N
N

N

HAL

open science

Supervision a building microgrid by machine learning
approaches
Mohsen Dini

» To cite this version:

Mohsen Dini. Supervision a building microgrid by machine learning approaches. Electric power.
Université Paris-Saclay, 2023. English. NNT: 2023UPAST169 . tel-04561293

HAL Id: tel-04561293
https://centralesupelec.hal.science/tel-04561293v1
Submitted on 10 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://centralesupelec.hal.science/tel-04561293v1
https://hal.archives-ouvertes.fr

—
<
o
@
—
O
@
)
LLl
O
Ll
n
LLl
T
—

(@))
O
|_
)
<C
o
)
o™
N
(@]
(o}
|_
Z
Z

@
universite
PARIS-SACLAY

Supervision of a building microgrid
by machine learning approaches

Apprentissage automatique appliqué a la gestion
d'énergie dans un micro-réseau

Thése de doctorat de l'université Paris-Saclay

Ecole doctorale n° 575, electrical, optical, bio : physics and engineering (EOBE)
Spécialité de doctorat : Génie électrique

Graduate School : SIS | Sciences de I'Ingénierie et des Systemes. Référent :
CentraleSupélec

Thése préparée dans l'unité de recherche Laboratoire de Génie Electrique et
Electronique de Paris (Université Paris-Saclay, CentraleSupélec, CNRS), sous la
direction de Anne MIGAN-DUBOIS, Professeure, Université Paris-Saclay, et le
co-encadrement de Florence OSSART, Professeure, Sorbonne Université et Jordi
BADOSA, Ingénieur de recherche, Ecole polytechnique

Thése soutenue a Paris-Saclay, le 14 novembre 2023, par

Mohsen DINI

Composition du jury
Membres du jury avec voix délibérative

Toufik Azib Président

Professeur, ESTACA

Bruno Frangois Rapporteur & Examinateur
Professeur, Centrale Lille

Robin Roche Rapporteur & Examinateur
Professeur, Université de Franche-Comté

Zhixue ZHENG Examinatrice

Maitre de conferences, Université de Lorraine

ECOLE DOCTORALE

Electrons, Photons,

®
universite
PARIS-SACLAY

Physique et ingénierie:

Sciences du vivant (EOBE)

Titre : Apprentissage automatique appliqué a la

gestion d'énergie dans un micro-réseau

Mots clés : Micro-réseau, System de gestion d’énergie, Apprentissage par renforcement profond,

Algorithme DQN, Energies renouvelables

Résumé : Pour faire face aux probléemes liés au
réchauffement climatique, la part des énergies
renouvelables doit étre significativement aug-
mentée. Dans ce contexte, les micro-réseaux
électriques équipé de PV a l'échelle de bati-
ments (building microgrid BMG) représentent
un chemin prometteur.

La gestion efficace des micro-réseaux et la
réduction des colts opérationnels présentent
des défis, notamment en raison de la nature
intermittente des sources d’énergie renouve-
lable, des limitations de stockage et des in-
certitudes liées a la production dénergie re-
nouvelable et a la demande d’énergie liée aux
activités humaines. Par conséquent, un sys-
teme fiable de gestion de I'énergie domestique
(home energy management system - HEMS)
doté de stratégies de prise de décision efficaces
devient impératif pour faire face a ces com-
plexités.

Ce travail de recherche s'intéresse a la ges-
tion d'un micro-réseau a l'échelle d'un bati-
ment, en mettant spécifiquement l'accent sur
les opérations en temps réel. La méthodolo-
gie principale utilisée dans cette étude est l'ap-
prentissage par renforcement profond (DRL).
Contrairement aux méthodes d'optimisation
traditionnelles, l'apprentissage par renforce-
ment ne nécessite pas de prévisions parfaites
de la consommation et de la production, qui
sont souventindisponibles dans des conditions
réelles. De plus, par rapport a dautres ap-
proches d'apprentissage machine, l'apprentis-
sage par renforcement offre des avantages tels
qgue la non-nécessité de vastes ensembles de
données étiquetées. L'objectif de l'apprentis-
sage par renforcement est que l'agent explore
I'espace état/action du systeme et développe
des séquences d'actions optimales pour diffé-
rents états.

Cette theése vise a concevoir un cadre de
processus décisionnel de Markov pour modéli-
ser un micro-réseau de batiment et a dévelop-
per un systeme complet de gestion de I'éner-
gie domestique (HEMS) qui contrle a la fois
l'unité de batterie et les charges thermiques

(eau chaude sanitaire et systeme de chauffage)
au sein d'un BMG. Ce HEMS sera formé en uti-
lisant une approche de DRL pour maximiser
les économies d’énergie et réduire les émis-
sions de carbone, en tenant compte des prix va-
riables de I'électricité, de la demande de charge
et des incertitudes liées a la génération d'éner-
gie renouvelable.

Par conséquent, notre étude commence
par la construction d'un HEMS dans un en-
vironnement simplifié, en se concentrant ini-
tialement sur la gestion de l'unité de batterie
seule, en mettant l'accent sur l'apprentissage
par Q-learning, un algorithme de RL fondamen-
tal mais limité a des états et des actions dis-
crets. Ensuite, un algorithme plus avancé, le
DQN (deep Q-network) et quelques variantes
de cet algorithme comme DDQN et DDQN+
PER, sont déployés pour gérer les états conti-
nus. Dans la deuxiéme étape, notre objectif
principal est de former le HEMS a gérer ex-
clusivement les charges thermiques, en tenant
compte des modeles thermodynamiques de la
chaudiére et de la maison. La phase finale im-
plique lI'apprentissage d'un HEMS pour contro-
ler a la fois l'unité de batterie et les charges
thermiques.

Tout au long de cette étude, nous abor-
dons des défis tels que I'évaluation de I'im-
pact de linitialisation de l'algorithme de la Q-
table de l'algorithme de Q-learning grace a des
connaissances préalables. Nous utilisons éga-
lement une approche par essais-erreurs pour
déterminer les hyper parameétres optimaux de
l'algorithme DQN. De nombreuses expériences
numeériques et des résultats de simulation dé-
montrent que l'agent peut acquérir des straté-
gies efficaces grace a des interactions avec son
environnement. Dans le premier cas d'utilisa-
tion, 'algorithme DDQN+PER présente des per-
formances supérieures lors des phases d'ap-
prentissage et de test par rapport a d'autres
algorithmes RL. De plus, il est évident que ce
HEMS fait preuve de robustesse a travers diffé-
rentes saisons et surpasse une méthode basée
sur des regles quasi-optimales.

Title : Supervision of a building microgrid by machine learning approaches
Keywords : Microgrid, Home energy management system, Deep reinforcement learning, DQN

algorithm, Renewable energies

Abstract : The share of renewable energy re-
sources, such as PV production, must be si-
gnificantly increased to achieve environmental
goals and address global warming concerns.
In this context, Building Microgrids (BMGs) re-
present a promising avenue. However, de-
ploying energy storage units and solar panels
entails substantial investments. Therefore, op-
timizing the utilization of existing PV panels and
Energy Storage Systems (ESS) is crucial to en-
hance BMGs' self-consumption rates and re-
duce local production costs compared to de-
pendence on the main grid.

Efficiently managing BMGs and reducing
operational costs present challenges, including
the intermittent nature of Renewable Energy
Sources (RESs), storage limitations, and uncer-
tainties related to renewable energy produc-
tion and energy demand tied to human activi-
ties. Therefore, a reliable home energy mana-
gement system (HEMS) with effective decision-
making strategies becomes crucial to address
these complexities.

This research delves into advanced HEMS
within building microgrid environments, spe-
cifically emphasizing real-time operations.
The principal methodology employed in this
study is deep reinforcement learning (DRL), a
contemporary machine learning approach that
learns by interacting with the system. Rein-
forcement learning approaches (RL) have de-
monstrated their effectiveness in solving com-
plex decision-making problems across various
domains. Unlike traditional optimization me-
thods, RL for optimal strategies does not ne-
cessitate perfect forecasts of consumption and
production, which are often unavailable in real-
world conditions.

Furthermore, compared to other machine
learning approaches, reinforcement learning
offers advantages such as not requiring exten-
sive labeled datasets, reducing bias from la-
beled data, and enabling exploration of no-
vel task-solving approaches. RL can transcend
simple input-output tasks and propose inno-

vative methods to achieve goals. The training
objective in RL is for the agent to explore the
state/action space and develop sequences of
optimal actions for various states.

This doctoral thesis aims to design a Markov
decision process framework to model BMGs
and develop a comprehensive Home Energy
Management System (HEMS) that controls both
the battery unit and thermal loads (hot wa-
ter boiler and heating system) within a BMG.
This HEMS will be trained using RL to maxi-
mize energy savings and reduce carbon emis-
sions, accounting for variable electricity prices,
load demand, and uncertainties in renewable
energy generation.

Consequently, our study begins by
constructing a HEMS in a simplified environ-
ment, initially focusing on managing the bat-
tery unit alone, emphasizing Q-learning, a fun-
damental RL algorithm. Subsequently, a more
advanced algorithm, Deep Q-Network (DQN),
and some variants like DDQN and DDQN+PER
are deployed to handle continuous states. In
the second step, our primary objective is to
train the HEMS to manage thermal loads ex-
clusively, considering the boiler's and house’s
thermal dynamic models. The final phase in-
volves training a HEMS to control the battery
unit and thermal loads.

Throughout this study, we address chal-
lenges such as evaluating the impact of initia-
lizing the Q-table algorithm with prior know-
ledge. We also employ trial and error ap-
proaches to determine optimal hyperparame-
ters for DQN training.

Numerous numerical experiments and si-
mulation results demonstrate that the agent
can acquire effective strategies through inter-
actions with its environment. In the first use
case, the DDQN+PER algorithm exhibits super-
ior performance during the learning and testing
phases compared to other DRL algorithms. Ad-
ditionally, it is evident that this EMS shows ro-
bustness across different seasons and outper-
forms a near-optimal rule-based method.

| dedicate this work to my beloved wife Maryam, whose enduring patience, understanding, and encouragement

have been my constant motivation.

Your unwavering belief in me has been the driving force behind this journey, and | am grateful for your love and

companionship.

This achievement is as much yours as it is mine. Thank you for being my rock and my inspiration.

Acknowledgements

At the pinnacle of this academic ascent, | extend my deepest appreciation to the remarkable individuals who have

left an indelible mark on my journey.

My sincere gratitude goes to my supervisors, Florence Ossart, Anne Migan Dubois, and Jordi Badosa. Their
guidance, expertise, and unwavering support have been instrumental in shaping the trajectory of this thesis and my
growth as a researcher. | would also like to express my special appreciation to Vincent Reinbold, who was always

present to discuss with me and provide valuable assistance.

The vibrant and collaborative atmosphere fostered by my colleagues at Laboratoire Geeps has been a source of
inspiration. The collective pursuit of knowledge and the exchange of ideas have significantly enriched my research

experience.

To my friends, who have been more than companions on this journey, | express my heartfelt thanks. Your support,
camaraderie, and shared moments of joy have lightened the burdens and added immeasurable richness to this

academic endeavor.

Turning to my family, especially my mother, Fouzieh, | owe a profound debt of gratitude. Their unwavering support,
sacrifices, and steadfast belief in my potential have been the bedrock upon which my academic aspirations have

flourished.

In loving memory of my father, Mehdi, whose dedication to education and intellectual curiosity continues to inspire

me. His legacy is woven into the fabric of this work, a testament to the enduring impact of his values.

Finally, to my wife, Maryam, whose unwavering encouragement, patience, and belief in my abilities have been the

driving force behind this academic endeavor.

In reflection, this thesis stands as a collective achievement, made possible by the diverse contributions of these

exceptional individuals.

Contents

1 Introduction 17
1.1 Context o e 17
1.2 Motivation and contribution of thiswork 19
1.3 Thesisoutline e e 22

2 A literature review of energy management system algorithms in the building microgrids 25
2.1 Introduction L e e 25
2.2 Microgrids o e e e e 26

2.2.1 Microgrid definition L L e e e e e e e e 26
2.2.2 Microgrid control e e 27
2.2.3 Energy managementsystem e e 29
2.3 State of the art of energy managementsystems e 31
2.3.1 EMS based on engineer expertise e 31
2.3.2 EMS based on optimizationmethods 32
2.3.3 EMS based on meta-heuristic optimization approaches 34
2.3.4 EMS based on stochasticapproaches e 35
2.3.5 EMS based on model predictive control e 36
2.3.6 EMS based on artificial intelligent methods 37
2.4 ConCluSION e e 40

3 Deep reinforcement learning 43

3.1 Basic knowledge to understand deep reinforcement learningo 43
3.1.1 Introduction to machine learning e 44
3.1.2 |Introductiontodeeplearning e 46

3.2 Reinforcementlearning e 48
3.2.1 Markov deciSion ProCeSS o i i e e e e 48
3.2.2 Principle of reinforcementlearning 50
323 Q-learning 52

3.3 Deepreinforcementlearning L e 55
3.3.1 Principle e 55
3.3.2 Thenaiveapproach e 56
3.3.3 Thedeep Q-network algorithm 57
3.3.4 The Double DQN algorithm e 59
3.3.5 DDQN with prioritized experience replay (PER) oo o L 60

3.4 ConcClusion e e 63

4 Building microgrid model and problem formulation 65

4.1 Introduction L e e e 65

4.2 Microgrid model e e 67

4.3 Usecase 1 68
4.3.1 Loadconsumption L e e e e 68
4.3.2 PV producCtion e e e e 68
433 Batterymodel. e 68
434 HEMSandoperatingcosts e 69
435 Numericaldata e 69

44 USECASE2 i i e e 70
4.41 Buildingthermalmodel e 70

442 Hotwatertank model e 71

4.43 Thermalcomfort e 73
444 HEMSandoperatingcosts e e 73
445 Numericaldata e 73
4.5 UseCase 3 e e 75
4.6 Trainingdata e e 75
4.6.1 Usecase 1:tertiary buildingdatabase 75
46.2 Usecase?2:theStROBedatabase 80
4.7 Conclusion e 82
Implementation and simulation results of DRL algorithms to train the HEMS 83
5.1 Introduction L e 83
5.2 Q-learning algorithm appliedtousecase 1 e 83
5.2.1 Markov decision process associated withthe system 84
5.2.2 Q-learning implementation 85
5.2.3 Hyper-parameters of the Q-learning algorithm 89
5.2.4 Numerical experiments e e 93
5.2.5 Improving the Q-learning procedure e 97
5.2.6 DISCUSSION e e 101
5.3 HEMS based on DQN algorithms e 101
5.3.1 Principle of the DQN algorithm implementation 102
5832 DQNappliedtousecase 1 i e e 102
5.3.3 Comparison of the DQN, DDQN, and DDQN+PER algorithms 107
5834 DQNappliedtousecase 2 i i i i e e e 110
5.3.5 DQNappliedtousecase 3 i e e e 114
5.4 Hyperparameter determination L e e 117
5.4.1 Performance of a hyperparameterset e 117

542

5.4.3

544

545

5.5 Conclusion e e e e e

6 Conclusions and perspectives

B.1 SUMMArY e e e

6.2 Contributions e e e e e

6.3 Perspectives

List of publications

Résumé en francais

Appendix

A. Sumtree structure e e e e e e e e e e e

B. Funding

References

127

127

128

130

133

135

161

161

162

163

List of Figures

1.1 Renewables share of power generation in the Net Zero Scenario, 2010-2030[3] 18
1.2 The worldwide popularity score of various types of ML algorithms (Mohsen utilization) 21
2.1 microgrid architecture e e 26
2.2 Microgrid classification[31] e e e e e 27
2.3 The MG hierarchical control architecture[33] 28
2.4 EMSfunctions[41] e e 30
2.5 Fuzzy Logic (FL) o e e 32
2.6 MPC Scheme 36
3.1 Machine learning position in Al field [68] e 43
3.2 Machine learning mechanism L e 44
3.3 Classification versus regression [75] o i i i e e e e e e e 45
3.4 Description of DNN model [80]: (a) structure of DNN model; (b) process for forecasting output through
DNNmodel. e 47
3.5 ReLU-activation-function e 48
3.6 Example of a simple MDP with three states (green circles), two actions (orange circles) [86] 50
3.7 Reinforcementlearningsetup L L e 51
3.8 Main algorithms of DRL and their relationship[88] o 52
3.9 Q-learning mechanism L e e e e 54
310 e —greedy strategy e 55

3.11 DQN mechanism o e e e e e e 56

3.12 DAN 1€arning ProCESS . .« v v o v v e e e e e e e e e e e 58
313 DQAN Testingphase o o e e 59
4.1 Microgrid model L e e e 66
4.2 Electricboilerschema e 72
4.3 Raw tertiary building database : Ppv, Poads Pret @and T versustimeo ... 76
44 P, andT,,; time series after replacing missingdata 77
4.5 Normaldistribution [103] e e 77
4.6 P and Ty histograms (At =5mm) . . o o o o o e e e e e e e e e 78
47 Ppeand T,y timeseries (At =30mn) o oo i e e e e 79
4.8 P, and T,y histograms (At =30 mmn) o o e e e 79
4.9 P, and T,,; outliers replacement (At =30mn) e 80
410 StROBe replaced outliers e e e e 81
51 Q-able 87
5.2 Decay of e during the 5000 episodes of the learningphase 91
5.3 Value of 4 for a 24-hour horizon with a 30-minute time step 91
5.4 Value of ~¢ for a 24-hour horizon with a 12-minutetimestep 92
5.5 Mean cumulative penalty during trainingphase 94

5.6 Real-time operating cost of 62 consecutive days versus number of training episodes performed 95

5.7 Power and stocked energy time profile on October2018 96
5.8 Initialization mode 2 98
5.9 Initialization mode 3 e 99
5,10 Learning CUIVE o o e e e 104
5.11 Energy management report from Monday, 8 Oct 2018 to Saturday, 13 Oct2018 105
5.12 Energy management report from Monday, 9 Apr 2018 to Saturday,14 Apr2018 106

5.13 Histograms of the actions taken during eachtestphase 106

5.14 Learning curve for DQN, DDQN and DDQN+PER algorithm during autumn period 109
515 Learning CUrvVe o o e e e e e 113
5.16 Energy management report for November 5th2018 L. 113
5.17 RL hyperparameter tuning ProCeSS o v v v v i e e e e e e e e 118
5.18 GA search for the best hyperparameters for DDPG in a chosen Gym [111] 122
5.19 Distributed HSP-RL architecture [111] e 123

List of Tables

1.1 Characteristics of a traditional system versus the smartgrid 18
2.1 Comparison of EMS Design Algorithms 41
5.1 Learning hyper-parameters configuration 93
5.2 Learning results for different hyper-parameter configurations. The final cost corresponds to the daily

operating cost averaged over the 62 days of the training database 95
5.3 Test results for different hyper-parameter configurations. The cost corresponds to the daily operating

cost averaged over the 31 days of October2018 i 97
5.4 Influence of the initialization mode L 100
5.5 Neural network and training parameters e 104
5.6 Testphaseresults e e 107
5.7 DQN, DDQN and DDQN+PER parameters i e 108
5.8 Operating costofin October e 109
5.9 Operating costofin November e 110
5.10 Operating cost of in December e 110
5.11 Neural network and training parameters 112
5.12 Neural network and training parameters e 116

Abreviations

IEA

RES

DER

ESS

MG

BMG

PV

EMS

HEMS

Al

ML

RL

DRL

TPU

GPU

PCC

MG-EMS

ucc

IEC

International Energy Agency
Renewable Energy Source
Distributed Energy Resources
Energy Storage Systems

Microgrid

Building Microgrid

Photovoltaic

Energy Management System

Home Energy Management System
Artificial Intelligence

Machine Learning

Reinforcement Learning

Deep Reinforcement Learning
Tensor Processing Unit

Graphics Processing Unit

Point of Common Coupling
Microgrid Energy Management System
Unit Commitment Coupling

International Electrotechnical Commission

MGCC

LC

HVAC

LP

RB

MILP

MINLP

DP

FL

PSO

EA

GA

CLS

FSA

SO

MPC

KNN

SVM

DL

NN

DNN

ANN

SoC

ReLU

MSE

MDP

Microgrid Central Controller

Local Controllers

Heating, Ventilation, and Air Conditioning

Linear Programming

Rules Based

Mixed Integer Linear Programming

Mixed Integer Nonlinear Programming

Dynamic Programming

Fuzzy Logic

Particle Swarm Optimization

Evolutionary Algorithms
Genetic Algorithm
Chaotic Local Search
Fuzzy Self Adaptive
Stochastic Optimization
Model Predictive Control
K-Nearest Neighbor
Support Vector Machines
Deep Learning

Neural Network

Deep Neural Network
Artificial Neural Network
State of Charge
Rectified Linear Unit
Mean Square Error

Markov Decision Process

10

DQGN

DDQN

PER

IS

Deep Q-Network
Double Deep Q-Network
Prioritized Experience Replay

Importance Sampling

11

12

Nomenclature

Chapter 3:

X Input variable

f(z) Function of x

Y Output variable

X’ New inputs

Y’ Predict outputs

Wi, j Weights between hidden layers
n; Neuron’s calculated values
7 output value of a neural net
S State space of a MDP

A Action space of a MDP
R(s,a) Reward function

T(s,a,s’) Transition function

t Time step

% Discounted factor

T Policy function

T Optimal policy

VT Value function of a policy
V* Optimal value function

13

Q"(s,a)

Q"(s,a)

Q(St7 at)

Q(s,a,0)

Ly

9/

|3+

Chapter 4:

Proaal(t)
Pru(t)

Preat(t)
Pyria(t)

Pbat (t)

Q-value function at state s and action « following the policy
Optimal Q-value function at state s and action a
Exploitation rate

Learning rate

Length of a training episode

Q-value at time step t

Weights of Q-network

Q-function at state s and action « following the policy =
Loss function

Replay memory

Weights of target Q-network

Magnitude of our TD error

Little constant error

Prioritize experience

Probability of sampling transition

hyperparameter used to reintroduce randomness
Number of equally spaced intervals

replay buffer size for PER

Load power needed at time ¢

Hot water boiler power needed at time ¢
Heating power needed at time ¢

Grid power delivered at time ¢

Battery power delivered at time ¢

14

Ppo(t)
Cunsatis fied
Coria
Cotf—peak
Cheak—hour
Epat (1)

gl

Ebatmin

Ebatmam

Pbatmaac

Thwmin
Thwmam

Tenv

Tamb

Q

h

Chy

PV power delivered at time ¢
Unsatisfied energy cost

Grid energy cost at time ¢

Grid energy cost at off-peak hours
Grid energy cost at peak hours
Battery state of charge at time ¢
Battery efficiency

Battery state of charge minimum limit
Battery state of charge maximum limit
Maximum delivered power of the battery
Temperature

Indoor temperature

Minimum indoor temperature
Maximum indoor temperature

Hot water temperature

Cold water temperature

Minimum hot water temperature
Maximum hot water temperature
Qutdoor temperature

Temperature in the room where the hot water tank is located
Thermal energy in joules J

Heat transfer coefficient in W/(m?K)
Surface area in square meters m?
Heat loss coefficient(W/K)

System inertia

Thermal capacity of the hot water tank (J/kg.K)

15

Cy Specific heat capacity of hot water (k.J/kg.K)

Upoiter Coefficient of heat transfer by the walls of the hot water tank (W/m?K)
Atank Thermal conductivity of the walls of the tank (W/m?K))

DHW flow rate of hot water withdrawn(kg/s)

L Median

o Standard deviation

Pyet(t) Net power demand at time ¢

Caay daily operational cost as the objective function

Chapter 5:

SoC Battery state of the charge

Emin Minimum exploration rate

€Emaz Maximum exploration rate

€decay Exploration rate decay

Nepisode Number of training episodes

Chatuse penalty coefficient related to the use of the battery

Cpushed penalty coefficient related to the PV production shedding

Cunsatis fied penalty coefficient related to the unsatisfied power net demand
Cyriduc penalty coefficient related to the purchase energy during Off-peak
Cyridap penalty coefficient related to the purchase energy during Peak hours

16

Chapter 1

Introduction

1.1 Context

During the last century, because of industrialization, the need for energy and energy-related CO2 emission have
constantly risen [1]. This historical carbon emission causes the dramatic problems of climate change and global
warming. Several conferences were organized and agreements try to overcome these problems. For example, the
2015 Paris agreement considers several scenarios : the faster transition scenario is based on a 75% decrease
of energy-related CO2 emissions by 2050. This reduction should be possible thanks to energy efficiency gains,
renewable energy technologies, and shifts to low-carbon electricity. Huge efforts are needed, since fossil fuels have
met around 70% of primary energy demand growth in 2018 [2]. According to the international energy agency (IEA)
[3], the share of renewable sources in global electricity generation reached 28.7% in 2021. However, in order to
meet the IEA’s net zero emission scenario target, renewable power production needs to significantly expand and
reach 60% by 2030 (Figure.1.1). To achieve this objective, the society must accelerate the use of renewable energy

sources (RESs) like solar and wind generation to produce more low-carbon energy.

In traditional power systems, the electric power flow is unidirectional, from supply to demand. In this structure, most
power plants are located far from the population and expensive transmission lines transfer energy from production

to consumption. The fully controlled traditional power plants guarantees the power balance of the whole system.

The increasing penetration of RESs leads the electricity network towards a decentralized structure. In this new
structure, the RESs are distributed and located near power consumption; consequently, there is less loss related to
the transmission system. On the other hand, the intermittent nature of RESs related to weather conditions, as well
as the uncertainty of both production and consumption, make it challenging to balance production and consumption.

Therefore there are more and more used with dispatchable units like energy storage systems (ESS) to alleviate the

17

70

3ZN

60

50

40

30

20

QT\TWT%T&T%T%T«T%T%TQT\ N %I&I%IQ}II\ IQ)IQ, iz
O N A A A N A

Figure 1.1: Renewables share of power generation in the Net Zero Scenario, 2010-2030 [3]

fluctuation of their generation [4].

As defined by [5], "A smart grid is an electricity network that uses digital and other advanced technologies to monitor
and manage the transport of electricity from all generation sources to meet the varying electricity demands of end
users. Smart grids coordinate the needs and capabilities of all generators, grid operators, end users, and electricity
market stakeholders to operate all parts of the system as efficiently as possible, minimising costs and environmental
impacts while maximising system reliability, resilience, flexibility and stability." In this energy transition, microgrids
are important building blocks of the smart grid. They are one of the most promising concepts for the current energy
transition and are defined by the IEEE standard 2030.7 as "a group of interconnected loads and distributed energy
resources with clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid
and can connect and disconnect from the grid to enable it to operate in both grid-connected or island modes." [6].
The main characteristics of traditional systems versus smart grids are summarized in the 2018 energy atlas 2018

[7] and shown in table 1.1.

| | Traditional system | Smart grid |
Production | Few large power plants Many small power producers
Market Centralized, mostly national Decentralized, ignoring boundaries

Transmission | Based on large power lines and pipelines | Includes small-scale transmission and regional
supply compensation

Distribution | Top-down Both directions

Consumer Passive, only paying Active, participating in the system

Table 1.1: Characteristics of a traditional system versus the smart grid

18

A recent Eurostat publication indicates that in 2020, households represented 27% of the final energy consumption
in the EU [8]. Installing rooftop PV panels turns the building into a prosumer (altogether producer and consumer). It
reduces transmission losses, the carbon footprint and the operating costs. Optimizing the self-consumption would

make a vital improvement to facilitate the power balance of the main grid and simplify the role of the market operator.

This is why the concept of the building microgrid (BMG) has emerged as a solution to take advantage of the oppor-
tunities offered by renewable energy sources without suffering the negative effects associated with their uncertainty
[9], [10]. To maximize self-consumption in a BMG, there are two ways. the first one is to add an energy storage
system to absorb the excess electricity produced by PV panels and use this energy when needed. The second one

is load management, referred to as demand side management [11].

1.2 Motivation and contribution of this work

To achieve the objective of zero net emissions, BMGs can play an important role. One of the essential problems in
developing BMGs is the high-cost energy storage units and solar panels. Over the years, a lot of research has been
done to develop batteries and PV panels technologies and reduce their cost. In addition, the optimal use of existing
PV panels and ESS units associated to demand-side management can maximize the auto-consumption rate in
BMGs and reduce the cost of local production, compared to buying energy from the main grid. A variable energy
tariff or a reward-penalty mechanism based on the rate of auto consumption has been established by grid operators
in different countries to encourage auto consumption. The saving made by this optimal usage can convince the end

users to become prosumers and make the BMGs sustainable and affordable.

The optimal management of a BMG faces issues such as the intermittent nature of RESs, the limitations of storage,
and the uncertainty of both the RESs production and the energy demand related to human activity. Operational cost
reduction is another problem. Therefore, reliable home energy management systems (HEMS) that perform efficient
decision-making strategies are increasingly critical. The issue is to make optimal decisions when allocating and
scheduling the different units of the BMG. Optimal strategies can be calculated, provided that perfect consumption
and production forecasts are available. In various studies like [12] and [13], authors used algorithms like dynamic
programming, particle swarm optimization, genetic algorithm, or memory-based genetic algorithms to manage the
microgrids to reduce operational cost or optimize the electric power flow and they have shown the efficiency of these
algorithms. The most important limitation of these algorithms is the need for a forecaster to predict future energy
demand and renewable energy production. In real operating conditions, perfect forecasts are not available and

real-time algorithms are needed.

Recently, machine learning algorithms like reinforcement learning approaches (RL) have shown their efficiency in

handling complex decisions making problems in various domains [14]. Figure 1.2 is an update of the Figure 1

19

of reference [15] which illustrates the growing success of machine learning between January 2015 and January
2023. This graph was obtained using the Google Trends website [16]. It compares the worldwide popularity scores
of different types of machine learning (ML) algorithms, including supervised, unsupervised, semi-supervised, and
reinforcement learning. The popularity scores are calculated based on the number of search queries related to the
scientific domains. They are scaled such that a value of 100 represents the peak popularity for a term, while a value
of 50 means the term is half as popular. Figure 1.2 shows that machine learning algorithms have experienced a

growing trend in popularity, with reinforcement learning algorithms becoming the most popular after March 2022.

Reinforcement learning algorithms have gained popularity for several reasons. One key advantage is that they can
solve decision-making problems and replace traditional controllers, impossible with other machine learning algo-
rithms (supervised or unsupervised) designed to solve classification, regression, or clustering problems. Recently,
reinforcement learning algorithms have demonstrated their efficiency as a model-free optimal controller in various
complex systems like car driving, self-playing game, managing complex power grids [17], or controlling energy man-
agement system of the microgrids [18]. Moreover, the progress in machine learning algorithms, particularly deep
neural networks, showed remarkable results in applications such as image recognition, machine translation, and
machine learning in general. These advances have also been applied to reinforcement learning algorithms by com-
bining deep neural networks with reinforcement learning algorithms, named deep reinforcement learning (DRL) and
led to significant advances in the field. This combination adds the capability of handling large-scale dimensional
problems to RL algorithms. Therefore, DRL can handle decision-making problems by training an optimal neural
network architecture [19]. Finally, increasing computing power available through tools such as GPUs (graphics pro-
cessing units) and TPUs (tensor processing units) allowed for more complex problems to be solved and allowed to

train more accurate models, which increased reinforcement learning algorithms’ performance.

In DRL algorithms, an artificial intelligence model, refered to as an agent, is trained by a trial and error mechanism
based on interaction with its environment. The agent receives rewards and punishments in response to the actions
it chooses to execute in the environment. The main objective of this agent is to maximize the reward that it receives.

This training mechanism is very close to the manner in which a human learns.

Compared to other machine learning algorithms, one of the important advantages of RL is that there is no need
for massive labeled data sets. Therefore, there is no need to spend time labeling data sets. For RL algorithms the
amount of bias artificially introduced by labeled data sets is limited. Moreover, in other machine-learning algorithms
like supervised algorithms, the model can just learn the task defined by labeled data, but RL can explore its envi-
ronment in a new way and propose a new manner of completing a task. Based on the nature of the goal-oriented
learning process of RL, it can learn more than a simple input-output task (the case of supervised machine learning).
Actually, the goal of the training is to make the agent explore the state/action space and build sequences of optimal

actions for each possible state.

20

Intesrest over time based on web search

X K
f \
[\\/_ﬂ/__&i V\.//V\/\/ | ¥
|
ir A A J--:
ag 7 - =X = - /
. N\ y
e - v
. {2
0
’f;‘_
o
g SASDEE 2 HEEee g eman b oaun puE 0 et
4 HdadgdddrEREERAR N NESNERY
= FRREARRRAEARRAERARRAERERAEERREARRA
e [2 A OECEMIENE fE@rNing: (Worldwide) - = supervised learning: (Worldwids)
unsuperysed learning: (Worldwide) semi-superysed lear ming: (Worldwide)

Figure 1.2: The worldwide popularity score of various types of ML algorithms (Mohsen utilization)

Despite the proven efficiency of these algorithms in managing complex environments, in the building microgrid
domain, most of the published studies consider a simplified system or focus on managing the battery or the demand
side management separately. For example, in [20], authors propose a DRL algorithm to control the battery unit
of a dwelling and minimize the cost of the energy purchased from the electricity grid. In [21], the main objective
is to use DRL algorithms like deep Q-network and double deep Q-network algorithms to sustain ideal levels of
thermal comfort and air quality, while minimizing the amount of energy used by air conditioning units and ventilation
fans. In the investigated environment, the temperature can be adjusted using a limited discrete set of commands
and the ventilation fan has an on/off state. In [22], authors propose a reinforcement learning algorithm to tackle
the energy management of an islanded microgrid with no forecaster. This microgrid consists in solar PV panels,
a diesel generator, a battery, and the objective is to reduce the operating cost. The authors tackle the problem
of improving the training process in the presence of rare events but consider a very simple system with only two

actions (charge/discharge the battery).

The main objective of the present research is to design a complex home energy management system (HEMS) that
manages the battery unit and the thermal charges (hot water boiler and heating system) of a BMG. Therefore this
HEMS must control the demand side management and the energy storage system simultaneously. This HEMS will
be trained by RL approaches to maximize energy saving and reduce the carbon footprint considering a variable

electricity price and all uncertainties about the load demand and the renewable energy generation.

This HEMS makes optimal decisions in real-time thanks to RL algorithms. These approaches do not rely on any

forecaster to predict PV production or load consumption. However, they require a database of past time series of

21

PV production, air temperature, and load consumption. The RL algorithms extract knowledge about the production

and consumption time-series statistics.

This work starts by building a HEMS in a simplified environment considering the battery unit and ignoring thermal
loads. This HEMS will first be based on Q-learning, which is a basic RL algorithm dedicated to discrete state/action
environments. Then, we will employ a more sophisticated algorithm, known as deep Q-network (DQN), which can
handle continuous states. In the next step, the battery is left out and we will apply DQN to train the HEMS to manage
the thermal loads alone (hot water boiler and heating system). The system is simulated by the thermal dynamic
models of the boiler and the house. The final step investigates the training of a HEMS that controls both the battery

unit and the thermal loads.
The contributions discussed in this study are as follows:

+ Design a Markov decision process framework that models the BMG and the HEMS,

Create the HEMS in 3 phases : battery management alone, thermal loads management alone, and finally

battery and heating loads management,

Implement the Q-learning algorithm, and then the DQN algorithm to train the HEMS,

Study the impact of the initialization of the Q-table algorithm with a priori knowledge,

* Follow a trial-and-error method to find the optimal hyper-parameters for the training phase of the DQN algo-

rithm.

1.3 Thesis outline

A solid background in the advantages and challenges of BMGs, HEMS, and RL algorithms is essential to lead this

research.

Chapter 2 presents the different concepts and definitions used in this work through a literature review of these
concepts. The first part of this chapter explains the concept of microgrids and their importance in the new topology
of the power system. Then a definition of the home energy management system (HEMS) is presented, and the state

of the art in HEMS is discussed.

Chapter 3 discusses the basics of machine learning (ML) and especially the so-called reinforcement learning (RL)
approach. Then we recall some applications of deep reinforcement learning and their extensions to design efficient

HEMS for microgrids.

Chapter 4 provides a detailed description of the mathematical modeling of the BMG electrical components used for

emulating the real behavior of a BMG, including the PV arrays, a battery unit as ESS, and consumption profile. It

22

also details modeling the electricity price evolution and the building power equilibrium. In this chapter we will study
the microgrid model through three different use cases. The numerical data used for the training process is also

detailed in this chapter.

In chapter 5 the implementation of DRL algorithms to train the HEMS and simulation results will be presented.
We start with training the basic algorithms like Q-learning and progressively move toward using more sophisticated
algorithms like DQN and DDQN and DDQN+PER algorithms. In the first step, we study the energy management
system using a Q-learning algorithm, which aims to minimize operating costs by managing the battery. Next, we
apply the DRL algorithm to manage the domestic hot water boiler and the heating system to decrease energy
consumption while preserving the users’ comfort. Therefore, the main objective of our EMS is to increase self-
consumption in a building microgrid and, as an effect, reduce operating costs. Finally, we add a battery unit to
this system and study the impact of this ESS on operating cost reduction. At the end of this chapter we discuss
the hyperparameters optimization problem in RL methods and the importance of this study to have a robust and

efficient learning process.

The last chapter outlines all the experimental studies performed in this thesis and proposes some directions for

further research on energy management in the field of building microgrids.

23

24

Chapter 2

A literature review of energy management
system algorithms in the building

microgrids

2.1 Introduction

The increasing demand for electricity due to the world population and economies growth during the 215 century has
created many environmental problems such as air pollution and global warming [23]. To tackle these challenges,
the energy transition and the maximum production of clean energies are essential. During recent years, there has
been a massive global investment to increase the share of distributed energy resources(DER) and produce clean
electricity [24],[25]. However, all uncertainties related to power generation by DERs created much complexity in
managing the distribution grids. Therefore, utilities must adapt the grid infrastructure and strategies to maintain
the grid’s resiliency and reliability. In this environment, digital data streams (DDSs) [26] play an important role in
managing such a complex electricity grid. In this context, we can define a smart grid as a modernized electrical
grid using DDSs and information technology to more efficiently produce, transmit, and distribute electricity [23].
Therefore, new technologies like smart meters and smart management are needed to transform the traditional

power grid into a smart grid.

