals or on metal
surfaces [44–49], hydrogen diffusion in silicon [50] or proton transfer in molecules [23]. More
importantly, this transition between quantum and classical regimes of diffusion is expected
to arise at low temperatures for proton diffusion in perovskite oxides [18, 20]. Our results are
coherent with the results of the path integral study by Zhang et al. which also obtained this
quantum-classical crossover on the proton diffusion coefficient in BaZrO3. However, Zhang
and coworkers found a higher transition temperature Tc ≈ 600 K. This is consistent with the
fact that, in our calculations the transfer barrier (0.38 eV) is higher than what Zhang and
coworkers reports (0.182 eV). From these results, we expect the diffusion coefficient of the
proton to deviate from Arrhenius behavior for temperatures lower than around 300 K. It is
worth noting that no deviation from the Arrhenius law has been experimentally measured
down to 300 K [1] (to the best of our knowledge there are no values of the proton diffusion
coefficient in perovskite materials experimentally reported for temperatures below 300 K). In
comparison, QTB-MD simulations predict a deviation from Arrhenius behavior for tempera-
tures lower than around 800−700 K. This discrepancy between QTB-MD and PIMD results
is, at least partly, a consequence of zero-point energy leakage. Thus, QTB-MD qualitatively
gives the expected behavior i.e. the deviation from the Arrhenius law at low temperature,
but significantly overestimates the crossover temperature.
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Figure 5.16: Replicas probability density ρ(ξ) with the centroid constrained at the barrier top i.e. ξc = ξ‡ = 0.

In order to get more insights on these two different regimes we plot the probability density of
the replicas ρ(ξ) with the centroid fixed at the barrier top (figure 5.16). The spatial extension
of the ring polymer gives qualitative information on the diffusion process [18, 51]. At high
temperatures, the distribution of the ring polymer tends to the classical limit ρ(ξ) = δ(ξ−ξ‡).
When temperature decreases, the distribution broadens because of quantum fluctuations. We
see, in particular, that the shape of the distribution changes with decreasing temperature.
This behavior is related to the crossover between the two diffusion regimes. For T > 300 K,
the distribution is localised around the saddle point with one clear peak at ξ = ξ‡. In
this case, the diffusion is mainly governed by overbarrier motions [18, 51]. In contrast,
for temperatures lower than 300 K, the shape of the distribution changes to a bimodal
distribution. This is a fingerprint of tunnelling effect [50] and we enter a regime in which
the diffusion is mainly governed by tunnelling events. It is worth noting that tunnelling of
hydrogen in perovskite oxides has indeed been experimentally suggested at low temperatures
[52, 53].

Isotope effect

Several studies have reported isotope effect on the diffusion coefficient in perovskite ox-
ides [54] for hydrogen replaced by deuterium. It is generally found that the diffusion coef-
ficient decreases when hydrogen is replaced by deuterium. The typical shift in the diffusion
coefficient can be significant: DH/DD ≈ 1.5 − 3 [54]. Clearly this effect can come from a
change on the free energy barrier ∆F ‡ and/or on the prefactor Γ0. The effect on the prefactor
is not studied here but we investigate the impact of isotopic substitution on free energy barri-
ers for the transfer step. Figure 5.17 shows the barrier obtained with deuterium or hydrogen
as a function of temperature. We see that exchanging H with D tends to increase the barrier
for temperature T < 300 K. The crossover between a quantum and a classical regime is also
observed in the case of deuterium. The barriers obtained with D are ≈ 0.01 eV higher than
the barriers obtained with H. More precisely, the difference ∆F ‡

D −∆F ‡
H varies between 0.008

and 0.014 eV in the temperature range studied here. The isotope effect on the free energy
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barriers observed here is directly related to quantum effects. In a simple approximation, the
isotope effect on the barrier can be related to the difference in zero-point energy between
hydrogen and deuterium. If we consider that the frequency at the bottom of the well along
the reaction coordinate is close to the OH stretching frequency νOH, then the free energy
difference is approximated by ∆F ‡

D − ∆F ‡
H = hνOH(1 − 1/

√
2). Thus, with νOH ≈ 110 THz

which approximately is the value observed in our simulations (see the DOS in figure 5.12),
we would expect an isotope effect of around ∆F ‡

D − ∆F ‡
H ≈ 0.07 eV. The value we obtained

from PIMD simulations is lower (0.01 eV) than this estimation. However this is a very crude
approximation: first the frequency at the bottom of the well along ξ is different than the
OH frequency. Second, the tunnelling effect, which is mass dependent and, as we have seen,
significant at low temperatures, is completely absent of the estimation. Figure 5.18 shows
the distribution of the ring polymer with the centroid constrained at the barrier top for both
H and D for comparison purposes. First, the system is more localised for deuterium than for
hydrogen. This is expected since deuterium is heavier than hydrogen. We also observe the
change of the distrbution shape from an unimodal to a bimodal distribution in the case of
deuterium. However, in the hydrogen case the change arises around T = 300 K while in the
case of deuterium the distribution exhibits two peaks for temperatures lower than 200 K.
This is related to the fact that probability for tunnelling events increases when the mass of
the tunnelling particle decreases.

5.6 Conclusion

In this chapter, we have studied proton conduction in barium zirconate, a potential candi-
date as electrolyte material for hydrogen fuel cell. In particular, we have focused on the
importance of quantum effects on the proton diffusion at intermediate/low temperatures.
The interactions are described by a reactive force field based on the empirical valence bond
model. In a first part, we have thoroughly tested this force field: we found that the transfer
step is rate limiting, as it is generally accepted, and that the computed proton diffusion co-
efficient compares well with experimental results. In particular, the activation energy is very
well reproduced. In a second part, we have focused on the impact of quantum effects. First,
we have computed the proton diffusion coefficient using QTB-MD simulations. We found,
as expected, that when temperature decreases quantum effects become important and tends
to increase the proton diffusion coefficient. More precisely, the QTB-MD results deviates
from the standard MD results for temperatures lower than around 800 K. However, since we
were interested in the diffusion coefficient here, the simulations have been performed with a
very small value of γ in order to ensure that the dynamics of the proton was not perturbed
by the thermostat. Thus strong zero-point energy leakage was present and the QTB-MD
results have to be regarded with caution. In order to compare the QTB-MD results with
PIMD, we have computed the free energy barriers associated with the transfer step using
PIMD. These results show that quantum effects become important for temperatures lower
than around 300 K and tend to decrease the free energy barrier heights. We thus expect the
diffusion to exhibit two diffusion regimes: a classical regime, at high temperature, in which
the diffusion is mainly governed by overbarrier motions and the diffusion coefficient follows
the Arrhenius law and a quantum regime, at low temperatures, in which tunnelling effect
becomes significant leading to a deviation from the Arrhenius behavior. The temperature
associated with the crossover between these two regimes is expected to be around 300 K.
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The QTB method predicts a similar behavior but significantly overestimates the crossover
temperature. From these results, we expect quantum effects to have a significant impact on
the proton conduction in BaZrO3 and in perovskite oxides in general at low temperature.
Quantum effects becomes significant for temperatures lower than around 300 K, thus the
impact of quantum effects on proton diffusion is probably negligible at the typical working
temperature of proton conducting fuel cells (600-900 K).
Future works are needed in order to complete this study. First, the free energy barriers
associated with the rotation of the proton should be computed. Zhang and coworkers have
found that quantum effects have less impact on the rotation free energy barriers than on
the transfer ones [18]. This leads to lower barriers for transfer than rotation suggesting that
rotation becomes the rate limiting step at low temperatures. It would be interesting to see
if we can confirm this result. In a second step, we could try to estimate the prefactor using
transition state theory in order to obtain values for the diffusion coefficient.
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5.7 Complements of chapter 5

Computation of diffusion coefficient

One central quantity in this chapter is the diffusion coefficient D and in particular the proton
diffusion coefficient. Here we briefly present some standard methods to compute diffusion
coefficients from MD trajectories.

