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Titre: Stratégies optimales de recharge rapide sur autoroute pour des trajets longue distance envéhicule électriqueMots clés: véhicule électrique, trajet longue distance, recharge rapide, communication, optim-isation multi-objectif
Résumé: Le secteur des transports routiers re-présente 12% des émissions de gaz à effet deserre (GES) dans le monde et dans l’optiquede réduire ces émissions, les constructeursautomobiles accélèrent la transition vers lesvéhicules électriques (VEs). Malgré une aug-mentation rapide des ventes ces dernières an-nées, certains freins à l’adoption du véhiculeélectrique persistent, parmi eux, une auto-nomie encore limitée pour la plupart des mod-èles et des pauses allongées (par rapport àun véhicule thermique) pour recharger lorsdes trajets longue-distance. Dans ce con-texte, l’objective de cette thèse est d’étudierdifférents aspects de la recharge rapide surautoroute et de proposer des stratégies de re-charge optimales afin d’améliorer l’expériencedes conducteurs de véhicule électriques lorsde trajets longue-distances. Le premier as-pect étudié concerne la gestion intelligente dela charge d’une flotte de véhicule électrique.Une stratégie de communication en temps réelentre les véhicules et les stations est proposéeen ce sens. Pour cette communication, nousavons établi deux possibles règles de prior-

ité en stations, une règle de premier-arrivépremier-servi (PAPS) et une règle de réserva-tion, que nous avons comparées. Il appar-aît que la communication avec une règle dePAPS est plus performante que la réservation.Nous avons ensuite évalué l’intérêt de cettestratégie de communication dans le dimen-sionnement de l’infrastructure en proposantune optimisation double niveau visant à min-imiser le coût de l’infrastructure sachant queles véhicules optimisent leur plan de charge enutilisant la stratégie de communication. Enfin,nous avons étudié l’impact de la puissance decharge des véhicules électriques sur le coût del’infrastructure ainsi que sur le temps passé enstation. En effet, augmenter la puissance decharge permet de réduire les temps de chargemais les chargeurs haute puissance sont plusonéreux. Cependant, si le développement del’infrastructure est optimisé, on constate queplus le taux de pénétration de véhicules per-mettant la charge ultra-rapide est grand et plusle temps passé en station est réduit sans aug-mentation du coût de l’infrastructure.



Title: Optimal fast-charging strategies for long-distance trips on the highwaywith electric vehiclesKeywords: electric vehicle, long-distance trip, fast charge, communication, multi-objective op-timisation
Abstract: The road transport sector accountsfor 12% of global greenhouse gas emissions(GHGs), and to reduce these emissions, auto-makers are accelerating the transition to elec-tric vehicles (EVs). Despite a rapid increase insales in recent years, some barriers to adoptingelectric vehicles persist, including limited rangefor most models and extended breaks (com-pared to traditional vehicles) for rechargingduring long-distance journeys. Therefore, thisthesis aims to study various aspects of highwaycharging to enhance the experience of electricvehicle drivers on long-distance trips. To in-vestigate these aspects, we developed a multi-agent simulation environment that models theinteractions between vehicles and charging sta-tions. The first level of improvement involvesmore intelligent management of charging for afleet of EVs, relying on regular communicationbetween vehicles and stations: vehicles optim-ise their charging plan and share it in real-timewith stations, which, in turn, assess future wait-ing times and communicate them to EVs. Wecompared two strategies using real-time com-munication: one follows the first-come-first-served (FCFS) rule at the station, while the otherallows advance reservation of charging slots.It appears that communication associated withthe FCFS rule represents the optimal strategy.

The second level of improvement aims to sizethe charging infrastructure to be developedwhen the previously described communicationstrategy is used. The problem was solved usinga Grey Wolf Optimizer that minimises the costof the infrastructure while limiting waiting timeat the station. By comparing optimal infrastruc-tures to develop when EVs communicate andwhen they do not, it is evident that communic-ation reduces infrastructure costs by up to 26%.Finally, we also studied the influence of thecharging power of vehicles on the time spent atthe station and the cost of the infrastructure tobe developed. Increasing the charging powerreduces charging time, but the infrastructuremust be equipped with higher-power chargers,which are more expensive. The results showthat, even without communication, increasingthe charging power of vehicles reduces bymorethan 50% the time spent at the station withoutincurring additional costs for the infrastructure.Thus, implementing a real-time communica-tion charging strategy enables more efficientuse of the infrastructure and reduces the needfor infrastructure. If this strategy is coupledwith increased charging power, it will, withoutadditional cost, enhance the experience of elec-tric vehicle drivers by reducing time spent at thestation.
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Résumé
Le secteur des transports routiers représente 12% des émissions de gaz à effet de serre

(GES) dans le monde et dans l’optique de réduire ces émissions, les constructeurs automobiles
accélèrent la transition vers les véhicules électriques (VEs). Cependant, malgré une augmenta-
tion rapide des ventes ces dernières années, certains freins à l’adoption du véhicule électrique
persistent, parmi eux, une autonomie encore limitée pour la plupart desmodèles et des pauses
allongées (par rapport à un véhicule thermique) pour recharger lors des trajets longue-distance.
Une des solutions serait de diminuer les besoins en recharge en proposant des véhicules avec
de plus grosses batteries mais ce type de véhicule est coûteux et à un impact environnemental
important. En effet, même si un véhicule électrique n’émet pas de GES lorsqu’il roule, il n’en va
pas de même lors de sa construction : la production de la batterie constitue une part non négli-
geable des émissions de GES sur sa durée de vie. D’autant plus que les circuits de recyclage des
batteries ne sont pas encore déployés à large échelle. Limiter la taille des batteries est donc une
solution plus viable mais il faut en contre-parti proposer un service de recharge adapté pour
les trajets longue distance afin de favoriser plus facilement l’adoption des véhicules électriques
et proposer une mobilité électrique propre et abordable.