Microgrids are one of the technologies that can be used in this new structure to reduce carbon emission and
simultaneously increase the infrastructure resiliency to extreme weather events [27]. To reach this goal, an efficient

energy management system unit (EMS) is needed in each microgrid to maximize the DER exploitation and minimize

25

the power dependency on the main grid.

This chapter is structured as follows. Section 2.2 explains what microgrid are and their capability to improve the tra-
ditional grid structure. This section also talks about the different levels of control in a microgrid. Section 2.3 focuses
on the role of the energy management system of the microgrid. Section 2.4 reviews the main energy management
algorithms found in the literature. Section 2.5 introduces machine learning algorithms for EMS problems and the

application of deep reinforcement learning to microgrids. Finally, section 2.6 concludes this chapter.

2.2 Microgrids

2.2.1 Microgrid definition

Microgrids are an essential component for the developement of smart grids [28]. As shown in Figure 2.1, a microgrid
is a small-scale power system containing distributed energy resources(DER), an energy storage system (ESS),
traditional power generation like diesel generators, and an energy management system (EMS) to orchestrate all

theses components [29].

Figure 2.1: microgrid architecture

A microgrid is defined by the IEEE standard 2030.7 as "a group of interconnected loads and distributed energy
resources with clearly defined electrical boundaries that acts as a single controllable entity with respect to the grid

and can connect and disconnect from the grid to enable it to operate in both grid-connected or island modes." [6].

Based on this definition, a microgrid can be connected to a utility grid through a point of common coupling (PCC)

[30]. To maximize the benefits of DERs, they should be connected to the utility grid. In the grid-connected mode, the

26

microgrid can benefit from the advantageous tariff during off-peak periods, and the grid, in exchange, benefits from
the low carbon production by the microgrid. However, if there is any disturbance or failure in the utility, the microgrid
can operate in islanded mode and guarantee the system’s safety and stability. In [31], authors classify microgrids

according to their power type, supervisory control, operation mode, supply phase, and application as shown by 2.2.

Microgrid Classification

Power Supervisory

Bhaca . "
type Control Phase Application
AC DC Centralized Decentralized i Single Three Residential Utility
Phase Phase or or
commercial muncipility
or or
Industrial military

Figure 2.2: Microgrid classification[31]

Microgrids are complex renewable energy systems and require appropriate strategies to manage their complexity.
These energy systems are optimized by sophisticated microgrid supervisory controllers and microgrid energy man-
agement system (MG-EMS) that solve decision-making strategies. From the point of view of the end user, these
strategies should reduce the operational cost of DERs, reduce the electricity bill, and increase the microgrid’s re-
silience and reliability. From the point of view of the utility, they should enhance the power quality, reduce the power
peaks, reduce the period of load variability, reduce line losses and outages in transmission and distribution systems,

reduce the cost of infrastructure maintenance, and mitigate the CO2 emissions for sustainable development.

2.2.2 Microgrid control

Microgrid controllers have to deal with several issues related to different technical areas, physical levels, and
timescales. It should provide optimized services to microgrids during grid-connected and islanded modes. There-
fore, microgrid control is a complex multi-objective problem [32]. Figure 2.3 shows a general hierarchical control
structure that separates the microgrid control tasks into different levels and time horizons. As in conventional trans-
mission systems, the control is conceptually divided into zero, primary, secondary, and tertiary levels, according to

the system structure and the different speed responses, operation time, and infrastructure requirement [33].
The component level control and the primary control act at the device level within micro-seconds to seconds. The

27

A
* Energy Management
£ * System Optimization
A * Optimal Dispatch
ey * Aclive/Reactive Power Reference Generation
Minutes
Secondary * Voltage &nd Frequency Restoration
Control + Real/Reactive Power Set Point Adjustment
Seconds
* Violtage and Frequency Stabilization
Primary Control * Draop Control
» Active Load Sharing
Milliseconds
+ [nner Control Loaps
Gump&n::;ll 2 + Module Control
Microseconds * | ocal Protection

Figure 2.3: The MG hierarchical control architecture[33]

component level control comprises the internal control loops and protection of the devices such as classical gen-
erators, power electronic components, local loads, and DREs. The primary control provides voltage and frequency
stabilization within the microgrid. The conventional droop methods, adjustable load sharing method [34] and adap-
tive droop control [35] are applied in response to frequency and voltage droops and prevent the circulation of active

and reactive power.

The secondary control operates in the second to minute range and ensures a reliable and secure operation of
the microgrid in both grid-connected and stand-alone modes. It keeps the frequency and voltage deviations within

predefined limits at the PCC. Active and reactive power dispatch from each DER is also managed at this level.

The tertiary control is the highest control level in microgrids and works in the several minutes to several hours
range. The tertiary control level is responsible for optimal dispatching within the microgrid. In order to have optimal
usage of all microgrid components and efficient operational planning, active and reactive power set points are
calculated based on the expectations about future behavior. This control level is also responsible for selling and
buying electricity to the utility grid. An energy management system (EMS) is used in this stage to find the optimal

set points under economic and technical objectives.

Other publications divide the control levels into primary, secondary, and tertiary control [36], [37]. In these classifi-
cations, the primary control is responsible for the local or internal control, featuring the fastest response. In general,
the primary control provides the reference points for the voltage and current loops of the MG sources, synchronous

generators, and other elements in the MG.

28

The secondary control is referred to as the microgrid Energy Management System (EMS); this level is responsible
for the reliable, secure and economical operation of microgrids in either grid-connected or stand-alone mode. This
control level operates in a time frame between several minutes till several hours. Secondary control is the highest
hierarchical level in microgrids operating in stand-alone mode. The role of the EMS is to dispatch the available DER
units and dispatchable loads and find the optimal unit commitment coupling (UCC) to ensure reaching objectives

like reducing the microgrid’s operational cost.

Tertiary control sets optimal set points depending on the requirements of the host power system. It is responsible
for coordinating the operation of multiple microgrids interacting with one another in the system. Therefore, tertiary
control can be considered part of the host grid, not the microgrid itself. Hence, this part is not discussed in this

thesis.

2.2.3 Energy management system

This section describes the energy management system notion and its objectives in a microgrid. Next, we talk about

the different supervisory control architectures of MG EMS.

As defined by the International Electrotechnical Commission (IEC) in the standard IEC61970 related to EMS ap-
plication program interface in power systems management, the EMS is “a computer system comprising a software
platform providing basic support services and a set of applications providing the functionality needed for the effective
operation of electrical generation and transmission facilities so as to assure adequate security of energy supply at

minimum cost” [38].

Generally, the EMS is a unit that performs efficient decision-making in a power system. Therefore, in the microgrid
community, the EMS is a software whose issue is to take optimal decisions when allocating and scheduling the
different generation, storage, and load unit to achieve the microgrid objectives [31]. As mentioned previously, the
EMS objective can be unique, like operational cost reduction, or multiple, like reducing the operational cost, the
CO2 emission, or power loss. It is generally considered a non-linear problem, with objectives typically defined by

the user.

The MG EMS architecture can be centralized or decentralized [39]. In centralized EMS, the microgrid central
controller (MGCC) receives all the information from all energy units and determines the optimal energy scheduling
of the MG based on its objectives and constraints. Then it sends these decisions to all local controllers (LCs). In this
strategy, the advantage is that the MGCC can achieve the global optimum of the multi-objective EMS problem based
on all available information. This strategy has several drawbacks, like a heavy computation process and reliability.

Any failure in the communication system may cause a general shutdown.

On the other hand, decentralized EMS architectures connect all the local controllers through a communication bus.

29

EMS
FUNCTIONS

Data Monitoring

Data Analytics

'

Forecasting

-unnnuu-uul -----------------

Optimization

. Real-time Control

Figure 2.4: EMS functions[41]

Each local control (LC) system knows the operation point of other LCs. Each LC determines the operating points of
the local structure based on information received from other LCs and according to different optimization objectives.
In this EMS strategy, the computing process is divided into distributed and light processes. Moreover, adding a
new energy resource into the microgrid and extending the control system is easy. Therefore, the redundancy and
modularity of the system are improved [40]. One of the drawbacks of this strategy is the potential complexity of its

communication system.

In general, centralized strategies are more suitable for isolated microgrids with critical demand-supply balances and
a fixed infrastructure, while decentralized approaches are more suitable for grid-connected microgrids, with multiple

owners and fast-changing number of DER units [36].

In the present study, as the structure of our BMG does not change during its exploitation, we are developing a

centralized HEMS.

According to [41], a microgrid EMS performs various functions before each control operation. Figure 2.4 represents
these functions. Data monitoring and analyzing functions are involved in energy market prices, meteorological
factors, etc. Forecasting functions concern the power generation of DERs and load consumption. The EMS opti-
mization functions involve operational scheduling, unit commitment, economic dispatch, etc. These functions help
the EMS optimize the MG operation while satisfying the technical constraints. Real-time control functions relate to

voltage and frequency control.

30

The issue is to take optimal decisions when allocating and scheduling the different units of the microgrid. In the next
section, a review of some EMS strategies is provided and their advantages and inconveniences of these methods

are discussed.

The objective of the EMS in this study is to minimize the operational cost of the microgrid without any forecaster, but
based on past data. The EMS is designed to respond in real-time to the microgrid’s net energy demand and control

the microgrid’s battery and other controllable elements like the water heater or the HVAC system.

2.3 State of the art of energy management systems

Many studies have been done to design efficient energy management systems for microgrids using various so-
lutions. These methods have been used to manage microgrids with different topologies or objectives. Several
objectives have been considered in these studies, like electrical cost reduction and CO2 reduction respecting dif-
ferent constraints like available ESS or thermal comfort interval. In this section, we try to present some of these
methods and strategies through a literature review. According to [31], the algorithms used to design a MG EMS can

be classified into different general categories as described in the next sections.

2.3.1 EMS based on engineer expertise

The simplest approach to design an HEMS is to try to use the engineer expertise and know-how. This knowledge
was first formalized as logic rules stating which action should be taken given some state of the system. This basic

approach has been extended to fuzzy logic.

EMS based on rules

A rule-based controller is a fundamental approach to control a non-complex microgrid. In this approach, the rules
are made by human knowledge and expertise. In [42], authors proposed a centralized rule-based strategy to control
an MG for both islanded and grid-connected modes. They consider the battery’s state of charge (SoC) below 80%
for operating the fuel cell in the islanded mode. While in grid-connected mode, the SOC of the battery must always
be more than 60% to ensure reliable operation in islanded mode. In this strategy, the voltage and frequency stability
of the MG system is respected through a smooth transition between islanded and grid-connected modes. An online
rule-based EMS is designed to manage a laboratory-scale microgrid in [43]. In this microgrid, the EMS optimizes
the operation of the storage unit and different energy resources, such as wind and solar, in real time. In this system,
the control is done by putting the battery on charging or discharging mode, load shedding, and PV curtailing at each

time step.

The main drawback of this method is the complexity of designing a rule-based mechanism for a complex system

31

and the lack of adaptability in case of little change in the system by adding a new unit to its topology.

EMS based on fuzzy logic method

Fuzzy logic is a deterministic approach that extends the rule-based method [44]. In this approach, the problem is
solved by creating the rules or membership functions based on prior knowledge and expertise about the problem.
Therefore, choosing the best action and estimating the values of each parameter depends on prior rules. In this
method, we define a truth value between 0 to 1, representing the degree of truth. The term fuzzy refers to using

incomplete or inaccurate inputs to make a decision that can be acceptable but not necessarily optimal.

ﬂ,ﬁ Is it warm today? Eﬂ
o7

{)

~—1 ot
Fuzzy logic Boolean logic
Very much Little Very less Yes No
(0.9) (0.3) (0.1) (1) (0)

Figure 2.5: Fuzzy Logic (FL)

This method is easy to implement but does not necessarily output the best solution. On the other hand, to make
suitable rules and design fuzzy logic, we need good knowledge about the system, which is not easy in a complex

system.

In [45], authors proposed an energy management system based on a fuzzy logic method to manage a residential
grid-connected microgrid. The presented microgrid contains an energy storage unit, non-controllable loads, and
non-controllable renewable energy sources. This EMS aims to minimize the fluctuation of the grid power profile
while respecting the defined certain secure limits for the battery’s state of charge by using only 25 embedded rules.
This method uses the membership functions and rules to adjust and optimize the microgrid behavior. The approach
was tested experimentally on a residential microgrid and proved a better performance than a Simple Moving Average
(SMA) method.

2.3.2 EMS based on optimization methods

Energy management problems can be stated as optimization problems. Hence, various optimization methods like

linear and nonlinear programming and dynamic programming methods have been used in literature to design an

32

EMS. A brief representation of these methods, their different advantages, and their drawbacks will be discussed

through some application examples next.

EMS based on linear and nonlinear programming method

Linear programming (LP) is a particular case of mathematical optimization. LP is a method to obtain the optimal
solution of a mathematical problem represented by linear relationships. In other words, this method tries to optimize
a linear objective function in a mathematical problem in which all constraints are linear. On the other hand, if in
a problem, some of the constraints or the objective function are nonlinear, nonlinear programming (NLP) can be
used to solve this optimization problem. One of the most famous LP models is mixed integer linear programming
(MILP), in which variables are integer or binary. This approach is mainly used if the problem is not very complex and
an accurate forecaster is accessible. These optimization methods are used commonly for solving decision making

problems of EMSs in MG because of their accessibility in efficient software like CPLEX [46].

Authors in [47] proposed a mix-mode energy management system to decrease the operation cost of the microgrid.
To manage this microgrid, authors consider a continuous run, power sharing, and ON/OFF mode as operating
strategies for 24 hours and used Linear programming (LP) and mixed integer linear programming (MILP) to solve
the objective function. In [48], authors used the MILP approach to increase the self-sufficiency of a residential
microgrid considering different configurations. In this system, the EMS controls the electrical and thermal devices to
achieve its objective. In [49], authors proposed an energy management system based on a mixed integer nonlinear
programming (MINLP) for optimal operation of a hybrid AC/DC islanded microgrid with the presence of different
distributed generations, the local controllers, and smart meters. The objective function of this EMS is to minimize
the operating cost of all distributed generation resources by ensuring the microgrid’s stable operation and satisfying
the customer requirements. EMS achieves this objective by sending droop-controlled signals to each distributed

generation unit and controlling the customer’s appliances and water desalination in each time slot.

The MILP optimizer's drawback is changing the variable to integer values and linearizing the problem formulation.
On the other hand, for MINLP optimizer, when the problem is complex, and there are many variables, the calculation

time is dramatically high and can be limiting [32].

EMS based on dynamic programming method

Richard Bellman developed dynamic programming (DP) in the 1950s as a mathematical optimization method [50].
The main idea of this method is to divide a complex problem into simple subproblems and recursively solve them.
In this method, instead of making a decision, we have a sequence of decision steps over time. Each sub-problem’s
solutions are stored for use afterward when needed. Therefore, we do not have to recalculate them later. By

applying this method, time complexities reduce from exponential to polynomial. Dynamic programming methods

33

need an exact mathematical model of their environment to operate.

In [51], authors proposed dynamic programming to perform efficient microgrid energy management in 48 hours.
This problem is formulated as a deterministic optimal control problem, and the EMS has priory access to the load
and solar power generation forecasts. This study combines the Pontryagin Maximum Principle approach with DP to
reduce computational time. The obtained results showed better cost reduction and computation time performance

compared to a mixt integer linear programming (MILP).

2.3.3 EMS based on meta-heuristic optimization approaches

Finding a good solution for a real word optimization problem can be very complex and challenging. In reality,
our information about the problem is imperfect or incomplete. The computation capacity is limited. The objective
functions are highly nonlinear. The constraints are complex and conflicting objectives can be presented in an
optimization problem. In such a complex situation, when traditional optimization algorithms are not suited to solve the
problem or are too slow to solve it, heuristic algorithms provide a search procedure to find an appropriate solution.
The term meta in meta heuristic refers to a higher-level technique to generate, select or search a heuristic that can
find an appropriate solution for the optimization problem [52]. Instead of conventional optimization techniques that do
not guarantee the global optimum, a meta-heuristic technique aims to find a global optimum [53]. Other advantages
of these techniques are the board applicability and the hybridization of these algorithms [54]. They can be applied
to any optimization problem and combined with conventional optimization algorithms. Particle swarm optimization
(PS0O), and evolutionary algorithms (EA) like genetic algorithm (GA) are the most popular metaheuristic algorithms

for optimization problems.

EMS based on genetic algorithm

Genetic algorithms (GA) are some of the most applied algorithms to EMS optimization problems through literature.
Darwin’s theory inspires this type of algorithm and has the advantage of avoiding local minima. One of the most
crucial drawbacks of this method is the relationship between the complexity of this method and the number of

parameters in an optimization problem.

Authors in [55] used a GA to develop a multi-objective EMS that controls a microgrid in real-time. This EMS max-
imizes the renewable energy use while minimizing the microgrid operation cost and carbon dioxide emission. The
MATLAB-dSPACE Real-Time Interface Libraries is used to run the optimization code in real-time. The effectiveness
of the proposed method has been validated through the simulation and experimental results obtained by testing this

EMS in a real microgrid testbed.

Another example of the use of GA is shown in [13]. This article aims to minimize the operational cost of a grid-

connected microgrid by optimal power management. The authors compare the results of their proposed memory-

34

based genetic algorithm to other algorithms, like a simple GA and a PSO algorithm, and observe a better perfor-

mance for their method.

EMS based on particle swarm optimization

Another famous meta-heuristic optimization algorithm is particle swarm optimization (PSO). The base of this al-
gorithm is the simulation of the social behavior of a swarm when it moves in search of food. This algorithm has
high-speed interaction and convergence. It is easy to implement and tune its parameters. On the other hand, when
the objective function has more than one dimension, the risk of falling into local minima is very high. To solve this

problem, scientists proposed different modified PSO versions.

In [56], authors proposed an optimal EMS based on particle swarm optimization (PSO) algorithm to manage a grid-
connected microgrid. The main objective of this EMS is to reduce the operating cost while satisfying the operating
constraints. Using a probabilistic approach, this algorithm considers all uncertainties related to renewable energy
resources, load demand, and electricity price. Finally, the efficiency of the proposed algorithm has been tested on
a typical grid-connected microgrid, and the comparison with the other algorithms like GA, combinatorial PSO, or
fuzzy self-adaptive PSO showed a better performance. Authors in [57] proposed an expert multi-objective AMPSO
(Adaptive Modified Particle Swarm Optimization algorithm) to operate a grid-connected microgrid containing RES,
back-up Micro-Turbine / Fuel Cell / Battery hybrid power source. Simultaneously minimizing the microgrid’s opera-
tional cost and carbon dioxide emission is the objective. The hybridization capacity of meta-heuristic methods lets
authors combine a CLS (Chaotic Local Search) mechanism and an FSA (Fuzzy Self Adaptive) structure as a hybrid
PSO algorithm. As a result, the optimization process improved. The final results of applying the proposed method

show a better performance than GA and a simple PSO.

2.3.4 EMS based on stochastic approaches

For an optimization problem with a high-dimensional nonlinear objective function, avoiding the multiple local optima
can be very challenging for deterministic optimization algorithms. In these situations, the Stochastic Optimization
(SO) methods are used for solving optimization problems in which our information about the real system and the
target is uncertain. When the objective function or constraints are random for stochastic problems with random
variables, stochastic optimization (SO) refers to all algorithms that gain information and find the objective function’s
global optima using the randomness in the objective function. In this approach, the searching procedure increases
the probability of finding the global optimal by reducing optimal local decisions [38]. In this category, the Monte
Carlo algorithm is the most popular algorithm. In a microgrid, there is much uncertainty related to renewable energy

sources. Therefore, using these methods to create an EMS can lead to a more efficient control strategy.

In [58], authors proposed a scenario-based stochastic EMS for a grid-connected microgrid. The microgrid contains

35

diesel generators, renewable energy sources, an energy storage unit, and controllable loads. The main objective of
the EMS is to maximize the profit of selling energy to the pool market by scheduling its controllable resources. The
EMS uses the conditional value at risk methodology and considers all risks in the objective function to consider the
risk level in computing the expected profit of the microgrid. A Latin hypercube sampling-based Monte Carlo simu-
lation method has generated different scenarios for renewable production, electricity price, and load consumption.
This work uses two levels of stochastic optimization methods to solve the designed model. Finally, they show that

the proposed EMS benefits both the customers and the aggregator.

2.3.5 EMS based on model predictive control

Model predictive control (MPC) is a multivariable advanced control technique that uses the process’s dynamic model
to predict the system’s future behavior over a finite time horizon. The optimal control action is calculated through an
online optimization based on predictions and the current measured state of the system while respecting the system
constraints m. Applying the optimal action into the system and after a specific time interval, the new measurement
and prediction will be made, and horizon shifts, then The whole procedure is repeated. This control method is
also called moving horizon control. Moreover, MPC determines the control law implicitly. Therefore, instead of the
complexity of designing a controller, we need to invest our effort to model the controlled process. So if a good
dynamic model of the process exists, then the MPC application will be easy. But this could also be considered a
weakness of this controller if the modeling or the cost function definition is untrustworthy. Model-based predictive
control (MPC) can even control systems that cannot be controlled by conventional feedback controllers[59]. Com-
pared to other controllers like PID, the MPC anticipates future events or disturbances, there is not necessary to do
linearization, and it can explicitly consider non-linear systems. In this controller, the physical, safety, or operational

system constraints are Explicitly considered.

PAST FUTURE
AT

~ gt ./

®

t t

Reference Trajectory
Predicted Output
Measured Output
Predicted Control Input
—— Past Control Input

B — Prediction Horizon
< >

| | | | | | | | |

I]] 1 1 1 T T] >
>

Sample Time

k k+1 k+2 k+p
[60]

Figure 2.6: MPC Scheme

36

In [61], authors proposed a real-time integration of optimal generation scheduling with a model predictive control
method to design an EMS for a microgrid with different energy storage systems like lead acid battery and hydrogen
tank and renewable energy sources. This EMS aims to create optimal long-term and short-term planning for the
microgrid to reduce the microgrid’s operating cost and increase the involvement of the hydrogen storage system.
Optimal generation scheduling is used by considering all weather and load forecasting uncertainty via a stochastic
approach. The model predictive controller is in charge of managing the microgrid in real-time. This MPC uses the
results obtained by the optimal generation scheduling. Therefore, the MES has to deal with a hybrid energy storage
system, which means the MPC has to solve a multi-objective function. This approach was tested experimentally into
a microgrid containing a PV emulator, a battery unit, and a hydrogen production and storage system in a 24-hour

horizon. It proved its performance and effectiveness.

Another example of using the MPC controller as an EMS is proposed in [62]. In this study, the authors used
a nonlinear model predictive controller to guarantee the stability of an isolated microgrid via load-shedding and
optimal battery usage. The objective is fixed to keep the system close to a reference trajectory. The MPC deals
with nonlinear system models and all related constraints to predict and optimize the overall system. The proposed

method proved its effectiveness over a 24 hours simulation and showed promising results.

2.3.6 EMS based on artificial intelligent methods

As the number of buildings equipped with renewable energy resources like PV panels and storage units increased
in recent years, so have microgrids’ sensors and automatic measurement devices, resulting in many databases
available. On the other hand, the calculation capacity of computers has also increased, making machine learning
algorithms more accessible and increasingly employed in domains like energy management. Therefore, we can find

many publications about machine learning methods applied to HEMS problems [63].

Different artificial intelligence approaches have recently been used to create and improve microgrid EMS. Compared
to traditional EMSs, which often rely on predefined rules and static control strategies (which may not adapt well to
dynamic environments), EMS based on artificial intelligent methods can enable microgrids to learn and adapt their
energy consumption patterns based on environmental conditions and user preferences in such dynamic environ-
ments. In some previous approaches, the EMS needs a forecaster to predict future energy demand and renewable
energy production. The need for this forecaster and calculation cost related to these predictions can be consid-
ered a drawback for these approaches. Actually, perfect forecasts are unavailable in real operating conditions, and

real-time algorithms are needed to manage the system.

Numerous research studies have been conducted to evaluate the effectiveness, advantages, and robustness of Al-
based EMS for addressing uncertainties and disruptions within microgrid environments. The results of these studies

have produced promising findings, emphasizing the potential benefits that come with the implementation of Al in

37

microgrid EMS.

Recently, strategies based on reinforcement learning (RL) have been proposed. Combining the neural networks

and RL algorithms adds the capability of handling large-scale dimensional problems to RL algorithms.

For example, in [64], the authors review reinforcement learning for autonomous building energy management. This
article analyzes the application of reinforcement learning techniques in autonomous building energy management
to optimize building energy consumption. The authors emphasize that traditional energy management systems of-
ten rely on predefined rules and static control strategies, which may not adapt well to dynamic environments and
changing energy consumption patterns. They discuss different applications of reinforcement learning in various
aspects of building energy management, like demand response, fault detection, diagnostics, and occupant behav-
ior modeling and prediction to perform different objectives like minimizing energy costs while maintaining occupant
comfort, detecting anomalies, and suggesting appropriate corrective actions to improve system performance. They
also discuss various RL algorithms, such as Q-learning, Deep Q-Networks (DQN), and Actor-Critic (AC), and in-
vestigate how these algorithms have been applied to different aspects of building energy management, including
heating, ventilation, air conditioning systems, and lighting control and show how that RL algorithms could improve
residential energy efficiency. Finally, they reveal several challenges in adopting RL for building energy management,
like the lack of real-world data for training RL agents, requiring extensive training, which can be time-consuming and

computationally expensive.

The authors in [20] present a deep reinforcement learning approach to solve the residential energy management
problem in a smart home with battery energy storage. The goal is to participate in demand response programs and
optimize energy consumption to reduce costs and balance electricity demand by purchasing more energy during
off-peak hours, which can reduce purchasing utility energy costs. The uncertainty of electricity consumption and
real-time electricity prices make determining an optimal energy management strategy difficult. In their approach, no
prior knowledge of uncertainty is needed, and it directly learns the optimal energy management strategy through
reinforcement learning. Therefore, the proposed approach formulates the residential energy management problem
as a finite Markov decision process and uses a deep deterministic policy gradient containing two networks, an actor
network and a critic network. The actor network generates the energy purchase action at each time step regarding
the system’s state represented by past N-hour electricity prices, past N-hour home loads, and the remaining battery
energy. The critical network evaluates its performance. The simulation results demonstrated the effectiveness of the
proposed approach in reducing electricity costs compared to scenarios without this residential energy management.
Despite the effectiveness of this approach, they considered a very simple environment with very limited action

numbers to execute.

Authors in [65] developed a deep reinforcement learning algorithm to train a home energy management system

(HEMS) that controls the heating and domestic hot water systems in a residential dwelling with a total floor area

38

of 110m?. The DRL agents learn to schedule the operation of these appliances to minimize energy costs through
interaction with the environment while considering occupant comfort. This HEMS aims to reduce energy consump-
tion, improve comfort, and optimize the utilization of PV energy production. Therefore, the authors employed a
binary (On/Off) command to control the heating and domestic hot water systems. The results demonstrate that their
proposed algorithms outperformed a rule-based algorithm regarding energy savings while maintaining user comfort
(defined by a temperature comfort threshold for indoor and hot water temperatures). Additionally, the algorithms
performed better during summer when PV production was higher. After achieving promising results in keeping the
comfort temperature within its defined threshold, they analyzed the saving energy obtained by maximizing the use of
PVs. They investigated the impact of load shifting managed by the HEMS, which led to increased renewable energy
consumption and reduced the amount purchased from the utility grid. The nature of the hot water boiler tank and
the space as a heating buffer gives the possibility to anticipate the actions or postpone them to a more favorable
moment to save energy. Finding the balance between comfort and energy savings is another subject discussed in
this work. In this regard, the potential benefits of increasing the time out of comfort temperature threshold could

yield additional savings based on user preferences.

In [66], authors proposed a reinforcement learning algorithm to tackle energy management system problems in an
islanded microgrid with no forecaster. The microgrid consists of solar PV panels, a diesel generator, and batteries,
and the objective is to reduce the operating cost of the microgrid. Their proposed approach combines optimized
reinforcement learning with a decision tree method. In this combined approach, they used a basic Q-learning
algorithm to obtain and store the knowledge about the environment in a table named Q-table. the problem with
Q-table is that it is constructed from discrete and limited actions and states representing the environment. Another
problem is that it is not fully completed during the training phase. After obtaining this Q-table, the maximum state-
action values for each state stored a new memory variable in an execution phase which will be utilized as input for
a decision tree algorithm. This decision tree aims to provide the ability to generalize experiences during the training
phase into general rules and allow the agent to make a good decision even if he never meets a situation before.
Using this approach, they achieved accurate results with a short computation time. They tested their EMS using
real data from Ecole Polytechnique in France and demonstrated near-optimal and stable results across different
scenarios. They used a simplified model with deterministic states and actions. The possible actions are limited to

charging/discharging the battery, using the genset unit, or doing nothing.

Authors in [22] introduce a reinforcement learning algorithm that addresses the EMS in an isolated microgrid. This
EMS aims to minimize the global operating cost of the microgrid and address the difficulty of managing microgrids
when confronted with infrequent events. The authors propose to use an extended version of the double deep
Q-network with a priority list of actions combining a novel method named "Memory Counter" and a "combined

experience replay" technique to overcome the challenges of training the agent in the presence of rare events.

39

Results demonstrate significant reductions in operating costs compared to a DQN baseline.

Most published studies consider a simplified system or focus on managing the battery or the demand side manage-
ment separately, or they consider a very simple system with only a few actions like charging/discharging the battery

or On/Off actions for other devices.

2.4 Conclusion

In the previous section, different energy management algorithms applied to EMS have been reviewed through some
states of the arts. Table 2.1 reviews some advantages and limitations of these algorithms. We tried to give some
general information about criteria like robustness against uncertainties, calculation time, implementation complexity,
dependency on an appropriate model, need for a predictor, and ability to consider predictions related to these
approaches. Based on this literature, reinforcement learning algorithms can be suitable for creating appropriate
energy management systems. Reinforcement learning algorithms are founded on trial and error mechanisms.
Achieving an efficient point of operation requires much time in a real system and so making the optimal decisions
in the first iteration is impossible. However, this drawback is covered by the possibility of offline learning based on

past information and databases.

The most advantageous part of using a reinforcement learning algorithm to design an EMS is that there is no need
for any forecaster, and the reinforcement learning agent can learn from the environment to improve its efficiency
automatically. After the initial training process in an offline mode, these algorithms can be adapted quickly to a new

environment and do not depend much on the system model [67].

In this Ph.D., we follow the reinforcement learning approach and apply various algorithms to build a complex HEMS
of a connected building microgrid with local PV production. The main objective of the present research is to design
a complex HEMS that manages the battery unit and the thermal charges (hot water boiler and heating system) of a
BMG. Therefore, this HEMS must control the demand side management and the energy storage system simultane-

ously.

This HEMS will be trained by RL approaches to maximize energy saving and reduce the carbon footprint, consid-
ering a variable electricity price and all uncertainties about the load demand and renewable energy generation.
This HEMS makes optimal decisions in real-time thanks to RL algorithms. These approaches do not rely on any
forecaster to predict PV production or load consumption. However, they require a database of past time series of
PV production, air temperature, and load consumption. The RL algorithms extract knowledge about the production

and consumption time-series statistics.

The next chapter aims to provide a fundamental background of deep reinforcement learning. Therefore, we will

explain the deep reinforcement learning mechanism from basic concepts to advanced models.

40

swyniob)y ubiseq SINT o uosuedwo?) :|°g 8|qeL

Buibus|ieyd uonepiea
pue uonejaidialul aew Aew ainjeu xog-yoe|g -
elep Jo Auenb pue Ajenb
8y} uo saljal souewlouad (Aouspuadaep eleq -

S]JUBWIUOIIAUS Ue1I82uN pue JIWRUAP IO} 9|qBINS +
elep wo.y Buiuies| jo a|qeded pue aandepy +

(Buiutea Juswadlouiey “H8)
swyiob|y Buiuies sulyoep

S8I0BINJOBUI [9POW 0} BAISUSS -
uoneuswa|dwi swi-eal
10edwi ued yoiym ‘“Auxsdwod [euoneindwoy) -

uoneziwndo 1o} ylomawerl) dlleWSISAS B Sapinold +
S8ljuIBlI8IUN pUEB SJUlRJISUOD 9|puey 0] AljIQY +

(DdIN) 103u0D BANdIPBId [9POIN

SIUBLLIUOJIAUS D11SBYD0]S
Alybiy ui sebus|eys asusbiaauod aney Aej -
suolienwis adinw Jo}
pasu 8y} 0} anp aaisualul Ajjeuoneindwon) -

suonouny aAloalqo
SNONUIIUODSIP PUB X8AUOD-UOU d|puey UB) +
Ajuiel@oun uaIayul Yyum sws|qoud 1o} payns-||Iopn +

uoneziwndo onseyools

Buiuny |nyased Buuinbal
‘sbuines Jajaweled o] AJAlNISUBS -
sadeospue| [epowijnw
ur 9166n.s pue ewndo [eo0] 01 abianuod Ae -

saoeds uonnjos abue| yum
swajqo.d uoneziwndo Buiajos ul Jusioyg +
uonesws|dwi jo ases pue Anondwig +

(OSd) uoneziwndO wiemg ajied

awn axe} Aew suoinjos [ewndo 0} eouabiaauo) -
swalsAs ajeos-able)
Jo} Ajreroadss ‘eaisualul Ajreuoneindwo?) -

aords uonN|os apim e alojdxe uen +
swa|qoid uoneziwndo xe|dwoo Buia|os 1o} 8|qelng +

swyiob|y onsusn)

ainjonnsgns [ewndo
1noyum swajqodd Joj Jusiolye shkeme JoN -
soaoeds ajels ab.e| ul
JAjeuoisuswip Jo 8sin2, 8yl Wody Jayns Aep -

uonsodwoosp dAISINO8I
ybnouys suonnjos jewndo Ajjeqolb pui uen +
ainjonuisqns [ewido pue swejqoud gns
Buiddepano yum swejqosd 1o} o|qelng +

Buiwweiboid diweuiqg

‘ewndo [eqojlb pul 1o
afianuod sAeme 10u Aew spoyew uonn|os -
‘Buiwelboid Jesul| 01 pasedwod
Auxe|dwoo [euoneindwod pasesasou| -

‘suolne|nw.oy wajqod xajdwod
Joy Buiwwelboud Jeaui ueyl a|qixa|} SO\ +
'sdiysuoie|al Jeaul|-uou yum
swa|qoid uoieziwido Jo SSB|O JBPBOI] B d|puBy UB) +

Buiwwesboid Jesul-uoN

synsaJ joedwi Aew
sielaweled ul sebueyd pue ‘AjulelaD SBWNSSY -
[Iem swejqo.d Jeaul-uou
a|puey 1ou Aew ‘sdiysuoneja. Jeaul 01 paywi -

sdiysuolie|a. Jeaul| yum swajqoid 1oy pauns-|Iopn +
uoneziwndo
10} poylaw ualole pue dljews)sAs e sapinoid +

Buiwwesboid Jesur

sdiysuonejal xajdwod Buunided ul paywi -
swieIsAs Jeauljuou
Jo o1weuAp Alybiy ul jeam wuopad Jou Ae -

Buiuny [lewiuiw saJinbai pue sjgelaidisiul Ajiseg +
uoisioaidwi pue Aurensoun Bujpuey ul 8Aosyg +

j041u09 21607 Azzn4

swalsAs xa|dwod
@zjwndo o} Aujiqe sy} jo yoeT -

$904N0saJ [euoneINdwod [ewiuiw alinbay +

. paseg-s|ny
SJUBWIUOJIAUS UlBLIBoUN pueisiapun pue juswsa|dwi 0} sjdwig +
pue oiweuAp 01 [jom 1depe 10u Aep -
suoneuwi] sabejuenpy wiyuoby

41

42

Chapter 3
Deep reinforcement learning

3.1 Basic knowledge to understand deep reinforcement learning

To fully understand the concept of deep reinforcement learning (DRL), we need to introduce some basic definitions
of artificial intelligence (Al), machine learning (ML) and deep learning (DL). Figure 3.1 illustrates the position of

machine learning as a sub-field of artificial intelligence, and deep learning as a sub-field of machine learning.

/ Artificial Intelligence™,
il el ",

. Y
/" Machine N\
| Learning TR

e \
|, | i H\'\ 1 .‘
|, rf'/ Deep |

\ 1 = | .

\\ | Learning |/

ol (7
Q y 4
- ‘ﬁ

e ———

Figure 3.1: Machine learning position in Al field [68]

According to [69], artificial intelligence is the intelligence demonstrated by machines. Al refers to using machines to
imitate the brain’s functions. Al makes the machines perform tasks in a “smart” way based on algorithm [68]. The
field of artificial intelligence attempts not just to understand but also to build intelligent entities. Machine learning is

a subset of artificial intelligence [70].

43

3.1.1 Introduction to machine learning

Machine learning (ML) aims to build methods that "learn" to recognize new patterns from the training data set without
explicit programming. ML makes the machine able to extract knowledge from data sets through a training process.
Afterwards, this knowledge will be used to predict the properties of new data that were not seen during the training
process. Figure 3.2 explains the machine learning mechanism. During the training phase, the ML algorithm is fed
with historical data to train a ML model. In the exploitation phase, this model is applied to predict the properties of

new data. Using machine learning algorithms, the machine can think like humans.

Training phase| Historical N — L model
Data (x, y)
Exploitation
phase | Newdata (x) —> ML model > C°”e(§t)'abel

Figure 3.2: Machine learning mechanism

When developing conventional algorithms to perform a particular task is difficult or unfeasible, using machine learn-
ing algorithms can be very advantageous [71]. Therefore, we can observe the use of ML algorithms in a wide variety
of domains, such as in finances, medicine, energies, communications, social networks, etc., to perform tasks like
speech or image recognition, computer vision, email filtering, natural language processing, and sequential decision

making [72].

Machine learning tasks are divided into supervised, unsupervised, and reinforcement learning. Depending on the
learning paradigm involved in the needed task and the nature of the data available to the learning system, an expert

has to choose a suitable ML algorithm to train and fulfill the needed task [73].