From Mean Square Displacement Probably the most standard way to compute a dif-
fusion coefficient from MD trajectories is to use the well-known Einstein relation (or Ein-
stein–Smoluchowski relation):

lim
t→∞

〈(~r(t+ t0) − ~r(t0))2〉 = 6Dt (5.17)

The quantity 〈(~r(t+ t0) − ~r(t0))2〉 is the mean square displacement. In this form, the relation
only holds for an isotropic diffusion i.e. Dx = Dy = Dz = D in 3 dimensions. If the diffusion
is not isotropic then the relation needs to be projected on the different directions so that :

lim
t→∞

〈(x(t + t0) − x(t0))2〉 = 2Dxt (5.18)

lim
t→∞

〈(y(t + t0) − y(t0))2〉 = 2Dyt (5.19)

lim
t→∞

〈(z(t + t0) − z(t0))2〉 = 2Dzt (5.20)

In practice, the mean square displacement is first computed from the MD trajectories and
then the diffusion coefficient is evaluated from a linear fit of the MSD in the long time limit.
The computation of the diffusion coefficient from the MSD is completely general and holds
for any type of diffusion.

From jump frequencies In general, diffusion in solids can be described as a series of
atomic jumps between lattice sites. In this case, the diffusion coefficient can be evaluated
from jump frequencies using a random walk model on a lattice. We start from the Einstein
relation, writing ~R(t) = ~r(t + t0) − ~r(t0) the displacement of the atom

lim
t→∞

〈~R(t)2〉 = 6Dt (5.21)

Now if we consider the atom to diffuse via a series of atomic jumps, the displacement is the
sum of all the different atomic jumps defined by the vector ~ri with i = 1, ..., n and n is the
number of jumps so that

~R(t) =
n
∑

i=1

~ri (5.22)
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Now in the long time limit the Einstein relation becomes

〈(

n
∑

i=1

~ri

)2〉

= 6Dt (5.23)

〈

n
∑

i=1

~r 2
i + 2

n−1
∑

i=1

n
∑

j=i+1

~ri~rj

〉

= 6Dt (5.24)

n
∑

i=1

〈~ri〉2 + 2
n−1
∑

i=1

n
∑

j=i+1

〈~ri~rj〉 = 6Dt (5.25)

with formally in the t → ∞ limit, the number of jump n → ∞. Now if all the jumps
are considered to be independent 〈~ri~rj〉 = 〈~ri〉 〈~rj〉 and if there is no preferred direction
〈~ri〉 = 〈~rj〉 = 0 thus we obtain

n
∑

i=1

〈~ri〉2 = 6Dt (5.26)

Now if the average jump distance is d

nd2 = 6Dt (5.27)

And we obtain
D =

n

6t
d2 (5.28)

Finally n/t is the jump frequency Γ, thus the diffusion coefficient can be written

D =
1
6

Γd2 (5.29)

which is equation (5.10) that we have used to estimate the diffusion coefficient. In this
derivation, we assume a completely uncorrelated random walk i.e. all the jumps are com-
pletely independent however there is a lot of cases where this assumption does not hold.
One example is the diffusion of atoms via a vacancy mechanism. In this case, the atom dif-
fuses by exchanging lattice site with a neighboring vacancy. Thus this event is only possible
when the atom is next to a vacancy. Just after an exchange, the atom is always next to the
same vacancy and thus the probability for the reverse exchange to happen is higher than
the probability for another exchange. This creates correlations between the jumps and thus
〈~ri~rj〉 6= 〈~ri〉 〈~rj〉 in this case. In order to quantify the importance of these correlations, the
correlation factor f is defined as

f =
D

Drand
(5.30)

where Drand is the diffusion coefficient that would be obtained if the diffusion was a com-
pletely uncorrelated random walk (i.e. Drand = Γd2/6). If the diffusion is well described by
an uncorrelated random walk then f = 1, but if there are correlations between the jumps
then the correlation factor is generally lower than one.

Constrained molecular dynamics

We have seen in this chapter that constrained MD was necessary in order to compute either
static potential energy or free energy profile along the reaction coordinate. This has been
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done in practice using the SHAKE algorithm [28, 29]. Here we present this algorithm and its
use for the particular case of interest here: fixed transfer and rotation reaction coordinates.

We want to perform MD simulations under the constraint that the reaction coordinate ξ({~r})
remains fixed at a certain value ξ. The constraint can be written g({~r}) = ξ({~r}) − ξ =
0. What we present here is valid for any type of holonomic constraint5. Within the MD
framework, the constraint can be kept constant by adding external forces ~Gi that will apply
on the different atoms involved in the constraint and that will ensure that the constraint is
fulfilled at each time step. The constraint forces ~Gi writes:

~Gi = −λ~∇ig({~r}) (5.31)

where λ is the Lagrange multiplier associated with the constraint and whose expression needs
to be determined. This is the Lagrange multiplier λ that appears in equation (5.80). In the
SHAKE algorithm, the MD trajectories are integrated using the Verlet algorithm:

~ri(t+ δt) = 2~ri(t) − ~ri(t− δt) + δt2
~fi(t)
mi

+ δt2
~Gi(t)
mi

(5.32)

Where ~Gi is the force associated to the constraint and ~fi(t) represents the other forces that
applie on the atom i. One can first introduce the unconstrained positions ~̂ri(t + δt) i.e. the
positions that the atoms would have at time t+ δt if there was no constraint so that

~ri(t+ δt) = ~̂ri(t + δt) − λ(t)δt2

mi

~∇ig({~r}) (5.33)

Now if a good guess (λ(1)(t)) for the value of the Lagrange multiplier at time t exists (for
example the value at the previous time step) then one can define the new positions according
to λ(1):

~r
(1)

i (t+ δt) = ~̂ri(t+ δt) − λ(1)(t)δt2

mi

~∇ig({~r}) (5.34)

and the constrained positions can be written as

~ri(t+ δt) = ~r
(1)

i (t+ δt) − δλ(1)(t)δt2

mi

~∇ig({~r}) (5.35)

where δλ(1)(t) = λ(t) − λ(1)(t). Now we want to ensure that the constraint remains fulfilled
at time t+ δt so

g (~r1(t + δt), ..., ~rN (t+ δt)) = 0 (5.36)

which writes

g

(

~r
(1)

1 − δλ(1)(t)
δt2

m1

~∇1g({~r(t)}), ..., ~r (1)
N − δλ(1)(t)

δt2

mN

~∇Ng({~r(t)})

)

= 0 (5.37)

Now performing a first order Taylor expansion around δλ(1)(t) ≈ 0 one obtains

g
(

~r
(1)

1 , ..., ~r
(1)

N

)

−
N
∑

i=1

δλ(1)(t)
δt2

mi

~∇ig({~r(t)}) · ~∇ig({~r (1)(t + δt)}) ≈ 0 (5.38)

5holonomic constraint: that can be written in the form g({~r}) = 0 i.e. only dependent on atomic positions.
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So we finally obtain the following expression for δλ(1):

δλ(1)(t) ≈
g
(

~r
(1)

1 , ..., ~r
(1)

N

)

∑N
i=1

δt2

mi

~∇ig({~r(t)}) · ~∇ig({~r (1)(t+ δt)})
(5.39)

Because this expression for δλ(1)(t) is an approximation (and to the first order), the procedure
needs to be iterated until convergence is reached. The algorithm thus computes δλ(1)(t),
δλ(2)(t), ... until the constraint is fulfilled with a precision that is under a target precision.
In practice, the algorithm first check if the constraint is fulfilled with the positions ~r (1)

i (t+δt).
If yes, then these new positions are accepted and we start the next time step, if not, then the
algorithm computes δλ(1) and then new positions ~r (2)

i (t+δt) = ~r
(1)

i (t+δt)+ δλ(1)δt2

mi

~∇ig({~r}).