Supervised learning

In this category of machine learning, the model is trained thanks to a labeled set of data. The data consists of inputs
(features) and their desired outputs (labels). The goal is to learn the general rules that map the input to the output.
For example, if you have an input variables X and an output variable Y, you can learn the approximate mapping
function Y = f(X) by using a supervised learning algorithm, provided that you have a set of labeled data X}, Y;.

After training, the ML model can predict the output variables Y for any new data X’ [74], [70].

In order to learn the approximate mapping function, input data (features) are fed into the model iteratively; the
model makes predictions, and then the outputs are compared to the desired output(labels). The model adjusts its
weights until the model has been fitted appropriately. The algorithm measures its accuracy through the loss function,

adjusting until the error has been sulfficiently minimized. The learning process stops when the algorithm achieves

44

an acceptable level of performance.

Generally, based on the nature of the output variable, the supervised learning problems is divided into two types:
regression and classification problems. When the output variable is a category like “red” or “blue”, we have a
classification problem. In this case, the algorithm tries to assign test data into specific categories accurately. On
the other hand, when the output variable is a real value and we try to understand the relationship between inputs
to make a projection, we have a regression problem. Figure 3.3 shows the difference between classification and

regression.

r enjoy
* algorithms

Regression Classification

What will be the temperature Will it be hot or cold

tomorrow? tomorrow?
m coLp m
Fahrenheit Fahrenheit

Figure 3.3: Classification versus regression [75]

Some of the algorithms and computation techniques of supervised machine learning are listed below.
« For regression problems: linear regression, logistical regression, polynomial regression.

« For classification problem: linear classifiers, Naive Bayes, decision trees, k-nearest neighbor (KNN), support

vector machines (SVM).

« For both classification and regression problems: random forests.

Unsupervised learning

This category is used when we do not have the corresponding output (labels) Y for the input data (features) X.
Therefore there are no correct answers or a supervisor to compare. In this technique, we leave the algorithm on
its own to find structure and discover hidden patterns in the input data set. It is generally used to solve clustering,

association, and dimensionality reduction problems.

When we need to group unlabeled data based on their similarities or differences, clustering algorithms like K-means

45

are very useful. An association algorithm like the APriori algorithm [76] is employed to find relationships between
variables in a given data set and discover rules that describe large portions of your data. In the pre-processing
data stage, when the number of features (or dimension) in a given data set is too high and not manageable, the
dimensionality reduction technique helps to reduce the number of data input to a manageable size while preserving

the data integrity.

Reinforcement learning

The reinforcement learning approach is a mathematical formalism for learning decision-making and control from
experiences. In this method, an agent (decision-making entity) learns by interacting with a dynamic environment to
perform a certain goal. Therefore, during an iterative process, the agent senses its current state and then chooses
an action. For every action, the agent either receives a reward for a good move or a penalty for a bad move. The
objective of the agent is to maximize the expected cumulative reward through a series of actions. Reinforcement
learning is very similar to dynamic programming (DP) and is suitable for sequential decision-making problems. The
main difference is that DP uses an explicit model, but RL is based on sampling from experiences and is used when

the environment behavior is not known.

This field of machine learning will be presented with more details in section 3.2.

3.1.2 Introduction to deep learning

Deep learning (DL) refers to a branch of the machine learning family where deep neural networks (DNN) are used
to solve supervised machine-learning problems [77]. DNN are inspired by the human brain’s biological neural
networks. In this field, algorithms imitate the structure and function of the human brain. DL networks do not need

programming to train these algorithms, but they must be exposed to many training data sets.

In recent years, with the increasing calculation capacity of computers and graphics processing units (GPUs) and also
the increasing number of available training data sets, artificial neural networks (ANNs) methods have been applied
in many fields like bioinformatics, climate science, signal processing, natural language processing, computer vision,
board games, etc. These methods have shown their high-performance, compared to other classical methods or

human experts [78], [79].

Artificial neurons have the same functionalities as biological ones. Atrtificial neural networks are organized in layers,
as shown by Figure 3.4.a. Each layer is connected to the previous and subsequent layers. In this structure, each
neuron receives input data from the neurons of the previous layer and produces a single ultimate output result that
is sent to the neurons of the next layer as input data. Given that an ANN can have multiple layers through which
data have to pass, the term deep is employed in deep neural networks (DNN). In deep learning, the inputs of the

first layer are the feature values of a sample to process, and the outputs of the neurons of the last layer are the

46

result of a prediction or classification task.

(a) (b)

Input layer Output layer

Hidden layers Input layer Hidden layer Output layer

Figure 3.4: Description of DNN model [80]: (a) structure of DNN model; (b) process for forecasting output through
DNN model.

A deep neural network uses forward propagation and backpropagation methods to learn a prediction or classification
task. Figure 3.4.b represents a deep learning process. First, in the forward propagation process, the input data
presented by z; and z, passes through the hidden layers to produce the output value 3. The ¢ calculation is done

by the following equations.

ny = f(r1wir + Tawa1 + b1) (3.1)
ng = f(x1wi2 + v2w22 + b2) (3.2)
9 = f(niws1 + nawsz + b3) (3.3)

In these equations, n; and n, are the neuron’s output values in the hidden layer, w;; represents the link’s (perception)
weight, f is the activation function, and b; represents the bias. In the literature, there are different activation functions
such as hyperbolic tangent, sigmoid, or rectified linear unit (ReLU), which is a nonlinear activation function[81]. The

ReLU function is shown in Fig.3.5.

Then to train the model, the DNN has to minimize the error between the desired output y and the predicted output
1y by adjusting all the weights of the network via backpropagation method [82]. This method is based on a gradient

descent method like the stochastic gradient descent, RMSprop, or Adam [83].

At each iteration, the weights are adjusted using equation 3.4, where E is the error function (also called loss
function), wj; and w;?;-fl are the weights between the neurons ¢ and j at iterations ¢ and ¢t + 1, and « represents the

learning rate [80]. The iterative process continues until the partial deviation of the error becomes smaller than a

47

Figure 3.5: ReLU-activation-function

given threshold.

(3.4)

3.2 Reinforcement learning

As mentioned in section 3.1.1, reinforcement learning is a method to solve sequential decision-making problems
that aim at performing a specific goal in a dynamic environment. This method applies to problems that can be
modeled as Markov decision problems. Therefore, in this section, we first define Markov decision processes. Then
we explain the principle of reinforcement learning and present the Q-learning algorithm, one of the first algorithms

designed to perform reinforcement learning.

3.2.1 Markov decision process

In mathematics, a Markov decision process (MDP) is a framework for modeling decision-making in a discrete,
stochastic and sequential environment [84]. An essential part of a MDP is the decision maker, known as the agent.
In the MDP framework, at each time step, the process is in some state s, and the agent may choose any action
a that is available in this state. The process responds to this action by moving into a new state s’ according to a
stochastic process, and giving the decision maker a corresponding reward R, (s, s’). The goal of the agent is to act
so as to maximize the long term cumulative reward. MDPs lead to optimization problems that can be solved using

dynamic programming [85].

The probability that the process moves from the current state s to a new state s’ depends both on the process
itself and the action chosen by the agent. Specifically, this probability is given by the state transition function 7.
A MDP respects the Markov property, that says that all the information needed to predict the future is contained

in the current state and is conditionally independent of all previous states and actions. Therefore the next state s’

48

only depends on the current state s and the action a chosen by the agent in this state. Markov decision processes
are an extension of Markov chains; the difference is the addition of actions (allowing choices) and rewards (giving

motivation).

Mathematically, a MDP problem is defined by a tuple M = (S, A, T, R,~) where :

S : is the finite set of states of the environment,

A : is the finite set of actions that can be applied to the environment,

« T:SxAxS —[0,1] s the state-transition probability function; it models the environment dynamic uncertainty

through the probability of achieving state s’, given that action « is taken in state s; T'(s, a,s’) = p(s'|s, a),
* R: S x A— Risthe reward function; R(s, a) is the expected immediate reward for taking action « in state s,

* v € [0,1] is the discount factor which intervenes in the cumulative discounted reward ., ~'r;. This param-
eter modulates the rewards achieved by the agent and accounts for the difference in the importance between
present and future rewards. If v = 0, the agent cares for his first reward only, but if v = 1, all future rewards

have the same importance.

Figure 3.6 shows an example of simple MDP with three states and two actions [86]. The MDP is represented
by a graph where the green nodes represent the states and the red nodes represent the actions. The states
are interconnected via the actions with probabilities that are indicated on the connecting branches, along with the
corresponding reward. For example, if action aq is applied to the process in state s;, the process either moves to
state sy with probability p(sg|s1,ag) = 0.7, moves to state s, with probability p(sa|s1,ag) = 0.2 or remains in state s;
with probability p(s;|s1,a9) = 0.1. In the first case, the agent receives a reward of value 5, otherwise the reward is

null.

The behavior of the agent is formalized by the so-called policy function = : S — A, that defines which action «
the agent takes in the given state s. The Markov decision problem consists in finding the optimal policy 7* that

maximizes the cumulative discounted reward ., v'r; [87].

Following a policy = starting in state s, produces a trajectory or a path sg,ap = 7(so),70 = R(s0,a0) / s1,a1 =
w(s1),r1 = R(s1,a1) / ..., and consequently a certain cumulative reward. This cumulative reward depends on the
starting stage so. To quantify how good a state is, one introduces the value function, denoted by V™ (s). This function
is defined as the total amount of discounted rewards the agent can expect to accumulate over time, starting from

state s and applying the policy =. It can be expressed by the recursive equation 3.5.

V™ (s) = R(s,n(s)) +~ Z T(s,7(s),s").V™(s") (3.5)

s'eS

49

Figure 3.6: Example of a simple MDP with three states (green circles), two actions (orange circles) [86]

In equation 3.5, the value function V7 is calculated for a given policy =. Conversely, a policy - can be derived from
a given value function V' by applying the so-called greedy mechanism, which consists in choosing the action with

the highest expected cumulative reward, as formalized by equation 3.6.

v (s) = arg max R(s,a) + 7 %T(S’ a,s).V(s) (3.6)

The Markov decision problem consists in finding the policy that maximizes the value function for all states. It was
shown that there exist a single optimal policy 7=*. The corresponding optimal value function V* is the solution of

equation 3.7, and =* is the greedy policy with respect to V*.

V*(s) = max | R(s,a) + 7 Z T(s,a,s).V*(s) (3.7)

acA
s'eS

Therefore, many algorithms are based on the search of the optimal value function V*, from which the optimal policy

7* is derived by the greedy mechanism.

3.2.2 Principle of reinforcement learning

In the previous section, we have described the Markov decision process and the associated optimization problem.
Traditional optimization methods, and particularly dynamic programming, can be used to solve this problem provided

that the agent fully knows the state transition function. This may not be the case and reinforcement learning has

50

emerged as a method to solve Markov decision problems with no specification of the state transition function. The
optimization problem is handled through a sophisticated trial and error approach. The agent learns how to maximize
its cumulative reward by interacting with the environment: at each time step ¢, it observes the environment state s,
chooses an action a,, receives an immediate reward r; and observes the new state s, (Figure 3.7). By processing
the information it receives, the agent progressively acquires knowledge about the environment and improves its

choices, step by step.

At the beginning of the training, the agent has no knowledge and does random action to discover the environment
(exploration). As the training progresses, the agent acquires knowledge and can use it to perform greedy action
and increase its cumulative discounted reward (exploitation) [87]. During the learning process, there is a trade-off
between exploration and exploitation. Exploration allows the agent to improve its knowledge by blindly testing deci-
sions, but at the cost of potentially wrong decisions. On the other hand, exploitation uses the acquired knowledge
to make good moves, but cannot discover better ones. Hence, exploration is mainly used at the beginning of the

process and exploitation at the end.

£
Agent Zmy rt

State action reward
(Se) (ap) ()
(MDP) Environment
State state
(Se) Ste+1)

~_

Figure 3.7: Reinforcement learning setup

Different reinforcement learning approaches exist to solve a Markov decision problem and find the optimal policy
7 [88]. Policy-based methods try to directly learn 7*, whereas value-based methods estimate the optimal value
function V* using Bellman equation. The optimal policy is then derived by the greedy mechanism. These two
approaches are known as model-free because the agent has no inner representation of the environment and learns
solely by interaction. In model-based approaches, the agent has a simplified model of the environment that predicts
the short term outcome of its action and help him find a good policy. The model-based approach is known to reduce

the number of interactions needed to learn a good policy, but each interaction has a higher computational cost.

51

This approach is also more difficult to implement. Figure 3.8 [88] summarizes the different reinforcement learning
approaches and algorithms (model-free versus model-based, value-based versus policy-based). In the present

work, we will follow the model-free and value-based approach.

7 A2C A3C DDPG

Trust Region

o Deterministic Stochastic
Optimization [Actor-Critic PG PG

Policy-gradient

Algorithms of
DRL

Value-based

Q-learning SARSA Model-based
Fitted Deep iterative Linear Probabilistic Inference
CHlsacring Ltaeavoie Quadratic Regulator for Learning Control
(iLQR) (PILCO) f
‘\ Double Dueling Distributional /
DQN DQAN DQON A
g —

Figure 3.8: Main algorithms of DRL and their relationship[88]

3.2.3 Q-learning

Definition of the Q-value function

Value-based algorithms are based on the quality function Q™ (s, a), usually referred to as the Q-function, and defined
by equation 3.8. Q7 (s, a) is the expected cumulative discounted reward obtained if the agent starts in state s, applies

action a and then follows policy .
Q" (s,a) =E nytR(st,atﬂso =s,a0 = a,a; = 7(st) (3.8)
>0

The value function V7 (s) and the Q-function Q™ (s, a) have very close definitions, but whereas the function V7 (s)
takes into account all possible actions in a given state, the function Q™ (s,a) considers each action separately.

Q-learning consists in finding Q*(s, a), the best possible value for each state-action pair, as defined by 3.9.

Q*(Sv a) = mT?‘X Qﬂ-(sa a) (39)

The optimal Q-function obeys the well-known Bellman equation 3.10, where s’ is the state after taking action a in

state s.

52

Q*(s,a) =Ky [R(s, a) + ’y.n}la}xQ*(s’,a’ﬂs, a] (3.10)

Bellman equation can be used to build an iterative process to calculate Q*(s, a), according to equation 3.11, where

Q(s, a) converges to Q*(s,a) when i — oo.

Qit1(5,0) =By |[R(s,a) + 7. max Qi(s',) s, o] (3.11)

Once Q*(s, a) is known, the optimal policy 7* is obtained by the greedy mechanism 3.12.

7*(s) = arg max Q" (s,a) (3.12)

Definition of the Q-table

The Q-learning algorithm is one of the first value-based reinforcement learning algorithms. It is at the heart of all
other RL algorithms. In this algorithm, all the states and actions are discrete and the optimal Q-function Q*(s, a) is

simply stored in a 2D table known as the Q-table [89].

The algorithm is an iterative process that calculates the value of each pair Q*(s, a) using equation 3.13 derived from

Bellman equation and where y is called the temporal difference target and defined by equation 3.14.

Qita(s,a) = Qi (s,a) + aly — Qi (s, a)] (3.13)

y = R(s,a) +v.maxQ;(s',a’) (3.14)

s and a are the state and action at time ¢, s’ is the state at time ¢ + 1. The difference between the target y and the
current Q-value Q; (s, a) is called the temporal difference error. « is the learning rate, set between 0 and 1. Setting
« to 0 means that the Q-values are never updated and that nothing is learned. Setting it to a high value, such as

0.9, means that learning can occur quickly, but with a risk of instability.

Equation 3.13 is the keystone of the Q-learning algorithm. To learn the optimal policy 7*, the agent has to interact
with the environment and iteratively update the Q-table by using 3.13. After enough training, that is after a certain
number of iterations, the agent has learned Q*(s,a) and which actions are optimal for each current state. The
Q-learning mechanism is presented in figure 3.9. As shown in this figure, at each time step, the agent reads the
Q-values in the Q-table. Based on whether it is in the exploration or exploitation mode, the agent selects the action,

either by choosing the one with a higher value or disregarding the Q-value in the current state, to execute in its

53

environment. After the execution of this action, the state of the environment changes, and the agent receives a

reward, which is then used to update the Q-value in the Q-table

Q(s,a) = Q(1,0)
Decision making (Reinforcement learning) Q-Learning:
Agent ———— Q-Table:
SO S1 S2 S3 sS4
State | reward action a0 | +15 421 +36 O 1.3
(Se) (r:) (ar) al | #2 416 +1 +62 +19
Spet \Ner DTN, Q(s,, a,) Discrete- Discrete

2.1 €

Figure 3.9: Q-learning mechanism

The e-greedy strategy

As mentioned before, the agent must focus on exploration at the beginning of the learning process (random actions)

and exploitation at the end (greedy actions). One of the most popular learning strategies is the e-greedy strategy.

At the beginning of the learning process, the Q-table is initialized with no knowledge, which means zero value
everywhere Q(s,a) = 0. Then, at time ¢, the agent either takes a random action with probability ¢ or a greedy action
with probability 1 — e and using the Q-table as it is at the current step. The e-greedy strategy starts the training with e
close to 1 and then gradually decreases its value according to an exponential decay versus time, as shown in Figure
3.10.

The Q-learning algorithm

The main steps of the Q-learning algorithm are given in algorithm 1.

Limits of the Q-learning algorithm

The Q-learning algorithm is simple to understand and easy to implement, but the use of a table to model knowledge

leads to severe limitations:
» Q-learning only applies to the discrete environments with a finite number of states and actions;
* Q-learning suffers the curse of dimensionality;

* Q-learning is not scalable.

54

Q-table is empty and there is no any
information about the environment

100%

Q-table contains infarmation
about the environment

Exploration

Exploitation 100%

Figure 3.10: ¢ — greedy strategy

Algorithm 1 Q-learning algorithm
Set hyperparameters a € [0,1], ¢ > 0, v € [0, 1]
Initialize Q(s,a) Vs € S,a € A arbitrarily
for each episode do
Initialize s to sg
forstep=0to 7T do
Choose a; for s, using policy derived from @ (e.g.,e-greedy);
Take action a;, observe r;, s;11;
Q(st,at) Q(S¢,a¢) + [rep1 + ymax,Q(Se41,a) — Q(s¢, ar)];
s+ s
end for
end for

These computation and nonscalability issues prevent the use of Q-learning in realistic systems. However, reinforce-
ment learning can also be combined with function approximation to address problems with many states. In the
following sections, we will present the concept of deep reinforcement learning and several value-based algorithms

that can be used to handle energy management problems.

3.3 Deep reinforcement learning

3.3.1 Principle

Deep reinforcement learning has been developed to tackle the limitations of the Q-learning algorithm. In this ap-
proach, the Q-table is replaced by a deep neural network called Q-network that estimates the Q-function, as defined
by (3.15) where 6 denotes the weights of the neural network. This approach uses the Q-network as a function
approximator instead of taking perfect values from the Q-table. The term "deep" in DRL refers to the use of a deep

neural network.

55

Q(s,a;0) = Q*(s, a) (3.15)

The principle of deep reinforcement learning is shown in figure 3.11. Each neuron s; of the input layer corresponds
to one of the state variables of the Markov decision process and each neuron «; of the output layer corresponds
to one of the actions. The output value of the neuron «; gives the value of the Q-function for this particular action
1 Q(s,a;5;0). With this DNN structure, it is possible to handle MDPs with continuous state variables, but the action
space remains finite. More complex structures have been developed recently in order to deal with continuous

actions, but this is beyond the scope of this work.

Q(s,a) - Q(1,0) Q-Learning:
a0 al alo
Q-Table:
so [+32 | +45 | .| +11
Q(s¢, ar)
i : : : S| #36 | +16 | | *32 | Digcrete- Discrete
Decision making (Reinforcement learning) s2 B =05 | .| 6 |:
o s3 [+13 | +27 | .| +17
~ Agent - S
DQN:
State |reward action Perception (deep learning)
(Se) (o) (ar) NN: hidden
S Te+1 5
= Environment
: Q(s¢, ar)
:Continue- Discrete
+2.1 &

Figure 3.11: DQN mechanism

As neural networks can handle continuous inputs and outputs, DRLs are scalable and suitable for complex contin-
uous environments, such as microgrids. Moreover, using a deep neural network and the capacity to work with a

continuous state space allows to increase the action space size without needing a larger memory space.

3.3.2 The naive approach

In this method, the training determines the Q-network weights by minimizing the mean-squared error of the Bellman
equation 3.10. In a naive approach, the loss function to minimize is defined at each time step ¢ by 3.16, where

r = R(s,a).

L(6;) = (Q(s, a;0;) — Egy [r + 7. nza}xQ(s’, a Qt)|5,a])2 (3.16)

At each time step, a gradient descent iteration is performed using equations 3.17 and 3.18. In this equations A6,

56

represents the weight increment, r; + . max, Q(s’, a, ;) is the maximum possible Q-value at the next state (Q-
target), Q(s, a, 6;) is the current predicted Q-value and 74Q(s, a, 6) is the gradient of the current predicted Q-value

with respect to the weights.

Ht-l-l < Gt - Aﬁt (317)

A0, = o [(ry +7.max Q(s',a,60)) — Q(s,.0,6,)] o Qls,a,6,) (3.18)

As with the Q-learning algorithm, the e-greedy learning strategy is used to balance exploration and exploitation as
the training process progresses. After some time, this iterative process is expected to converge toward the optimal

weights.

The naive deep Q-learning approach has the advantage of simplicity, but it is prone to stability issues. It oscillates

or diverges because of the following issues.

» The training is made using sequential data: successive samples are correlated and they are processed in

chronological order. This leads to a non-independent and identically distribution of random variables.

» The greedy exploitation mechanism results in a policy that is very sensitive to Q-values. Hence, a slight
change of the Q-value produces rapid changes of the policy during the learning process. Besides, the state

region explored by the algorithm is policy-dependant.

* In this approach, the scale of reward and Q-values is unknown, so the gradients can produce instability when

back-propagated.

3.3.3 The deep Q-network algorithm

The above-mentioned issues were addressed by Mnih and his co-authors [90]. To improve the unstable behavior
of the naive deep Q-learning approach, they have proposed the DQN algorithm. In this algorithm, two mechanisms

are used to stabilize the search for the Q-network coefficients: experience replay and duplicated Q-network.

The experience replay mechanism is intended to remove data correlations and bring the problem back to the i.i.d.
setting by building a data set from the agent’s own experiences. It consists in storing past experiences (s, a,r, s)
in a buffer D and using a random sample of (s,a,r,s’) ~ D at each time step to average the loss function over
uncorrelated data. Moreover, using the experience replay, the algorithm learns from all past policies and can learn

by an off-policy approach. This mechanism is illustrated in figure 3.12.

In this setup, all past experiences (s, a,r,s’) are forwarded and stored in a buffer with n slots. The mechanism for

57

Darabase D of samples
(st, @, 13, 5¢41)

Xxx samples
//,,_//:74\-“-‘-1 .
/'f-/ P i TR
‘&_/—--/’/ o = n = mini — batch size\\x__ &
(s1,@4,71,5141) (52,82,72,5241) e (St @y T, Sne1) (3:}7-_1.- A1, Tt-1,5¢)
. »
Do mini-batch gradient descent on w
parameter 8 for one step
Qs ay) \
v -
/’/’ a; = arg man.(.Q(st, a)
Under training Neural Q(syas) whit probability 1 — ¢
Network parameter 8 \T__‘b >— Or
"\\\ : random action a;
N with probability ¢
A
Q(stl am) j

Environment

Move the environment for one step

Figure 3.12: DQN learning process

populating this buffer follows the first-in-first-out (FIFO) principle. Therefore, to break the correlation between these

experiences, the gradient descent step will be applied to a randomly sampled subset of them.

The second improvement consists in using a duplicated Q-network to evaluate the target function (3.19) and peri-
odically update its weights. To do that, a copy of the Q-network is periodically made and used to calculate the target
y. Between two updates, the target Q-network and hence the policy are frozen. This mechanism allows to leverage

policy changes during the training process and stabilizes the determination of the weights.

y=r+vmaxQ(s',a';0;) (3.19)
Both mechanisms are integrated into the improved loss function defined by equations 3.20 and 3.21. The subscript

t refers to the current iteration, whereas the subscript ¢~ refers to the last iteration where the Q-network used for the

target evaluation was updated.

Lt(et) = E(s,a,r,s/)wD [(y - Q(& a; et))z] (320)

y=r+vy.maxQ(s',a'; ;) (3.21)

58

A last improvement to the algorithm is to clip the rewards to [—1, +1] or to normalize the network adaptively to a

sensible range for a robust gradient to ensure that the gradients are well conditioned.

The DQN algorithm with experience replay is given in the algorithm 2.

Algorithm 2 Deep Q-Network with experience replay
Initialize replay memory D
Initialize Q-network @ with random weights 6
Initialize target Q-network Q with 6= = ¢
for each episode do
Initialize state sq
for each time step t do
With probability € select a random action a;
Otherwise select a; = arg max, Q(s¢, a;0)
Execute action in environment and observe reward r; and new state s;11
Store transition (s, at, r¢, s¢11) in the replay memory D
Sample mini-batch of transitions (s;, a;, 7, sj+1) from D
if episode ends at j + 1 then

Yi =7j
else R

y; =1 +ymaxy Q(sjq1,a’,07)
end if

Perform a gradient descent step on (y; — Q(s;, a;; 6))? with respect to the network parameters 6
Every C steps update 6~ + 6
end for
end for

As mentioned above, the policy learned during the training phase is stored as the weights of the neural network.
Once the learning phase is finished, the trained neural network will be employed in real-time to select the optimal

actions in the environment. The testing phase of the DQN algorithm is presented in Figure 3.13.

Qlspaq) \

.»-*/’?
L
S Trained Neural Network Q{5 az) i
Environment parameter 8 <————» a; = arg maax Qs a)
\\ |
.

Qs ay) j

Move the environment for one siep

Figure 3.13: DQN Testing phase

3.3.4 The Double DQN algorithm

The DQN algorithm was a real breakthrough in DRL, but continuous attempts were made to improve the learning

process, that is to make it faster and robust in all kinds of learning situations. A famous algorithm derived from

59

the DQN algorithm is the double deep Q-network (DDQN). This algorithm is an answer to the fact that the DQN

algorithm tends to overestimate the Q function values and produce sub-optimal policies.

To understand why, we need to go back to the target function defined by equation 3.19. This function actually does
two things : it chooses the action o’ with the highest Q-value, and then it uses this value to set the target. In this
process, the agent tends to overestimate the Q-values and to bias the learning process. At the beginning of the
learning process, the action value function Q(s, a) is not well known, but by design the action selection mechanism
favors actions with the highest positive error as optimal actions. This choice propagates the error through the

training, whatever the source of error or noise.

Authors in [91] proposed the Double DQN algorithm to overcome this problem. The idea is to decouple the action
selection process from the target Q-value calculation using two independently learning Q-networks. In this approach,
one network), is used to select the best action to take for the next step according to equation 3.22, and the second

one s calculates the target value for that action according to 3.23.

a' = argmaxQ(s’,a) (3.22)

y=r+7Qa(s",a) (3.23)

This principle is easy to add in the DQN algorithm, since the Q-network is already duplicated. The first network
is Q(s,a;0) and the second one is Q(s, a;¢’). The only modification in the algorithm is to change equation 3.21 to

equation 3.24.

y =1 +7.Q(s argmaxQ(s', a; 0;): 0}) (3.24)

The DDQN algorithm with experience replay is given in the algorithm 3.

Authors in [91] reported that the DDQN algorithm does not always lead to a better policy than a DQN algorithm.

However, it always provides a better learning stability and the ability to learn complicated tasks.

3.3.5 DDQN with prioritized experience replay (PER)

The experience replay technique can enhance the efficiency of DQN and DDQN algorithms. A normal experience
replay has limitations as it replays experiences at the same rate they originally occurred without considering their
importance. To address this, Schaul et his coauthors developed a framework for prioritizing experiences based on

their significance which helps to learn more efficiently and effectively [92].

60

Algorithm 3 Double Deep Q-Network with experience replay

Initialize replay memory D
Initialize Q-network @ with random weights 6
Initialize target Q-network Q with 6= = ¢
for each episode do
Initialize state s;
for each time step t do
With probability € select a random action a;
otherwise select a; = argmax, Q(s¢, a;6)
Execute action in environment and observe reward r; and new state s;11
Store transition (s, at, r¢, s¢11) in the replay memory D
Sample mini-batch of transitions (s;, a;,7;, sj+1) from D
if episode ends at j + 1 then

Y =7j
else

y=r+7Q(s" argmax, Q(s', a;6;);0;_)
end if

Perform a gradient descent step on (y; — Q(s;, a;; 6))* with respect to the network parameters ¢
Every C steps update 6= «+ 6
end for
end for

Certain experiences may hold greater significance for the training, even if they occur less frequently. However,
when the batch is uniformly sampled, these important experiences have very little chance of being selected. With
the prioritized experience replay, this issue is addressed by altering the sampling distribution. The priority of each
tuple of experience is determined using a criterion that favors the replay of important experiences that may occur
less frequently. Therefore, the experiences are prioritized based on the magnitude of the difference between the

prediction and the TD target, according to equation 3.25.

pe =10 +e (3.25)

In this equation, |4;| is the magnitude of the temporal difference (TD) error and e is a small constant that ensures that
no experience has zero probability of being taken in the sampling process. There is more to learn from experiences

with a larger absolute value of TD error, therefore they should be prioritized.

Prioritization is done by assigning to each experience of the replay buffer the priority indicator defined above. This

indicator is added to the experience tuple which changes to (s;, a;, ¢, St+1, Pt)-

Selecting the experiences with the highest priority can result in a biased and narrow training dataset that leads to
overfitting. Hence, it has been proposed in [92] to use stochastic prioritization to create a probability distribution for

each experience using 3.26.
‘ 2
P@) =

(1) S

(3.26)

61

In equation 3.26, P(i) is the probability of sampling transition i, p; is the primary priority value. ", p{ is used to
normalize the primary priority value by all priority values in the replay buffer, and a is a hyper-parameter used to
reintroduce some randomness in the experience selection for the replay buffer. « = 0 leads to uniform randomness

in the selection, and a = 1 leads to only selecting the experiences with the highest priorities.

The stochastic prioritization allows for a wider variety of experiences to be included in the training data-set, pre-
venting over-fitting and improving the training process. In this approach, the authors sample a batch of experiences
based on this probability distribution at each time step and they use it for training the neural network. This ensures

that the training is done on a representative sample of experiences rather than just the most highly prioritized ones.

Another problem related to using a prioritized experience replay buffer that the authors address is the bias problem.
In classical experience replay, the experiences are randomly selected according to a uniform distribution, and there
is no bias since each experience has an equal chance of being selected. As a result, the weights can be updated
after each each experience. However, priority sampling in PER introduces a bias toward high-priority samples.
These high-priority experiences are more likely to be selected and may be used for training often, creating a bias
towards these experiences. In this situation, if the weights are updated after each experience, there is a risk of
overfitting these high-priority experiences. As a solution, authors proposed to update the weights only after a few
experiences that are considered to be truly informative or interesting. This approach allows to avoid overfitting to
the most highly prioritized experiences and ensures that the network is trained on a diverse set of experiences. To
correct this bias introduced by prioritized sampling, the authors use the importance sampling weights w; defined in

equation 3.27 to adjust the weight updating process.

w; = <%$)b (3.27)

In this equation, N represents the replay buffer size, P(i) is the probability of sampling transition i, and b controls
how much the importance sampling weights w; affect learning. b is close to 0 at the beginning of the learning process
and annealed up to 1 over the training process. This change in b value reflects the importance of these weights at the
end of the learning process when the Q-values begin to converge. Using importance sampling weights reduces the
impact of often-seen experiences by decreasing their weights. The weights corresponding to high-priority samples
will have very little adjustment because the network will see these experiences many times. On the other hand, the
weights corresponding to low-priority samples will have a full update, allowing them to contribute more significantly
to the training process. This adjustment balances the impact of high- and low-priority experiences, preventing the

network from overfitting to a small subset of highly prioritized experiences.

Another improvement related to the implementation of PER proposed by the authors is using an unsorted sumtree

data structure instead of sorting the experience replay buffers based on their priorities. Using a sumtree, they avoid

62

the O(nlogn) sorting cost and enable O(logn) insertion and sampling, making PER implementation much more

efficient. The structure of the sumtree and its functionality is explained in Appendix.1.

The last trick used in their work is related to the sampling process. To sample a minibatch of size k& from the
replay buffer, they first calculate the total priority sum of all experiences in the buffer. Then, they divide the range
[0, total — priority] into k equally spaced intervals. Next, they sample a value uniformly from each interval and use
these values to select the corresponding experiences from the sumtree. This is done by traversing the sumtree,
starting from the root node, and selecting the left or right child node at each level based on whether the current
value falls within the left or right interval. Once they have selected k experiences from the sumtree, they calculate
the importance of sampling weights for each experience and use them to update the neural network weights during
training. Overall, this process ensures that high-priority experiences are replayed more frequently, leading to more

efficient learning and better overall performance of the RL agent.

3.4 Conclusion

In this chapter, we introduced the preliminary concepts of reinforcement learning and deep reinforcement learning
and presented the most popular model-free, value-based algorithms. We started with Q-learning, which application
is limited to discrete MDP with a limited number of states and actions. Then we described the DQN algorithm, which
is the keystone of DRL algorithms, and its extensions: the DDQN algorithm and the DDQN algorithm with prioritized

experience replay.

In the following chapters, we apply these algorithms to build a HEMS for a connected building microgrid with PV

production and thermal loads.

63

64

Chapter 4

Building microgrid model and problem

formulation

4.1 Introduction

As previously mentioned, this thesis aims at developing a real-time home energy management system (HEMS)
based on reinforcement learning (RL) and deep reinforcement learning (DRL). The studied system is a small build-
ing microgrid (Figure 4.1) connected to the public grid. It has non shiftable loads (appliances, light, computers),
controllable thermal loads (heating and hot water), local PV production and battery storage. The HEMS is dedi-
cated to the control of the battery and the thermal loads of the building in order to reduce the operating cost and

consequently increase self-consumption, while ensuring the user comfort.

A recent study by Eurostat in 2020 shows that space heating and water heating represent 62.8% and 15.1% of the
final energy consumption in the residential sector in the EU [8]. Therefore, optimizing this energy consumption
while preserving the user comfort is crucial to reduce the carbon footprint and operating costs. Moreover, due to
its thermal mass, a building may be considered a storage unit. Excess energy can be stored as heat when there is

more production than consumption, improving the system balance.

In the preceding chapter, we discussed the principles of deep reinforcement learning (DRL), which involves solving
a Markov decision process (MDP) through interactions with the environment in situations where the state-transition
probability function, representing the system’s behavior, remains unknown. In this chapter, we will see how the
HEMS can be considered a MDP problem, making DRL a suitable approach to solve it. The primary objective
is to learn an optimal strategy without explicit knowledge of the state-transition probability function. This strategy

depends not only on the model but also on the input profiles. The advantage of this learning process is that it can

65

Figure 4.1: Microgrid model

be implemented offline, using a model of the system and historical data. During the learning phase, DRL algorithms
extract knowledge from past time series. In a MDP, stochastic minimization occurs as the agent learns both the
model and the input profiles. After the learning process, this obtained knowledge allows the HEMS to manage
the system in real time. For our case study, we used historical data on PV production and load consumption of a
university building in the southern suburbs of Paris. This dataset was kindly provided to us by the Laboratoire de

Météorologie dynamique.[93]

The study has been divided into three phases, starting from a simple case and gradually increasing the complexity
of the problem. The first phase corresponds to a use case with no thermal loads. The HEMS manages the battery
alone to minimize the daily cost of energy purchasing. In order to acquire knowledge in the field of reinforcement
learning, we have first implemented and trained an HEMS based on Q-learning, the simplest reinforcement learning
algorithm. Then, we implemented and trained an HEMS based on the DQN algorithm. After obtaining satisfactory
results, we moved to the second phase, which corresponds to a use case with thermal loads (heating and hot water)
but no battery storage and no PV production. The HEMS, based on the DQN algorithm, manages the heating and
hot water production to minimize the daily cost of energy while ensuring the thermal comfort of users. The goal of
the third phase was to manage the whole system, namely the battery and the thermal loads, always with the same
objective of minimizing the daily cost while respecting the thermal comfort of users. Unfortunately, determining the

hyperparameters of the DRL algorithms turned out to be a difficult task and the third phase could not be achieved

66

during this thesis.

The upcoming sections of this chapter present the studied system. We start with a short description of the global
system and the model of its components. Then the use cases are detailed : the models are given, the control
problem is formulated. The data used for the HEMS agent training are also presented. The implementation of the

HEMS system itself and the results will be given in chapter 5.

4.2 Microgrid model

Figure 4.1 shows the global architecture of the studied building microgrid and the different variables. The non-
shiftable load is denoted by P,,.4, the controllable thermal loads are denoted by Py..: (heating) and Py, (hot water
production). These power are defined using the receptor convention, meaning that they are always positive. The
loads are fed either by the grid, the PV unit or the battery. The corresponding powers are denoted by P4, Ppy and
Py and defined using the generator convention. The connection to the public network is unidirectional (P, >= 0),
always available, with no limit on the provided power. Since the microgrid is not authorized to inject energy to utility
grid, PV shedding may occur when there is an excess of PV production which cannot be consumed by loads or

stored by the battery.

With these notations, the system equilibrium equation is given by equation 4.1.

-Pload(t) + Pheat(t) + Phw (t) - Pgrid(t) + va(t) + Pbat(t) (41)

The ultimate role of the HEMS is to decide the set-points of P,,;q, Poats Preat @nd P, for the coming time step in
order to reduce the daily operating cost. This cost corresponds to the price of the electricity purchased from the
utility grid and to penalties applied if the command of the system does not allow to satisfy the non-shiftable load.
Typically, this happens if the battery setpoint does not meet the operating constraints. The price of electricity follows
a peak hour/off-peak rate and the daily operating cost is given by equation 4.2, where C;Md is the unitary price of

the grid electricity at time ¢, E?

orid is the energy served by the grid at time ¢, Cyunsatisfiea iS the unitary penalty for

unsatisfied demand and E? is the energy not served to the load at time ¢.

T
Daily operating cost = Z Chria X Elpig + Cunsatisfied X Ehnsatis fied (4.2)
t=1
In order to progressively implement DRL to build the HEMS, this general framework has been subdivided into three

use cases with increasing complexity : no thermal load, then only thermal loads, and finally the whole system. The

next sections present the details of each use case.

67

4.3 Usecase 1

In the first use case, the thermal loads are left out and the net consumption is defined as P,,.; = Piyoq — Ppy. This
net consumption can be either positive (consumption higher than the PV production) or negative (consumption lower

than the PV production). With this notation, the system balance equation is reduced to equation 4.3.

Pnet(t) - Pgrid(t) + Pbat(t) (43)

4.3.1 Load consumption

The load consumption is modeled using real data measured in an office building (DrahiX building). In this database,
the consumption is higher during the week because of the presence of people and also higher in winter because of

the heating consumption. The load consumption profile is presented in figure 4.3 in section 4.5.

4.3.2 PV production

The PV production is modeled using the real power profile generated by a PV pannel at tertiary building (the Drahi X

novation center situated in EcolePolytechnique in Palaiseau, France). This panel has the following characteristics.
* mono-Si photovoltaique panel
*« 250 Wp
* 15% efficiency
* 1.65 m?

Its production is scaled to simulate the production of a 120 m? facility. The simulated PV production profile is

presented in figure 4.3 in section 4.5.

4.3.3 Battery model

The energy stored at time ¢ is denoted by Ejpquery(t). lts dynamics is given by 4.4, where n €]0,1] is the charg-
ing/discharging efficiency and P,.:(t) is the battery charging or discharging power during the time interval [¢, ¢ + At].

For the sake of simplicity, we consider the same efficiency during charging and discharging.

Epat(t +1) = Epg(t) — n—sign(Pbat(t)) X Ppat(t) x At (4.4)

The physical limitations on the battery capacity and maximum charging/ discharging power result in the constraints

68

4.5 and 4.6.

Ebat min < Ebat (t) < Ebat max (45)

_Pbat maz < Pbat(t) < Pbat max (46)

4.3.4 HEMS and operating costs

The HEMS is in charge of managing the battery and the connection to the grid. It gives the setpoints of P,,; and
P,,;q for the coming time interval. P, is expressed as a fraction of P,.; : Pya:(t) = a X Pret(t), where a € [0,1]. The
utility grid is assumed to always be available, with no limit on the purchased power. The cost of electricity is given

by the EDF residential tariff [94] :

. Cotf peak = 0.1361 euros/kWh t € [22hR00 — 06R00[
Ogm’d purchase — (47)
Chpeak hour = 0.1821 euros/kWh t € [06h00 — 22R00]

As already mentioned, the HEMS gives the setpoints of Py, and P,,;q for the coming time interval. The setpoint
P,,.q will always be executed, but this may not be possible for P,,; because of the the operating constraints 4.5 and
4.6. If these constraints prevent energy to be served to the load, this results in an unsatisfied demand and a high

penalty cost is applied.

The penalty value must exhibit a significant difference from normal costs to ensure an effective learning process.

Choosing a value too close or too far from the normal cost can impede good learning and affect the learned strategy.

Cunsatisfied = 10 euros/kWh (4.8)

This value is determined by considering this substantial difference through a trial-and-error process.

4.3.5 Numerical data

The data utilized in this use case was extracted from the database provided from a tertiary building (the Drahi X
novation center situated in EcolePolytechnique in Palaiseau, France). A comprehensive description of this database
and the steps taken to clean and prepare it for machine learning algorithms will be discussed in detail in section
4.5.1. However, at this juncture, we offer a concise and general overview of the cleaned database used in the

learning process and the reasons that influenced the choice of battery dimension. The consumption and production

69

values presented here are derived after pre-processing the raw tertiary building database and resampling it with

30-minute time steps.

Consumption

The consumption values are obtained from four complete years, from July 15, 2016 to July 14, 2020. The values
range between 0 and 22,06 kW, with a mean value of 4,34 kW. The consumption profile represents a mean annual

consumption of 76.08 MWh.

Production

For the same period, the production values range between 0 and 17,01 kW with a mean value of 2,59 kW. The

production profile represents a mean annual production of 45.48 MWh.

Battery

The mean value of net power consumption defined by P,.; = Pi..qa — Ppyv is equal to 1.75 kW and represents 84
kWh consumed per day. Considering six hours of autonomy for the battery unit, we need a battery with a capacity

of 21 kWh.

4.4 Use case 2

In the second use case, only the thermal loads are considered. The EMS manages the heating and the hot water
boiler with the same objective of daily energy cost minimization than in the use case 1, but the goal is to maintain
the indoor and the water tank temperatures within comfortable ranges. The thermal mass of the building and the
hot water tank constitute thermal storage capacities that enable to adjust the operation time of the heating systems,

by either anticipating or postponing their on/off command.

4.4.1 Building thermal model

In this work, the dynamic of the building indoor temperature is modeled using a simple model based on Newton’s
cooling law [95]. This law states that the rate of heat transfer out of an object is proportional to the temperature

difference between the object surface and its environment, as expressed by equation 4.9.

49 _

3 = AT = Ten) (4.9)

In this formula, Q (J) is the thermal energy of the object, A (m?) is the surface area through which the heat flows

out, h (W.m~2.K ') denotes the heat transfer coefficient of this surface, 7" and 7.,,,, (K) are respectively the surface

70

temperature of the object and the temperature of the surrounding environment, both assumed to be uniform.

To apply this principle to the building, we define the indoor and the outdoor temperatures denoted by T;,, ans 7,.;.
We also introduce the heat capacity of the building C' (J/K) defined by C' = dQ/dT, and the global heat loss
coefficient U (W.K~1) defined by U = h.A. We also need to account for the heating power Qj..: (W), linked to
the electric power Py..: (W) by 4.11 where n;... is the efficiency of the heating system. Using these notations, the

thermal balance equation of the building is given by equations 4.10, 4.11 and 4.12.

dT;

— = eat — 0ss 4.1
C—p = Qheat — Q1 (4.10)
Qheat = Nheat X Pheat (411)
Qloss =Ux (T’m - Tout) (412)

This set of equations can be numerically solved by the first order finite difference scheme given by 4.13. After some
trivial reorganization, this equation is transformed into 4.14 and finally 4.14, where ¢ is the building thermal inertia
defined by equation4.16 [96]. It should be noted that the value of ¢ depends on the time step of the numerical

implementation.

At
T%n,t-i—l = Tz‘n,t + 6 X (Qheat,t - U x (T;n,t - Tout7t)) (413)
U.At U.At 1
Tint+1 = (1— T) X Tine + X (Tout,t + U X Qheat,t) (4.14)

1
Tingt1 = €Tin e + (1 —€) X (Tout,e + U X Qheat,t) (4.15)

ezl—%xeAt (4.16)

4.4.2 Hot water tank model

The electric boiler is sketched in Figure 4.2. T}, denotes the temperature of the hot water delivered by the boiler

and replaced by cold water at temperature 7., and Py, denotes the feeding electric power. The system is modeled

71

Figure 4.2: Electric boiler schema

using the single mass model described in [97]. This model is widely used for general-purpose simulations and is

known for its simplicity [97]. In this model, the inside temperature of the tank is assumed to be uniform.

The thermal dynamic equation of the system is given by 4.17, where Cioier (J/kg.K) is the heat capacity of the
boiler. Q. is the thermal power provided by the boiler heating system and linked to the electric power P, by
4.18, where .11 is the efficiency of the boiler heating system. Quemana is the thermal power exchanged with the
environment due to the hot water demand. This power is calculated by equation 4.19, where C\,qter (J.kg™ 1. K1)
is the specific heat capacity of water and 7, (kg.s~!) is the hot water mass flow, replaced by cold water. Q. is
the heat loss flowing through the tank wall and is calculated by 4.20, where h;q, (W.m™=2.K ~!) is the heat transfer

coefficient of the tank wall and A,,,.;. (m?) is the area of the tank wall.

Chotter X ~52(6) = Quus(t) ~ Quemand(t) ~ Qo1 (417)
Qhw(t) = Mpoiter X Phaw(t) (4.18)

Quernana(t) = Cuter X inat) % (That) ~ To) (419
Quoss 1) = haani * Avani * (Thas (1) ~ Tam (1) (4.20

Equation 4.17 is numerically solved by the finite difference scheme 4.21.

72

X (Qhw,t - Qdemand(t) - Qloss (t)) (421)

Thw,t+1 = Thuw,t +

botler

4.4.3 Thermal comfort

According to [98], thermal comfort is defined as the occupants’ satisfaction with the thermal condition. Achieving
thermal comfort is a complex process influenced by various factors, such as air temperature, mean radiant temper-
ature, relative humidity, air speed, clothing insulation, and metabolic rate. Researchers have developed numerous
modeling techniques and parameter measurement methods to understand thermal comfort, as seen in previous
studies [99]. To simplify matters, in this thesis, we use a comfortable temperature range to represent thermal com-
fort like previous studies [100]. In our defined system, two separate systems ensure the comfort temperature range

related to indoor and hot water temperatures.

These comfort temperature ranges are defined by the equations 4.23 and 4.22 for the indoor and hot water temper-

atures, respectively.

Tin min S Ti (t) S Tin max (422)

Thw min < Th'w(t) < Thw max (423)

4.4.4 HEMS and operating costs

The HEMS is in charge of managing the heating and the boiler. Both devices are controlled by on/off commands.
The HEMS gives the setpoints of P,..; and Py, for the coming time interval with the objective of satisfying the users
thermal comfort at the lowest energy cost.. The utility grid is assumed to always be available, with no limit on the

purchased power. As for use case 1, the cost of electricity is given by the EDF residential tariff [94].

4.4.5 Numerical data

Heating system

The numerical data used for the building thermal model have been taken from [96] and [101] and correspond to
individual dwellings : U = 0.14 kW.F~! = 252 W.K~! and ¢ = 0.7 for At = 1 h. As the value of ¢ depends on
the time step, this value must be recalculated if the time step is not 1 hour. For At = 30 mn, ¢ = 0.85 and for

At = 10 mn, € = 0.95. The heating efficiency is arbitrarily set to 100 %.

The next step is to size the heating system. The process of sizing a heating system for a household involves

73

determining the heating power needed to heat the home to the desired temperature for given outside temperature.
This requires to calculate the house’s heat loss, which is the amount of heat lost from the house to the outside due
to insulation, air leakage, and other conditions like the size and construction of the building. The heating power must

compensate these losses [98][102].

In our case, the comfort temperature range has been set to [18,22] C. The heating power is calculated so that
in static conditions the indoor temperature is 18 C for the worst outside temperature, assumed to be —8 C. By
setting the temperature time derivative to zero in equation 4.10, one obtains equation 4.24 and the numerical value
Qneat = 6552 W, rounded up to 6.6 k1. We notice that in cold conditions, the heating system may need to constantly

keep working to keep the specified indoor thermal condition.

Qheat = Qloss =Ux (Tin - Tout) (424)

Boiler

For the boiler, we have considered a tank with a volume of 200 /, a surface of A = 1.985 m?2. Considering the
specific heat capacity of water Cy,qier = 4186 J.kg—'.K~!, the heat capacity of the boiler is equal to Cyoiier =
Cuwater X Muater = 4186 x 200 = 8372 J.K 1. The overall heat transfer coefficient of the tank is fixed to higni =
2.5 W.m 2K 1. The boiler efficiency is arbitrarily set to 100 %. The hot water comfort temperature range is set to
[50,70] C, and the ambient temperature is assumed to be the building’s indoor temperature. The boiler power is
calculated using equations 4.25, 4.30 and 4.27 for the worst static conditions T, = T3, = 18 C, 1y = 1.6 Lomn !

and T}, = 50 C.

Qhw = Qloss + Qdemand (425)
Qloss = htank X Atank X (Th'w - Tamb) (426)
Qdemand = Cwater X mhw X (Thw - Tcw) (427)
The numerical results are as follows.
Qloss = 2.5 x 1.985 x (50 — 18) = 158.6 W' (4.28)
1.6
Qdemana = 4186 x E x (50 — 20) = 3349 W (4.29)

74

Qnw = 3507.8 W (4.30)

Therefore the Qy,, = 3507.8 W is rounded to 3.5 kW

4.5 Usecase3

The use case 3 takes all the units of use case 1 and use case 2 into account simultaneously. Therefore, the
EMS should control the heating system, the hot water boiler, and the battery unit simultaneously. In this case, the
EMS makes its decisions based on information on outdoor, indoor, hot, and cold water temperature, PV production,
electricity price, and battery state of the charge. We consider the EMS’s objective to reduce the microgrid’s operating
cost while keeping comfortable temperature ranges. Training the agent to manage this use case relies on the system
descriptions detailed in use case 1 and 2 (operation costs, battery model, hot water tank model, building thermal
model, thermal comfort model and ...). In the next chapter, we will describe the Markov decision process associated

to this use case.

4.6 Training data

In this work, we implement a data-driven decision-making process trained offline using time series representing
past quantities of interest. The quality of the training depends on the quality of the data : bad data will lead to bad
decisions and the database must be well prepared. The data and their pre-processing are presented hereafter for

each use case.

4.6.1 Use case 1: tertiary building database

In the first use case, the data needed for the HEMS training are PV production, load consumption and outside
temperature time series. Measured data from a tertiary building (the Drahi X novation center situated in Ecole
Polytechnique in Palaiseau, France) were available for this. This database starts in July 2016 and contains seven
years of PV production, consumption and outside temperature, representing a large sample of the corresponding
stochastic phenomena. The consumption corresponds mainly to HVAC, ventilation, computers and lighting loads.
The PV production corresponds to the MPPT production of a single mono-Si PV panel located on the roof of the
SIRTA atmospheric observatory [93] and we have scaled it to simulate a 120 m? facility. In this use case, we work

with the net consumption P,.., defined as the difference between the load consumption and the PV production.

Figure 4.3 shows the raw data : PV production, load consumption, net consumption and outdoor temperature,

registered as continuous numerical values sampled with a 5 minute time step. As we can see, seasonal variations

75

LMD database

S 15000

0 100000 200000 300000 400000 500000

+ Cons

. 3
200000 300000 400000 500000

« Net cons

0 100000 200000 300000 400000 500000

0 - Temp
20
10

0 H

-10 <
20 2
i

Net power consumption
o

Outdoor temperature (°C)

0 100000 200000 300000 400000 500000
Measurement

Figure 4.3: Raw tertiary building database : Ppv, Pioad, Pret and Ty, versus time

are important with an increase of PV production in summer and on the contrary an increase of consumption during
winter. The first covid lockdown (March 17 to May 11, 2020) is also clearly visible on consumption data. From this

database, we extracted the data of four complete years, from July 15, 2016 to July 14, 2020.

Data cleaning is essential to ensure a good learning process. To feed the machine learning algorithms, we first
need to pre-process the database in order to detect and replace missing data and outliers. This has been done as

follows.

The data logger sometimes fails and unavoidably, data are punctually missing. Replacing the missing values by
acceptable ones is the first crucial task. To do this, for each timestamp we have calculated the corresponding mean
value over four years, ignoring missing data, and then, we have replaced the missing values with the corresponding
average value over four years. Figure 4.4 shows the time evolution of the net consumption P,.; and the outside

temperature T, after replacing the missing data.

Finding outliers is another crucial step of the pre-processing. These values are rare and challenge the learning
process due to their rarity. One popular method to detect outliers in normal (Gaussian) distributions is the 3¢ rule
[103]. This rule is based on the mean value i and the standard deviation o of the distribution and states that values
out of the interval [— 30, 1 + 30] are outliers. Applying this rule to a Gaussian distribution, about 2% of data are

considered as outliers (Figure 4.5).

Detecting outliers in non-Gaussian distributions can be difficult since traditional statistical techniques for outlier

76

Pnet (W)

LMD database after replacing missing data

+ Pnet
20000 : - i 8 | — median ¢
M 41— upper outlier range
—— lower outlier range 1|
10000 i 5
0
-10000
. ST . = 3.
—20000 H
0 100000 200000 300000 400000
40 l
30
o)
&
o 20
=
2
o
g 10
£
e | 1
0 * Temp
—— median
—— upper outlier range
-10 —— lower outlier range
0 100000 200000 300000 400000
Measurement

Figure 4.4: P,.; and T,,,; time series after replacing missing data

0.3 0.4

0.2

34.19 34.1%

0.0 0.1

u—30 H—20 HU—O vl u+0 P+20 p+30

Figure 4.5: Normal distribution [103]

77

LMD Histogram
120000 median

—— mean

—— upper outlier range
lower outlier range
W Net power histogram

100000

80000

60000

40000

Number of measurement

20000

—20000 0 20000
Net power consumption(W)

median
—— mean

50000
—— upper outlier range
— lower outlier range

40000 mEm Temperature histogram

30000

20000

Number of measurement

10000

-10 20 40
Temperature(°C)

Figure 4.6: P,.; and T,,; histograms (At = 5 mn)

detection are based on the assumption of a normal distribution [104]. However, several methods, such as box plot,

clustering, or modified Z-score can identify outliers in non-normal distributions [105].

Figure 4.6 shows the histogram of the P,.; and T,,; distribution. We can see it differs from a Gaussian distribution
but the mean and median value are close to each other for both quantities. Therefore and for the sake of simplicity,
we have applied the 30 rule to detect the outlier of our database. The upper and lower range of outliers defined by
this rule are shown on Figure 4.4. For P,., we found only 350 values above ;. + 30, i.e. 0.08%, and 919 values below
1 — 30, i.e. 0.22%, corresponding to a total of 0.30% outliers. For the temperature, we found that 0.21% of the values

are above i + 30. At this stage of the process, we keep the outliers in the database.

As already mentioned, the raw database corresponds to a 5 mn time step. Later on, we will implement the HEMS
with a 30 mn time step. This requires to resample the data accordingly. To do this, we use the resample method from
the Pandas library in Python. Figure 4.7 shows the P,.; and T, profiles after resampling and the corresponding
1 =+ 30 values. One notices that resampling the data to a 30 minutes time step smoothes the peaks and decreases
the number of outliers. After resampling, the percentage of outliers decreases to a total of 0.17% for P,.; and 0.21%

for T, The histogram of the resampled data is shown in 4.8.

Finally, the distributions are clipped between p — 30 and p + 30. Values higher than p + 30 are replaced by p + 30),
and values lower than . — 30 are replaced by i — 30. Figure 4.9 shows the distribution before and after replacing

all the outliers.

78

20000

15000

10000

5000

Pnet (W)

-5000

—10000

—15000

40

20

10

Temperature (°C)

-10

16000
14000
12000
10000
8000
6000
4000

Number of measurement

2000

8000

6000

4000

Number of measurement

2000

LMD database after resampling

. Pnet
i — median

upper outlier range *
lower outlier range ;i .

2016-07 2017-01 2017-07 2018-01 2018-07 2019-01 2019-07 2020-01 2020-07

'

L“h;‘ : ‘H‘A;MM.‘M, gl o 5
il TR | SR T

« Temp i H >
—— median
—— upper outlier range

—— lower outlier range

2016-07 2017-01 2017-07 2018-01 2018-07 2019-01 2019-07 2020-01 2020-07
Measurement

Figure 4.7: P,.; and T,,,; time series (At = 30 mn)

LMD Histogram after resampling

median
— mean
upper outlier range
lower outlier range
Net power histogram

0 5000
Net power consumption(W)

median

— mean
upper outlier range
lower outlier range
Temperature histogram

Temperature(°C)

Figure 4.8: P,.; and T,,,; histograms (At = 30 mn)

79

LMD database

20 o « before replacing outlier
B 5 . after replacing outlier

s . - o L
15 . & 3 . s -
. o i fas i Lol 2 .
ERE i g -

i
1

Pnet [kW]

h ';3

2016-07 2017-01 2017-07 2018-01 2018-07 2019-01 2019-07 2020-01 2020-07

40 « before replacing outlier
+ after replacing outlier

Temperature [°C]

2016-07 2017-01 2017-07 2018-01 2018-07 2019-01 2019-07 2020-01 2020-07
Date

Figure 4.9: P,.; and T,,; outliers replacement (At = 30 mn)

4.6.2 Use case 2 : the StROBe database

For the second use case, we need data about hot water consumption, and this is less common than electricity
consumption or production data. For this particular point, we have used the StROBe database [106]. The StROBe
is a stochastic residential occupant behavior model for district energy simulations integrating the modeling of re-
ceptacle loads, internal heat gains, thermostat settings, and hot water tapping based on occupancy and activity
prerequisites. In this model, available survey data are clustered and used for household composition. Next, the
household proclivities are determined, and occupancy and activity chains are generated based on survival models.
In the last stage, the effective occupant behavior concerning receptacle loads, thermostat settings, and domestic hot
water tapping is modeled. StROBe is available on GitHub at [107] and described as follows: " StROBe (Stochastic
Residential Occupancy Behaviour) is an open web tool developed at the KU Leuven Building Physics Section to
model the pervasive space for residential integrated district energy assessment simulations in the openIDEAS mod-
eling environment (among others). Primarily conceived as a tool for scientific researchers, StROBe aims to provide
missing boundary conditions in integrated district energy assessment simulations related to human behavior, such
as using appliances and lighting, space heating settings, and domestic hot water redraws. StROBe is also highly

customizable and extensible, accepting model changes or extensions defined by users."

To use this model, we must choose the number of buildings, the number of occupants, and their status (adults,

children, students, employees, ...) and the given year. Next, the model creates and simulates various information

80

StROBe database

160

before replacing outlier
after replacing outlier

140

120

=
(o] o
o o

[=2]
o
-

[liter/10 minutes]

40 I . TR . .-_ Bl L. L 5 i e

20

Figure 4.10: StROBe replaced outliers

about different consumption, as follows.

Active power demand for appliances and lighting.

Reactive power demand for appliances and lighting.

Radiative internal heat gains from appliances and lighting.

Convective internal heat gains from appliances and lighting.
+ Domestic hot water demand at the tap points.
» Space heating set-point temperature for day-zone.

» Space heating set-point temperature for bathroom.

Space heating set-point temperature for night zone.

In our case, we have chosen a family with two members, one unemployed and the other full-time employed, and we
use the information about the hot water tapping generated by this model. This information is generated in I/min with
a 1 mn time step. As this step is smaller than the one considered by the HEMS, we resample the data to a time
step of 10 mn and then replace outliers with 1 + 30 value. Figure 4.10 shows this database after resampling and

the outlier replacement.

81

4.7 Conclusion

This chapter provided a comprehensive description of the microgrid model and the two use cases that will be
studied in the next chapter. In particular, the dynamic thermal models of the heating system and the boiler have

been detailed and their power has bee sized.

We also presented the database from which the time series needed to train the HEMS are extracted, and described

the pre-processing applied to have clean data.

The next chapter will explain the implementation of DRL algorithms to build HEMS dedicated to the different use

cases. The results obtained during the learning and testing phases will be presented and analyzed.

82

Chapter 5

Implementation and simulation results of

DRL algorithms to train the HEMS

5.1 Introduction

In the preceding chapter, we presented the building microgrid, the models of its components and the energy man-
agement problem. We introduced three different use cases with increasing complexity: management of the battery
alone (use case 1), management of the thermal loads alone (use case 2) and management of the complete system

(use case 3). We also described the database that will be used to train and test the HEMS of the system.

This chapter explains how reinforcement learning can be implemented to train a HEMS by interacting with the
system. We start with a simple case and first study the implementation of the Q-learning algorithm for the test case
1. We then move on to the more powerful DQN algorithm and apply it to the three test cases. We present and
analyze the results obtained during the learning and testing phases. The results were satisfactory for the use cases
1 and 2, but not for the use case 3. This leads us to discuss the importance of the choice of the hyperparameters
in the efficiency of the training phase, and we will present several approaches that can be used to find optimized

hyperparameters in order to accelerate the training process and improve the HEMS performance.

5.2 Q-learning algorithm applied to use case 1

The first use case, presented in section 4.3, corresponds to building-scale microgrid with local PV production, non-
shiftable loads but load shedding capacity, a battery unit, a unidirectional connection to the utility grid (no injection

of power from the microgrid to the public grid), and a HEMS dedicated to the control of the battery. The objective of

83

our HEMS is to reduce the system daily operating cost Cy,, defined by 5.1.

T

Cay = Z O;rid x E;rid + Cunsatisfied X E’Znsatisfied (5.1)
t=1

The following sections present the Markov decision process associated to the system, the system discretization
required to fit info the Q-learning algorithm framework, the Q-learning implementation itself, and finally the training

and test results. Some ideas to improve the learning process will also be discussed.

5.2.1 Markov decision process associated with the system

Adapting to the reinforcement learning framework, the HEMS problem must be formulated as a Markov decision
problem. The states, actions, and immediate rewards related to the use case 1 are described hereafter. The
agent’s objective will be to maximize the discounted cumulative reward by interacting with its environment, without
any knowledge of the system. It means that the agent does not know the behavior of the battery nor the physical

constraints SOC,;, < SOC* < SOC45 @A Poat min < Pl,, < Poat max @nd has to learn them.
States:

The system state corresponds to the information received by the agent. The state vector at the time iteration ¢ is
denoted s* and defined by 5.2. P!_, is the average net demand expected between ¢t and ¢ + 1, SOC" is the battery
state of charge and k! is the current time.

st = (PL,,, SOC!, h') (5.2)

One must make the difference between ¢, which is an integer number containing the time iteration and it which
represents the time in hours and minutes at iteration ¢t. For example, if the iteration count starts with ¢t = 0 at

0h00mn and the time step is At = 15mn, ht =t x At modulo 24h.
Actions:

The action vector has a single component a* comprised between 0 and 1. This action sets the battery power between
t and t + 1 in relation with P,., according to equation 5.3. After this action is taken, P, is set to the difference

between P,,.; and Py;.

Poat(t) = a' x P!, (0<a* <

&
A
—
N—
o
&L

Rewards:

The reward rt is the information about the immediate interest of executing the action a? in the state s*. In the present

case, we use a negative reward (penalty) directly related to operating costs and defined by 5.4. An unfulfilled request

84

occurs when the agent chooses an action that cannot be fully performed due to the battery constraints (insufficient

available battery power). The reward calculation will be detailed in 6.

t_ t t
ro= *Cgm‘d X Pgrid - Cunsatisf’iﬁd X Punsatisfied (54)

5.2.2 Q-learning implementation

The Q-learning algorithm has been presented in section 3.2.3. It is a fundamental RL technique that operates in
a discrete-discrete environment. Consequently, this algorithm may need a significant simplification of the system
by discretizing the action and state spaces. The state-action Q-value function Q(s,a) is modeled by the 2D Q-
table. At the beginning of the training, this Q-table has no information (zero or random values everywhere). During
the training, it is updated at each iteration with the rewards received by the agent interacting with its environment
according to the e-greedy strategy. At the end of the learning process, the Q-table is saved and used afterwards
during the test phase : at each time step, the agent checks the state of the environment and chooses the action with

the largest Q-value related to this state.

Since our system is continuous, the first step to implement the Q-learning algorithm is to discretize the state and

action spaces and create the Q-table accordingly.

Action space discretization

The action space has a single action « which is a real number ranging between 0 and 1 as defined by equation 5.3.

The action is uniformely discretized with n, values and the action space becomes the discrete set A.

1

A ={ix Ada}lo<i<n,—1 with Aa= —

State space discretization

The state space is discretized by discretizing each of its components. There is nothing to do with the time, since it is
linked to the iterative control process and naturally discrete : ht =t x At modulo 24h. The continuous quantity P,,.;
is uniformly discretized between its minimum and maximum values with np,_, values. The corresponding increment
is given by equations 5.6 .

Pn ax min
APnet = et :LL; _nft - (56)

Things are more delicate for the battery state of charge discretization, because the change of SOC during one
iteration is linked to the action P}, and the time increment At according to equation 5.7. The action P,.(t) itself is

a,

linked to P!, by equation 5.8.

85

SOC(t + 1) — SOC(t) = —— % Ppas(t) x At (5.7)
Pyay (t) =a' x Pnet(t) (58)

The smallest value of P, (t) is the product of Aa and AP,.;. Consequently, the SOC discretization step consistent

with the other discretization step is given by equation 5.9.

ASOC = X Aa X APpe x At (5.9)

bat

Setting ASOC imposes the number of SOC discrete values nsoc according to 5.10, where E(.) denotes the integer

part of a real number.

SOCmam - SOCmin
nsoc = F () +1

ASOC (5.10)

There is no reason why the SOC range SOC,, .. — SOC,,;, should be a multiple of the ASOC value given by
equation 5.9, and hence some adjustements will be required. These adjustements may consist in adapting the

SOC range, or the P,.; range, or the increment ASOC and use interpolation.

After discretization, the size of the state space is nsate = 7 X nsoc X np,,,-

Discretization settings and Q-table

The principle described above have been implemented as follows, with the objective of keeping the Q-table size

small.

For the sake of simplicity, we consider only two actions : a' € {0, 1}. The first action a’ = 0 corresponds to Pyq:(t) = 0

and hence P,,;q(t) = P!.,, whereas the action ' = 1 corresponds to Pyu(t) = P},

.

¢ and hence Pg,4(t) = 0. In
other words, in the first case the system is connected solely to the grid and in the second case it is connected solely

to the battery. In the rest of the section, these actions will be referred to as Grid ON and Grid OF'F.

The time step is At = 30minutes, which means that for a whole day, n;, = 48. We have chosen a 5% step for P,

resulting in np,_, = 21 possible value. Based on our database, we have calculated the following values: Petmaer =

17102 W, Pretmin = —13608 W, which yields AP, = 1535.5 W, AEy,; = 767.75 Wh, and nsoc = 2399 + 1 ~ 29.

Therefore, the total number of states is nstates = 48 x 29 x 21 = 29232,

The Q-table is an ngares X Nactions Matrix, filled by zero values (no knowledge) as shown in Figure 5.1. Even with a

relatively coarse discretization, the Q-table becomes quite large in size.

86

o e State number
. : : iy
Time SOC Pnet OFF ON
Pret{min} 0 0 0
_ Bretmin)+dp 0 0 1
S0C min) 0 0 2
Puelimax) 0 0
Przi{min) 0 [t
Sottain) Prietimin) +dp 0 0
+dSoC o 0 g
T(0) =00k00 Pretimax) 0 0
§] 0
0 0
0 0
: 0 0
Pret(min) 0 0
Phet(min} +dp 0 0
$0C{max) i 0 0
Pheufm) (] 0
. 0 0
T(0) + dt = 00R30 i =
) 0 0
Pret{miti) 0 0
Pretimm) +dp 0 (1
SOC{min) T 0 0
Mmi 0 0
Prei(min) 0 0
SOC(min+ Prist{min) +dp (1] 0
dSoC » _ 1] 0
Tiend)=23030 Al G' e
0 0
0 0
0 0
_ 0 G
Pretimin} 0 0
Pretimin) +dp. 0 0
$0C{max) i 0 o
Pretimax) 0 0 (npoe Xnee X ng.)

Figure 5.1: Q-table

87

Numerical implementation

The numerical implementation was done in Python, using the Panda library for time series manipulation. The
code contains two independent entities: the agent (HEMS) and the environment (microgrid). The agent and the
DQN-algorithm were coded from scratch, whereas the environment was created using the OpenAl Gym library

[108].

The OpenAl Gym library provides a framework for programming the environment with encapsulated data and
normalized access interfaces. This framework makes it easy to compare the performance of different agents against

the same environment, or conversely to test the same agent against different environments [109].

In the OpenAl Gym library, an environment is a class whose attributes contain all data related to the environment,
in particular the state and action spaces. This data is accessed through a limited number of methods whose
interfaces are strictly defined. For this purpose, OpenAl Gym provides an abstract class gym.Env from which
users can implement custom environments by inheritance. The algorithm 4 shows the model for creating a custom
environment and the main methods that the user needs to implement. OpenAl Gym also provides predefined

environments, such as boardgames or control problems[108].

Algorithm 4 Customization of the gym.Env class through inheritance
import gym
from gym import spaces
class CustomEnv(gym.Env) :
Custom environment inheriting from the gym.Env class
def __init__ (self, arg1, arg2, ...):
Class constructor
Define action and state spaces
They must be gym.spaces objects
def step(self, action):
Execute one time step within the environment
return next state, reward, done
def reset(self) :
Reset the state of the environment to an initial state
return initial state

From the agent’s point of view, the environment is a black box that it must discover and then optimally control. The
agent therefore has two modes of operation: learning on a set of historical data and real-time operation on new
data. The algorithm 5 provides the architecture of the learning mode program, during which the Q-table is iteratively
processed according to equation 3.13. In real-time control mode, the Q-table is frozen and the agent performs a

greedy action at each time step.

As already mentioned, the Open IA Gym library was used to create an environment that models the microgrid.

This requires to create a subclass of the abstract class gym.Env and to implement the methods __init_ , step and

88

Algorithm 5 Architecture of the agent learning code
Input: environment, state and action space data, hyperparameters
Output: Q-table, learning performances
Initialize Q(s,a) Vs € S,a € A arbitrarily
for each episode (1 episode = 1 day of the database) do
Reset the environment tot its initial state
for each time step of the episode do
Agent selects an action, depending on the environment state
Environment receives action, executes it, sends new state and reward (method step)
Agent processes the information and updates the Q-table
end for
end for

reset of the class. The pseudo-code of the method step is given by algorithm 6, where C.,sqtis fied powers Cgrid HC
and C,,.q p are respectively the penalty coefficients related to the unsatisfied net power demand and the power

purchased from the grid during off-peak and peak hours.

5.2.3 Hyper-parameters of the Q-learning algorithm

The hyper-parameters of the Q-learning algorithm are the number of episodes Nepisodes, the parameter ¢ of the

e-greedy strategy, the discount factor v and the learning parameter « introduced in equation 3.13.

e-greedy strategy

After some tests not reported here, the number of episodes has been set to 5000. In the e-greedy strategy, at each
step of time the agent either takes a random action with probability ¢ or a greedy action with probability 1 — . The
probability ¢ follows an exponential decay from «,,,, = 1 during the first episode to a very small value ¢,,;, = 1073
reached after 95% of the learning phase and kept constant afterwards. The value of ¢ during the episode number N

is given by the set of equations 5.11 to0 5.13.

if N <0.95% Nepisodes €N = €cay (5.11)
log €min

With €gecay = 107 Nepizodes (5.12)

Zf N > 0.95 x Nepisodes EN = €min (513)

Figure 5.2 shows the evolution of e value during the learning phase for Nepisodes = 5000 and €,,;, = 1073,

Discount factor «

Another important parameter is the discount factor ~, which controls the weight of future rewards in the cumulative

sum -, ~r;. To show the influence of this parameter, figure 5.3 display the value of 4, the weight of the future

89

Algorithm 6 Pseudo-code of the method step

Input: action
Output: SOC(t+ 1), reward
Tgrid < 0
Tunsatis fied load < 0
if action = Grid ON then
Pbat 0
SoC(t+ 1) + SoC(t)
if P,.: > 0 (excess of consumption, provided by the grid) then
Pgrid — Pnet
if t € peak hour then
Tgrid < Cgrid HP X Pyrid
else
Tgrid < Cgm’d HC X Pgrid
end if
end if
if P, < 0 (excess of production, PV sheding) then
Pgrid «0
end if
end if
if action = Grid OFF then
Pgm’d +~0
if P,.; > 0 (net consumption, provided by the battery) then
Pbat — Pnet
if Poot > Poat mas (discharging power limit reached) then
Pbat A Pbat max
end if
SoC(t + 1) < SoC(t) — (Ppar x At)
if SoC(t + 1) < SoCyp,ip, (lower SOC limit reached) then
SoC(t + 1) + SoCin
Poor < (SOC(t) — SOCin) /AL

end if
Tunsatis fied load $— _Cunsatisfied load X (Pnet - Pbat)
end if
if P,.: < 0 (net production, stored in the battery) then
Pyt < Pnet

if Pyor < Poar min (Charging power limit reached) then
Pbat < Pbat min
end if
SoC(t + 1) + SoC(t) — (Poay x At)
if SoC(t+ 1) > SoCpuae (higher SOC limit reached) then
SoC(t+1) <+ SoChaz
Py + (SOC(t) — SOCpnin)/ At
end if
end if
end if
reward < Tgrid + Tunsatis fied load

reward r;, as a function of ¢ for a time horizon of 24 hours and a time step At = 30 mn. It can be seen that for

~v < 0.5, only a few step ahead are significant in the cumulative reward.

Figure 5.4 also displays the value of ¢, the weight of the futur reward r;, as a function of ¢ for a time horizon of 24

90

Gamma value

1.0

0.8 1

0.6 1

0.4

0.2 4

0.0

0 1000 2000 3000 4000 5000
Episodes

Figure 5.2: Decay of e during the 5000 episodes of the learning phase

1.00 1
0.95 4
0.90 4

0.80 4

0.50 4

0.20 4

0.00 4

A\

012345678 910111213141516 1718 1920 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 30 40 41 42 43 44 45 46 47
Step time

Figure 5.3: Value of ¢ for a 24-hour horizon with a 30-minute time step

91

0.98
0.95

0.90 +

0.75

0.50

Gamma value

0.20

0.00 -

Step time

Figure 5.4: Value of v for a 24-hour horizon with a 12-minute time step

hours, but with a time step At = 12 mn. The decrease as a function of the iteration number is the same, but as the
number of iterations per hour is larger, the decrease as a function of time is faster. In other words, if one wants the
influence of the discount factor ~ to be linked to a time horizon, the weight of the future reward r; should somehow

account for the time step.

Learning factor «

The learning factor « appears in the update of the Q-table at each iteration, according to equation 5.14.
Qs,0) « Q(s.0) + [R(s,0) + 7. max Q(s',a') - Q(s.a) (5.14)

The learning factor lies between 0 and 1 and defines the ratio of new information added to the current value of Q
at each iteration. A small value means that the algorithm acts very cautiously and takes only a small part of new
information. Hence, learning is slow. On the other hand, a value close to 1 means that the new target replaces
the current Q value by the target. Changes are much more rapid but this may lead to instabilities and prevent the

learning process to converge. An optimal value is very problem dependant and several values must be tested.