The algorithm then check if the constraint is fulfilled with the positions ~r (2)
i (t + δt). If

yes, these new positions are accepted and we start the next time step, if not, the iterated
procedure continues until convergence is reached. At the end the Lagrange multiplier is
λ = λ(1) + δλ(1) + δλ(2) + ....

Transfer step For the transfer step the reaction coordinate is ξ(~rO1 , ~rO2 , ~rH) = |~rO2 −
~rH| − |~rO1 − ~rH| thus the constraint is

g(~rO1, ~rO2, ~rH) = dO2H − dO1H − ξ = 0 (5.40)

with dO2/1H = |~dO2/1H| = |~rO2/1
− ~rH|.

The gradients of the constraint are:

~∇O1g =
~dO1H

dO1H
(5.41)

~∇O2g = −
~dO2H

dO2H
(5.42)

~∇Hg = −
~dO1H

dO1H
+
~dO2H

dO2H
(5.43)

And the forces that have to be applied are given by:

~GO1 = −λ~∇O1g (5.44)

~GO2 = −λ~∇O2g (5.45)

~GH = −λ~∇Hg (5.46)

While the expression for δλ(1) and then λ is obtained from equation (5.39).

In order to compute free energy barrier using PIMD we constrain the centroid reaction
coordinate defined as

g(~rO1,s, ~rO2,s, ~rH,s) = dO2H,c − dO1H,c − ξ = 0 (5.47)

with dO2/1H,c = |~dO2/1H,c| = |~rO2/1,c − ~rH,c|. And ~ri,c = 1
P

∑P
s=1 ~ri,s.
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The gradient of the constraint with respect to the centroid positions are:

~∇O1,cg =
~dO1H,c

dO1H,c
(5.48)

~∇O2,cg = −
~dO2H,c

dO2H,c
(5.49)

~∇H,cg = −
~dO1H,c

dO1H,c
+
~dO2H,c

dO2H,c
(5.50)

The forces that have to be applied on the centroid are given by:

~GO1,c = −λ~∇O1,cg (5.51)

~GO2,c = −λ~∇O2,cg (5.52)

~GH,c = −λ~∇H,cg (5.53)

and the forces that applies on the replicas are obtained using:

~GO1,s = −λ~∇O1,sg (5.54)

~GO2,s = −λ~∇O2,sg (5.55)

~GH,s = −λ~∇H,sg (5.56)

which writes:

~GO1,s = −λ 1
P

~dO1H,c

dO1H,c
=

1
P
~GO1,c (5.57)

~GO2,s = λ
1
P

~dO2H,c

dO2H,c
=

1
P
~GO2,c (5.58)

~GH,s = λ
1
P

~dO1H,c

dO1H,c
−
~dO2H,c

dO2H,c
=

1
P
~GH,c (5.59)

Finally, the expression for the Lagrange multiplier is obtained using the same equation (5.39).

Rotation step For the rotation step, we have chosen to define the reaction coordinate
as the dihedral angle θ between the plane [~ex, ~dO1,H] and the plane [~ex, ~ez] - see figure 5.19.
With ~dO1,H = ~rO1 −~rH. θ is given by the angle between the normal ~n to the plane [~ex, ~dO1H]
and ~ez. The normal ~n is obtained using the cross product between ~dO1H and ~ex:

~dO1H × ~ex = Z~ey − Y ~ez (5.60)

~n =
1√

Y 2 + Z2
(Z~ey − Y ~ez) (5.61)

with Z = zO1 − zH and Y = yO1 − yH.

Then the cosine of the angle is given by

cos θ = ~n · ~ez =
−Y√
Y 2 + Z2

(5.62)
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O1
dO1H H

ez

ex
X

ZY

n ϴ

Figure 5.19: Representation of the reaction coordinate used to describe the reaction path associated with the
rotation step

And sin2 θ = 1 − cos2 θ thus

sin2 θ =
Z2

Y 2 + Z2
(5.63)

Finally we constrain the square of the sine of the angle sin2 θ. The forces that needs to be
applied are :

~GO1 = −λ~∇O1g (5.64)

~GH = −λ~∇Hg (5.65)

which writes:

~GO1 = −λ2ZY 2~ez − 2Z2Y ~ey

(Y 2 + Z2)2
(5.66)

~GH = −λ−2ZY 2~ez + 2Z2Y ~ey

(Y 2 + Z2)2
= − ~GO1 (5.67)

Then the value for the Lagrange multiplier is obtained as usual using equation (5.39).

Free energy computation

We want to compute the free energy profile F (ξ) or more precisely ∆F (ξ) = F (ξ) − F (ξ0)
along the reaction coordinate ξ(~r1, ..., ~rN ). We first need to define the function F (ξ) which
is an "incomplete" free energy:

F (ξ) = −kBT lnZ(ξ) (5.68)

where Z(ξ) is an incomplete partition function defined as

Z(ξ) =
1
h3N

∫

d~p1...

∫

d~pN

∫

d~r1...

∫

d~rN δ (ξ(~r1, ..., ~rN ) − ξ) e−βE({~r},{~p}) (5.69)
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where ξ denote some numerical value of the reaction coordinate defined by the expression
ξ(~r1, ..., ~rN ). The free energy profile ∆F (ξ) can then be expressed as:

∆F (ξ) = F (ξ) − F (ξ0) = −kBT ln
(

Z(ξ)
Z(ξ0)

)

(5.70)

∆F (ξ) = −kBT ln
( 〈δ(ξ(~r1, ..., ~rN ) − ξ)〉

〈δ(ξ(~r1, ..., ~rN ) − ξ0)〉

)

(5.71)

∆F (ξ) = −kBT ln
(

ρ(ξ)
ρ(ξ0)

)

(5.72)

So free energy profile can be obtained from MD simulations by monitoring the value of
ξ(~r1, ..., ~rN ) during the simulation. Then, one can compute the probability density ρ(ξ) of
the reaction coordinate to obtain ∆F (ξ) using equation (5.72). The choice of ξ0 is arbitrary,
but we generally take the value of the reaction coordinate associated with the bottom of the
well (see figure 5.13) so that, at the saddle point, ∆F (ξ‡) is the free energy barrier associated
with the reaction.

In our case, the reaction is the transfer of the proton defined by the reaction coordinate
ξ(~r1, ~r2) = r2 − r1. Proton transfer is a rare event and thus very long simulations would be
required in order to ensure that ρ(ξ) is correctly sampled around the saddle point. Thus,
the free energy barrier can not be accessed using the probability density of ξ in our case (see
figure 5.20) . In order to overcome this problem, free energy profiles are computed using the
thermodynamic integration method which is based on the following relation:

∆F (ξ) = F (ξ) − F (ξ0) =
∫ ξ

ξ0

∂F

∂ξ

∣

∣

∣

ξ=ξ′
dξ′ (5.73)

If we can compute the free energy derivative at different values of ξ then we can numerically
perform the integral in equation (5.73) to obtain the free energy profile.
For simple expressions of the reaction coordinate, the free energy derivative can be related
to the average force that apply on the reaction coordinate [55] at fixed value of ξ. As an
example, if the reaction coordinate simply is the position of one particular atom, let us choose
atom 1, and if we consider a one-dimensional problem for simplicity then ξ(x1, ..., xN ) = x1

and the free energy derivative can be expressed as :

∂F

∂ξ
= −kBT

1
Z(ξ)

∂Z(ξ)
∂ξ

(5.74)

∂F

∂ξ
= −kBT

1
Z(ξ)

∂

∂ξ

(

1
h3N

∫

dp1...