92

| Learning hyper-parameters | config 1 | config 2 | config 3 | config 4 |

Learning rate « 0.9 0.9 0.2 0.2
Discount factor v 0.95 0.5 0.95 0.5

Table 5.1: Learning hyper-parameters configuration

5.2.4 Numerical experiments

In this section, we perform numerical experiments with different combinations of the discount and learning factors
in order to identify the best one. The performance of the HEMS trained with Q-learning is compared with that of a

rule-based HEMS.

Training phase settings

The training and the test are done using the real-world measurements of solar generation and non-shiftable elec-
tricity demand from the tertiary building database, presented in section 4.6.1. A good training requires exploring as
many state-action combinations as possible. Therefore, we chose to work with data taken in autumn, when weather
conditions are highly variable. We use data from October 2016 and October 2017 for the training phase, and data

from October 2018 for the test phase.

As already mentioned, we work with 5000 episodes, and one episode corresponds to one day randomly selected
from the 62 days of the database. With a time step of 30 mn, each episode consists of 48 iterations. Training with

5000 episodes results in a total of 240000 iterations.

The four combinations of discount and learning parameters defined in table 5.1 were tested. The ~ value has been
selected based on Figure 5.3, taking into account that for v < 0.5, only a few steps ahead are significant in the
cumulative reward. As for the « value, we chose 0.2 to observe the influence of incorporating only a small part of
new information, facilitating a slower learning process, and 0.9 to rapidly replace the current Q value with the new

target, thus promoting a faster learning process.

Training phase results

It is a common practice to track the evolution of the learning process and evaluate its quality through the learning
curve. The idea is to display the reward received by the agent for each episode of the training phase. More precisely,
Figure 5.5 shows the sliding average over 100 episodes of the cumulative penalty received by the agent during one

training episode. This value is calculated every 100 episodes using 5.15

1
Mean Cumulative Reward = EEleRTi (5.15)

93

-100000

-200000 A

Sliding average cumulative penalty

-300000 |

0 1000 2000 3000 4000 5000
Episodes

Figure 5.5: Mean cumulative penalty during training phase

In this equation, £ = 100 is the number of episodes in each slot,Rr; is the cumulative reward for the i — ¢th episod,

and The summation is performed over all episodes (i = 1 to N).

It can be observed that the performance is poor at the beginning of the training when there is no knowledge about
the environment and mainly exploration. In this stage, the executed values are chosen randomly, leading to a large
penalty. Then, after about 200 episodes, the performance starts to improve, showing that the agent is learning to

follow a good policy and that is uses more and more the knowledge stored in the Q-table.

Another approach to represent the performance evolution during the training phase is to periodically interrupt the
training process and to apply the greedy strategy with the current Q-table to simulate real-time operation at this
point of learning. We have applied this process and calculated the operating cost of 62 consecutive days of October
2016 and October 2017 every 500 episodes. Figure 5.6 shows the results using boxplots that display the median,

the lower and upper quartiles, and the range of the daily operating costs. Empty circles represent outliers.

We observe the same kind of behavior as previously described. After 500 episodes, the agent has not learned
much yet and using the current Q-table to manage the system leads to poor performance with high operating costs
and a large variability of the results from one day to another. After 1000 episodes, the agent has acquired partial
knowledge in the Q-table and its policy improves but one observes outliers that indicate that the policy is completely
inefficient on some days. After 3000 episodes, the outliers disappear, indicating that the training database has been
properly learned. At this stage of the learning process, the exploration rate is only 6% and continues to decrease.

The performance no longer evolve much.

As mentioned before, the agent has been trained with four different hyperparameter configurations. Table 5.2 reports

the calculation time and the final average daily operating cost calculated over the 62 days of the training database.

94

| Config. | o | ~ | Calculation time (s) | Final cost (euros) |

1 0.9 | 0.95 231 182.71
2 09| 05 233 162.01
3 0.2 | 0.95 244 180.68
4 02| 05 221 163.18

Table 5.2: Learning results for different hyper-parameter configurations. The final cost corresponds to the daily
operating cost averaged over the 62 days of the training database

The best set of parameters is v = 0.5 and « = 0.9 with an average cost of 162.01 euros.

Test phase

The test phase consists in simulating the real-time control of the environment with a greedy strategy based on
the Q-Table computed during the training phase, and evaluating the performance of this strategy on data not seen
during training. Obviously, the discretization parameters must be the same for the training database and the test
database. In this part, the agent is nothing more than a comparator. It receives the current state of the environment
(net power for the next time interval, state of the charge of the battery, time), checks the Q-table and selects the

action with the highest Q-value for execution by the environment.

It is important to note that during the training phase, the agent may not have explored all the possible states of the

S 0]
ol oy 8 g
Mbsdddssnsd

1.0 2 30 4(] 50 &0 70 80 9.0 100

Figure 5.6: Real-time operating cost of 62 consecutive days versus number of training episodes performed

95

| s = Pnet !
= el ! ; ol
10 | Pprod_shed i | e 1|
—_ Pprod_unsatisfied
= 5
=
o O
S s
28 5
_10 !
-15 | —
o] 200 400 600 800 1000 1200 1400
g ERITRRIER ===
1 \ ‘\' 1 | \ l “
\ g I \ |
= 15| 7 \‘ ‘ '-.\\ i ‘|1 \LL‘ \ J ,\ h 1 ‘l'“
: IRARTA LA 90 T
= 10| | - l \ A T Iy R
o ‘. L[.‘ \ {1 |) &’\W \ [\
N PO (LY L L VA (A
Lllj'l—m ‘ ||[‘ IH\ I LI‘I \{ ‘1‘ ’ ‘11 ‘ \‘ ‘J V \ ”
0 i el LU L Y [1
0 200 400 600 800 1000 1200 1400
Hour

Figure 5.7: Power and stocked energy time profile on October 2018

environment, either because they were missing from the training database or not encountered during training (The
initial zero values did not change). When encountered in the test phase, states with no information lead to wrong
decisions. Figure 5.7 displays the time profiles of the environment state and actions taken during a specific day of

the test database. It shows examples of bad decisions taken for high values of P,.; when the battery SOC is zero.

Bad decisions result from a lack of knowledge or insufficient knowledge about the states involved. It means these
states were not visited at all by the agent during the training phase, or not enough. Therefore, to prevent the
agent from making catastrophic decisions, we propose to slightly adapt the greedy strategy. When there is no
information about the current state, the agent should select the Grid ON action when there is net consumption and

the Grid OF'F action when there is net production.

This modified Q-learning strategy has been applied to the month of October 2018 and the results compared to those
of a rule-based strategy. This rule-based strategy uses the battery whenever possible either to provide or to store

energy, according to algorithm 7.

Table 5.3 reports the results for the four tested configurations. The cost corresponds to the daily operating cost
averaged over the 31 days of October 2018. As for the training phase, the best set of parameters is a« = 0.9 and
~ = 0.5, with an average cost of 139.08 euros. With a strategy adapted to manage states that were not visited during

training, the cost of the Q-learning strategy has improved. Yet, it is 21% higher than the cost of the rule-based one.

96

| Config. | « | ~ [Q-learning cost | Rule-based cost |

1 0.9 | 0.95 151.64 115.10
2 09| 05 139.05 115.10
3 0.2 | 0.95 175.32 115.10
4 0.2 | 05 158.78 115.10

Table 5.3: Test results for different hyper-parameter configurations. The cost corresponds to the daily operating
cost averaged over the 31 days of October 2018

5.2.5 Improving the Q-learning procedure

The main idea of this part is to initialize the Q-table with a priory knowledge in order to favor some actions and
avoid training from scratch. The principle is as follows : in a given state s with two possible actions a; and a2, one
can favor action ay over action a; by initializing the Q-table with Q(s,a1) = 0 and Q(s,a2) = Q., > 0 (a positive
random value). During the training phase, the Q-table will be updated at each iteration, and this prior knowledge will
be adjusted. With this oriented initialization, even if the agent does not visit all the states of the environment and

update them, at least it has a priory knowledge about all of them.

In the rest of the section, we compare three Q-Table initialization methods : with no knowledge at all, with knowledge

for states of charge close to the battery limits, with knowledge for all states of charge.

Mode 1: No prior knowledge

In this mode, the Q-table is initialized with zeros everywhere and the training process starts with random choices
whatever the state of the environment. Therefore, the training process is slow because all state-action pairs should
be visited several times. Additionally, some states of the Q-table will never be visited during the training process

and will not contain any knowledge. When the agent encounters these states in real-time situations, he will make

Algorithm 7 Rule-based algorithm for battery management
Input: state (P,.ct, SOC, t)
Output: action
if P,.; > 0 then
Net consumption, use the battery within its limits
if (Pret < Poatmaz) @and (SOC — P,y x At > SOC,,;:,,) then
The battery can provide the required energy
action «+ Grid OFF
else
The required energy exceeds the battery limits
action < Grid ON
end if
else
Net production, cannot be sent to the grid
action «+ Grid OFF
Store as much energy as possible in the battery
end if

97

|
(Pnet < 0) (Pnet > 0)
Production | Consumptionn

Purchase from
Grid

QOD

Figure 5.8: Initialization mode 2

random choices, which is unacceptable in real life because it can put the system in a critical situation, like try to use

the battery to provide energy whereas the battery is empty.

Mode 2: Prior knowledge in the vicinity of the battery limits

In this mode, the idea is to start with logical choices close to the battery limit and to accelerate the training process
by avoiding a lot of wrong choices at the beginning. The Q-table is initialized with zeros everywhere, except for
states close to the battery SOC limits. When the state of charge is low, namely SoC' < 10%, purchasing energy from
the utility grid is favored if P,,.; > 0 (consumption), but charging the battery is favored if P,..; < 0 (production). When
the state of charge is high, namely SoC > 90%, using the battery is naturally favored if P,.; > 0 (consumption), but
also if P, < 0 (production) since no production can be sent to the grid. These situations are illustrated in Figure

5.8.

The Q-table initialization is given by equations 5.16 to 5.19, where Qon > 0 and Qorr > 0 are parameters defined
by the user. If the value of this a priori knowledge is very small, its influence may disappear after juste one iteration.
On the other hand, if we fix a big value as prior knowledge, the agent does not have enough possibility to correct it.
Therefore this choice is very important to guarantee a good training. In this study we fixed these values using a trial

and error process.

able(state, Grid ON) = >0
S0C < 10% & Py > 0 1 @1ottel)= Qo (5.16)

Qtabic(state, Grid OFF) =0

able(state, Grid ON) =0
S0C < 10% & Pret <0 - Qrabic) (5.17)

mele(stata Grid OFF) = Qorr >0

98

(Pnet < 0) | (Pnet > 0)
Production I Consumptionon
4 . . A

dof

Us

___________________] Isoc = 50%
Quff

Purchase from
Grid

Qon

v
Poor knowledge ——p
strong knowledge — 3 k

Figure 5.9: Initialization mode 3

able(state, Grid ON) =0
S0C > 90% & Poer > 0 : Qratte) (5.18)

Qtavie(state, Grid OFF) = Qorr > 0

able(state, Grid ON) =0
S0C < 10% & Poer <0 : Qrate) (5.19)

Qtavie(state, Grid OFF) = Qorr > 0

With this initialization mode, learning can be faster than with the mode 1, and at the end of the training process,

fewer states are not known.

Mode 3: Prior knowledge for all states of charge

In this last mode, the idea is to initialize all states with some knowledge that will be improved during the training
phase. At the end of the training phase, this knowledge will still not be optimal for the states that have never been

visited, but at least there is knowledge close to a logical decision.

In this initialization mode, if P,,.; < 0 (production), whatever the state of the battery, charging is favoured, but with a
higher weight if the battery is empty and zero weight if the battery is full (in the case of a full battery, the production
is lost, whatever the action). If P,,.; > 0 (consumption), if the battery state of charge is above 50%, using the battery
is favoured with a strong weight if the battery is full and a zero weight if the battery is charged at 50%. On the other
hand, if the battery state of charge is under 50%, using the grid is favoured with a high weight if the battery is empty

and zero weight if the battery is charged at 50%. These situations are illustrated in Figure 5.9.

In mode 3, the Q-table initialization is given by equations 5.20 to 5.22, where Qon > 0 and Qorr > 0 are parame-

ters given by the user and k; and k. are defined by equations 5.23 and 5.24.

99

| Mode | Calculation time | Cost with training data | Cost with test data | Rule-based cost |

1 190 162.01 139.05 115.10
2 186 156.84 138.92 115.10
3 187 152.6 134.09 115.10

Table 5.4: Influence of the initialization mode

able(state, Grid ON) =0
Pret < 0: Qrae() (5.20)

Qravle(state, Grid OFF) = k1 X Qorr

able(state, Grid ON) =0
Pret > 0 & SoC > 50% : Qeatie) (5.21)

Qtavle(state, Grid OFF) = ko X Qorr

able(state, Grid ON) = ko X
Pt >0 SoC > 50%: 4 0 () = k2 x Qo (5.22)

Qtavie(state, Grid OFF) =0

|SoC — SoCpin|

kl =1 SOCmaa: - SOCmin

(5.23)

- |SOC50% — SOC‘

k
2 50050%

(5.24)

Influence of the initialization mode

The effect of the Q-table initialization mode has been tested for the same training database (October 2016 and
October 2017), number of episodes (5000), hyperparameters (o = 0.9, v = 0.5) and test database (October 2018)
as before. The table 5.4 compares results for the three initialization modes. The column "Cost with training data"
corresponds to the mean daily operating cost calculated when applying the final greedy strategy to the training
database. The column "Cost with test data" gives the same cost, but calculated for the test database. Lastly, the

cost obtained with the rule-based strategy on the test database is given.

After training, the initialization mode 3 has better results than mode 2, which is turn has better results that mode 1.
Another interesting aspect of th initialization mode 3 is that, due to its prior knowledge, it has a faster learning curve
improvement than others. Therefore if we initialize the Q-table in this mode, we need a smaller number of episodes

to learn the control strategy.

The test phase confirms the ranking of the three initialization modes. These results show that the agent can learn

better if we start the training phase with a priori knowledge with the same number of iterations.

As shown in this table, the operating cost of the best initialization mode does not outperform the result obtained

with a rule-based strategy. Yet, it should be remembered that the agent started its training with very little knowledge

100

about the system, whereas the rule-based algorithm has a complete knowledge and makes logical decisions in each

situation.

5.2.6 Discussion

This section concludes our work on the implementation of Q-learning to develop a HEMS. Our primary goal was
to familiarize ourselves with the basic concepts of RL and to show that an agent can learn to manage a system
without any a priori knowledge. The case study consisted in learning to manage the battery without knowing
its limits, and the results are satisfactory, although there is room for improvement. In particular, we have shown
that introducing some a priori knowledge speeds up learning and improves results. Nevertheless, Q-learning has

important limitations that jeopardize its interest in the context of microgrid management.
We can resume these limitations as follows.

» The Q-learning algorithm is limited to discrete environments, whereas the HEMS environment is a continuous
space. Therefore, to use the Q-learning algorithm, we must discretize and simplify the environment, which
does no longer represent a realistic system. For example, we assumed a perfect battery to avoid a fine

discretization of the state of charge and interpolation issues, but this is unrealistic.

» The Q-learning algorithm needs a matrix to store the state-action Q-table. In the complex problems, the
number of states and actions can be very large and there will be limitations due to memory and calculation

capacities.

« The strategy learned by Q-learning is not scalable: the algorithm must compute Q(s, a) for every state-action

pair during the training phase to take good decisions in the test phase.

At the beginning of this thesis, considering its simplicity and ease of implementation, Q-learning has been applied to
a simplified version of the use-case 1 in order to gain experience in RL. However, due to the limits of this algorithm,
we can conclude that it is not implementable in a real-world HEMS problem. Therefore, in the next section we
move to deep reinforcement learning. We will describe and implement the DQN algorithm and some of its derived

versions, and apply them to the three use cases.

5.3 HEMS based on DQN algorithms

As mentioned above, the limitations of Q-learning led us to deep reinforcement learning and more sophisticated
algorithms to create the system HEMS, namely the DQN algorithm and two derivatives. These algorithms work in
continuous-discrete environments that are closer to real-world systems. In the following sections, we first review the

DQN algorithm and present the principles of its numerical implementation. Then, we apply it and discuss the results

101

obtained for the three use cases considered in this thesis : battery management, thermal loads management, and

finally battery and thermal loads management.

5.3.1 Principle of the DQN algorithm implementation

The DQN algorithm has been presented in section 3.3.3. It is a fundamental DRL technique that operates in a
continuous-discrete environment. The state-action Q-value function Q(s,a) is modeled by deep neural network.
Each input neurons is associated to a state variable and each output neuron is associated to an action. At a given
time, each output neurons gives the Q-value of the corresponding action. The greedy policy consists in selecting

the action associated to the output neuron with the highest Q-value.

The DQN algorithm is described in algorithm 2. At the beginning of the training, the neural network is initialized with
random weights. The training phase consists of a given number of episodes, where each episode corresponds to
a day randomly selected from the training database and has a certain number of time steps. At each time step,
the agent selects and executes an action, observes the new state, and receives a reward. It calculates the target
Q-value and performs a gradient descent step with respect to the neural network weights. The agent follows an e-
greedy strategy, with more exploration at the beginning and more exploitation at the end. At the end of the learning

process, the Q-network (i.e its weights) is saved and used afterwards with a greedy policy during the test phase.

The global structure of the DQN-algorithm is identical to that of the Q-learning algorithm, but the Q-table is replaced
by a neural network and its duplicate to calculate the target Q-value. The numerical implementation was done in
Python, using the Panda library for time series and the Tensorflow library for neural networks. The code contains
two independent entities: the agent (HEMS) and the environment (microgrid). The agent and the DQN-algorithm
were coded from scratch, whereas the environment was created using the OpenAl Gym library, already described

in section 5.2.2.

5.3.2 DAQN applied to use case 1

In this section, the studied system is still the use case 1 : a building—scale microgrid with local PV production, non-
shiftable loads but load-shedding capacity, a battery unit, a unidirectional connection to the utility grid, and a HEMS
dedicated to the control of the battery. The objective of the HEMS is to reduce the daily operating cost. Thanks to
the capability of the DQN algorithm to handle continuous state variables, it is now easy to account for the efficiency

of the battery, assumed to be equal to 90%.

Markov decision process associated with the system

The Markov decision process is the same as before, except that the current cost of electricity has been added to

the state in order to account for the variable tariff. In the context of DQN, the state variables are now continuous, but

102

the actions are still discrete. Using the same vocabulary and notations as defined in section 5.2.1, the state, action

and rewards are as follows.

st = (Prtpetv SOC;M, ht? C;m’d) (5.25)

t . ' 1
A" ={i x Aa}to<i<n,—1 with Aa = 7 (5.26)
rt = —Cgrid X P;rid — Cunsatisfied X Pﬁnsatisfied (5.27)

Numerical experiments settings

The number of actions is now set to n, = 11. As previously, we use the tertiary building database to train and test
the DQN algorithm, with a time step At = 12 mn. The agent is trained with data from October 2016 and October
2017, with 5000 episodes. An episode corresponds to a day (120 time steps) randomly selected from the 62 days of
the training database, and the target neural network weights are updated at the end of each training episode. The

test are performed with data from October 2018 and April 2018

Hyperparameter setting

Setting the hyperparameters is challenging for all reinforcement learning algorithms and significantly affects the
training performance. The hyperparameters can be divided into two categories: those related to the neural network

and those related to the training phase of the DQN algorithm.

The parameters of the neural network architecture are defined as follows. The input layer has one neuron per state
variable, which makes 4 input neurons. On the other hand, the output layer has one neuron per action, which makes
11 output neurons. In between, after a trial-and-error procedure, we have chosen 3 hidden layers, 100 per hidden
layer and the rectified linear (ReLU) activation function. The mean square error (MSE) loss function and the Adam

optimizer are used to adjust the weights of neurons during the training phase of the neural network.

Regarding the training parameters, the number of episodes is set to 5000 and the exploration rate ¢ follows an
exponential decay from 1 to ¢,,;, = 1073, The learning rate « is set to 0.00025, the replay buffer size to 2000 and
the batch size to 32. Lastly, several values of the discount factor v have been tested. After training the agent with
different values of ~, we observed that the best results were obtained with v = 0.95 and this is the value that will be

used. All these hyperparameters are summarized in Table 5.5.

Training results

At the beginning of the training, the neural network weights are initialized with random values. Then, the DQN

algorithm runs N, = 5000 episodes. 5.10 plots the sliding average over 100 episodes of the daily penalty received

103

NN parameters:

Input layer number of neurons 4

Output layer number of neurons 11

Hidden layers 3
Number of neurons per hidden layer 100
Activation function RelLU
Loss function MSE
Optimizer Adam
Training parameters:

Learning rate « 0.00025
Discount factor 0.5, 0.9, 0.95, 0.98
Replay buffer size 2000
Batch size 32
Number of episodes 5000
evalues : €02 — €min 1 — 0.001

Table 5.5: Neural network and training parameters

by the agent. This curve shows the improvement of the agent’s behavior as training progresses.

O e — e ——

W

Z -50

m©

=

(]

o

=

©

© -100

()

Qo

&

[4})

>

o

oo

£ -150 |

=

[

-200 — — —
0 1000 2000 3000 4000 5000
Episodes

Figure 5.10: Learning curve

Test results

After training, the agent is used to control the battery in real-time conditions with data not seen during the training
phase. Figure 5.11 shows the results obtained for six successive days in October 2018. The top curves represent
P, and P4 as a function of time, whereas the bottom curve shows the battery state of the charge evolution.
The results are compared to those obtained by applying a rule-based strategy that maximizes the use of the battery

within its power and energy limits. The results are very close, but the DQN strategy discharges the battery more

104

slowly, especially in off-peak periods. The slow discharge of the battery introduces the fact that the agent learns
to buy electricity from the grid when the price is more favorable than using the battery during off-peak hours and

buying it when it is expensive.

Figure 5.12 shows the same results for six successive days in April 2018. This period was chosen because pro-
duction and consumption are similar in April and October. We observe that the DQN agent can efficiently manage
another period of the year if the energy profile does not differ too much from the training database. The DQN

strategy behaves similarly, with battery management more prudent than the rule-based strategy.

Figures 5.13.a and 5.13.b provide histograms that display the actions taken by both methods (DQN and rule-based)
throughout each test period. The first bar on the left refers to the action P,,; = 0%, while the final bar on the
right represents the action P,,; = 100% of P,.;. Although the histograms do not distinguish between charge and
discharge, they confirm that the DQN strategy operates the battery at a lower power level than the rule-based

strategy.

Table 5.6 compares the operating cost of the DQN agent and the rule-based EMS during the test periods of April
2018 and October 2018. The results are very close and show that the DQN algorithm has learned how the system

works and the operating battery limits (it should be reminded that those limits are given to the rule-based strategy

15 off-
10

Power(kW)

Peak
hours

Off-
peak

Peak
hours

Off-
peak

Peak
hours

Off-
peak

Peak
hours

Off-
peak

Peak
hours

Off-
peak

— Pnet
-- Pgrid_RB
-- Pgrid_DQN

D1

D2

D5

D6

20 —— Statofcharge RB
— Statofcharge_ DQN

15

10

Energy(kWh)

D1

D2

D3

D4

D5

D6

Figure 5.11: Energy management report from Monday, 8 Oct 2018 to Saturday, 13 Oct 2018

105

Power(kW)

Energy(kWh)

7.5 Off- Peak Off- Off- Peak Off- Peak Off- Peak Off- — Pnet
' peak hours peak peak hours peak hours peak hours peak ---- Pgrid_RB
5 ---- Pgrid_DQN
2.5 " ey 'y i i
i pot e s 4 I o
0 1 S en] b I frzzzzl o Ble
V
2.5
-5
-7.5
D1 D2 D3 D4 D5 D6
20 —— Statofcharge RB
—— Statofcharge_ DON
15
10
5
0
D1 D2 D3 D4 D5 D6

Figure 5.12: Energy management report from Monday, 9 Apr 2018 to Saturday,14 Apr 2018

but not to the DQN algorithm).

200

150

100

50

I Executed actions by RB strategy

Executed actions by DON strategy

0 1

2

3

4 5 6 7 8 9 10

(a) Monday, 8 Oct 2018 to Saturday, 13 Oct 2018

106

150

100

50

I Executed actions by RB strategy
Executed actions by DQN strategy

o0 1 2 3 4 5 6 7 8 9 10

(b) Monday, 9 Apr 2018 to Saturday,14 Apr 2018

Figure 5.13: Histograms of the actions taken during each test phase

| | DAGN [Rule-based | Difference |

Test period Monday, Oct 8 - Saturday, Oct 13 2018
Operating cost (€) | 18.35 | 18.76 | 2.20%

Test period Monday, Apr 9 — Saturday Apr 14 2018
Operating cost (€) | 56.66 | 57.36 | 1.22 %

Table 5.6: Test phase results

Discussion

As we have seen, the DQN algorithm overcomes some important limitations of the Q-Learning algorithm. First, it
was possible to work in a continuous state space without any discretization. This allowed to account for the real
battery efficiency. It was also possible to increase the number of possible actions and to work with a smaller time
step to improve our model. Using the forward neural network, we create a scalable predictor, able to manage the

system for any new state.

The results have shown that the agent train by DQN is able to learn a good strategy by interacting with its environ-
ment. For the simple problem considered here, it is easy to design a rule-based strategy that performs as well as the
DQN-trained agent, but the interest of the DRL approach is that it can be applied to a more complex environment,

whereas it will be challenging to design an efficient rule-based strategy.

5.3.3 Comparison of the DQN, DDQN, and DDQN+PER algorithms

In this section, we will compare the efficiency of DQN, DDQN, and DDQN+PER algorithms. We still work with use
case 1, but the outdoor temperature is assumed to be given to the agent. The objective of the HEMS remains to

minimize the daily operating cost.

Test case and numerical experiments settings

The Markov decision process associated with the system is the same as explained in section 5.3.1, except that we

add the outdoor temperature to the state space. Therefore, the state space is defined as follows.
'St = (PTtLet? SOCEQH ht? C;rid? T(fut) (528)

The number of actions is n, = 11. The tertiary building database is used to train and test the DQN algorithm, with
a time step At = 12 mn, but now the agent is trained with data from October 2016, November and December from
2017 and 2018, always with 5000 episodes. An episode corresponds to a day (120 time steps) randomly selected
from the 182 days of the training database, and the target neural network weights are updated at the end of each

training episode. The test are performed with data from October, November, and December from 2016 to 2020.

107

NN parameters:

Input layer number of neurons 5

Output layer number of neurons 11

Hidden layers 3

Number of neurons per hidden layer 100
Activation function RelLU
Loss function MSE
Optimizer Adam
Training parameters:

Learning rate « 0.00025
Discount factor 0.5, 0.9, 0.95, 0.98
Replay buffer size 2000
Batch size 32
Number of episodes 5000
evalues : €a0 — €min 1 — 0.001
PER parameters

a, to determine prioritization rate 0.6

e, to add on TD-error 0.01

Table 5.7: DQN, DDQN and DDQN+PER parameters

The same hyperparameters as before were used, except that the input layer has one more neuron for the outdoor
temperature 7,,; and that additional parameters are needed for the stochastic part of the DDQN+PER algorithm.

All of the hyperparameters are listed in Table 5.7.

Training results

Figure 5.14 shows the sliding average over 100 episodes of the daily penalty received by the agent during training,
for the DQN, DDQN and DDQN+PER algorithms. These curves show the improvement of the agent’s behavior as

the training progresses

According to these curves, the penalty reaches a minimum value of 14.5 euros after 3600 episodes with the DQN
algorithm. This value is also 14.5 euros after 3600 episodes for DDQN and 5.1 euros after 4700 episodes for

DDQN+PER. This last algorithm has the best performance.

The DDQN learning curve demonstrates that using two independently learning Q-networks to decouple the action
selection process from the target Q-value generation does not improve the learning process significantly and we

can see that after some episodes, the average penalty received by the DDQN algorithm increased.

The DDQN+PER learning curve shows that using a DDQN+PER algorithm accelerates learning. At the end of the
learning process, the agent trained by this algorithm has the lowest penalty among the three algorithms. But to fully
evaluate the DDQN+PER performance, the obtained agent must also be confronted to the test phase. Notice that
we save the weights of the neural networks, also called the agent model, every 100 episodes to use be able to used

them in the test phase.

108

|
(9]
o

—100 1

=150+

—200 1

—250+

—300 1

Sliding average penalty(€)

—3501

-400

—— DDQN+PER
DDQN
—— DQN

0 1000

2000

3000 4000 5000

Episodes

Figure 5.14: Learning curve for DQN, DDQN and DDQN+PER algorithm during autumn period

Test results

Once we have trained the HEMS agents with the DQN, DDQN, and DDQN+PER algorithms and saved the corre-

sponding models (or neural networks), we employ them with the test database. We compare the daily operating

cost of the system obtained by each agent and by a rule-based method. For each agent, we successively use the

model saved when the operating cost was at its lowest value during the training phase, and the model saved at the

end of the learning process. The test database contains the autumn period of the years 2016 to 2020. The following

tables gives the total system operating cost for each month, when managed by the different algorithms.

Algorithm Test period (October)
— 2016 2017 2018 2019 2020
DQN (after 5000 episodes) 292.77 | 200.95 | 184.93 | 215.62 | 793.54
DDQN (after 5000 episodes) 329.19 | 248.85 | 233.03 | 238.80 | 550.19
DDQN+PER (after 5000 episodes) | 291.83 | 202.57 | 188.49 | 198.36 | 535.43
DQN (after 3600 episodes) 309.46 | 212.61 | 194.57 | 201.27 | 546.43
DDQN (after 3600 episodes) 330.16 | 250.81 | 235.42 | 238.96 | 549.07
DDQN+PER (after 4700 episodes) | 321.13 | 202.27 | 186.63 | 199.87 | 538.50
| Rule-based | 291.40 | 203.34 | 186.66 | 200.26 | 536.70 |

Table 5.8: Operating cost of in October

As shown by tables 5.8, 5.9, and 5.10, except in October 2017 and October 2018, the model obtained at the end of

training process with the DDQN+PER algorithm has the best performance. In October 2017 and October 2018, the

109

Algorithm Test period (November)
— 2016 2017 2018 2019 2020
DQN (after 5000 episodes) 534.76 | 494.38 | 543.82 | 716.34 | 748.89
DDQN (after 5000 episodes) 517.57 | 459.25 | 483.27 | 525.26 | 478.21
DDQN+PER (after 5000 episodes) | 502.58 | 446.80 | 465.82 | 513.71 | 450.49

DQN (after 3600 episodes) 521.05 | 449.10 | 473.97 | 519.55 | 466.48
DDQN (after 3600 episodes) 518.22 | 460.96 | 484.32 | 524.59 | 477.37
DDQN+PER (after 4700 episodes) | 522.30 | 447.78 | 482.76 | 526.46 | 482.18

| Rule-based [501.98 | 444.84 | 468.38 | 517.14 | 457.41 |

Table 5.9: Operating cost of in November

Algorithm Test period (December)
— 2016 2017 2018 2019 2020
DQN (after 5000 episodes) 707.18 | 709.93 | 739.40 | 911.33 | 1078.94
DDQN (after 5000 episodes) 612.48 | 678.27 | 571.46 | 609.68 | 675.21
DDQN+PER (after 5000 episodes) | 602.59 | 675.50 | 569.15 | 603.98 | 669.89

DQN (after 3600 episodes) 611.96 | 680.10 | 570.42 | 605.66 | 671.59
DDQN (after 3600 episodes) 613.16 | 679.45 | 571.78 | 609.29 | 675.06
DDQN+PER (after 4700 episodes) | 604.60 | 678.22 | 570.26 | 609.04 | 674.15

| Rule-based [600.90 | 673.28 | 573.14 | 607.76 | 669.51 |

Table 5.10: Operating cost of in December

model obtained at the end of training phase with the DQN algorithm performs better. In most of the test results, the
operating cost of the DDQN+PER algorithm is better than the operating cost of the rule-based method. Therefore,
these results demonstrate the effectiveness of the DDQN+PER algorithm in designing an efficient HEMS to manage

the battery unit of the use case 1.

5.3.4 DAQN applied to use case 2

In this phase of the study, the DQN algorithm is applied to test the use case 2, dedicated to the control of the thermal
loads of a building and presented in section 4.4. In this use case, the HEMS that operates the building microgrid
presented in figure 4.1 manages only the heating system and the domestic hot water boiler to provide a comfortable

temperature range at minimal operating costs.

The representation of thermal comfort is very complex and depends on many parameters (air temperature, relative
humidity, clothing insulation, metabolic rate, ...) [95]. In this study, for the sake of simplicity, the thermal comfort

criteria are comfortable indoor and hot water temperature ranges defined by the buildings occupants.

The HEMS controls the heating system and the boiler via a discrete set of actions and takes decisions based on
the following information: outdoor temperature, indoor temperature, hot water temperature, hot water demand, time,
and electricity price. The objective of the HEMS is to reduce the daily operating cost of the system while ensuring

the users’ comfort. The MDP associated with the system and the numerical experiments performed are presented

110

in the following sub-sections.

Markov decision process associated with the system

To formulate the HEMS problem as a MDP, we define the states, actions, immediate rewards, and objective as

follows.
States:

In this use case, the system state is defined by 5.29.

'St = (Tz'trw Tliuﬂ Tguﬂ DHVVt? ht? O;rid) (529)

Actions:

The actions are the on/off commands of the heating and the hot water boiler between ¢t and ¢ + 1 and are defined by

5.30.

Ar =1{0,1} X Pheatron
Al = (A © A)with{ 10,13 Pheatyo (5.30)
A2 = {0,1} X Phwm(w

Rewards:
We still use a negative reward (penalty) directly related to the cost of buying energy from the grid. Other penalties

apply if the temperatures go out of the comfort interval defined by the user. The total reward is defined by 5.31.

rt=B(ri +713) + 15 (5.31)

t : t
Thw min — Thw lfThw S Thw min

Ti == Tliw - Thw mazx ZfT}iw > Thw max (532)
0 else
ﬂn min Tltn ZfT’ltn S T’m min
7"5 = ﬂtn — Tin maz Zletn > Tin maz (533)
0 else
ri = —Cyrid X P;m-d (5.34)

111

NN parameters:

Hidden layers 2
Number of neurons per hidden layer 24
Activation function RelLU
Loss function MSE
Optimizer Adam
Training parameters:

Learning rate o 0.001
Discount factor ~ 0.5
Replay buffer size 2000
Batch size 32
Number of episodes 1000
e values : €as — €min 1 — 0.001

Table 5.11: Neural network and training parameters

Numerical experiments settings

The numerical experiments presented in this section were carried out with time series 7,,,; measured at the tertiary
building database. The time series of hot water consumption were obtained from the StROBe database described
in section 4.6.2, and the tariffs are those of EDF, already used in the previous sections. The number of actions is
4 and the time step is At = 10min. The training database consists of the 90 days of fall 2017. This season was
chosen because it contains a wide variety of weather conditions and, therefore a wide variety of time series T.;.
The tests were performed with data from the fall 2018. An episode corresponds to a day, and the neural network

weights are updated at the end of each episode.

Hyperparameter setting

The input and output layers respectively have 6 and 4 neurons, respectively (number of state components and
number of actions). A trial-and-error procedure determined the hidden layer parameters and other hyperparameters.

All these parameters are summarized in the table 5.12.

Training results

At the beginning of the training phase, the neural network weights are initialized with random values. Then the DQN
algorithm is run with N, = 1000 episodes. Each episode corresponds to a day randomly selected in the training
database and has 144 time steps. At each time step, the agent chooses and executes an action, observes the new
state, and receives a reward. It calculates the target value and performs gradient descent to adjust the network
weights. The agent follows an e-greedy strategy, with more exploration at the beginning and more exploitation at the

end.

Figure 5.15 shows the sliding average of the agent’s daily penalty over 100 episodes. This curve shows the im-

112

provement in the agent’s behavior as the training progresses.

— -0.03
Sl
Z
©
c
¥ -0.05
=
‘©
©
Q
E" -0.07
(]
>
m©
&
5 -0.09
an

-0.11

0 200 400 600 800 1000
Episodes

Figure 5.15: Learning curve

Test results

After its training, the Q-network is used in real-time to calculate Q*(s, a) and select the best action a* by the greedy

mechanism. Figure 5.16 shows the results obtained for a day randomly chosen in November 2018.

Energy Management Report

20 > ; - \//“\ o8
{.J e e e e e e "/_
‘; 15 | —— Indoor Temperature by DQN
S |~ Indoor Temperature by RB = |
E 104~ upper limit 1
2" .-
E | = oOutdc
27— hw

-~ HV r (
o
o 20 40 60 80 100 120 140

—— Hot water debit
e Boiler power by DQN(kW)
f j=— Boiler power by R (kW) |

Hot water debit (Litre/10 minutes)

LJ 65.0

O 625

2

E 60.0)

g 5751 =~ upper_limit ‘

nE) ss0{ = lower_limit 3
[

F ;5| = Hotwater temperature by DQN-

s/ T e e

o 20 40 100 120 140

60 80
Time slots per 10 minutes

Figure 5.16: Energy management report for November 5th 2018

This figure compares the behaviors of the EMS trained by the DQN algorithm and a rule-based EMS designed

113

to track the median temperature of the comfort interval. The upper curves represent the evolution of the indoor
temperature during the day. We observe that the DQN agent tries to turn the heating on and buy more energy
during off-peak hours to buy less energy during peak hours. By following this strategy, he saves money. The curves
in the middle show the flow of hot water withdrawn and each HEMS’s control of the hot water tank. The curves at
the bottom show the evolution of the temperature of the hot water boiler, which results from the control actions. We

observe the same behavior as for heating management.

Discussion

The results show that the DQN agent has learned to manage the heating and the hot water boiler while remaining
within a comfortable temperature range. This simple example, for which it is easy to define quasi-optimal manage-
ment rules, shows that the agent could learn to manage the system by reinforcement learning method without any

initial knowledge.

5.3.5 DAQN applied to use case 3

In this last phase, our objective was to consider all the system’s units. Specifically, we aimed to enable the HEMS to
control the heater, hot water boiler, and battery units simultaneously, using discrete actions such as on/off signals
for the heater and hot water boiler and a discrete fraction of Py.: ma. for the battery unit, while still satisfying the
equilibrium equation4.1. Therefore, the main objective of our HEMS is to increase self-consumption in the system

and, as an effect, reduce operating costs while maintaining comfortable temperature ranges.

Our attempts to train the agent for this complex system, which includes all the units of the system, did not yield
satisfactory results due to several problems that will be discussed later. However, the problem formulation and the
numerical experiment setting used to train the HEMS applied to this use case will be explained to understand the
potential causes that prevented the model from learning a strategy. Therefore, the MDP associated with the system

and numerical experiments are presented in the following sub-sections.

Markov decision process associated with the system

To formulate the HEMS problem as a MDP related to this use case, we define the states, actions and immediate

rewards as follows.
States:

In this phase, the system state is defined by 5.35.

st = (T}

wmn?’

Tif,w7 T(futv DHWt? P;w Pltoadv SOC{fatv htv Ct) (535)

grid

114

Actions:

As defined by equation 5.36, the actions correspond to the on/off commands of the heating and the hot water boiler
and a discrete value of P,,; between t and ¢ + 1. Unlike the first use case, the battery command is expressed as a

fraction of P, .. instead of P,.; and can have any sign. The total number of actions is 2 x 2 x (2n + 1).

Al = {07 1} X Pheatmaz
Al = (Al ® As ® A3) with Ay = {()7 1} X Phwmaac (536)

Az = {L}-n<i<n X Poatpas
Rewards:

We still use a negative reward (penalty) directly related to the cost of buying energy from the grid. Other penalties

apply if the temperatures go out of the comfort interval defined by the user. The total reward is defined by 5.37.

rt = B(ri +7r5) + 7} (5.37)

Thw min T T}sw ifT}iw < Thw min
rl{ = Tl)iw - Thw mazx ZfT}iw > Thw max (538)

0 else

m

Té == thn - Tin max Zsztn 2 Tin max (539)
0 else
ry = —Clyrig X P;Md (5.40)

Numerical experiments settings

The numerical experiments presented in this section were carried out with time series measured at the tertiary
building database and the StROBe database and the time step is At = 10min. The tariffs are those of EDF,
indicated in the previous section. The training database contains the 90 days of fall 2017. This season was chosen
because it contains various weather conditions and, therefore, a wide variety of time series. An episode corresponds

to a day, and the neural network weights are updated at the end of each episode.

115

NN parameters:

Hidden layers 3
Number of neurons per hidden layer 24
Activation function ReLu
Loss function MSE
Optimizer Adam
Training parameters:

Learning rate « 0.00025
Discount factor ~ 0.95
Replay buffer size 2000
Batch size 32
Number of episodes 1000

e values : €mazr — €min 1 — 0.001

Table 5.12: Neural network and training parameters

Hyperparameter settings

In the first try, to simplify the problem, we considered only three possible actions for the battery unit ({1,0, -1} x
Pyat,...). The input and output layers have 9 and 12 neurons respectively (number of state components and number
of actions). A trial-and-error procedure determined the hidden layer parameters and other hyperparameters. All of

these parameters are listed in table 5.12.

Training results

At the beginning of the training phase, the neural network weights are initialized with random values. Then, the
training process has been carried out using the Deep Q-Network (DQN) algorithm. The DQN algorithm is run with
N., = 1000 episodes. Each episode corresponds to a day randomly selected in the training database and contains
144 time steps. At each time step, the agent chooses and executes an action, observes the new state, and receives
a reward. It calculates the target value and performs gradient descent to adjust the network weights. The agent

follows an e-greedy strategy, with much exploration at the beginning and more exploitation at the end.

Unfortunately, we did not observe improvement in the learning curve during the training phase, illustrating that the
agent did not learn a good strategy to manage the system. Due to the suboptimal performance and time limitations,

other extended algorithms were not explored in this study.

Discussion

In order to learn a good strategy capable of managing all the units of the system simultaneously, the HEMS agent
must learn the dynamics of each subsystem state variable: the state of charge of the battery, but also the indoor and
the hot water tank temperatures. Learning these different dynamics can be a challenging and contradictory task.

Each decision related to a controllable unit has an impact on the others. Another problem arises from the nature of

116

our databases. We integrated two databases originating from distinct sources, each with unique characteristics. This
integration may contribute to the dysfunctionality observed in the learning process. Additionally, increasing the size
of the state and action spaces increases the complexity of the neural network structure. Therefore, the number of
training episodes must be increased, and an appropriate set of hyperparameters is crucial to learn a good strategy.
In this work, we only used a trial-and-error mechanism to find a suitable set of hyperparameters to perform the
learning process, but it did not allow us to find good hyperparameters for such a complex system. Therefore, the

next section discusses hyperparameter determination and its importance for machine learning problems.

5.4 Hyperparameter determination

As mentioned in the previous section, DRL algorithms require an appropriate hyperparameter setting to ensure a

good learning process and to obtain a performant and reliable solution.

5.4.1 Performance of a hyperparameter set
The hyperparameters can be classified into two categories:

« the training parameters, specific to each machine learning algorithm: learning rate, exploration rate, discount

factor, replay memory buffer size, batch size, ...

« the neural network parameters: number of layers, number of neurons per layer, activation function, loss func-

tion, optimizer, ...

The choice of these hyperparameters significantly impacts the speed and the result of the learning process. In the
context of RL hyperparameter search, the first indicator to evaluate the effectiveness of a given set of hyperparam-
eters is the reward value used to plot the learning curve. The higher the reward at the end of the learning process,
the better the parameter set. Another criterion is to define a threshold for the reward value. The fewer episodes it
takes to reach this threshold, the better the parameter set. Finally, the quality of the learning must also be evaluated
by confronting the agent with the test database. The value of the cumulative reward in the test conditions is another
important criterion for rating the parameter set. As can be seen, it is necessary to go through the entire learning and
testing phases in order to be able to evaluate a single parameter set. Since this process is time consuming, fixing

the hyperparameters for a given problem can be a very challenging process.

In a common approach, DRL hyperparameters are determined using a trial-and-error method guided by the user’s
experience. The user tries different possibilities until a the most satisfactory solution is found, as shown in figure
5.17. The first step is to fix a set of hyperparameters. Next, the agent is trained with a given number of episodes. At
the end of the learning phase, the trained agent goes through the testing phase. If the results are satisfactory (i.e

the trained agent can handle the control problem properly in the test phase and optimize the objective function), the

117

process ends. Otherwise, if the results are not good enough, another set of hyperparameters is chosen.

Select
hyperparameters

Train the agent on
learning phase

Test the agent on
testing phase

Figure 5.17: RL hyperparameter tuning process

5.4.2 The problem of parameter search

The problem with the trial-and-error search is that it takes a lot of time and experience. Usually, we cannot be sure
to find the best parameter set to train the agent efficiently [110]. Automating the hyperparameter search for the DRL
algorithms leads to better performance. It is also imperative to make DRL algorithms more accessible for industrial

applications without requiring deep knowledge and expertise in these algorithms.

We can find many works and studies about the hyperparameter searching for conventional neural networks in
literature. Various hyperparameter search libraries like DeepHyper, Hyperband, and Ray-Tune have been developed
to find the best hyperparameters set for conventional neural networks. However, because of the various specificities
of reinforcement learning approaches, there was less progress in developing methods for optimal hyperparameters
search for these algorithms [111]. In RL algorithms, we have more hyperparameters to fix than in supervised
learning algorithms, and also RL training process is highly sensitive to hyperparameters. Hyperparameter tuning
becomes more critical as a problem becomes more complex and significantly impacts the final training outcome.
Another difficulty of hyperparameter search for RL relates to the need to scale the structure of the neural networks

to their environment. Finally, many different DRL algorithms exist and the tuning solution can be different for each

118

of them.

The search for the best set of hyperparameters of a DRL problem can be formulated as an optimization problem,
where z is the parameter set and f(x) is the performance indicator to be optimized. The difficulty of this problem is
that the evaluation of the function f requires the complete solution of a learning problem. This function is a black
box with a very high computational cost, and its derivatives (assuming they exist) are not accessible. Therefore,

gradient-based optimization methods can not be used and one has to consider derivative-free methods.

In the literature, various approaches are proposed for tuning the hyperparameters of DRL algorithms. This section

explains some of these methods and briefly discusses their advantages and drawbacks.

According to [112], these approaches can be divided into two main categories. The model-free and model-based
approaches. Model-based approaches use the knowledge obtained during the optimization process to reduce the
area of search and focus on region with a higher probability to obtain good results. At the opposite, model-free
methods do not exploit any knowledge to guide their search. The grid and random searches are two intuitive

examples of model-free approaches.

5.4.3 Model-free approaches

Grid search

The grid search is one of the primary and traditional approaches that may be useful if the number of hyperparameters
is low and the range of their possible values is limited. In this approach, the search space is explored following a
predefined grid pattern. All the points are evaluated and the best one is selected. In a very simple example with only
two hyperparameters H P, and H P, and respectively ny p, and ny p, values for each of them, niest = ngp1 X npps
parameter sets are tested. Obviously, the number of sets to test may very rapidly increase with the number of
parameters and of values. In [113], the conventional grid search is used to find the optimized hyperparameters for

different RL algorithms.

The advantage of the grid search is that it is easy to implement. On the other hand, it is very limited in the case of
a large number of hyperparameters with many possible values, which is the case in most complex DRL problems.
The size of the search grid grows exponentially and consequently the number of combinations to test. One solution

can be to parallelize the search and test several sets simultaneously using a large cluster of computers.

Random search

Another basic approach is the random search. In this approach, instead of checking all combinations, we randomly
take and evaluate a subset of them from the equally distributed search space. Finally, we take the best set of

hyperparameters. This approach takes less calculation time than a conventional grid search but still takes a lot of

119

time and is not too efficient due to the curse of dimensionality in large hyperparameters space.

5.4.4 Model-based approaches

Bayesian search

Generally speaking, Bayesian optimization is helpful if the function f(z) is unknown (black box) or the function
f(x) is very costly to evaluate. This is typically the case when searching an optimal hyperparameter set for a DRL
algorithm. The Bayesian approach finds the solution to an optimization problem based on a statistical modeling of
the black box and an intelligent exploration of the hyperparameter space. Bayesian optimization is derivate-free and

less prone to get blocked in local minima[114].

In the Bayesian search, instead of selecting the hyperparameters randomly, the hyperparameter selection is made
from a promising area of the hyperparameter space. This approach reduces the number of points to evaluate and
hence the calculation time reduces dramatically. This approach keeps track of past iteration results and uses this

knowledge at the next iteration to reduce the searching hyperparameter space toward a promising region.

The Bayesian optimization strategy uses an approximation function named the surrogate model, which is a proba-
bilistic model of f(z). This surrogate model simulates the function output instead of the actual costly function and
estimates the goodness of each hyperparameter combination. To find the optimal hyperparameter combination, this
surrogated model must be fitted through an iterative process. Thereby, the surrogate model is updated periodically

and provides a better estimates to guide the search in the hyperparameter space toward a good set of combinations.

An acquisition function chooses the next hyperparameter combination to be evaluated. It chooses the hyperparam-
eter combination in which the parameter value can return the optimal value from the function. According to [111],
four types of acquisition functions listed below are popular: entropy search, maximum probability of maximization,

expected maximization, and upper confidence bound.

The exploration-exploitation strategy is the most advantageous aspect of the Bayesian search compared to other
blind search methods like grid and random search. Based on the exploration process, searching for the optima
should continue after finding a local optimum because there is always the chance to find a better optimum in other
areas. Alternatively, equal attention should be paid to the points that consistently return optimal values from the
function. Exploring optimal data points in different locations or exploiting and continuing in the same direction is

very important to achieve the target faster with a small number of actual function calls.

There are different ways to build the surrogate model of the Bayesian search algorithms. According to [115], the
Gaussian process is the most commonly used model approach for Bayesian optimization. It estimates its predictabil-

ity and keeps the balance in the exploration-exploitation dilemma.

120

Bayesian search is more efficient than model-free-based approaches [116] and can be used in the DRL domain.
Several open-source Python libraries, like Optuna [117], use the Bayesian approach to find optimized hyperparam-

eters for deep learning, but not for DRL applications [111].

Authors in [112] compared three model-based hyperparameter optimization methods to find the best possible hyper-
parameter combination for a deep deterministic policy gradient (DDPG) algorithm in a vehicle energy management
problem. They used different ensemble methods (EM) consisting of decision trees that work together to obtain better
predictive performance for the surrogated model in a Bayesian optimization strategy. According to [118], the com-
putational effort required for the (EM) method increases linearly with the number of optimization runs. In contrast,
in the Gaussian process, the calculation effort required for covariance inversion increases cubically. As defined in
[112], different sequential model-based algorithms are designed based on how the decision trees are arranged.
Random Forest [119] in which trees are trained independently with randomly generated data sub-samples and the
gradient-boosted trees optimization in which decision trees depend on each other and are placed sequentially on
the residual (prediction errors) are some methods based on the way of decision trees are constructed. In their
study, they compare the random forest, a Gaussian process, and gradient-boosted random trees. They found that
the random forest method achieved a better performance than a Gaussian process and a gradient-boosted random

tree to find the optimal hyperparameter combination.

Genetic algorithm search

Another popular method to minimize black box functions is based on genetic algorithms. One such approach is
presented in [111], where the authors propose a distributed variable-length genetic algorithms framework automat-
ing hyperparameter tuning for RL applications, improving the calculation time and the robustness. They show the
scalability of their approach on various RL applications and compare their results with a Bayesian optimization strat-
egy. They developed a scalable deployment library called HPS-RL, which generates a population of genes and
utilizes crossover and mutation techniques to efficiently identify the best multi-objective optimal hyperparameters for
every RL experiment. Therefore, their development process involved several steps, including designing a scheme
to represent hyperparameters as genes within a population of many individuals. Additionally, a "survival of the
fittest" method was developed to assess the performance of each gene and determine which ones performed well,
serving as the selection process. A computationally efficient method was also established to evaluate individuals
during trials, measuring the highest rewards achieved in fewer training episodes. Lastly, a method was implemented
to perform crossover and mutation techniques, generating new individuals from past successful ones for a new
population generation. The process of HPS-RL is illustrated in Figure 5.18, where individuals are initialized with a
block of hyperparameters. This block can include basic gene structures, such as the number of neurons in a DDPG

case, and additional hyperparameters, such as activation functions and the number of layers. The individuals are

121

then trained using a chosen OpenAl gym environment, and the best-performing ones are selected using a roulette
wheel selection mechanism based on their fitness. Fitness is calculated based on the cumulative reward earned
while playing for a fixed number of steps and the total loss incurred during the evaluation. The selected individuals
are then subjected to crossover and mutation, where genes are swapped and randomly replaced to generate new
offspring. The new individuals are evaluated again, and the process repeats to find better solutions. The crossover

and mutation rates can be adjusted to control the pace of change in the population dynamics and explore multiple

Initialize Random Population D.:I. 4 genes with 3
for DDPG |:First generation) hyperparameters
Initialize gym to train the new
—* bDPG 1 DDPG 3 DODPG ‘genes’ with save model

Selection (randomly select
parents using routette wheel}

optimal fronts.

Parents; ' Children;
Reproduce

(crassover)

Mutation (randamiy
change one gene

L——— MNew Generation

Figure 5.18: GA search for the best hyperparameters for DDPG in a chosen Gym [111]

Apart from the DDPG algorithm, this library offers several other DRL algorithms, including DQN, TRPO, and A2C.

These algorithms can be applied to Gym environments, such as the Cartpole or Lunar landing environments.

Following their solution, we can use a distributed calculation and reduce the calculation time. In this process,
through a distributed calculation architecture, the method runs models as multiple collections of jobs from a single
head node. The head node generates the population and evaluates them. It set up multiple nodes to run multiple
training and evaluation processes for each individual. This architecture is shown in figure 5.19. Their suggested
methodology can be employed with various hardware configurations such as GPU, multicore CPUs, and single-core

implementations.

The key benefit of utilizing genetic algorithms instead of Bayesian Optimization is the ability to execute multiple

instances in parallel, which is not feasible with the traditional Bayesian optimization approach.

122

Head node

Population
generator

Population
evaluator

Self-play
evaluators

Best individuals Gym

Figure 5.19: Distributed HSP-RL architecture [111]

5.4.5 Discussion:

As mentioned in the previous section, hyperparameter optimization is essential to train the DRL algorithms effi-
ciently. The literature search revealed genetic algorithms as a possible method to accelerate the hyperparameter

optimization process by executing multiple evaluation of one parameter set in parallel [111].

In our study, each RL learning process took about 6 hours on our local machine (Intel(R) Xeon(R) CPU @ 3.6
GHz, 32 GB RAM, NVIDIA-SMI Quadro K620 GPU processor, 2 GB RAM). As shown in figure 5.17, to test each
hyperparameter combination, we have to wait until the end of the learning process and then apply the trained model
into the test phase to evaluate their performance. Therefore, to apply a hyperparameter optimization process, we
need a massive capacity for calculation and memory space to run the process. Due to these limitations, applying a

model-based hyperparameter search was impossible on our machine.

Our study could handle only a limited grid search approach to find the best combination of the learning rate « and
discount factor +. Therefore, we reduced the number of searched hyperparameters and their possible values to
two, making only 4 combinations. During this process, the other hyperparameters have been fixed intuitively by
our experience and regarding state of the art in RL applications in the EMS problems. The results were not very

satisfactory, and we concluded that we must find these hyperparameters by a model-based approach.

Therefore, | tried to implement the GA approach proposed in [111] to find optimal hyperparameters related to the

DQN algorithm for our designed BMG environment.

To employ this approach and accelerate the calculation, | requested using the high-performance computing (HPC)
resources from the “Mésocentre” computing center of CentraleSupélec, Ecole Normale Supérieure Paris-Saclay and
Université Paris-Saclay supported by CNRS and Région ile-de-France[120]. This HPC cluster comprises numerous

networked computing servers, referred to as nodes, operating in parallel within each cluster, resulting in accelerated

123

processing speed and the provision of high-performance computing capabilities. The detail of this HPC cluster is

available online [120].

This part of the work was investigated at the very end of my Ph.D. thesis. Different complexity, related parallel
calculations architecture, and the need to use various Python libraries like "mpi4py.MPI" (which is used for distributed

computation) prevented me from implementing this approach in the time available to me.

5.5 Conclusion

This chapter employed different reinforcement learning algorithms (Q-learning, DQN, DDQN, DDQN+PER) to train

the HEMS specific to each use case.

We have started using the Q-learning algorithm to design a HEMS in a simplified discrete-discrete environment
related to the first use case in which the agent controls the battery unit. After obtaining promising results using this
basic algorithm, we used DQN, DDQN, and DDQN+PER algorithms to go further and manage a continuous-discrete
environment, avoiding oversimplification of the use case 1. The results demonstrated that the agent could learn a
good strategy by interacting with its environment. It has been shown that this EMS is robust for different periods of
the year and performs better than a near-optimal rule-based method. Moreover, we have seen a better performance

of the DDQN+PER algorithm in both the learning and test phase than other DRL algorithms.

For the second use case, in which the agent controls only the thermal loads, we have directly used the DQN
algorithm. The simulation results also demonstrated that the agent could learn a good strategy to manage these

loads and reduce the operating cost while respecting the temperature constraints related to thermal comfort.

The advantage of the DRL agent is that it can be trained and adapted to a more complex environment, whereas
designing an effective rule-based strategy would be difficult. Additionally, training an EMS with a reinforcement

learning model does not require prior knowledge or even the exact mathematical model of the environment.

Unfortunately, we did not obtain good results when we tried to apply the DQN algorithm to the third use case, with
both the battery and the thermal loads to manage, and the agent did not learn a good strategy to manage the system.
In this use case, the HEMS agent must learn the dynamics related to the battery SoC, to the building temperature
and to the boiler temperature. Learning these different dynamics can be a challenging and contradictory task.
Additionally, increasing the number of state variables and actions increases the complexity of the neural network
structure. Therefore, the number of training episodes must be increased, and an appropriate set of hyperparameters

is crucial to learn a good strategy.

In this chapter, we used a trial-and-error mechanism to find a good set of hyperparameters, but this approach was not

adapted to the complex problem of the use case 3. To address this problem, we discussed different hyperparameter

124

determination approaches for DRL algorithms in the last section of this chapter.

We started to investigate and implement the hyperparameter determination using a genetic algorithm approach at

the end of my Ph.D. thesis, but we lacked of time to produce results.

125

126

Chapter 6

Conclusions and perspectives

6.1 Summary

This doctoral thesis research aimed at implementing deep reinforcement learning algorithms to develop a Home
Energy Management System (HEMS) for a building microgrid with renewable energy sources. This HEMS is de-
signed to be trained with historical data and therefore does not require a forecasting tool to predict future weather
conditions or load consumption. The main objective of this HEMS is to optimize the operating cost of the building

microgrid, thus encouraging the adoption of renewable energy sources and energy storage systems by end-users.

Integrating rooftop photovoltaic panels and energy storage systems in building infrastructure is critical to achieve
zero-carbon emission especially considering buildings’ significant role in global electricity consumption. However, a
major challenge that needs to be addressed is developing reliable energy management systems that can efficiently

operate all the electric components within the building microgrid.

In this context, chapter 2 of this work provided a detailed literature review of the critical requirements for building
microgrids and the most effective control strategies to address these challenges. These researches identified the
need for a robust energy management system to efficiently handle the unpredictability of renewable energy gener-
ation and variations in dwelling occupancy. The chapter compared various energy management algorithms using
criteria such as robustness against uncertainties, calculation time, implementation complexity, dependency on an
appropriate model, and ability to consider predictions. Based on the analysis, the study observed that reinforce-
ment learning algorithms might be suitable for developing an appropriate energy management system for building
microgrids. These algorithms do not require a forecasting tool and can automatically learn from the environment
to improve performance. They can adapt quickly to a new environment and do not heavily depend on the system

model.

127

A background of fundamentals in deep reinforcement learning is crucial to understand the deep reinforcement
learning mechanism. Chapter 3 of this thesis provided an in-depth background of deep reinforcement learning,
explaining the mechanism from basic concepts to advanced models. The chapter introduced fundamental concepts
of deep reinforcement learning and some model-free, value-based algorithms such as Q-learning, DQN, and their
extensions, such as DDQN algorithms and DDQN algorithms with a prioritized experience replay buffer. These

algorithms are used to train the HEMS for optimal performance.

In Chapter 4, we provided a comprehensive overview of the microgrid model and its constituent components. The
dynamic thermal models of the heating system and the hot water tank were presented and the power of these
devices was sized. Three use cases were presented, together with the problem formulation for an efficient home
energy management system. We started with a simple case (use case 1: battery management with no thermal
loads) and gradually increased the complexity of the problem (use case 2: thermal loads management with no
battery, and finally use case 3: battery and thermal load management). In the last section, we presented the
database used in this work and emphasized the importance of having a clean and efficient database for training

machine learning algorithms.

In Chapter 5, different deep reinforcement learning algorithms (DQN, DDQN, DDQN+PER) were employed to train
the HEMS specific to each use case. For the use cases 1 and 2 first, the results demonstrated that the agent could
learn a good strategy by interacting with its environment. For the first use case, we have seen a better performance
of the DDQN+PER algorithm for both the learning and testing phase than other DRL algorithms. It has also been
shown that this EMS is robust for different periods of the year and performs better than a near-optimal rule-based

method.

6.2 Contributions

We started our study by creating a HEMS in a simplified environment, with an initial focus on managing the battery
unit exclusively. This first step involved designing a Markov decision process framework that models the BMG and
the HEMS. We highlighted the significance of Q-learning, a foundational Reinforcement Learning (RL) algorithm, in

this context.

Subsequently, we proceeded to create the HEMS in three distinct phases: battery management alone, thermal
loads management alone, and finally, battery and heating loads management. Each phase allowed us to build a

deeper understanding of the system’s complexities.

For example in the second phase, to train the HEMS that manage thermal loads involved considering the dynamic
thermal models of both the boiler and the house. This phase was crucial as it addressed the complexities associated

with thermal dynamics within the microgrid.

128

The final phase of our study encompassed training the HEMS to simultaneously control both the battery unit and

thermal loads.

To implement these phases effectively, we implemented the Q-learning algorithm, and later, we explored more
advanced algorithms such as the Deep Q-Network (DQN) and its variants, including DDQN and DDQN+PER.

These algorithms allowed us to handle continuous states and make more sophisticated decisions.

Throughout our research, we encountered various challenges. Among these, we focused on studying the impact
of initializing the Q-table algorithm with prior knowledge. This consideration played a critical role in the training

process, and our findings contributed to the development of effective strategies.

Additionally, we followed an iterative trial-and-error method to find the optimal hyperparameters for the training phase

of the DQN algorithm. This step was essential in fine-tuning our models and achieving better results.

The culmination of our efforts is reflected in numerous numerical experiments and simulation results.

Unfortunately, we did not obtain good results for the third use case of our study, and the agent did not learn a good

strategy to manage the system. This highlights the need for further work and research in this area.

The most significant challenges in applying DRL algorithms to design HEMS for a building microgrid can be sum-

marized into the following categories:

Dataset challenge: A large and clean dataset is necessary to train a reliable HEMS. As the model’s complexity

increases, reinforcement learning algorithms require even more data to make accurate decisions.

Exploration of the environment: The agent takes action based on the current state of the environment. If the
environment is constantly and brutally changing, because of the intermittent nature of renewable energy resources

and the load consumption in our study, making good decisions cannot be easy, limiting the model’s effectiveness.

Choice of the reward mechanism: The agent’s performance relies on rewards and penalties. Choosing the penalty

associated with constraint violations has an impact on the results and requires some tuning.

Hyperparameters determination: In addition to the dataset, exploration, and reward challenges, another significant
obstacle for DRL algorithms is the crucial role of hyperparameters. Finding an appropriate set of hyperparameters
is challenging due to the number of hyperparameters to set, the high sensitivity of the training process to hyperpa-
rameters, and the variety of DRL algorithms and their specific mechanisms. These factors make it challenging to

create a common library to find optimized hyperparameters for these algorithms

129

6.3 Perspectives

The energy management systems field is developing rapidly, driven by the need for more efficient and sustainable
energy consumption. This thesis has explored the application of reinforcement learning algorithms to train a HEMS
through interaction with the system and some critical aspects, such as hyperparameter optimization. In this per-
spective, we now outline some future directions to address the limitations associated with reinforcement learning

applications and improve the performance of home energy management systems (HEMS) and microgrids.
Hyperparameter Optimization

The first and most important challenge is to develop an efficient and robust framework for determining efficiently
an optimized set of hyperparameters. We have seen that the hyperparameters profoundly affect the performance
of reinforcement learning algorithms. We have also seen that choosing efficient hyperparameters is a memory
and time-consuming task. Future research should focus on creating automated hyperparameter tuning techniques
that can adapt to various algorithms used in HEMS. Therefore, as mentioned in my thesis’s last chapter, advanced

methods like genetic algorithms may be used to achieve this objective.
Using more sophisticated reinforcement learning algorithms

After refining the hyperparameter optimization process, the next step is to explore more advanced reinforcement
learning algorithms. One of the first choices may be using the Deep Deterministic Policy Gradient (DDPG) algo-
rithm to work with continuous action space and surpass the limitation of a discrete set of actions. This algorithm
is suitable for continuous environments and a promising method for decision-making processes and energy man-
agement systems. A more sophisticated algorithm allows us to add more complexity to the environment and action.
Comparing DDPG and other advanced algorithms with those tested in the thesis can provide valuable insights into

their efficacy in managing HEMS and microgrids.
Incorporating Electric Vehicles

Integrating electric vehicles (EVs) can be an excellent option to make HEMS more relevant to real-world scenarios.
We should investigate how to model the interactions between HEMS and EVs accurately. Studying the robustness
of DRL algorithms against all uncertainties related to EV charging and discharging, unexpected disconnections, and

their impact on HEMS performance is an exciting field to investigate.
Transfer Learning

Transfer learning is an axe to investigate to accelerate the learning process and obtain a better model in less time.
In the reinforcement learning process, the significant number of experiences needed to achieve an optimal policy

can pose a notable challenge, particularly in real-world applications. Moreover, once an RL agent has learned a

130

policy, any slight changes in the task lead to a complete reinitiation of the learning process. In this context, transfer
learning can be a powerful technique to reduce the required number of samples for learning, accelerate the learning
process, and ultimately facilitate the development of a more adaptable agent. Adapting a pre-trained HEMS to apply

in a new environment will also be very helpful.
Real Microgrid Implementation

The ultimate test for any HEMS algorithm lies in its implementation in a real microgrid. This step involves analyz-
ing the sensitivity of the agent’s strategy to uncertainties in the microgrid model and parameters. While RL has
demonstrated its efficiency in many simulated environments, its adoption in practical, real-world problems has been
relatively slow. This gap can be explained by the disparity between the controlled settings of experimental RL setups

and real-world systems’ complexities.

In one of the recent researche studies [121], authors listed nine main challenges that complicate the RL application
in real-world applications: “1. Training offline from the fixed logs of an external behavior policy. 2. Learning on the
real system from limited samples. 3. High-dimensional continuous state and action spaces. 4. Safety constraints
that should never or at least rarely be violated. 5. Tasks that may be partially observable, alternatively viewed as
non-stationary or stochastic. 6. Reward functions that are unspecified, multi-objective, or risk-sensitive. 7. System
operators who desire explainable policies and actions. 8. Inference that must happen in real-time at the control

frequency of the system. 9. Large and unknown system actuators, sensors, or rewards delays.”

As a solution, they proposed to interact and work closely with the experts to formulate the right reward objectives
and safety constraints, get expert demonstrations to warm-start learning, and explain the algorithm’s actions enough

that they have enough confidence in the system to deploy it.

In summary, the future of energy management systems and microgrid management is promising and dynamic. To
realize its full potential, we must continue to explore and innovate in areas such as hyperparameter optimization,
reinforcement learning algorithms, EV integration, transfer learning, and real-world implementation. By addressing
these challenges, we can advance the development of intelligent and efficient HEMS and microgrid solutions that

have a tangible impact on energy consumption, sustainability, and resilience.

131

132

List of publications

The following is a list of publications and oral presentations that have been completed as part of this thesis project:
International conferences:

* Energy management system by deep reinforcement learning approach in a building microgrid, Inter-
national Conference on Mobility Challenges, Organised by: Armand Peugeot Chair, Energy and Prosperity

Chair, Climate Economics Chair, Online, 2021 - (Accepted abstract and oral presentation)

+ Energy management system by deep reinforcement learning approach in a building microgrid, 14th

International Conference of Electrimacs, Nancy, 2022 - (Accepted paper and oral presentation)

« Thermal comfort management in a building microgrid by deep reinforcement learning, 4" Summer
school, French-Singaporean research network on Renewable Energy (SINERGIE), Ecole IRN SINERGIE,

Aix-en-Provence, 2022 - (Accepted abstract and oral presentation)
National conferences:

« Apprentissage par renforcement appliqué a la gestion d’énergie dans un micro-réseau, Conférence des

jeunes chercheurs en génie électrique (JCGE), Croisic, 2022 - (Accepted paper and oral presentation)

+ Energy management system by deep reinforcement learning approach in a building microgrid, Colloque

de Recherche Inter Ecole Centrales (CRIEC), Lille, 2022 - (Accepted abstract and oral presentation)
Scientific journal:

« Energy management system by deep reinforcement learning approach in a building microgrid, an ex-
tended version of Electrimacs paper, Mathematics and Computers in Simulation journal (MATCOM) - (Submit-

ted on October 2022, Under process)
Poster:

» Supervision of a microgrid by machine learning,Workshop organized by: Institut de 'Energie Soutenable

(IES), Gif Sur Yvette, 2022 - (Poster presentation)

133

134

Résumeé en francais

Introduction

Laugmentation de la part des énergies renouvelables (ENR) dans notre systéme énergétique s’accompagne d’une
décentralisation de la production et du contrdle des réseaux électriques [2]. Un des éléments de cette décentralisa-
tion est le concept de microréseau, défini par la norme IEEE 2030.7 comme "un groupe de charges interconnectées
et de ressources énergétiques distribuées avec des limites électriques clairement définies qui agit comme une seule
entité contrblable par rapport au réseau et qui peut se connecter et se déconnecter du réseau pour lui permettre de

fonctionner en mode connecté au réseau ou en mode floté" [6].

Les microréseaux sont congus pour gérer la production, la consommation et le stockage a I'échelle locale, avec pour

objectif de maximiser I'autoconsommation et de minimiser les colts d’exploitation ainsi que I'empreinte carbone.

La nature intermittente des ENR, l'incertitude sur la demande d’énergie liée a 'activité humaine et les limites des
unités de stockage rendent difficile le maintien de I'équilibre entre la production et la consommation. Par con-
séquent, il est nécessaire de disposer de systemes de gestion d’énergie fiables, mettant en ceuvre des stratégies

de prise de décision efficaces pour la programmation des différentes unités du microréseau.

Des stratégies optimales peuvent étre calculées, a condition de disposer de prévisions parfaites de consommation
et de production. Par exemple, dans [12], les auteurs optimisent le co(t opérationnel d’'un microréseau connecté
par programmation dynamique. Ce colt opérationnel comprend le co(it de vieillissement des batteries et le colt
d’échange d’énergie avec le réseau principal. Des prix d’énergie constants et dynamiques sont simulés et les au-
teurs montrent que la programmation dynamique aboutit a de meilleurs résultats qu’une méthode a base de regles.
Dans [13], 'auteur propose un algorithme génétique basé sur la mémoire pour optimiser le colt d’exploitation d’'un
microréseau avec différentes sources d’ENR et montre qu’il obtient de meilleurs résultats qu'avec une optimisation

par essaim de particules.

Les approches précédentes nécessitent une prévision de la consommation et de la production ENR a venir. En con-

ditions d’exploitation réelles, des prévisions parfaites sont impossibles et des algorithmes temps réel sont néces-

135

saires. Récemment, des stratégies basées sur I'apprentissage par renforcement ont été proposées. Par exem-
ple, dans [22] les auteurs proposent un algorithme d’apprentissage par renforcement pour gérer sans prévision
I'énergie au sein d’'un microréseau isolé composé de panneaux photovoltaiques, d’'un générateur diesel et de bat-
teries. Lobjectif est de réduire le colit d’exploitation. Les auteurs abordent en particulier la prise en compte des
événements rares dans I'apprentissage, mais ils considerent un systeme trés simple avec seulement deux actions

possibles : la charge est connectée soit au réseau, soit a la batterie.

Cette thése a pour objet le développement d’'un systéme de gestion d’energie (EMS, energy management system)
temps réel, basé sur des méthodes d’apprentissage par renforcement (RL) et d’apprentissage par renforcement
profond (DRL). LEMS est dédié au contr6le de la batterie et des charges thermiques (chauffage et ballon d’eau
chaude) d’un batiment. En effet, une publication récente d’Eurostat indique qu’en 2020, le chauffage des locaux et
le chauffage de I'eau représentaient 62,8 % et 15,1 % de la consommation d’énergie finale des ménages de 'UE
[8]. Ainsi, optimiser la consommation du chauffage tout en respectant le confort thermique de I'utilisateur apporterait

une amélioration significative.

Le processus d’apprentissage est basé sur des données passées et ne nécessite aucune prévision. Lors de la
phase d’apprentissage, ces algorithmes extraient des connaissances des séries temporelles passées de produc-
tion PV et de consommation des charges, ce qui leur permet ensuite de gérer le systéme en temps réel. Nous
utilisons une base de données mesurées dans un batiment universitaire de la banlieue sud de Paris et mises a

notre disposition par le Laboratoire de Météorologie Dynamique [93].
Cette étude est initialement décomposée en trois phases.

Dans la premiére phase, nous considérons un microréseau a I'échelle d’un batiment résidentiel avec une unité de
production PV et une connexion au réseau public avec des tarifs heures pleines / heures creuse). A cette étape |l
N’y a pas de charges thermiques et I'objectif est de contrdler la batterie pour minimiser le co(t journalier d’achat de

I'énergie.

Dans la deuxiéme phase, le systéme comporte deux charges thermiques (chauffage et ballon d’eau chaude), mais
pas de batterie. LEMS gére le chauffage et le ballon d’eau chaude avec des actions marche/arrét discrétes avec
pour objectif de minimiser le colt d’achat journalier de I'énergie tout en maintenant une plage de température

confortable.

Dans la derniére phase, le systéme comporte la batterie et les charges thermiques et 'EMS doit contréler ces trois
éléments, toujours avec le méme objectif de minimisation du colt journalier d’achat de I'énergie tout en respectant
les différentes contraintes du systéme (plage de température confortable, état de charge de la batterie, ...). Mal-
heureusement en raison de la complexité du systéme et des défis associés a la détermination des hyperparametres,

cette phase particuliére de notre étude n’a pas donné de résultats satisfaisants.

136

Pour chacune des trois phases, nous appliquons des algorithmes DRL adaptés au systeme considéré (états con-
tinus / actions discretes) et montrons l'efficacité de ces algorithme de renforcement pour apprendre a gérer le

systéeme sans aucune connaissance du modele.

La suite de ce chapitre est organisée comme suit. Tout d’abord, une présentation des principes de I'apprentissage
par renforcement profond et des algorithmes Q-Learning, DQN et DDQN. Ensuite, nous décrivons le modéle de
micro-réseau pour chacune des trois phases, puis nous formalisons le probleme de gestion d’énergie comme un
probleme d’apprentissage. Les résultats et 'implémentation sont présentés et discutés a la suite de la formalisation
du probléme. Enfin, la discussion sur les méthodes de détermination des hyperparametres est abordé juste avant

la concluons et introduisons les perspectives de ce travail.

Principe de I'apprentissage par renforcement profond

La gestion d’énergie en temps réel dans un micro réseau peut étre formalisée comme un processus de décision
markovien. Lapprentissage par renforcement a été developpé pour traiter efficacément de tels problémes et nous

allons en présenter les principes.