∫

dpN

∫

dx1...

∫

dxN δ (x1 − ξ) e−βE
)

(5.75)

∂F

∂ξ
=

1
Z(ξ)

1
h3N

∫

dp1...

∫

dpN

∫

dx2...

∫

dxN
∂E

∂ξ
e−βE (5.76)

∂F

∂ξ
=

1
Z(ξ)

1
h3N

∫

dp1...

∫

dpN

∫

dx1...

∫

dxN
∂E

∂ξ
e−βE δ (x1 − ξ) (5.77)

∂F

∂ξ
=
〈

∂E

∂ξ

〉

ξ

(5.78)

Where < ... >ξ means an ensemble average with fixed value of ξ({~r}). Finally, since the
reaction coordinate is a function of atomic positions only, the free energy derivative can be
expressed as:

∂F

∂ξ
=
〈

∂V

∂ξ

〉

ξ

(5.79)
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where V is the potential energy. Thus the free energy is sometimes referred to as the
potential of mean force acting on the reaction coordinate. The main idea of thermodynamic
integration is thus to compute free energy derivative from equation (5.79). The average value
in equation (5.79) can be calculated using constrained MD. Several MD simulations are run
with the reaction coordinate constrained at different value of ξ({~r}). Then the free energy
derivative is integrated along the reaction path to obtained the free energy profile (equation
5.73).

However, for more complicated form of the reaction coordinate, the free energy derivative
cannot be easily written in the simple form of equation (5.79) anymore. Moreover, the
constrained MD algorithm not only imposes that ξ({~r}) = ξ, it also imposes that the time
derivative of the reaction coordinate ξ̇({~r}, {~̇r}) = 0. This is an artifact of the method that
is not present in equation (5.79) [37]: the average value should be computed at fixed value
of ξ({~r}) only. The blue moon ensemble method [28, 37] provides a general formula that is
valid for any form of the reaction coordinate and that takes into account the possible artifact
coming from the use of constrained MD simulations. The formula writes:

∂F

∂ξ
=

〈

Z−1/2 [−λ+ kBTG]
〉const.

ξ
〈

Z−1/2
〉const.

ξ

(5.80)

Where < ... >const.
ξ means the average value computed from constrained MD simulations. λ

is the Lagrange multiplier of the constrained MD algorithm (see the previous complement).
And the two terms Z and G are defined as follows

Z =
N
∑

i=1

1
mi

(

∂ξ

∂~ri

)2

(5.81)

and

G =
1
Z2

N
∑

i=1

N
∑

j=1

1
mimj

∂ξ

∂~ri
· ∂2ξ

∂~ri∂~rj
· ∂ξ
∂~rj

(5.82)

The free energy barriers for the transfer step presented in this chapter has been computed
using this formula. The transfer reaction coordinate is ξ(~r1, ~r2) = r2 − r1 with r2 = |~r2| =
|~rO2 − ~rH| and r1 = |~r1| = |~rO1 − ~rH| the distance between H and the two first neighbor
oxygens O1 and O2. In this case, one finds the following expressions for Z and G [56]:

Z =
2
mO

+
2
mH

[

1 − ~r2

r2
· ~r1

r1

]

(5.83)

and
G = 0 (5.84)

with mO, mH the mass of the oxygen and the hydrogen atoms, respectively.

Figure 5.20 - top panel shows the free energy barrier as computed from thermodynamic
integration with constrained MD in the blue moon ensemble (blue line and cross) and the
free energy barrier as obtained from unconstrained MD simulations using equation (5.72)
(red full circle). We see that the method are equivalent and give the same profile however
since proton transfer is a rare event at this temperature the free energy profile at the barrier
top is not accessible from unconstrained simulations.
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Finally, as we have seen previously in this chapter, in the case of PIMD we are interested
in computing the free energy profile along the centroid reaction path i.e. ∆F (ξc) with ξc

the value of the centroid reaction coordinate ξc(rO1,c, rO2,c, rH,c) and ri,c the position of the
centroid of atom i. This is done using the same method of constrained MD in the blue-moon
ensemble with the centroid reaction coordinate. Figure 5.20 - bottom panel shows the barrier
as obtained from unconstrained PIMD (eq. (5.72)) using both the centroid reaction coordi-
nate probability density ρ(ξc) and the replicas reaction coordinate probability density ρ(ξ),
and the barrier obtained from constrained PIMD in the blue moon ensemble. We see that,
since we have constrained the centroid reaction coordinate ξc, the constrained PIMD scheme
is, as expected, equivalent to the free energy profile along the centroid reaction path i.e.
as obtained with the centroid reaction coordinate probability density in the unconstrained
PIMD scheme.
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Figure 5.20: Top: Free energy profile along the reaction coordinate ξ = r2 −r1 as obtained from unconstrained
strandard MD using the probability density ρ(ξ) - equation (5.72) (red full circles), and as obtained from
constrained MD and computed using thermodynamic integration - equation (5.73) (blue line and cross) at
T = 300 K. Bottom: ξc = r2,c − r1,c as obtained from unconstrained PIMD using the probability density ρ(ξc)
- equation (5.72) (red full circles), and as obtained from constrained PIMD and computed using thermodynamic
integration - equation (5.73) (blue line and crosses). For comparison purposes, the free energy profile along
the reaction coordinate of the replicas ξ as obtained from unconstrained PIMD using the probability density
ρ(ξ) is also plotted (green triangles)
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Chapter 6

Proton diffusion mechanisms in

GdBaCo2O5.5

6.1 Introduction

In this chapter, we investigate the proton diffusion mechanisms in GdBaCo2O5.5 (GBCO)
whose structure is represented in figure 6.1. GBCO is a double perovskite with two different
A-site cations (Gd and Ba) that alternate along the c-axis [1]. Thus the cell parameter along
the c-axis, is doubled compared to the cubic perovskite structure [1]. This ordering of Gd
and Ba results in three different types of planes: GdO, CoO2 and BaO planes alternating
along the c-axis. GBCO naturally contains oxygen vacancies in order to ensure the overall
electrical neutrality. These oxygen vacancies are mainly located within the GdO planes [1].
Since oxygen vacancies are present, oxygen atoms can diffuse in the structure, and indeed
GBCO is a good oxygen conductor [2]. Finally, GBCO exhibits a metal-insulator transition
at T ≈ 360 K [1] and thus is a mixed electron/oxygen conductor at high/intermediate
temperatures (800 - 600 K). For this reason, GBCO has been used as a cathode material in
Solid Oxide Fuel Cells (SOFC)1 and has shown good properties [3, 4]. Thus, the interest for
double perovskite cobaltite compounds in general, and GBCO in particular, for applications
as cathode materials in hydrogen fuell cells has been growing up [2–8].

Oxygen diffusion mechanisms in double perovskite cobaltite compounds have been numeri-
cally studied using MD simulations [9–12]. These studies have evidenced the bidimensional
nature of oxygen diffusion in these compounds which has been comfirmed experimentally by
neutron diffraction [12]. It has been shown, in particular, that long range diffusion occurs
through oxygen ions jumps between gadolinium and cobalt planes [9, 10, 12] and that BaO
planes act as barriers for oxygen diffusion thus hindering long range migration of oxygen
along the c-axis.