Processus de décision markovien

Un processus de décision markovien (MDP) modélise le probléme de prise de décision séquentielle d’'un agent
agissant dans un environnement stochastique [84]. Un MDP est défini par un tuple M = (S, A, T, R,~). S et A sont
les ensembles des états de I'environnement et des actions pouvant étre appliquées a I'environnement par I'agent.
T:5xAxS — [0,1] est la fonction de transition d’état. Elle modélise I'évolution incertaine de I'environnement
par la probabilité d’atteindre I'état s’, sachant que I'action a est exécutée dans l'état s : T'(s,a,s’) = p(s'|s,a).
R : S x A— R estlafonction de récompense. R(s,a) est 'espérance mathématique de la récompense immédiate
associée a l'action a dans I'état s. v € [0,1] est le facteur d’amortissement qui intervient dans la récompense

cumulée amortie >, ~try. Plus v est petit, plus le poids des futures récompenses est petit.

Une politique 7 : S — A définit le comportement de I'agent en associant une action a chaque état de I'environnement.

Le probleme de décision de Markov consiste a trouver la politique optimale 7* qui maximise la récompense cumulée.

Apprentissage par renforcement profond

Lapprentissage par renforcement a été développé pour résoudre le probléme de décision de Markov en I'absence
d’information sur les fonctions T et R. Lagent apprend alors & optimiser sa récompense cumulée en interagissant
avec I'environnement : a chaque pas de temps ¢, il observe I'état de I'environnement s;, choisit une action a,

recoit une récompense immédiate r; et observe le nouvel état s, 1. En traitant les informations regues, il acquiert

137

progressivement de la connaissance sur I'environnement et améliore ses choix.

Lapprentissage par renforcement est basé sur la fonction dite de valeur état-action, notée Q™ (s, a) et définie par
I. Pour une politique donnée, cette fonction mesure le gain a long terme de l'action a exécutée dans I'état s. La
fonction optimale @*(s, a) correspond au meilleur gain possible et respecte I'équation de Bellman Il ou s’ est I'état
obtenu aprés avoir exécuté I'action a dans I'état s. Lapprentissage par renforcement exploite I'équation de Bell-
man pour déterminer @*(s,a). La politique optimale est alors obtenue par le mécanisme glouton Ill. Au début
de l'apprentissage, I'agent explore son environnement par le biais d’actions aléatoires. Au fur et a mesure de
I'apprentissage, il exploite la connaissance acquise et réalise de plus en plus d’actions gloutonnes pour augmenter

sa récompense cumulée [87].

Q" (s,a) =E | Y ' R(st,ar)|s0 = 5,00 = a,a; = 7(s;)](])

t>0

Q*(s,a) =Ry [R(s, a) + 7. II};}XQ*(S/,(J,/”& a] (1

T*(s) = argm(?XQ*(s,a) (1

Les premiers algorithmes d’apprentissage par renforcement, dits de Q-learning, étaient basés sur une représenta-
tion tabulaire de la fonction @ [89]. Facile a mettre en oeuvre, cette approche est limitée a des systémes discrets
de dimension réduite et donc difficlement généralisable. Lapprentissage par renforcement profond a été développé
pour dépasser ces limites : la fonction de valeur @ est approximée par un réseau neuronal profond défini par
Q(s,a;0) =~ Q*(s,a), ou 6 désigne les poids du réseau de neurones. Dans cette modélisation, les neurones de la
couche d’entrée du DQN correspondent aux différentes variables d’état de I'environnement et les neurones de la
couche de sortie correspondent a chaque action possible. Pour un état d’entrée donné, le réseau fournit la valeur
de Q associée a chaque action exécutée dans cet état. Le principe de I'apprentissage par renforcement profond est

illustré dans la Figure 1.

De par sa structure, le réseau DQN permet de modéliser des états continus, mais les actions restent discrétes.
Lapprentissage consiste a déterminer les poids du réseau en minimisant I'erreur quadratique moyenne de I'équation

de Bellman.

Algorithme DQN (deep Q-network)

Le calcul des poids du réseau de neurones a longtemps posé de sérieux problémes de stabilité qui ont été résolus
par I'algorithme DQN (deep Q-network) proposé par Mnih et ses coauteurs en 2015 [90]. Deux mécanismes sont

utilisés pour faire converger le calcul des coefficients du Q-network. Le premier est la répétition d’expériences.

138

Q(s,a) - Q(1,0) Q-Learning:
a0 al alo
Arlatle: 32 | +45 1.1
so 3 +4. wile
Q(st,ar)
o - - : S| 361 +16 || *52 | Digcrete- Discrete
Decision making (Reinforcement learning) 2 I o EallE
s3 13 | 427 17
B | NS NN | S
DQN:
State |reward action Perception (deep learning)
(S0 () (@) NN: hidden
[UESE layer output
Siz1 | Te+ 8 layer layer
Environment
: Q(se, ar)
S :Continue- Discrete
+2.1 €

Figure 1 : Le principe de I'apprentissage par renforcement profond

Cela consiste a stocker les expériences passées (s, a,r,s’) dans une mémoire tampon D et a utiliser un échan-
tillon aléatoire (s,a,r,s’) ~ D a chaque pas de temps afin de calculer la fonction de perte sur des données non
corrélées. La deuxieme amélioration consiste a utiliser une copie du Q-network pour évaluer la fonction cible
y =r+vy.maxy, Q(s’,a’) et a mettre a jour périodiquement ses poids. Cela amortit la répercussion de I'information

en cours d’acquisition sur le choix des actions et stabilise la détermination des poids.

Les deux mécanismes sont intégrés dans la fonction de perte définie par V et IV. Lindice ¢ fait référence a l'itération
courante, tandis que l'indice ¢~ fait référence a la derniere itération ou le réseau Q utilisé pour I'évaluation de la

cible a été mis a jour.

y = R(s,a) + v.argmax Q(s',a’;0;) (V)

Lt(ez) = E(s7a,r,s’)~D |:(y - Q(Sa a; 915))2] (V)

Lalgorithme DQN est décrit en détail dans [90].

Algorithme DDQN (double deep Q-network)

Lalgorithme double deep Q-network (DDQN) est une extension de I'algorithme DQN dont le but est d’améliorer le
processus d'apprentissage [91]. Le probléme de DQN est que nous ne pouvons pas étre sdr si la meilleure action
pour I'état suivant est l'action avec la valeur Q la plus élevée. Le DQN est parfois trés optimiste et il apprécie
beaucoup d'étre dans un état précis méme si cet état est la conséquence d’une erreur statistique. Le DDQN essaie
de résoudre ce probléme en découplant le réseau en deux parties. Un réseau DQN pour sélectionner la meilleure

action a exécuter pour I'état suivant (I'action avec la valeur Q la plus élevée) et un autre réseau pour calculer

139

Algorithm: Deep Q-network with experience replay

Initialize replay memory D
Initialize Q-network @ with random weights 6
Initialize target Q-network Q with 6= = ¢
for each episode do
Initialize state s;
for for each time step t do
With probability € select a random action a;
otherwise select a; = argmax, Q(s¢, a;6)
Execute action in environment and observe reward r; and new state s;11
Store transition (s, at, r¢, s¢11) in the replay memory D
Sample mini batch of transitions (s;,a;,r;,s;11) from D
if episode ends at j + 1 then

Yi =715
else .

y; = r; +ymaxy Q(sjq1,a’,07)
end if

Perform a gradient descent step on (y; — Q(s;, a;; 6))* with respect to the network parameters ¢
Every C steps update 6= «+ 6
end for
end for

la valeur Q-value de cette action a I'état suivant. Donc,I’équation V se transforme en equation VI. En faisant ce

découplage, on attend une amélioration du processus d’apprentissage.

y=r+vQ(s arg max Q(s',a;6:);6,-) (V1)

Algorithme DDQN + PER

La technique de replay d’expérience peut améliorer I'efficacité des algorithmes DQN et DDQN. Cependant, le replay
d’expériences normales a des limitations, car il rejoue des expériences au méme rythme qu’elles se sont produites
sans tenir compte de leur importance. Pour remédier a cela, Schaul et al. en [92] ont développé un cadre pour la
priorisation des expériences basée sur leur importance pour apprendre de maniere plus efficace et efficace. lls ont
utilisé une approche de priorisation des expériences basée sur la magnitude de la différence entre la prédiction et la
valeur de Q. Cependant, il y avait un risque de surajustement, donc ils ont utilisé une pondération d’échantillonnage
importante pour ajuster le processus de mise a jour des poids et une structure de données arborescence non triée
pour éviter le codt de tri O(nlogn) et permettre I'insertion et 'échantillonnage en O(logn). Cela permet une plus

grande variété d’expériences pour éviter le surajustement et améliorer le processus d’apprentissage.

140

Description du microréseau

Le systéme étudié (Figure 2) est un microréseau connecté au réseau public avec une unité de production PV, des
charges non reportables, du stockage batterie et des charges thermiques contrblables. La connexion au réseau

public est unidirectionnelle (pas de renvoi d’énergie vers le réseau public).

Figure 2 : Modéle du microréseau

Les équations d’équilibre du systéme sont représentées comme suit :

P)load(t) + Pheat(t) =+ Phw(t) = Pgrid(t) =+ va(t) + Pbat(t) (V“)
Le colit opérationnel de ce microréseau est considéré comme suit :

T
Daily operating cost =y _ Chyiq % Eguig + Cunsatis fied X Ernsatis ied (vin)
t=1

Phase 1:

Dans la premiere phase, nous ne prenons pas en compte les charges thermiques. Nous avons juste une batterie
et les charges non reportables. La batterie ne peut pas étre chargée par le réseau électrique. Dans cette phase,

'EMS est dédié au contr6le de la batterie dans le but de réduire le colt journalier d’achat de I'énergie sur le réseau.

Les données de production et de consommation sont disponibles sous forme de séries temporelles et représentent
quatre années de réalisations des phénomeénes stochastiques correspondants. Les données de consommation

ont été mesurées dans un batiment de bureaux et correspondent a des charges d'informatique, de climatisation et

141

d’éclairage. La production PV correspond a des mesures MPPT faites sur des panneaux PV mono-cristallins.

On travaille avec la demande nette P,.;, différence entre la puissance de charge P..q €t la production photo-
voltaique Ppy IX. Cette puissance est négative lorsque la production locale est supérieure a la consommation.
Léquation d’équilibre du systeme est donnée par VII, ou P,,;q est la puissance fournie par le réseau, toujours

positive ou nulle, et Py, est la puissance échangée avec la batterie, positif ou négatif.

Pnet(t) = P)load(t) - PPV (t) (IX)

Le réseau public est supposé étre toujours disponible, sans limite sur la puissance fournie. Le prix de I'électricité
suit les tarifs résidentiels heures pleines et heures creuses [94]. Un colt élevé est appliqué en cas de demande

non satisfaite. Les colts opérationnels sont donnés par X et XI.

. Coff peak = 0.1361 euros/kWh t € [22h00 — 06R00]
Cgr'id purchase — (X)
Chpeak hour = 0.1821 euros/kWh t € [06h00 — 22R00]

Cunsatisfied = 10 euros/kWh (X1)

La batterie peut étre utilisée pour fournir ou stocker de I'énergie et Py.:(t) est la puissance de charge ou de décharge
de la batterie pendant I'intervalle de temps [t,t + At]. Léquation d’évolution de la batterie est donnée par XlI, ou
Eva:(t) désigne I'énergie stockée a linstant ¢, et n €]0,1] est le rendement de charge/décharge. Par souci de
simplicité, les rendements de charge et de décharge sont supposés égaux. Les contraintes physiques sur I'état de

charge de la batterie et la puissance de charge/décharge sont données par XIll et XIV.

Epai(t +1) = Epgy(t) — gy~ 5197 (Prar (1)) 5 P (t) x At (X1
Ebat min < Ebat (t) < Ebat max (XIII)
_Pbat maz < Pbat(t) S Pbat max (XIV)

L'EMS est chargé de choisir en temps réel la puissance de la batterie afin de minimiser le colt opérationnel journalier

Claay défini par VIII.
Phase 2:

Dans la deuxiéme phase, c’est la batterie qui n’est pas prise en compte dans le systéme. LEMS gére le systéme

de chauffage et le ballon d’eau chaude pour minimiser les colts d’achat d’énergie tout en maintenant une plage de

142

température confortable définie par les équations XV et XVI.

Tin min S Tzn(t) § Tin mazx (XV)

Thw min S Thw(t) S Thw max (XVI)

LEMS recoit des données de température et contrble le chauffage et le ballon d’eau chaude via des actions

marche/arrét discrétes. Lobjectif de 'EMS est toujours de diminuer le colt opérationnel journalier VIII.

Lévolution de la température intérieure est modélisée par les équation suivantes, ou 7;, est la température in-
térieure, T,,; est la température éxtérieure, C représente la capacité thermique de 'aire et U est le coefficient de

perte de chaleure par les murs en (W/m?°C).

At
Tin,t—i—l = ﬂn,t(t) + F(Qheat,t - Qloss) (XV”)
Qheat = Nheat X Pheat (XV”l)
Qloss =U x (Tin,t - Tout,t) (XlX)

Lévolution de la température du ballon d’eau chaude est modélisée par les équation suivantes, ou T}, est la
température de I'eau chaude, T., est la température de I'eau froide, T,,,, est la température ambiante dans la
piéce ou se trouve le ballon de I'eau chaude, C}, est la capacité thermique du ballon d’eau chaude (J/kgK) , C,, est
la capacité thermique spécifique de I'eau chaude (kJ/kgK), DHW est le débit d’eau chaude soutirée a l'instant
t, Upoiter €st le coefficient de transfert de chaleur par les parois du ballon d’eau chaude (W/m2K) et A est la

conductivité thermique des parois du ballon (W/mK).

T3 = Thl8) + 5o (@t — Quemanalt) ~ Qtoss (1) (%)
Qhw = Mhoiter X Pru(?) (XXI)

Quemand(t) = Cuter X (1) % (Tra(8) ~ Teu(1) oo
Quons(t) = e X Arant % (T (8) ~ T (£) (xxti

Phase 3:

Dans la derniére phase, toutes les unités du systéme sont prises en compte. LEMS doit contréler le chauffage, le

ballon d’eau chaude et la batterie de maniére simultanée. LEMS prend ses décisions a partir des informations de

143

température extérieure, température intérieure, température d’eau chaude et d’eau froide, production PV, prix de
I'électricité et état de charge de la batterie. Lobjectif de 'TEMS est de réduire le colt opérationnel du microréseau
en respectant des plages de température confortables, sans aucun accés aux modeles dynamiques thermiques du

batiment.

MDP associé au microréseau

Pour rentrer dans le cadre de I'apprentissage par renforcement, le probléeme de I'EMS est formulé comme un MDP.
Les états, actions et récompenses immédiates sont décrits ci-aprés pour chacune des trois phases. Lobijectif de

I'agent sera de maximiser la récompense cumulée amortie.
Phase 1:

Etats : Létat du systéme correspond a l'information regue par 'agent. Létat au pas de temps ¢ est noté st et défini
par le quadruplet XXIV. Py, désigne la demande nette moyenne prévue entre ¢ et ¢ + 1. Ej,,, h' et C} ., sont
I'état de charge de la batterie, I'heure et le prix d’achat de I'électricité au début du pas de temps. Les contraintes

physiques Xlll et XIV ne sont pas connues par I'agent.

st = (P, SOC!, It (XXIV)

Actions : Les actions correspondent a la puissance moyenne fournie par la batterie entre ¢ et t + 1. Ces puissances
sont des fractions a de P,.;. Le reste de la demande d’électricité est fourni par le réseau électrique. Lalgorithme
DQN ne peut gérer que des ensembles discrets d’actions. Par conséquent, la puissance de la batterie est dis-

crétisée et 'ensemble des actions a l'instant ¢, noté A? est défini par XXV, ou N est le nombre d’actions.

Pyat(t) = a' x P!, (0<a'<1) (XXV)

Récompenses : La récompense est une information sur 'intérét immédiat d’exécuter I'action a dans I'état s. Dans le
cas présent, nous utilisons une récompense négative (pénalité) directement liée aux colts opérationnels et définie
par XXVI. Une demande non satisfaite se produit lorsque I'agent choisit une action qui ne peut pas étre entierement

exécutée en raison des contraintes du systeme (énergie disponible dans la batterie insuffisante).

t t t
r" = =Cgria X Pyriq — Cunsatisfied X Pynsatisficd (XXVI)

Phase 2:

144

Etats : Dans cette phase, I'état de systeme est définie par XXVII.

st = (T}

wm?

T} s Thurs DHW B, CLL0)) (XXVII)

w) —out?

Actions : Les actions correspondent aux commandes de type marche/arret pour le chauffage et le ballon d’eau

chaude entre t et t + 1 XXVIII.

A1 =H0,1} X Preat,, o
At = (4 © A)with{ 10,13 X Phear (XXVIII)

A2 = {0,].} X Phwmaz

Récompenses : Nous utilisons encore une récompense négative (pénalité) directement liée au colit d’achat de
I'énergie sur le réseau. D’autres termes de pénalités s’appliquent si les températures sortent de l'intervalle de

confort défini par 'usager. La récompense totale est définie par XXIX.

rt = B(rt + 1) 41l (XXIX)

ifT}fw S Thw min

rl{ = Tl)iw - Thw mazx ZfT}iw > Thw max (XXX)
0 else
Tz‘n min Tfn 'Lsztn S Tm min
T‘; - Titn — Tin max Zfon > Tin maz (XXXI)
0 else
1y = —Cyria X Ploig (XXX)
Phase 3:
Etats : Dans la derniére phase, les états sont la combinaison des états des phases 1 et 2 XXXII.
st = (thnv T}Iiwv Tguﬂ DHWt7 P;m Pltoad7 SOCE@H ht7 C;rid) (XXXIIT)

Actions : De la méme maniére, les actions sont la combinaison des actions des phases 1 et 2, & ceci prés que les
commandes de la batterie ne sont plus définies par rapport a la puissance nette, mais par rapport aux limites en

puissance de la batterie.

145

Al = {07 1} X Pheatmam
At = (A ® Ay ® A3) with Ay ={0,1} X Py, (XXXIV)

Az = {2} n<i<n X Pratpas

Récompenses : Les récompenses sont les mémes que dans la phase 2.

Expériences numériques et résultats

Le but de cette section est d’évaluer les performances des algorithmes DRL pour faire la gestion d’'un HEMS. Nous
commengons tout d’abord par implémenter I'algorithm Q-learning comme un point de départ appliqué a la premiére
phase de travail et ensuite nous appliquons I'algorithms DQN et ses extensions (DDQN et DDQN-+PER) sur les trois

phases d’étude.

Les implémentations numériques ont été réalisées en Python. Pour cela nous avons créé un environnement per-

sonnalisé spécifique d’'OpenAl Gym dédié a notre probleme d’apprentissage par renforcement.

Phase 1

Apprentissage par Q-learning

La premiére étape pour implémenter I'algorithme Q-learning est de créer la table Q. A cet égard, nous considérons
que notre espace d’état est un domaine discret avec (n;, x ns,c X npnret) €tats, et nous avons un espace d’action

binaire a exécuter dans ce domaine.

Dans cette partie nous utilison I'algorithm Q-learning pour entrainer notre agent Q-table suivant un mechanisme

gloutonne.

Dans la premiéere partie nous initialisons cette table Q sans connaissance préalable en mettant une valeur nulle
pour toutes les actions. Apres avoir étudier I'éfficacité de cet approche en phase de I'entraienement de de test nous
proposons d'initialiser la table Q avec des information a priori et nous étudions I'impact de cette initialisation sur le

processus d’apprentissage et I'évaluation de I'agent dans la phase de test.
Entrainement:

Pendant I'entrainement, I'agent vise a apprendre la politique optimale et a stocker cette expertise dans la table Q.
Pour atteindre cet objectif, nous initialisons la table Q avec des valeurs nulles partout. En suivant I'algorithme Q-
learning, 'agent effectue (npisodes X 1) itérations. Chaque épisode représente un jour dans notre base de données.

Npisodes SiQNifie n choix aléatoires avec remplacement parmi les 62 jours d’octobre 2016 et d’octobre 2017.

146

Apres chaque itération, I'agent recoit la valeur de récompense et calcule la valeur Q en utilisant 'équation XXXV
pour mettre a jour la table Q. En respectant la stratégie e-greedy, nous commengons par une exploration plus

poussée au début, puis systématiquement, nous exploitons les informations cumulatives dans la table Q.

Q(s,a) « Q(s,a) +a [R(s, @) + 7. max Q(s',a') — Q(s,) (XXXV)

Nous considérons différents combinaisons des hyperparameters « et le «y et lancerons le processu d’apprentissage
pour chaque combinaisons. Nous observons que la meilleure combinaison dont nous avons testé pour entrainer
l'agent est de o = 0.9 et le v = 0.5 avec un colt moins important par rapport aux autres combinaisons. Par la suite

nous allons tester cet agent entrainée dans la phase de test.
Test:

Pendant la phase de test, la Q-Table entrainée dans la phase d’apprentissage géere le systeme dans la base de
données de test. Pour assurer la compatibilité avec la Q-Table obtenue, la base de données de test doit également

étre discrétisée avec le méme principe utilisé pour la base de données d’apprentissage.

Lagent ne fait rien d’autre qu’'un comparateur. Il recoit I'état actuel défini par I'heure, I'état actuel de la charge de
la batterie et la demande nette d’énergie a venir. Il vérifie la Q-Table et choisit I'action avec la valeur la plus élevée

pour I'exécution.

Pendant la phase d’apprentissage, 'algorithme peut ne pas avoir exploré tous les états possibles, et la base de
données de test peut différer de la base de données d’apprentissage. Par conséquent, nous devons ajuster la
Q-Table pour tenir compte de ces nouvelles informations et de ces nouveaux états. Dans la Q-Table adaptée, il peut
y avoir des états que I'agent ne connait pas. Dans ces cas, I'agent doit prendre une décision aléatoire et exécuter

une action aléatoire, ce qui peut entrainer des colts d’exploitation accrus ou une défaillance du systeme.

Une fois que nous avons obtenu la Q-Table entrainée et adaptée aux données de test, nous appliquons ces
Q-Tables dans la base de données de test (Octobre2018) pour démontrer I'efficacité de chaque configuration
d’hyperparametres. Le meilleur résultat est obtenu avec la configuration Config.2 avec a = 0.9 et v = 0.5. Cepen-
dant, le colt opérationnel cumulatif pour cette configuration est d’environ 21% plus élevé que le colt obtenu avec la

méthode basée sur des régles.
Amélioration:

Pour améliorer la performance de processus d’apprentissage on peut initialiser la Q-table avec une connaissance a
priori au début de la phase d’entrainement. Pendant la phase d’apprentissage, la Q-table est mise a jour a chaque
itération, et cette connaissance préalable est ajustée. Par conséquent, si I'agent ne rencontre pas tous les états et

ne les met pas a jour, au moins il posséde une connaissance a priori sur chacun d’eux. Par conséquent, on peut

147

considérer trois méthodes d'initialisation de la Q-Table : Sans connaissance a priori, un connaissance proche des
limites de I'état de charge de la batterie et une connaissance pondérée sur la totalité des couples états-actions avec

une connaissance important proche des limites et moin important sur les autres parties.

Nous entrainons I'agant avec trois méthodes d’initialisation différentes. Nous avons choisi la méme base de données
d’entrainement (octobre 2016 et octobre 2017), les mémes hyperparamétres (« = 0,9, v = 0, 5) et le méme nombre

d’épisodes (5000 épisodes).

En ce qui concerne la phase d’entrainement et par rapport aux autres modes d’initialisation, le troisieme montre les
meilleurs résultats en termes de colt moyen. Un autre aspect intéressant de ce mode d'initialisation est qu’en raison
de sa connaissance préalable, il présente une courbe d’apprentissage plus rapide que les autres. Par conséquent,
si nous initialisons la Q-Table dans ce mode, nous avons besoin d’un nombre d’épisodes inférieur pour apprendre

la stratégie de contrdle.

Dans la phase de test, nous avons appliqué trois Q-Tables obtenues par différentes méthodes d’initialisation a la
méme base de données de test. Une fois nous avons testé le Q-table sur la méme base de donnée que la base
de donnée d’entrainement(octobre 2016 et 2017) et une fois sur les données octobre 2018). Nous observons que
le colt moyene journalier sur la base de test(octobre 2016 et 2017) a partir de la méthode 3 est de 152.6 euros,
qui est meilleur que le colt obtenu par la méthode d'initialisation numéro 1 et 2 avec un colt de 156.84 et 162.01
euros respectivement. Sur les données d’octobre 2018 nous observons un coit de 134.09, 138.92 et 139.05 pour les

méthods d’initialisation 1, 2 et 3.

On observe que le co(t opérationnel final du mode 3 est le plus petit, et I'application de la Q-Table entrainée par
le mode 2 donne de meilleurs résultats que le mode 1. Enfin, cette méthode proposée est une maniére simple du

processus d’apprentissage par transfert.

Comme indiqué par les résultats d’entrainement et de test, donner une connaissance a priori au début de la phase

d’apprentissage pourrait améliorer les résultats.
Discussion:

Il y a de nombreuses limitations a I'utilisation de la méthode Q-learning en tant que systeme de gestion d’énergie

domestique dans un micro-réseau. Nous pouvons résumer ces limitations comme suit :

« Lalgorithme Q-learning est limité a 'environnement discret : comme mentionné ci-dessus, le Q-learning est
adapté pour résoudre I'environnement discret. Lenvironnement HEMS est un espace continu. Par con-
séquent, pour utiliser I'algorithme Q-learning, nous devons discrétiser et simplifier I'environnement, ce qui
ne représente pas un systeme réaliste. Un autre probleme est I'efficacité de la batterie. En raison de

I'environnement discret, nous devons considérer une batterie parfaite, qui n’existe pas.

148

» Besoin d’une matrice multidimensionnelle pour stocker la table Q dans les problemes complexes : le nombre

d’états et d’actions possibles est limité en raison des capacités de calcul et de mémoire.

+ Lalgorithme Q-learning n’est pas scalable : I'algorithme doit calculer Q(s,a) pour chaque paire état-action

pendant la phase d’apprentissage pour prendre une bonne décision pendant la phase de test.

Au début de cette thése, en raison de la simplicité de mise en ceuvre de I'algorithme Q-learning, nous I'avons utilisé
pour gérer la premiére phase de contréle de I'unité de batterie. Cependant, avec toutes les limites liées a cet
algorithme, nous pouvons conclure que I'algorithme Q-learning n’est pas implémentable dans le probléme HEMS
réel. Par conséquent, dans la partie restante de ce chapitre, nous décrirons et implémenterons d’autres algorithmes

DRL basés sur la valeur comme DQN pour gérer le systeme.

Apprentissage par DQN et ses extensions

Pour cette partie nous avons utilisé la méme base de données d’entrainement avec les mémes séries temporelles
P,et- Ces valeurs varient entre Pt min = —11,3kW et Ppet mae = 14,5kW. La batterie a les caractéristiques
suivantes: une capacité d’énergie maximale de Epuimar = 21kWh, une puissance maximale de Pyutmae = 4kW
et une efficacité de charge/décharge n = 90%. Le nombre d’actions est fixé a N = 11, et l'intervalle de temps
est At = 30min. Les prix sont ceux donnés dans la section précédente. La base de données d’entrainement se
compose des 62 jours d'octobre 2016 et d’octobre 2017. Cette période a été choisie car elle contient une grande
variété de conditions météorologiques et donc une grande variété de séries temporelles P,.;. Les tests ont été
effectués avec des données d’octobre 2018 et d’avril 2018. Un épisode correspond a un jour et les poids du réseau

de neurones sont mis a jour a la fin de chaque épisode.

hyperparamétres: Le paramétrage des hyperparametres est un défi pour tous les algorithmes d’apprentissage
par renforcement et affecte considérablement les performances de I'entrainement. Nous avons divisé les hyper-
parameétres en deux catégories : les hyperparamétres du réseau de neurones et les hyperparameétres d’entrainement

liés a 'algorithme DQN.

Nous avons défini les parametres d’architecture du réseau de neurones comme suit : les couches d’entrée et de
sortie comprennent respectivement 4 et 11 neurones, correspondant au nombre de composants d’état et d’actions.
Une procédure d’essai et d’erreur a déterminé le nombre de couches cachées et d’autres hyperparameétres cruciaux.
Concernant les hyperparamétres du réseau de neurones, nous avons choisi une fonction d’activation ReLu, une
fonction de perte MSE et un optimiseur Adam pour ajuster les poids des neurones et entrainer le réseau de

neurones.

En ce qui concerne les paramétres d’entrainement, nous fixons le taux d’apprentissage « a 0,00025. Nous consid-

érons une taille de batch de 32 pour échantillonner les élements d’'un tampon de taille de 2000 pour sauvegarder

149

NN parameters:

Hidden layers 3

Number of neurons per hidden layer 100
Activation function ReLu
Loss function MSE
Optimizer Adam
Training parameters:

Learning rate « 0.00025
Discount factor ~ 0.5,0.9,0.95, 0.98
Batch size 32
Replay buffer size 2000
Number of episodes 5000

e values : €as — €min 1 — 0.001

Tableau.4: Neural network and training parameters

les observations. En fonction de la relation de - sur I'horizon temporel, nous avons entrainé I'algorithme DQN
avec différentes valeurs de . Aprés avoir entrainé I'agent avec différentes valeurs de ~, nous avons observé que
les meilleurs résultats pendant la phase d’entrainement ont été obtenus en utilisant v = 0,95. Enfin, nous en-
trainons I'agent sur 5000 épisodes avec un taux d’exploration de 1 qui diminue progressivement jusqu’a 0, 001. Ces

parameétres sont répertoriés dans le tableau.4.
Entrainement:

Au début de 'apprentissage, les poids du réseau de neurones sont initialisés avec des valeurs aléatoires. Ensuite,
I'algorithme DQN s’exécute pour N, = 5000 épisodes. Chaque épisode correspond a un jour choisi au hasard
dans la base de données d’entrainement et comporte 144 pas de temps. A chaque pas de temps, I'agent choisit
et exécute une action, observe le nouvel état et recoit une récompense. Il calcule la valeur Q cible et effectue une
descente de gradient par rapport aux poids du réseau de neurones. Lagent suit une stratégie e-gloutonne, avec

beaucoup d’exploration au début et d’exploitation a la fin.

La figure.3 représente la moyenne glissante sur 100 épisodes de la pénalité quotidienne regue par I'agent. Cette

courbe montre I'amélioration du comportement de I'agent au fur et a mesure de I'entrainement.
Test:

Dans la phase d’entrainement, nous avons créé le modéle HEMS représenté par un réseau neuronal basé sur
l'algorithme DQN. Dans cette section, ce Q-network est utilisé en temps réel pour calculer la valeur Q's, a) et sélec-
tionner la meilleure action a* selon le mécanisme glouton défini par I'’équation Ill. Par conséquent, nous pouvons
donner un nouvel ensemble de données en temps réel en entrée a ce réseau neuronal, puis le modéle choisit
I'action appropriée pour ces données en tant que sortie. Le modéle peut donc prendre une bonne décision en
utilisant le réseau neuronal directement avec les nouvelles informations, ce qui signifie que les états sont exclus de

la phase d’entrainement.

150

50 !

-100 |

-150 |

Sliding average daily penalty (£€)

200 , , , , =
0 1000 2000 3000 4000 5000

Episodes

Figure.3: Learning curve

En comparant les co(t opérationnel de I'agent DQN et de 'HEMS basé sur des régles au cours des périodes de
test du 9 au 14 avril 2018 et du 8 au 13 octobre 2018 nous observons une amélioration de 2.2% pour la période
d’octobre et de 1.22% pour la période d’avril. Les résultats sont trés proches et montrent que I'algorithme DQN a
appris comment fonctionne le systeme et les limites opérationnelles de la batterie (il est important de noter que ces

limites sont données a la stratégie basée sur des regles mais pas a I'agent DQN).
Discussion:

En appliquant I'algorithme DQN (Deep Q-Network), nous avons pu dépasser les limites de I'algorithme Q-Learning.
Nous avons travaillé dans un environnement continu sans discrétisation,appliqué une efficacité de batterie et pu
augmenter le nombre d’actions possibles. En utilisant d’'un réseau de neurones, nous avons créé un prédicteur
capable de gérer le systéme pour tous les nouveaux états. Nous avons utilisé cet algorithme pour former un
agent capable d’optimiser le colt opérationnel d’'un micro-réseau de batiments connectés, sans prévisionniste mais
sur la base de données passées. Les résultats ont montré que I'agent peut apprendre une bonne stratégie en
interagissant avec son environnement. Lintérét de I'agent entrainé en DRL est qu’il peut étre formé et adapté a un

environnement plus complexe, alors qu'il serait difficile de concevoir une stratégie efficace basée sur des regles.

Comparaison de DQN, DDQN et DDQN+PER:

Dans cette section, nous comparons l'efficacité des algorithmes DQN, DDQN et DDQN+PER pour concevoir un
HEMS. Nous avons utilisé une base de données mesurées dans un batiment tertiaire (le centre de innovation
Drahi X situé a I’'Ecole Polytechnique de Palaiseau, France) pour entrainer le HEMS a gérer I'unité de batterie.
Le processus de prise de décision de Markov associé au systéme est le méme que celui expliqué dans la partie

précedante. Par contre, nous avons ajouté la température extérieure a I'espace d’état. Nous avons utilisé la

151

NN parameters:

Hidden layers 3
Number of neurons per hidden layer 100
Activation function ReLu
Loss function MSE
Optimizer Adam
Training parameters:

Learning rate « 0.00025
Discount factor ~ 0.95
Batch size 32
Replay buffer size 2000
Number of episodes 5000

e values : €mazr — €min 1 — 0.001
Specific parameter of DDQN+PER:

a, to determine prioritization rate 0.6

e, to add on TD-error 0.01

Tableau.6: Neural network and training parameters for DQN, DDQN, and DDQN+PER

méme série temporelle P,.; pour tous les algorithmes et avons entrainé chaque modele avec la base de données
d’entrainement composée des données de 180 jours d’octobre, novembre et décembre de 2017 et 2018. Les tests
ont été effectués avec des données de 2016 a 2020. Un épisode correspond a une journée et les poids du réseau
neuronal sont mis a jour a la fin de chaque épisode. Nous avons utilisé une batterie avec une capacité d’énergie de
21kW h, une puissance maximale de 4kW et une efficacité de charge/décharge de 90%. Les prix ont été fixés selon

les données précédentes. Les hyperparameétres pour tous les algorithmes sont représentés dans le tableau.6.
Entrainement:

Les courbes d’apprentissages représentées en Figure.4 montrent 'amélioration du comportement de I'agent au fur

et a mesure de I'entrainement.

Selon ces courbes, la valeur minimale de la pénalité est atteinte a 14, 5 euros apres 3600 épisodes pour I'algorithme
DQN. Cette valeur est de 14,5 euros apres 3600 épisodes pour DDQN et de 5,1 euros apres 4700 épisodes pour

DDQN+PER, ce qui est plus intéressant que les autres algorithmes.

La courbe DDQN montre que l'utilisation de deux réseaux Q apprenants indépendants pour découpler le pro-
cessus de sélection d’actions de la génération de la valeur Q cible n’améliore pas significativement le processus
d’apprentissage et nous pouvons voir qu'apres quelques épisodes, la pénalité moyenne regue par l'algorithme

DDQN a augmenté.

La courbe DDQN+PER montre que lutilisation d’un algorithme DDQN+PER accélére I'apprentissage. A la fin
du processus d’apprentissage, nous avons un meilleur modéle comparant la pénalité entre les trois algorithmes.
Mais pour garantir la performance du DDQN+PER, le modele obtenu doit également étre vérifié lors de la phase

de test. Notez que nous sauvegardons les poids des réseaux neuronaux tous les 100 épisodes pour les utiliser

152

|
(9]
o

—100 1

=150+

—200 1

—250+

—300 1

Sliding average penalty(€)

_350{ \/ —— DDQN+PER
DDQN
~400- T O

0 1000 2000 3000 4000 5000
Episodes

Figure.4: Learning curve for DQN, DDQN and DDQN+PER algorithm during autumn period

éventuellement lors de la phase de test.
Test:

Les résultats des tests consistent a comparer le colt opérationnel total d’'un systeme de gestion de I'énergie do-
mestique (HEMS) en utilisant les algorithmes DQN, DDQN et DDQN+PER avec une méthode basée sur des régles.
Les modeles sauvegardés lors de la phase d’apprentissage ont été appliqués a la base de données de test pour
comparer les colts opérationnels mensuels. Les colt opérationnelles sont présentées dans les les tableaux suiv-

ants.

Algorithm Testing period (October)
— 2016 2017 2018 2019 2020
DQN (after 5000 episodes) 292.77 | 200.95 | 184.93 | 215.62 | 793.54
DDQN (after 5000 episodes) 329.19 | 248.85 | 233.03 | 238.80 | 550.19
DDQN+PER (after 5000 episodes) | 291.83 | 202.57 | 188.49 | 198.36 | 535.43

DQN (after 3600 episodes) 309.46 | 212.61 | 194.57 | 201.27 | 546.43
DDQN (after 3600 episodes) 330.16 | 250.81 | 235.42 | 238.96 | 549.07
DDQN+PER (after 4700 episodes) | 321.13 | 202.27 | 186.63 | 199.87 | 538.50

| Rule-based [291.40 | 203.34 | 186.66 | 200.26 | 536.70 |

Tableau.7: Operational cost comparison of different algorithms during October period

Les résultats montrent que, sauf pour les mois d’octobre 2017 et 2018, pour les autres mois de la période de test, le

modeéle obtenu avec I'algorithme DDQN+PER a une meilleure performance. Dans la plupart des résultats de test,

153

Algorithm Testing period (November)
— 2016 2017 2018 2019 2020
DQN (after 5000 episodes) 534.76 | 494.38 | 543.82 | 716.34 | 748.89
DDQN (after 5000 episodes) 517.57 | 459.25 | 483.27 | 525.26 | 478.21
DDQN+PER (after 5000 episodes) | 502.58 | 446.80 | 465.82 | 513.71 | 450.49

DQN (after 3600 episodes) 521.05 | 449.10 | 473.97 | 519.55 | 466.48
DDQN (after 3600 episodes) 518.22 | 460.96 | 484.32 | 524.59 | 477.37
DDQN+PER (after 4700 episodes) | 522.30 | 447.78 | 482.76 | 526.46 | 482.18

| Rule-based [501.98 | 444.84 | 468.38 | 517.14 | 457.41 |

Tableau.8: Operational cost comparison of different algorithms during November period

Algorithm Testing period (December)
— 2016 2017 2018 2019 2020
DQN (after 5000 episodes) 707.18 | 709.93 | 739.40 | 911.33 | 1078.94
DDQN (after 5000 episodes) 612.48 | 678.27 | 571.46 | 609.68 | 675.21
DDQN+PER (after 5000 episodes) | 602.59 | 675.50 | 569.15 | 603.98 | 669.89

DQN (after 3600 episodes) 611.96 | 680.10 | 570.42 | 605.66 | 671.59
DDQN (after 3600 episodes) 613.16 | 679.45 | 571.78 | 609.29 | 675.06
DDQN+PER (after 4700 episodes) | 604.60 | 678.22 | 570.26 | 609.04 | 674.15

| Rule-based [600.90 | 673.28 | 573.14 | 607.76 | 669.51 |

Tableau.9: Operational cost comparison of different algorithms during December period

le colt opérationnel obtenu par 'algorithme DDQN+PER est meilleur que celui obtenu par la méthode basée sur

des regles, ce qui démontre l'efficacité de cet algorithme pour la gestion de la batterie dans le HEMS.