Recently, GBCO has been applied as a cathode material for Proton Conducting Fuel Cells
(PCFC) [6, 8] with excellent properties. This could be related to a potential diffusion of pro-
tons inside GBCO [8] indicating that this compound could incorporate water and become
a mixed proton/electron conductor. This assumption has been further supported by other
experimental studies [7, 8] suggesting that water incorporation would be possible in double
perovskite cobaltite compounds. However, recent neutron diffraction did not allow the con-
firmation of the presence of water in humidified NdBaCo2O5+x at high temperatures [13].
Finally, DFT calculations have been performed in order to study hydration of GdBaCo2O5.5

and have found either exothermic or endothermic hydration reaction depending on the orig-

1Solid Oxide Fuel Cells (SOFC) here referred to hydrogen fuel cells with solid oxygen conductor electrolyte
materials as opposed to Proton Conducting Fuel Cells (PCFC) for which the electrolyte is a proton conductor
material.
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Figure 6.1: Representation of the double perovskite structure of GBCO. Note that, in the real materials,
oxygen vacancies are present and the GdO planes, in particular, are oxygen deficient. This is not represented
here.

inal structure considered [14]. Further experimental and theoretical studies are thus needed
to investigate the possible hydration of double perovskite cobaltite compounds in order to
decide whether or not these compounds can be mixed proton/electron conductors.

Mixed proton/electron conductors are interesting because they are expected to exhibit very
good properties as electrode materials in PCFC. At the cathode, the reaction in PCFC is

4H+ + O2 + 4e− → 2H2O (6.1)

Most cathode materials for PCFC are mixed oxygen/electron conductors. In this case, the
complete electrode reaction can only occur at the triple phase boundary points near the
electrolyte surface where electrons, protons and oxygen can meet [8, 15, 16] as represented
in figure 6.2. In contrast, if the cathode material is a mixed proton/electron conductor,
the cathode reaction can potentially occur on the whole cathode surface. Thus mixed pro-
ton/electron conductors are expected to be more efficient than mixed oxygen/electron con-
ductors as cathode materials for PCFC [8, 15, 16].

As we just explained, the possibility to incorporate protons in GdBaCo2O5.5 is still under
debate. In the following, we assume that at least a small hydration of the compound would
be possible and thus we study the proton diffusion mechanisms in GBCO using standard
molecular dynamics2. In the first section, we give the computational details and in particular
describe the force field used to model the interatomic interactions. In a second section, we
focus on the diffusion mechanisms of the proton in GBCO. Finally we discuss the results and
conclude.

2Here, we don’t include quantum effects in the study since we are working at temperatures higher than
1000 K for which quantum effects are negligible.
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Figure 6.2: Schematic representation of the cathode and electrolyte interface for protonic conducting fuel cell.

6.2 Computational details

The interatomic potentials used in this study are those previously used to study oxygen
diffusion in GdBaCo2O5.5 [10]. Metal-metal and metal-oxygen interactions are described
using Buckingham potentials of the form:

A exp
(

−r

ρ

)

− C

r6
(6.2)

The interactions between the first neighboring oxygen ion O1 of the proton and the other
cations are adapted to take into account the smaller charge on the oxygen ion of the hydroxyl
group, following a procedure presented by Sierka et al. [17]. The values of the parameters
for the Buckingham potentials used in this study are given in Table 6.1.

Buckingham A (eV) ρ (Å) C (eV.Å6)

Gd O 1458.38 0.3522 0.0
Ba O 1214.4 0.3537 0.0
Co O 1329.82 0.3087 0.0
O O 22764.3 0.149 43.0
Gd O1 856.71 0.3522 0.0
Ba O1 1214.3 0.3537 0.0
Co O1 1137.66 0.3087 0.0
O O1 22764.3 0.149 43.0
O1 O1 22764.3 0.149 43.0

Table 6.1: Buckingham potential parameters used for GdBaCo2O5.5. Nomimal charges are used so that the
charges for cations are +3, +2 and +3 for Gd, Ba and Co, respectively. O refers to oxygen ions, while O1

refers to an oxygen ion bonded to a proton. The charge of O and O1 are -2 and -1.308698 and the charge
of H is 0.308698 so that the overall charge for the OH group is -1. The parameters have been taken from :
Gd-O [9], Ba-O, Co-O and O-O [9, 18].
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The proton transfer between the two first neighboring oxygen atoms is described by the
empirical valence bond (EVB) model presented in chapter 5. The EVB parameters associated
to the interactions between the proton and the other ions are taken from the original article
of Raiteri et al. [19] for barium zirconate and are given in chapter 5. Here, we assumed that
the values of the EVB parameters (in particular λ, α and the values of the electrical charges
within the OH group) are transferable and thus can be used to model the O-H interaction
within GBCO. Of course, this is a strong assumption since these values have been fitted to
reproduce the transfer and rotation barrier for a proton in BaZrO3 (BZO). This assumption
is based on the fact that, since both BZO and GBCO are perovskite oxides, barriers for
rotation and transfer should be similar between the two compounds3. Thus, this force field
cannot claim to perfectly reproduce the potential energy surface of the proton in GBCO,
nevertheless the orders of magnitude of energy barriers should be realistic. In particular, by
computing rotation and transfer frequencies, we find that the rotation step is a fast process
compare to the transfer step in GBCO, similarly to what we found in BZO and as it is
generally accepted in the literature for perovskite oxides [22].

The size of the simulation box is 6a×6b×3c as compared to the original double perovskite cell,
containing 108 Ba, 108 Gd, 216 Co and 594 O, corresponding to the formula GdBaCo2O5.5.
In the initial configuration, all the oxygen vacancies are located in GdO planes, since oxygen
vacancies are experimentally found to be mainly in these planes [1]. One proton is introduced
in the simulation box and the electrical neutrality is ensured by adding a uniform background
charge. The simulations were performed with a time step of 0.3 fs in the NVT ensemble using
a Langevin thermostat and at a pressure close to zero. The temperature was varied between
1200 and 1900 K and average quantities were obtained using equilibrium trajectories of 11
ns to 2 ns, respectively.

6.3 Proton diffusion mechanisms

Let us first note that the presence of one proton over 1026 atoms has almost no effect on the
volume of the cell. As expected [10], oxygen atoms diffuse in parallel with the (a,b) plane
but are blocked in the c direction. Up to 1700 K, BaO planes act as barriers for the diffusion
of oxygen atoms explaining their limited displacement along the c direction, and thus the
2D nature of the diffusion.

Figure 6.3 shows the mean-square displacement (MSD) of the proton as obtained from simu-
lations at 1700 K. The proton diffuses in parallel to the (a,b) plane and is blocked along the
c direction, similarly to oxygen atoms. In order to elucidate the origin of this anisotropic dif-
fusion, one can first study the preferential locations of the proton in the material. Figure 6.4
shows the probability density map of a proton in GBCO as obtained from MD trajectories.
The proton diffuses within the same GdO and CoO2 planes which explains the bidimensional
nature of proton diffusion parallel to the (a,b) plane. The proton is never found in the BaO
plane: similarly to oxygen diffusion, BaO planes act as barriers for hydrogen diffusion and
thus hinder long range migration of the proton along the c-axis. Figure 6.5 presents the
position distribution (or density profile) of the atoms along the c-axis, in order to get more

3For example, some energy barriers values associated with the transfer/rotation step reported in the
literature for different barium based perovskite materials are 0.25/0.19 eV for cubic BaTiO3 [20], 0.32/0.21 eV
for BaSnO3 [21] while we found 0.38/0.29 eV for BaZrO3
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Figure 6.3: Mean Square Displacement (MSD) of a proton in GBCO at 1700 K.
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Figure 6.4: Probability density map of a proton in GBCO computed from Langevin MD at T=1500 K.
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Figure 6.5: Position distribution of atoms along the c axis at 1500 K. For more clarity, the position distribution
of H was multiplied by 100.

insight on the equilibrium locations of the proton in the material. We first note, that the
distance between the two oxygen planes located on either side of the Gd plane is less than
c/2 by 13%. Consequently, the distance between the two oxygen planes located on either side
of the Ba plane is greater than c/2 by 13% and the proton remains between the Gd and Co
planes. We also see that the hydrogen is mainly bonded to oxygen atoms of the GdO planes.
More precisely, the proton is located in GdO planes during 93% and 83% of the simulation
time at 1300 and 1700 K, respectively (see table 6.2). Moreover, the OH bond mostly points
toward a direction that keeps the proton between the gadolinium and the cobalt planes.

T(K) BaO GdO CoO2

1700 0 83% 17%
1500 0 87% 13%
1300 0 93% 7%

Table 6.2: Fraction of the residence time of H in BaO, GdO and CoO2 planes.

Figure 6.6 shows the diffusion coefficient in the (a,b) plane for both protons and oxygen atoms
as obtained from mean square displacement. Comparison is made with previous experimental
and theoretical results, which only exist for oxygen atoms. The calculated oxygen diffusion
coefficient values are in reasonable agreement with experimental results [2, 23]. The diffusion
coefficient is found to be more than one order of magnitude higher for hydrogen than for
oxygen atoms. The activation energy associated with proton diffusion (0.71 ± 0.03 eV) is
found to be lower than the activation energy for oxygen diffusion (1.01 ± 0.03 eV). This
difference of activation energy between oxygen and proton migration is typically observed in
perovskite ion conducting compounds. For instance, in yttrium-doped barium zirconate, an
activation energy of around 1 eV [24] is reported for oxygen ion migration, while it is around
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0.43 eV [22] for the proton migration. From the values of the diffusion coefficient, one can
estimate the conductivity σH of protons in GBCO using the Nernst-Einstein relation that
relates the diffusion coefficient to the conductivity:

σ =
q2nD

kT
(6.3)

with σ the conductivity and n the density of charge carrier of charge q. If we consider a
small hydration of the compounds, e.g. 5% of the vacancies are filled by water, at the typical
working temperature of PCFC i.e. T = 600◦C, we obtain that σH ≈ 0.5σO where σO is the
estimated conductivity for oxygen diffusion. Thus, even for a small hydration of GBCO, we
expect the conductivity of the proton to be comparable to the conductivity of oxygen atoms
in this compound.
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Figure 6.6: Arrhenius plot of the diffusion coefficient in the (a,b) plane as obtained from MSD for both
protons (blue squares) and oxygens (red full circles) atoms. (a) from MD simulations - ref. [9], (b) from
oxygen exchange - ref. [2], (c) from conductivity relaxation - ref. [23]

Further analysis of the trajectories reveals that the diffusion of the proton in GBCO follows
a scheme where it is successively bonded to an oxygen atom of the gadolinium plane and
then to an oxygen atom of the cobalt plane. Moreover, the long range migration of the
proton is obtained through two different mechanisms (schematically represented in figure
6.7). The first one is the standard proton transfer between the two neighboring oxygen
atoms combined with the rotation of H around its first neighbor oxygen atoms (mechanism
(1) in figure 6.7). The limiting step is the proton transfer as evidenced by figure 6.8 showing
the Arrhenius plot of the corresponding jump frequencies. The activation energies are equal
to 0.63 and 0.38 eV for the proton transfer and for the rotation, respectively. In addition,
the proton transfer from GdO to CoO2 planes or reciprocally represent around 93% of the
total number of transfer jumps at T = 1500 K, the other ones being within the CoO2

planes (7%) (see table 6.3). The second mechanism consists in the migration of the OH
group in which both oxygen and hydrogen atoms jump simultaneously, mainly along <101>
directions of the cubic cell (mechanism (2) in figure 6.7). At 1500 K, the contributions of
the two diffusion mechanisms, transfer-rotation and OH migration, are of 70% and 30%,
respectively. Figure 6.8 shows the Arrhenius plot of their associated jump frequencies. The
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Figure 6.7: Schematic representation of the different types of diffusion in GBCO. Mechanism (1) is the
transfer of the proton which combined with the rotation leads to a long range migration of the proton jumping
from one oxygen of the Gd-plane to an oxygen of the Co-plane. The second mechanism (2) is the migration
of the whole OH group via a vacancy mechanism. Finally, the diffusion of oxygen via oxygen vacancies is also
indicated.
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O-H· · · O transfer freq. (GHz) OH jump freq. (GHz)
T(K) Ba↔Co Gd↔Co Co↔Co

1700 0 166 12.2 67.8
1500 0 94.7 6.9 40.3

Table 6.3: Frequencies of H jumps corresponding to transfer from the first to the second neighboring oxygen
atoms. Transfer can occur between two oxygen atoms located, in Ba and Co planes (Ba↔Co), in Gd and Co
planes (Gd↔Co), or in the same Co plane (Co↔Co). Frequency for the jump of the whole OH group is also
given in the last column.

extracted activation energies are very similar, being equal to 0.64 and 0.59 eV for the transfer-
rotation and OH migration mechanisms, respectively. These activation energies are much
smaller than the ones calculated from the diffusion coefficient values obtained using the mean
square displacement. This can be explained by a spatial correlation between successive jumps
leading to a non-purely random walk of the proton i.e. the diffusion cannot be described by
an uncorrelated random walk.

6.4 Correlation factor

As we have seen in chapter 5 (see the complement in particular), diffusion in solids can
generally be described by a series of atomic jumps on a lattice. In this case, the diffusion
coefficient can be related to the atomic jump frequency. If the diffusion is well described by
an uncorrelated random walk on a lattice then the diffusion coefficient can be expressed as
follows

D =
1
6

Γd2 (6.4)

with Γ the jump frequency and d the jump length. Bear in mind that this expression is valid
for a three-dimensional isotropic diffusion only. We have seen in chapter 5 that the diffusion
of hydrogen in BZO was well described by expression (6.4). However, this expression does not
hold for every type of diffusion, for example oxygen diffusion can not be described by equation
(6.4). Oxygen atoms diffuse via a vacancy mechanism in which an oxygen atom migrates
by exchanging lattice site with a neighboring vacancy. In this case, the diffusion cannot be
described by an uncorrelated random walk because the different atomic jumps are correlated.
Indeed, just after an exchange between an oxygen atom and a vacancy, the oxygen is always
next to the same vacancy and thus the probability for the reverse exchange to happen is
higher than for another exchange. Thus, there is a correlation between the different atomic
jumps in this case and equation (6.4) cannot be used. We have seen that a non negligible part
of the proton diffusion in GBCO arises from a diffusion of the whole OH group which diffuses
through a vacancy mechanism. Moreover, the presence of oxygen vacancies will sometimes
block some jump directions for the proton transfer and the probability for a jump will then
depend on the local arrangement of the neighboring sites, and in particular on the number of
neighboring vacancies. Thus hydrogen diffusion in GBCO cannot be described by a simple
uncorrelated random walk and the diffusion coefficient cannot be estimated from equation
(6.4). This is coherent with the fact that the activation energies that we obtain from the
jump frequencies for the two mechanisms of hydrogen migration (OH migration and proton
transfer/rotation) are smaller than the one calculated from the diffusion coefficient values
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obtained using the mean square displacement.