Phase 2:

Les expériences numériques présentées dans cette section ont été réalisées avec des séries temporelles Py, Tout
mesurées et provenant d’'un batiment tertiaire (le centre de innovation Drahi X situé a I’'Ecole Polytechnique de
Palaiseau, France). Les séries temporelles de consommation d’eau chaude ont été obtenues a partir de la base de
données StROBe et les tarifs sont ceux d’EDF, indiqués dans la section 3. Le nombre d’actions est fixé a N = 4 et

le pas de temps est At = 10 min.

Base de données : La base de données d’entrainement comprend les 90 jours de 'automne 2017. Cette saison a
été choisie car elle contient une grande variété de conditions météorologiques et donc une grande variété de séries
temporelles P,, et T,,:. Les tests ont été effectués avec des données de I'automne 2018. Un épisode correspond a

une journée et les poids du réseau de neurones sont mis a jour a la fin de chaque épisode.

Hyperparamétres : Les couches d’entrée et de sortie comportent respectivement 7 et 4 neurones (nombre de
composantes de I'état et nombre d’actions). Les paramétres des couches cachées et les autres hyperparamétres

ont été déterminés par une procédure d’essais-erreurs. Tous ces parameétres sont regroupés dans le Tableau.10.

Entrainement :

154

Parameétres du réseau de neurones

Nombre de couches cachées 2
Nombre de neurones par couche cachée 24
Fonction d’activation Relu
Fonction de perte MSE
Optimiseur Adam
Parameétres d’apprentissage

Taux d’apprentissage « 0.001
Facteur d’'amortissement ~ 0.5
Taille du lot 32
Taille de la mémoire tampon 2000
Nombre d’épisodes 1000
Valeur de € : €mazr — €min 1 — 0.001

Table 10: Paramétres du réseau de neurones et de I'apprentissage

Au début de I'entrainement, les poids du réseau de neurones sont initialisés avec des valeurs aléatoires. Ensuite,
l'algorithme DQN est exécuté avec N, = 1000 épisodes. Chaque épisode correspond a une journée choisie
aléatoirement dans la base de données d’entrainement et comporte 144 pas de temps. A chaque pas de temps,
I'agent choisit et exécute une action, observe le nouvel état et recoit une récompense. |l calcule la valeur cible de
Q et effectue une descente de gradient par rapport aux poids du réseau. Lagent suit une stratégie e-greedy, avec

beaucoup d’exploration au début et peu d’exploitation a la fin.

La Figure.5 montre la moyenne glissante sur 100 épisodes de la pénalité journaliére regue par I'agent. Cette courbe

montre 'amélioration du comportement de I'agent au fur et a mesure de I'entrainement.

— -0.03
¥,
oy
©
<
2 -0.05
=
©
o
(]
%" -0.07
[}
>
(1]
&
5 -0.09
%)

-0.11

0 200 400 600 800 1000
Episodes

Figure 5 : Courbe d’apprentissage

Test :

Aprés son apprentissage, le réseau Q-network est utilisé en temps réel pour calculer Q*(s,a) et sélectionner la
meilleure action «* par le mécanisme glouton. La Figure.6 montre les résultats obtenus pour un jour de novembre

2018 choisi aléatoirement.

155

Energy Management Report

15 | —— Indoor Temperature by DDN/ 3

~ Indoor Temperature by RB ‘
| === upper_limit
-—-- lower_lil

T L T

_MEL

HVAC
o

Temperature (°C)
B

s / —— Hot water debit
Boiler power by DQN(kW)

- Iy Boiler power by RB (kW)

A e o dd baAal

0 20 a0 60

Hot water debit (Litre/10 minutes)

675

? 65.0

© 525

3

& s00 —
Q 7.5 { === Upper_limit ‘

5 ss0 (=~~~ lower limit |

[s2.5 1 . Hot water temperature by DQN

e

o 20 40 60 100 120 140
Time slots per 10 mlnutes

Figure 6 : Bilan de la gestion d’énergie

Cette figure compare les comportements de 'EMS entrainé par l'algorithme DQN et d'un EMS a base de régles
congues pour suivre la température médiane de l'intervalle de confort. Les courbes du haut représentent I'évolution
de la température intérieure au cours de la journée. Nous observons que I'agent DQN essaie d’'allumer le chauffage
et d’acheter plus d’énergie pendant les heures creuses afin d’acheter moins d’énergie pendant les heures de pointe.
En suivant cette stratégie, il économise de I'argent. Les courbes du milieu montrent le débit d’eau chaude prélevé et
la commende du ballon d’eau chaude par chaque EMS. Les courbes du bas montrent I'évolution de la température
du ballon d’eau chaude qui résulte des actions de commande. Nous observons le méme comportement que pour

la gestion du chauffage.

Les résultats montrent que I'agent DQN a appris a gérer le chauffage et le ballon d’eau chaude en restant dans une

plage de température confortable.

Cet exemple simple, pour lequel il est facile de définir des régles de gestion quasi-optimales, montre que I'agent a

pu apprendre a gérer le systéme par renforcement, sans aucune connaissance de départ.

Phase 3:

Malheureusement, nous n'avons pas observé d’'amélioration de la courbe d’apprentissage pendant la phase d’entrainement,

ce qui montre que I'agent n’a pas appris une bonne stratégie pour gérer le systéme.

Pour apprendre une bonne stratégie pour gérer simultanément toutes les unités du systéme, 'agent HEMS doit

156

apprendre les différentes dynamiques liées a I'état de charge de la batterie et a I'évolution de la température
liée a la température intérieure et au réservoir d’eau chaude. Apprendre ces différentes dynamiques peut étre
une tache difficile et contradictoire. Chaque décision liée a une unité contrélable a un impact sur les autres. De
plus, 'augmentation du nombre d’espaces d’état et d’action augmente la complexité de la structure du réseau
neuronal. Par conséquent, le nombre d’épisodes d’entrainement doit étre augmenté et un ensemble approprié
d’hyperparametres est crucial pour apprendre une bonne stratégie. Dans ce travail, nous avons simplement utilisé
un mécanisme d’'essai et d’erreur pour trouver le meilleur ensemble d’hyperparameétres pour effectuer le processus

d’apprentissage, ce qui ne nous aide pas a trouver de bons hyperparametres dans un systéme aussi complexe.

Optimisation des hyperparameétres

La détermination des hyperparametres, est un aspect crucial dans I'apprentissage par renforcement profond (DRL).
Les DRL algorithmes requiérent une configuration appropriée des hyperparametres pour assurer un bon processus

d’apprentissage et obtenir une solution performante et fiable.
Nous pouvons diviser les hyperparamétres en deux catégories :

* Les paramétres d’entrainement spécifiques a chaque algorithme d’apprentissage automatique : taux d’apprentissage,

taux d’exploration, facteur d’escompte, taille de la mémoire de rejeu, taille du lot, etc.

» Les parametres du réseau neuronal : nombre de couches, nombre de neurones par couche, fonction d’activation,

fonction de perte, optimiseur, etc.

Le choix de ces hyperparamétres influence considérablement la vitesse et le résultat du processus d’apprentissage.
Pour évaluer l'efficacité d’'un ensemble donné d’hyperparametres, plusieurs critéres sont utilisés, notamment la
valeur de la récompense obtenue. Plus la récompense a la fin du processus d’apprentissage est élevée, meilleur
est 'ensemble de parametres. Un autre critere est de définir un seuil pour la valeur de la récompense. Moins il faut
d’épisodes pour atteindre ce seuil, meilleur est I'ensemble de parametres. Enfin, la qualité de I'apprentissage doit
également étre évaluée en confrontant I'agent a la base de données de test. La valeur de la récompense cumulative

dans des conditions de test constitue un autre critére important pour évaluer 'ensemble de parametres.

Lun des défis majeurs est le processus de recherche des hyperparameétres, qui peut étre trés complex. Dans une
approche courante, les hyperparametres des DRL sont déterminés a I'aide de la méthode essai-erreur guidée par
I'expérience de I'utilisateur. Lutilisateur essaie différentes combinaisons jusqu’a ce qu’une solution satisfaisante
soit trouvée. Cela implique de fixer un ensemble d’hyperparametres, de former 'agent, d’évaluer les résultats et de

répéter ce processus jusqu’a obtenir une performance acceptable.

Cependant, cette méthode peut étre inefficace et demande beaucoup de temps, en particulier lorsque le nombre

157

de parameétres a régler est élevé. Cela a conduit a la recherche de méthodes plus automatisées pour optimiser les
hyperparameétres des algorithmes DRL. Parmi les approches, on trouve les méthodes basées sur les modéles et

les méthodes sans modeéle.

Les méthodes sans modele, telles que la recherche en grille et la recherche aléatoire, sont intuitives mais peuvent
devenir trés colteuses en calcul lorsque le nombre de parametres et de valeurs possibles augmente. La recherche
en grille explore un espace prédéfini de maniére systématique, tandis que la recherche aléatoire évalue un sous-

ensemble aléatoire de combinaisons d’hyperparameétres.

Les méthodes basées sur les modéles, comme l'optimisation bayésienne, sont plus efficaces pour les fonctions
d’optimisation colteuses a évaluer. Loptimisation bayésienne modélise la fonction d’optimisation, réduisant ainsi
I'espace de recherche et guidant la recherche vers des régions prometteuses. Elle utilise un modéle probabiliste
pour simuler la sortie de la fonction colteuse et estime la qualité de chaque combinaison d’hyperparamétres. Cela

permet de réduire le nombre de points a évaluer et de gagner en efficacité.

Loptimisation bayésienne est particulierement adaptée aux problémes de DRL, ou la fonction a optimiser est com-
plexe et colteuse a évaluer. Elle utilise un modele de substitution, tel qu'un processus gaussien, pour simuler
la fonction et estime la qualité de chaque combinaison d’hyperparametres. Elle utilise également une fonction

d’acquisition pour choisir la prochaine combinaison d’hyperparamétres a évaluer, équilibrant I'exploration et I'exploitation.

Les algorithmes génétiques constituent une autre approche pour minimiser les fonctions a boite noire. lls sont
particulierement adaptés lorsque I'optimisation est colteuse en termes de calcul. Les algorithmes génétiques
utilisent une population de solutions potentielles, les font évoluer par le biais de croisements et de mutations, puis
sélectionnent les meilleures solutions pour former la génération suivante. Cette approche peut étre parallélisée pour

accélérer la recherche.

Dans notre étude, nous avons cherché a optimiser les hyperparameétres liés a I'algorithme DQN en utilisant une
approche basée sur des algorithmes génétiques. Cependant, en raison de la complexité de cette tache et des
ressources necessaires, nous avons di recourir a un cluster de calcul haute performance (HPC) pour accélérer le

processus.

Cette partie du travail a été explorée tout a la fin de ma thése de doctorat. La complexité différente, I'architecture
de calcul paralléle associée, et la nécessité d’utiliser diverses bibliotheques Python telles que "mpi4py.MPI" (qui
est utilisée pour la calcul distribuée) m’ont empéché de mettre en ceuvre cette approche dans le temps qui m’était

imparti.

158

Conclusion et perspectives

Dans cette thése, nous avons mis en oeuvre un modéle d’apprentissage par renforcement pour former un agent
capable d’optimiser le colt opérationnel d’'un microréseau connecté sans aucun prévision, mais sur la base de

données historiques.

Lintérét de I'agent DRL est qu'il peut étre entrainé et adapté a un environnement plus complexe, alors qu’il sera
difficile de concevoir une stratégie basée sur des regles efficace. En plus, pour entrainer un HEMS avec un mod-
ele d’apprentissage par renforcement nous n’avons pas besoin de préviosion ou méme de connaitre le modéle

mathématique exact de I'environement.

Les différents algorithmes DRL ont été mis en oeuvre (Q-learning, DQN, DDQN, DDQN+PER) et les résultats
obtenus ont montré que 'agent peut apprendre une bonne stratégie en interagissant avec son environnement pour

les deux premiéres phases.

Cependant, pour la troisieme phase, I'algorithme DQN n’a pas réussi a apprendre une stratégie efficace pour con-
troler toutes les unités simultanément. Cette phase nécessite d’apprendre les différentes dynamiques associées a
I'état de charge de la batterie et I'évolution de la température intérieure et du réservoir d’eau chaude, ce qui peut étre
un défi. De plus, l'augmentation du nombre d’états et d’actions augmente la complexité de la structure du réseau

neuronal, nécessitant 'augmentation du nombre d’épisodes de formation et I'ajustement des hyperparameétres.

Cependant, la recherche des meilleurs hyperparametres a I'aide d’'un mécanisme d’essai-erreur n’est pas efficace
pour un systéeme aussi complexe, et différentes approches de détermination des hyperparametres ont été discutées

pour résoudre ce probleme.

Enfin, le manque de temps nous a empéché d'implémenter une approche de détermination d’hyperparamétres

basée sur un algorithme génétique.

Sur la base de cette thése, nous pouvons imaginer les travaux a venir. Dans un premier temps, il pourrait étre in-
téressant d’utiliser des algorithmes plus sophistiqués qui sont applicables dans un environement continu dans nos
simulations et comparer les résultats avec les algorithmes que nous avons testés au cours de cette these. Nous
pouvons aussi considérer un microréseau plus complexe. Nous ajouterons un véhicule électrique et 'ensemble des
états et actions liés a ce composant. Un autre probléeme sera d'implémenter cet algorithme dans un véritable micro-
grid. Cela nécessite d’analyser la sensibilité de la stratégie de I'agent aux incertitudes du modéle de microréseau

et des parameétres.

159

160

Appendix

A. Sumtree structure

A sumtree is a binary tree where each node represents the sum of its child nodes, and the leaves contain the
priority values and pointers to the corresponding experiences. This data structure allows us to efficiently calculate
the cumulative sum of priorities and sample experiences with probabilities proportional to their priorities. To update
the sumtree, we can start at the leaf node corresponding to the experience being updated and traverse up the tree,
updating the parent nodes’ values until we reach the root node. This update process efficiently takes only O(logn)
time, where n is the number of experiences in the replay buffer. To sample from the sumtree, we can start at the root
node and recursively traverse down the tree, selecting either the left or right child node based on a random value

until we reach a leaf node. This efficient sampling process takes only O(logn) time.

OO0 e

each leaf contains the priority

data index score of an experience

Data SumTree

[122]

Figure: Sumtree used to implement PER

161

B. Funding

The DATAIA Institute funded this work as part of the PEPER project.

The data used for the use case 1 were provided by the Energy4Climate Interdisciplinary Center (E4C) of IP Paris

and Ecole des Ponts ParisTech, under funding to the 3rd Programme d’Investissements d’Avenir [ANR-18-EUR-

0006-02].

162

References

[1] IEA, “Global Energy Review 2021 https://iea.blob.core.windows.net/assets/

d0031107-401d-4a2f -a48b-9eed19457335/GlobalEnergyReview2021.pdf. Page 36. Accessed: 2021.

[2] IEA, “Perspectives for the clean energy transition - the critical role of buildings.” https://www.iea.org/

reports/the-critical-role-of-buildings. Accessed: November 7, 2021.
[3] IEA, “Renewable electricity — analysis.” https://www.iea.org/reports/renewable-electricity.

[4] Y. Guo, M. Pan, and Y. Fang, “Optimal power management of residential customers in the smart grid,” vol. 23,

no. 9, pp. 1593-1606. Conference Name: IEEE Transactions on Parallel and Distributed Systems.
[5] IEA, “Smart grids — analysis.” https://www.iea.org/reports/smart-grids.

[6] “IEEE standard for the specification of microgrid controllers,” pp. 1-43. Conference Name: IEEE Std 2030.7-
2017.

[7] Green European Foundation, “Energy atlas 2018 - facts and figures about renewables in europe.” https://

gef .eu/wp-content/uploads/2018/04/energyatlas2018_facts-and-figures-renewables-europe.pdf.

[8] Eurostat, “Energy consumption and use by households.” https://ec.europa.eu/eurostat/web/

products-eurostat-news/-/ddn-20200626-1. October 18, 2022.

[9] D. Zhang, N. Shah, and L. G. Papageorgiou, “Efficient energy consumption and operation management in a

smart building with microgrid,” vol. 74, pp. 209-222.

[10] Y. Wang, Y. Li, Y. Cao, Y. Tan, L. He, and J. Han, “Hybrid AC/DC microgrid architecture with comprehensive

control strategy for energy management of smart building,” vol. 101, pp. 151-161.

[11] R. Luthander, J. Widén, D. Nilsson, and J. Palm, “Photovoltaic self-consumption in buildings: A review,’

vol. 142, pp. 80—94.

[12] L. N. An and T. Quoc-Tuan, “Optimal energy management for grid connected microgrid by using dynamic

programming method,” pp. 1-5. ISSN: 1932-5517.

163

[13] A. Askarzadeh, “A memory-based genetic algorithm for optimization of power generation in a microgrid,” vol. 9,

no. 3, pp. 1081-1089. Conference Name: IEEE Transactions on Sustainable Energy.

[14] C. Coglianese and D. Lehr, “Regulating by robot: Administrative decision making in the machine-learning era,”

vol. 105.

[15] I. H. Sarker, “Machine learning: Algorithms, real-world applications and research directions,” vol. 2, no. 3,

p. 160.

[16] “Google trends.” https://trends.google.com/trends/explore?cat=174&date=2015-01-01%
202023-01-01&g=reinforcement?20learning, supervised,20learning, unsupervised),20learning,

semi-supervised20learning&hl=en.

[17] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap,
M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis, “Mastering the game of go with deep neural networks

and tree search,” vol. 529, no. 7587, pp. 484—489.

[18] E. Kuznetsova, Y.-F. Li, C. Ruiz, E. Zio, G. Ault, and K. Bell, “Reinforcement learning for microgrid energy

management,” vol. 59, pp. 133—146.

[19] Y. Li, K. Chang, O. Bel, E. L. Miller, and D. D. E. Long, “CAPES: Unsupervised storage performance tun-
ing using neural network-based deep reinforcement learning,” in SC17: International Conference for High

Performance Computing, Networking, Storage and Analysis, pp. 1-14. ISSN: 2167-4337.

[20] Z. Wan, H. Li, and H. He, “Residential energy management with deep reinforcement learning,” in 2018 Inter-

national Joint Conference on Neural Networks (IJCNN), pp. 1-7. ISSN: 2161-4407.

[21] W. Valladares, M. Galindo, J. Gutiérrez, W.-C. Wu, K.-K. Liao, J.-C. Liao, K.-C. Lu, and C.-C. Wang, “En-
ergy optimization associated with thermal comfort and indoor air control via a deep reinforcement learning

algorithm,” vol. 155, pp. 105-117.

[22] T. Levent, P. Preux, G. Henri, R. Alami, P. Cordier, and Y. Bonnassieux, “The challenge of controlling micro-

grids in the presence of rare events with deep reinforcement learning,” vol. 4, no. 1, pp. 15-28.

[23] T. M. Lawrence, M.-C. Boudreau, L. Helsen, G. Henze, J. Mohammadpour, D. Noonan, D. Patteeuw, S. Pless,
and R. T. Watson, “Ten questions concerning integrating smart buildings into the smart grid,” vol. 108, pp. 273—

283.

[24] “Nrg, the evolution of distributed energy resources” https://www.nrg.com/assets/documents/

white-papers/302040207-the-evolution-of-distributed-energy-resources.pdf. page 7, 2018.

164

[25] F. S. o. F.\. M. United Nations Environment Programme, Bloomberg New Energy Finance, “Global trends in

renewable energy investment report 2018,”

[26] F. Pigni, G. Piccoli, and R. Watson, “Digital data streams: Creating value from the real-time flow of big data.”

http://journals.sagepub.com/doi/epdf/10.1525/cmr.2016.58.3.5. Accessed: October 24, 2022.
[27] J. Taft, “Electric grid resilience and reliability for grid architecture,” p. 16.

[28] G. Shahgholian, “A brief review on microgrids: Operation, applications, modeling, and control,” vol. 31, no. 6,

p. €12885. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/2050-7038.12885.

[29] R. Lasseter, “MicroGrids,” in 2002 IEEE Power Engineering Society Winter Meeting. Conference Proceedings
(Cat. No.02CH37309), vol. 1, pp. 305-308 vol.1.

[30] R. Lasseter, A. Akhil, C. Marnay, J. Stephens, J. Dagle, R. Guttromsom, A. S. Meliopoulous, R. Yinger, and

J. Eto, “Integration of distributed energy resources. the CERTS microgrid concept.”

[31] M. F. Zia, E. Elbouchikhi, and M. Benbouzid, “Microgrids energy management systems: A critical review on

methods, solutions, and prospects,” vol. 222, pp. 1033—1055.

[32] L. Meng, E. R. Sanseverino, A. Luna, T. Dragicevic, J. C. Vasquez, and J. M. Guerrero, “Microgrid supervisory

controllers and energy management systems: A literature review,” vol. 60, pp. 1263—1273.

[33] H. Wilms, D. Mildt, M. Cupelli, A. Monti, P. Kjellen, T. Fischer, D. Panic, M. Hirst, E. Scionti, S. Schwarz,
P. Kessler, and L. Hernandez, “Microgrid field trials in sweden: Expanding the electric infrastructure in the

village of simris,” vol. 6, no. 4, pp. 48—62. Conference Name: IEEE Electrification Magazine.

[34] T. Vandoorn, J. De Kooning, B. Meersman, and L. Vandevelde, “Review of primary control strategies for

islanded microgrids with power-electronic interfaces,” vol. 19, pp. 613—-628.

[35] J. He, Y. W. Li, J. M. Guerrero, F. Blaabjerg, and J. C. Vasquez, “An islanding microgrid power sharing
approach using enhanced virtual impedance control scheme,” vol. 28, no. 11, pp. 5272-5282. Conference

Name: IEEE Transactions on Power Electronics.

[36] D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Canizares, R. Iravani, M. Kazerani, A. H. Hajimi-
ragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke, G. A. Jimenez-Estevez, and N. D. Hatziargyriou,

“Trends in microgrid control,” vol. 5, no. 4, pp. 1905-1919.
[37] T. Greyard, “Overview of the microgrid concept and its hierarchical control architecture,” vol. 5, no. 3, p. 6.
[38] “IEC 61970-1:2005 | IEC webstore | automation, cyber security, smart city, smart energy, smart grid.”

[39] Y. Li and F. Nejabatkhah, “Overview of control, integration and energy management of microgrids,” vol. 2,

no. 3, pp. 212-222.

165

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

M. H. Nehrir, C. Wang, K. Strunz, H. Aki, R. Ramakumar, J. Bing, Z. Miao, and Z. Salameh, “A review of hybrid
renewable/alternative energy systems for electric power generation: Configurations, control, and applications,”

vol. 2, no. 4, pp. 392—403. Conference Name: |IEEE Transactions on Sustainable Energy.

X. Wen, “Stochastic optimization for generation scheduling in a local energy community under renewable

energy uncertainty,” p. 240.

J. Aimada, R. Ledo, R. Sampaio, and G. Barroso, “A centralized and heuristic approach for energy manage-

ment of an AC microgrid,” vol. 60, pp. 1396—-1404.

A. Merabet, K. Tawfigue Ahmed, H. Ibrahim, R. Beguenane, and A. M. Y. M. Ghias, “Energy management and
control system for laboratory scale microgrid based wind-PV-battery,” vol. 8, no. 1, pp. 145-154. Conference

Name: IEEE Transactions on Sustainable Energy.

L. T. Dos Santos, M. Sechilariu, and F. Locment, “Day-ahead microgrid optimal self-scheduling: Comparison
between three methods applied to isolated DC microgrid,” in IECON 2014 - 40th Annual Conference of the
IEEE Industrial Electronics Society, pp. 2010—-2016. ISSN: 1553-572X.

D. Arcos-Aviles, J. Pascual, L. Marroyo, P. Sanchis, and F. Guinjoan, “Fuzzy logic-based energy management
system design for residential grid-connected microgrids,” vol. 9, no. 2, pp. 530-543. Conference Name: |IEEE

Transactions on Smart Grid.

R. Palma-Behnke, C. Benavides, E. Aranda, J. Llanos, and D. Saez, “Energy management system for a
renewable based microgrid with a demand side management mechanism,” in 2011 IEEE Symposium on

Computational Intelligence Applications In Smart Grid (CIASG), pp. 1-8. ISSN: 2326-7690.

S. Sukumar, H. Mokhlis, S. Mekhilef, K. Naidu, and M. Karimi, “Mix-mode energy management strategy and

battery sizing for economic operation of grid-tied microgrid,” vol. 118, pp. 1322—-1333.

G. Comodi, A. Giantomassi, M. Severini, S. Squartini, F. Ferracuti, A. Fonti, D. Nardi Cesarini, M. Morodo, and
F. Polonara, “Multi-apartment residential microgrid with electrical and thermal storage devices: Experimental

analysis and simulation of energy management strategies,” vol. 137, pp. 854-866.

S. A. Helal, R. J. Najee, M. O. Hanna, M. F. Shaaban, A. H. Osman, and M. S. Hassan, “An energy man-
agement system for hybrid microgrids in remote communities,” in 2017 IEEE 30th Canadian Conference on

Electrical and Computer Engineering (CCECE), pp. 1-4.
Bellman Richard 1920-1984, Dynamic programming. Mineola, N.Y. : Dover publ. , 2003.

B. Heymann, J. F. Bonnans, P. Martinon, F. J. Silva, F. Lanas, and G. Jiménez-Estévez, “Continuous optimal

control approaches to microgrid energy management,” vol. 9, no. 1, pp. 59-77.

166

[52] B. A. Attea, A. D. Abbood, A. A. Hasan, C. Pizzuti, M. Al-Ani, S. Ozdemir, and R. D. Al-Dabbagh, “A review
of heuristics and metaheuristics for community detection in complex networks: Current usage, emerging

development and future directions,” vol. 63, p. 100885.

[53] V. Kumar and S. M. Yadav, “A state-of-the-art review of heuristic and metaheuristic optimization techniques

for the management of water resources,” vol. 22, no. 4, pp. 3702-3728.
[54] A. E. Samrout, “Hybridization of multicriteria metaheuristic optimization methods for mechanical problems,”

[55] M. Elsied, A. Oukaour, T. Youssef, H. Gualous, and O. Mohammed, “An advanced real time energy manage-

ment system for microgrids,” vol. 114, pp. 742-752.

[56] J. Radosavljevié, M. Jevti¢, and D. Klimenta, “Energy and operation management of a microgrid using particle

swarm optimization,” vol. 48, no. 5, pp. 811-830.

[57] A. A. Moghaddam, A. Seifi, T. Niknam, and M. R. Alizadeh Pahlavani, “Multi-objective operation management
of a renewable MG (micro-grid) with back-up micro-turbine/fuel cell/battery hybrid power source,” vol. 36,

no. 11, pp. 6490-6507.

[58] J. Shen, C. Jiang, Y. Liu, and X. Wang, “A microgrid energy management system and risk management under

an electricity market environment,” vol. 4, pp. 2349—2356. Conference Name: IEEE Access.

[59] M. Schwenzer, M. Ay, T. Bergs, and D. Abel, “Review on model predictive control: an engineering perspective,’

vol. 117, no. 5, pp. 1327—1349.
[60] “Mpc.” https://commons.wikimedia.org/wiki/File:MPC_scheme_basic.svg. Created: October 14, 2009.

[61] M. Petrollese, L. Valverde, D. Cocco, G. Cau, and J. Guerra, “Real-time integration of optimal generation
scheduling with MPC for the energy management of a renewable hydrogen-based microgrid,” vol. 166, pp. 96—

106.

[62] L.I. Minchala-Avila, L. Garza-Castafion, Y. Zhang, and H. J. A. Ferrer, “Optimal energy management for stable
operation of an islanded microgrid,” vol. 12, no. 4, pp. 1361-1370. Conference Name: IEEE Transactions on

Industrial Informatics.

[63] L. Yu, S. Qin, M. Zhang, C. Shen, T. Jiang, and X. Guan, “A review of deep reinforcement learning for smart

building energy management,” vol. 8, no. 15, pp. 12046—12063.

[64] K. Mason and S. Grijalva, “A review of reinforcement learning for autonomous building energy management,”

vol. 78, pp. 300-312.

[65] P. Lissa, C. Deane, M. Schukat, F. Seri, M. Keane, and E. Barrett, “Deep reinforcement learning for home

energy management system control,” vol. 3, p. 100043.

167

[66] T. Levent, P. Preux, E. le Pennec, J. Badosa, G. Henri, and Y. Bonnassieux, “Energy management for mi-
crogrids: a reinforcement learning approach,” in 2019 IEEE PES Innovative Smart Grid Technologies Europe

(ISGT-Europe), pp. 1-5, IEEE.

[67] W. Liu, P. Zhuang, H. Liang, J. Peng, and Z. Huang, “Distributed economic dispatch in microgrids based on
cooperative reinforcement learning,” vol. 29, no. 6, pp. 2192-2203. Conference Name: |IEEE Transactions on

Neural Networks and Learning Systems.

[68] S. V, “AN EMPIRICAL SCIENCE RESEARCH ON BIOINFORMATICS IN MACHINE LEARNING,” vol. spl7,

no. 1.
[69] N. J. Nilsson, The Quest for Artificial Intelligence. Cambridge University Press, 1 ed.

[70] S. J. Russell, P. Norvig, and E. Davis, Artificial intelligence: a modern approach. Prentice Hall series in

artificial intelligence, Prentice Hall, 3rd ed ed.

[71] J. Hu, H. Niu, J. Carrasco, B. Lennox, and F. Arvin, “Voronoi-based multi-robot autonomous exploration in
unknown environments via deep reinforcement learning,” vol. 69, no. 12, pp. 14413-14423. Conference

Name: |IEEE Transactions on Vehicular Technology.

[72] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, “Deep learning for healthcare: review, opportunities
and challenges,” vol. 19, no. 6, pp. 1236—1246.

[73] S. M. Miraftabzadeh, F. Foiadelli, M. Longo, and M. Pasetti, “A survey of machine learning applications for
power system analytics,” in 2019 IEEE International Conference on Environment and Electrical Engineering

and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&§CPS Europe), pp. 1-5, IEEE.
[74] M. Mohri, A. Rostamizadeh, and A. Talwalkar, “Foundations of machine learning (second edition),” p. 505.

[75] “Classification and regression in machine learning” https://www.enjoyalgorithms.com/blogs/

classification-and-regression-in-machine-learning.
[76] R. Agrawal and R. Srikant, “Fast algorithms for mining association rules,” p. 13.
[77] J. Schmidhuber, “Deep learning in neural networks: An overview,” vol. 61, pp. 85-117.

[78] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural net-

works,” vol. 60, no. 6, pp. 84—90.
[79] D. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep neural networks for image classification.”

[80] J.Baek and Y. Choi, “Deep neural network for ore production and crusher utilization prediction of truck haulage

system in underground mine,” vol. 9, no. 19, p. 4180.

168

[81] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,”

[82] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,”

vol. 323, no. 6088, pp. 533-536.
[83] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization.”

[84] M. L. Littman, “Markov decision processes,” in International Encyclopedia of the Social & Behavioral Sciences

(N. J. Smelser and P. B. Baltes, eds.), pp. 9240-9242, Pergamon.
[85] R. Bellman, “Dynamic programming and stochastic control processes,” vol. 1, no. 3, pp. 228—239.
[86] “Markov decision process.” https://commons.wikimedia.org/wiki/File:Markov_Decision_Process.svg.
[87] R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduction,” p. 352.
[88] Z. Zhang, D. Zhang, and R. C. Qiu, “Deep reinforcement learning for power system: An overview,” p. 12.
[89] C. WATKINS and P. DAYAN, “Technical note: Q-learning,” p. 14.

[90] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K.
Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra,
S. Legg, and D. Hassabis, “Human-level control through deep reinforcement learning,” vol. 518, no. 7540,

pp. 529-533.
[91] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double g-learning,”
[92] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay.”

[93] M. Haeffelin, L. Barthes, O. Bock, C. Boitel, S. Bony, D. Bouniol, H. Chepfer, M. Chiriaco, J. Cuesta, J. De-
lanoé, P. Drobinski, J.-L. Dufresne, C. Flamant, M. Grall, A. Hodzic, F. Hourdin, F. Lapouge, Y. Lemaitre,
A. Mathieu, Y. Morille, C. Naud, V. Noél, W. O’Hirok, J. Pelon, C. Pietras, A. Protat, B. Romand, G. Scialom,
and R. Vautard, “SIRTA, a ground-based atmospheric observatory for cloud and aerosol research,” vol. 23,

no. 2.

[94] EDF, “Tarif bleu edf” https://particulier.edf.fr/content/dam/2-Actifs/Documents/Offres/Grille_

prix_Tarif_Bleu.pdf. date: 2021.

[95] P. Hietaharju, M. Ruusunen, and K. Leiviska, “A dynamic model for indoor temperature prediction in buildings,”

vol. 11, no. 6, p. 1477.

[96] P. Constantopoulos, F. Schweppe, and R. Larson, “Estia: A real-time consumer control scheme for space

conditioning usage under spot electricity pricing,” vol. 18, no. 8, pp. 751-765.

169

[97] R. Sinha, B. B. Jensen, J. R. Pillai, C. Bojesen, and B. Moller-Jensen, “Modelling of hot water storage tank
for electric grid integration and demand response control,” in 2017 52nd International Universities Power

Engineering Conference (UPEC), pp. 1-6.

[98] American Society of Heating, Refrigerating, and Air-Conditioning Engineers, ASHRAE Handbook: Funda-
mentals. Atlanta, GA: ASHRAE, 8th ed., 2017.

[99] B. Yang, X. Cheng, D. Dai, T. Olofsson, H. Li, and A. Meier, “Real-time and contactless measurements of

thermal discomfort based on human poses for energy efficient control of buildings,” vol. 162, p. 106284.

[100] D. Zhang, S. Li, M. Sun, and Z. O'Neill, “An optimal and learning-based demand response and home energy

management system,” vol. 7, no. 4, pp. 1790-1801. Conference Name: IEEE Transactions on Smart Grid.

[101] N. Forouzandehmehr, S. M. Perlaza, Zhu Han, and H. V. Poor, “A satisfaction game for heating, ventilation and
air conditioning control of smart buildings,” in 2013 IEEE Global Communications Conference (GLOBECOM),
pp. 3164-3169, IEEE.

[102] R. Wohlfarth, Boiler Sizing Made Simple. Boston, MA: Cengage Learning, 2012.
[103] “Normal distribution.” https://commons.wikimedia.org/wiki/File:Standard_deviation_diagram.svg.
[104] F. E. Grubbs, “Procedures for detecting outlying observations in samples,” vol. 11, no. 1, pp. 1-21.

[105] B. Iglewicz and D. C. Hoaglin, How to detect and handle outliers. No. v. 16 in ASQC basic references in quality
control, ASQC Quality Press.

[106] R. Baetens and D. Saelens, “Modelling uncertainty in district energy simulations by stochastic residential

occupant behaviour,” vol. 9, no. 4, pp. 431-447.
[107] OpenIDEAS, “Strobe.” https://github.com/open-ideas/StROBe. original-date: 2013-10-01T12:45:56Z.
[108] OpenAl, “openai/gym.” https://github.com/openai/gym. original-date: 2016-04-27T14:59:16Z.
[109] M. Kiran and M. Ozyildirim, “Openai gym.”
[110] F. Chollet, Deep learning with Python. Manning Publications Co. OCLC: 0cn982650571.
[111] M. Kiran and M. Ozyildirim, “Hyperparameter tuning for deep reinforcement learning applications.”

[112] R. Liessner, J. Schmitt, A. Dietermann, and B. Béker, “Hyperparameter optimization for deep reinforcement
learning in vehicle energy management:,” in Proceedings of the 11th International Conference on Agents and

Artificial Intelligence, pp. 134—144, SCITEPRESS - Science and Technology Publications.

[113] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Benchmarking deep reinforcement learning for

continuous control.”

170

[114] E. Brochu, V. M. Cora, and N. de Freitas, “A tutorial on bayesian optimization of expensive cost functions, with

application to active user modeling and hierarchical reinforcement learning.”

[115] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas, “Taking the human out of the loop: A

review of bayesian optimization,” vol. 104, no. 1, pp. 148-175. Conference Name: Proceedings of the IEEE.
[116] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,”
[117] “Optuna - a hyperparameter optimization framework.” https://optuna.org/. Accessed: March 16, 2023.

[118] J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, and M. A. Patwary, “Scalable bayesian

optimization using deep neural networks,”
[119] L. Breiman, “Random forests,” vol. 45, no. 1, pp. 5-32.

[120] “Mesocentre documentation.” https://mesocentre.pages.centralesupelec.fr/user_doc/. Accessed:

March 30, 2023.
[121] G. Dulac-Arnold, D. Mankowitz, and T. Hester, “Challenges of real-world reinforcement learning.”

[122] “Sumtree.” https://www.freecodecamp.org/news/improvements-in-deep-q-learning-dueling-double/

-dgn-prioritized-experience-replay-and-fixed-58b130cc5682/, note = Accessed: July 6, 2018.

171