The importance of the correlations between the jumps can be estimated by computed the
correlation factor f (see the complements of chapter 5). The correlation factor can be
defined as the ratio between the diffusion coefficient obtained from the MSD and the diffusion
coefficient obtained from the jump frequencies (in the hypothesis of uncorrelated random
walk) [25, 26]:

f =
DH

1
4

(

ΓHd
2

H + ΓOHd
2

0H

) (6.5)

where the factor 1/4 comes from the 2D nature of the diffusion. The frequency ΓH corre-
sponds to the transfer-rotation combination [27]:

1
ΓH

=
1

Γrotation
+

1
Γtransfer

(6.6)

and ΓOH is associated to the OH migration mechanism where both oxygen and hydrogen
atoms move simultaneously. The lengths of jumps dH and dOH are the proton displacements
projected in the (a,b) plane. Both lengths are about a/2, since the jumps are oriented
mainly along the [101] or [011] directions. In the case of a perfectly uncorrelated random
walk f = 1 while, if correlations between jumps are present, f < 1. Our MD values for
the correlation factor are equal to 0.28, 0.59, and 0.76 at 1300 K, 1500 K, and 1700 K,
respectively. As expected, there exists strong correlations between the jumps which are
related to the simultaneous diffusion of oxygen and hydrogen. Indeed, in the previous case
(chapter 5) of the proton diffusion in BaZrO3, there was no oxygen vacancies thus the oxygen
atoms were not migrating, and we obtained a correlation factor close to 1 (0.94).

6.5 Conclusion

The diffusion mechanisms of a proton in GdBaCo2O5.5 have been investigated using standard
(Langevin) molecular dynamics. We have found that the proton presents a 2D diffusion anal-
ogous to that of oxygen in this material. We have evaluated the proton diffusion coefficient
to be more than one order of magnitude greater than the oxygen diffusion coefficient. The
activation energy associated with proton diffusion that we obtain is equal to 0.71 eV which is
smaller than the activation energy for oxygen diffusion. After analysis of the MD trajectories,
we found that proton diffuses through two different mechanisms in this material. The main
mechanism is the standard proton transfer combined with the rotation of H around its first
neighbor oxygen atom. But a non negligible part of the proton diffusion comes from a second
mechanism which consists in the migration of the whole OH group i.e. where both oxygen
and hydrogen atoms jump simultaneously. These two mechanisms have similar activation
energies of around 0.6 eV. We also evidenced strong correlations between the atomic jumps,
since we obtained correlation factor values less than unity. These correlations are related
to the simultaneous diffusion of hydrogen and oxygen atoms in the material. These results
brings some information on the influence of a potential hydration of GBCO: if we consider
for instance the filling of 5% of the oxygen vacancies, we would obtain a conductivity for
protons at 600 ◦C that is 0.5 times that of oxygen atoms. In other words, a slight incor-
poration of protons in GBCO would result in a relatively high proton conductivity, at the
working temperature of PCFC.
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In a first part of this thesis, we have studied in details the QTB method. We have seen
that, when dealing with highly anharmonic systems, QTB-MD simulations should be used
with caution because energy is transferred between the vibrational modes, due to anharmonic
couplings, leading to zero-point energy leakage (ZPEL). ZPEL is the main limitation of QTB-
MD simulations and can lead the method to fail in strongly anharmonic cases. We have shown
that increasing the friction coefficient in QTB-MD simulations can significantly help limiting
ZPEL and even completely remove it in some cases. However, in strongly anharmonic cases,
the increase of the friction coefficient is sometimes not sufficient to remove the leakage. The
QTB method is thus not suitable for the study of such systems, and conventional methods
such as path integral molecular dynamics can be used, in this case.

The QTB method can then be used as a thermostat for PIMD simulations. We have presented
a combined QTB-PIMD method which allows to decrease the number of beads required in
PIMD simulations, and thus reduces the computational cost of these simulations. The QTB
includes a part of the quantum effects in the dynamics of the beads and thus fewer replicas
are needed to converge towards the exact quantum results. We have seen that the gain
obtained by using QTB-PIMD as compared to standard PIMD depends on the quantity of
interest. For the convergence of the total energy for example, the method allows to reduce
the number of replicas by at least a factor of 3, using the estimator that we propose for the
kinetic energy.

In a second part of this thesis, we have studied proton conduction in perovskite materials.
First we have investigated the impact of quantum effects on the diffusion of the proton in
BaZrO3 using PIMD and QTB-MD simulations. We have found that, for temperatures lower
than 800 K, the diffusion coefficient obtained from QTB-MD simulations deviates from the
Arrhenius law. As expected, quantum effects become significant at low temperatures and
tend to increase the diffusion coefficient. However, these results have to be taken with caution
since strong ZPEL was present during these simulations. In order to compare these results
with PIMD, we have computed the free energy barriers associated with proton transfer using
standard MD and PIMD simulations. We found that quantum effects become significant for
temperatures lower than 300 K and, as expected, tend to lower the free energy barriers. We
expect the impact of quantum effects to become significant on the diffusion of the proton
in BaZrO3 for temperatures lower than 300 K. And thus, we do not expect quantum effects
to play a significant role at the typical working temperatures of proton conducting fuel cells
(T ≈ 600 − 900 K).

Finally, in the last chapter, we have investigated the proton diffusion mechanisms in the
double perovskite compound GdBaCo2O5.5. We have evidenced the bidimensional nature
of the proton conduction, similarly to the diffusion of oxygen in this material. Moreover,
two different diffusion mechanisms for the proton exist in this material: the main one is
the standard proton transfer combined with the rotation of the proton around the nearest
oxygen atom, and the second mechanism is the migration of the OH group, where both the
proton and the nearest oxygen diffuse simultaneously.

Further work is needed in order to complete the study on BaZrO3. It would be interesting to
compute free energy barriers associated to the rotation step in order to evaluate the impact
of quantum effects on these barriers and compare to the transfer step. Then, it would also be
interesting to estimate values for the diffusion coefficient from these barriers using transition
state theory. In order to achieve this, we will first need to compute values for the prefactor.
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It could also be interesting to estimate the diffusion coefficient using ring-polymer molecular
dynamics which allows the computation of a diffusion coefficient in the PIMD framework.
One question remain concerning the calculation of free energy barriers using PIMD. Here, we
have decided to compute the barrier associated with the centroid of the ring polymer because
this is the quantity of interest in the Path Centroid Transition State Theory. However, this
centroid free energy barrier is significantly different than the barrier computed using the
replicas. The physical meaning of these two barriers and their differences remains unclear
for now.

Concerning the study of GdBaCo2O5.5, the work done here could be extended by fitting
the potential against different configurations obtained using density functional theory, in
order to ensure that the force field accurately reproduces the potential energy surface of the
proton in this material. Moreover, no quantum effects have been included in this study since
there are not significant at the temperatures studied here. It could be interesting to study
the impact of quantum effects at lower temperatures in this material, in particular to see
what mechanism (proton transfer/rotation or OH migration) will be the most affected by
the inclusion of quantum effects.

During this thesis, we have seen that several methods, such as PIMD or QTB, allow the
computation of quantum time-independent average values (average energy, position distribu-
tion or pair correlation function for example). The computation of quantum time-dependent
quantities however remains a computational challenge. In the path-integral framework, time-
dependent quantities are not directly accessible, and one need to use approximate methods
such as ring-polymer molecular dynamics or centroid molecular dynamics to compute them.
The QTB method provides another framework to approximately compute quantum time-
dependent quantities, such as vibrational spectra or diffusion coefficients for example, with
no additional computational cost compared to standard molecular dynamics simulations.
The QTB method has indeed been able to give satisfactorily results on the vibrational spec-
tra of polyatomic molecules or high-pressure ice. However, it remains unclear to what extent
the dynamics obtain with the QTB is a good approximation to the real quantum dynam-
ics. In my opinion, this is the most fundamental question that remains on the QTB method.
Thus, I think that it would be interesting to investigate this question for example by comput-
ing time-dependent quantities (such as correlation functions) on simple 1D systems using the
QTB method and compare the results to other approximate methods, such as ring-polymer
molecular dynamics or centroid molecular dynamics.

We have seen that the combined QTB-PIMD method reduces significantly the number of
replicas needed for convergence, and thus allow a significant decrease of the computation time
associated with those simulations. Nowadays, the interatomic forces are generally described
using first-principle methods such as density functional theory (DFT). These methods are
accurate but are also more computationally demanding than other methods such as force
fields. PIMD is also computationally expensive since it requires one to simulate several
replicas of the system. For this reason, PIMD and first-principle description of the forces are
rarely used together. We believe that the combined QTB-PIMD will be particularly useful
to make first principles PIMD studies more affordable. For future works, it would also be
interesting to try to extend the combination to the case of centroid MD or ring polymer MD
which allow the computation of time-independent quantities.
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The layout of this manuscript is based on the Ph.D. thesis LATEX template created by Olivier
Commowick available on http://olivier.commowick.org/thesis_template.php.

Most of the figures have been made using the following free softwares: gnuplot, VESTA and
inkscape.
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Titre : Modélisation et simulation des effets quantiques en dynamique moléculaire: application à l’étude
de la conduction protonique
Mots clefs : dynamique moléculaire, effets quantiques, conduction protonique

Résumé : Cette thèse porte sur l’étude des effets quan-
tiques en dynamique moléculaire (DM). La DM est une
méthode numérique qui permet l’étude des propriétés de
la matière condensée. Cependant, la méthode étant basée
sur la mécanique classique, les effets quantiques associés
à la dynamique des noyaux, tels que l’énergie de point
zéro ou l’effet tunnel, ne sont pas pris en compte. Ces
effets quantiques nucléaires peuvent cependant jouer un
rôle majeur, en particulier aux basses températures et/ou
dans les systèmes contenant des atomes légers comme
l’hydrogène. La dynamique moléculaire par intégrales de
chemins (PIMD) est souvent utilisée, dans ce cas, pour
tenir compte de la nature quantique des noyaux. Cette
approche fournit des résultats quantiques exacts, mais
son coût en temps de calcul élevé limite son domaine
d’application. La méthode du bain thermique quantique
(QTB) a été proposée comme une alternative à la PIMD.
L’approche QTB est particulièrement intéressante car son
coût en temps de calcul est équivalent à celui de la DM
standard permettant ainsi l’étude de systèmes complexes
et de plus grande taille. La première partie de cette thèse
est consacrée à l’étude de la méthode QTB. Nous avons
étudié le comportement de la méthode sur différents sys-

tèmes modèles afin d’étudier ses limites. En particulier,
le problème du "zero point energy leakage" est étudié en
détail et nous montrons que l’augmentation du coefficient
de friction du QTB permet de limiter ce problème. Nous
avons également développé une combinaison de la méth-
ode QTB avec la méthode PIMD. Cette méthode com-
binée QTB-PIMD permet de réduire le coût en temps
de calcul des simulations PIMD standard. Dans une
deuxième partie, nous avons utilisé ces méthodes pour
étudier la conduction de l’hydrogène dans des matériaux
pérovskites. Nous nous intéressons d’abord à l’impact
des effets quantiques sur la diffusion de l’hydrogène dans
BaZrO3, un matériau d’électrolyte potentiel pour piles
à hydrogène. L’hydrogène étant l’élément le plus léger,
un impact important des effets quantiques est attendu.
Nous trouvons que les effets quantiques sont effective-
ment importants à basse température, mais leur impact
sur la diffusion reste faible aux températures de fonc-
tionnement typiques des piles à hydrogène. Enfin, nous
avons étudié les mécanismes de diffusion de l’hydrogène
dans GdBaCo2O5.5. Nous mettons en évidence une dif-
fusion anisotrope dans ce matériau et deux mécanismes
principaux de diffusion.

Title : Modelling and simulation of quantum effects in molecular dynamics: application to the study of
proton conduction
Keywords : molecular dynamics, quantum effects, protonic conduction

Abstract : This thesis deals with the study of quantum
effects in molecular dynamics (MD). MD is a powerful
numerical method to investigate the properties of con-
densed matter systems. However, since the method is
based on classical mechanics, quantum effects associated
with the dynamics of the nuclei, such as zero-point energy
or tunnelling, are not taken into account. These nuclear
quantum effects can, however, play a major role in par-
ticular at low temperatures and/or in systems containing
light atoms such as hydrogen. In these cases, a standard
way to account for the quantum nature of the nuclei is
to use path integral molecular dynamics (PIMD). This
method provides exact quantum results however its high
computational cost limits its range of applicability. The
quantum thermal bath (QTB) method has been proposed
as an alternative to PIMD. The QTB method is particu-
larly appealing because of its computational cost that is
equivalent to standard MD thus allowing to study large
and complex systems. The first part of this thesis is de-
voted to the study of the QTB method. We have studied
the behavior of the method in selected model systems in

order to investigate its limitations. We have focused, in
particular, on the zero-point energy leakage problem and
found that increasing the friction coefficient of the QTB
can significantly limit this problem. We also have devel-
oped another way to use the QTB method by combining
it with PIMD. This combined QTB-PIMD method al-
lows, in particular, to decrease the computational cost
of standard PIMD simulations. In a second part, we
have used these methods to study hydrogen conduction
in perovskite materials. We have first investigated the
impact of quantum effects on the diffusion of hydrogen
in BaZrO3, a potential electrolyte material for hydrogen
fuel cells. Since hydrogen is the lightest element, we ex-
pect quantum effects to have a significant impact on its
dynamics. We find that quantum effects are indeed sig-
nificant at low temperatures although their impact on the
diffusion remains low at the typical working temperatures
of hydrogen fuel cells. Finally, we have investigated the
diffusion mechanisms of hydrogen in GdBaCo2O5.5. We
evidence that the diffusion is anisotropic in this material
and composed of two main diffusion mechanisms.

Université Paris-Saclay

Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France


	I Introduction and methods
	General introduction
	Nuclear quantum effects
	Proton conduction in perovskite materials
	Quantum effects and proton conduction
	Numerical tools development
	Construction of the manuscript

	Nuclear quantum effects in molecular dynamics simulations
	Introduction
	Standard molecular dynamics
	The Langevin thermostat

	The quantum thermal bath method
	Path integral molecular dynamics
	The classical isomorphism
	Computation of macroscopic properties

	Results on one-dimensional systems
	Harmonic oscillator
	Morse potential
	Quartic double-well

	Conclusion
	Complements of chapter 2


	II Study and development of methods
	Limitations of the QTB method: zero-point energy leakage
	Introduction
	Coupled harmonic oscillators
	One-dimensional chain of atoms
	Practical discussions
	Conclusion
	Complements of chapter 3

	Quantum thermal bath for path integral molecular dynamics
	Introduction
	Combining QTB and PIMD
	Modified power spectral density
	Computation of macroscopic properties

	Results on simple one-dimensional systems
	Harmonic oscillator
	Double-well potential

	Results on realistic systems
	Ferroeletric-paraelectric phase transition in BaTiO3
	Proton position distribution in BaZrO3

	Conclusion
	Complements of chapter 4


	III Applications
	Quantum effects on the proton conduction in BaZrO3
	Introduction
	Elementary processes for proton diffusion
	Simulations Details
	Force field description
	Choice of the parameters and details of MD simulations

	Preliminary study and tests
	Structure of barium zirconate
	Proton diffusion

	Quantum effects on proton diffusion
	Diffusion coefficient from QTB-MD
	Free energy barriers from PIMD

	Conclusion
	Complements of chapter 5

	Proton diffusion mechanisms in GdBaCo2O5.5
	Introduction
	Computational details
	Proton diffusion mechanisms
	Correlation factor
	Conclusion


	IV General Conclusion