Par conséquent, l’objectif de cette thèse est d’étudier différents aspects de la recharge sur
autoroute afin d’améliorer l’expérience des conducteurs de véhicule électrique lors de trajets
longue distance. Le premier aspect concerne le contrôle du plan de charge des VEs grâce à une
communication en temps réel entre les VEs et les stations, le second est orienté sur l’optimisa-
tion de l’infrastructure sous contrôle de la charge et le dernier cherche à évaluer l’impact de la
puissance de recharge sur le coût de l’infrastructure et le temps passé en station. L’ensemble
des éléments présenté précédemment font l’objet du chapitre d’introduction, le Chapitre 1.

Une revue de littérature concernant les stratégies de contrôle de la recharge ainsi que du di-
mensionnement de l’infrastructure est conduite dans le Chapitre 2. On trouve de nombreuses
méthodes adaptées aumilieu urbain alors que celles-ci sontmoins présentes pour les cas de re-
charge lors des trajets longue-distance. Parmi les méthodes adaptées aux trajets inter-cités, on
retrouve notamment des méthodes de contrôle de la recharge qui cherche à utiliser le plus ef-
ficacement possible l’infrastructure déjà existante. Ces méthodes de contrôle vont jouer sur un
ou plusieurs aspects de la charge pendant un trajet longue distance pour améliorer la satisfac-
tion des conducteurs : où et quand le véhicule doit s’arrêter pour recharger, combien d’énergie
doit-il recharger en station... Certaines des strategies sont basées sur une communication entre
les véhicules directe ou indirecte pour éviter les stations à fortes affluences pour la prochaine
charge alors que d’autres tentent d’optimiser le plan de charge complet des VEs avec ou sans
communication pour prendre en compte le temps d’attente en station.

Pour le dimensionnement de l’infrastructure de charge sur autoroute, lesméthodes présen-
tées dans l’état de l’art visent pour certaines àmaximiser le nombre de trajets origine-départ en
véhicules électriques qui peuvent être réalisé grâce à l’infrastructure installée alors que d’autres
cherchent plutôt à réduire le temps passé en station pour les véhicules. Nous relevons égale-
ment dans cette revue de littérature les différents processus utilisés pour établir le trafic sur
les voies étudiées afin d’élaborer des méthodes d’optimisation adaptées aux besoins réels de
charge. L’enjeu de cesméthodes est de dimensionner les stations de charge (localisation et taille
des stations) afin de capturer le plus efficacement le flot de véhicules électrique et d’anticiper
les futurs besoins en recharge.

Après avoir identifié les points scientifiques non traités dans la littérature concernant les
stratégies de recharge, nous présentons dans le Chapitre 3 l’environnement de simulation
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multi-agents que nous avons développé afin de tester les interactions entre les véhicules et
les stations suivant les aspects de la recharge étudiés. Un agent représente un véhicule élec-
trique et l’autoroute avec ses stations de recharge constituent l’environnement. Dans l’environ-
nement de simulation, chaque agent peut être paramétré au niveau de ses caractéristiques
intrinsèques (capacité batterie, puissance de recharge, etc.) mais aussi du trajet qu’il va réaliser
sur l’autoroute (entrée/sortie d’autoroute, heure d’entrée, niveau de charge en entrée...). Pour
générer des trajets les plus réalistes possibles, nous avons utilisé des données issues d’open-
data mais nous avons également travailler sur des données remontées par les véhicules élec-
triques connectés de Stellantis. Pendant une simulation, chaque véhicule suit une stratégie de
recharge qui vise à minimiser le facteur d’insatisfaction du conducteur (compromis entre le
temps de trajet et le coût de la recharge) en sélectionnant où il s’arrête, combien il recharge en
station, etc.

Nous effectuons dans ce même chapitre une comparaison de plusieurs méthodes d’opti-
misation de plan de recharge pour minimiser le temps de trajet en prenant en compte les pré-
dictions de temps d’attente communiquées par les stations. Ces méthodes d’optimisation du
plan de recharge sont au nombre de trois : la première est une méthode exhaustive listant les
plans de charge possibles pour sélectionner le meilleur, la seconde s’appuie sur un algorithme
génétique et la troisième utilise la programmation dynamique. La dernière méthode que nous
avons développée apparaît comme laméthode de résolution la plus adaptée pour des cas d’ap-
plication concrets car, contrairement à la méthode exhaustive, elle n’a pas un temps d’exécu-
tion exponentiel par rapport au nombre d’arrêts nécessaire pour la recharge ni par rapport
au nombre de stations le long de l’autoroute. En effet, la méthode exhaustive devant lister les
possibles plans de charge, son temps de calcul est exponentiel car correspond à un problème
combinatoire. Cependant, comme nous avons développée la méthode avec programmation
dynamique en dernière année de thèse, c’est la méthode exhaustive qui a été utilisée dans
l’ensemble du manuscrit pour les études de cas.

Comme vu dans la partie revue de littérature, un premier niveau d’amélioration de l’expé-
rience des conducteurs lors des trajets longue distance repose sur une gestion plus intelligente
de la recharge d’une flotte de VEs s’appuyant sur une communication régulière entre les véhi-
cules et les stations : les véhicules optimisent individuellement leur plan de charge et le par-
tagent en temps réel aux stations qui en échange, évaluent les temps d’attente futurs et les
communiquent aux VEs. Dans le Chapitre 4, nous avons comparé deux stratégies utilisant la
communication en temps réel : l’une respecte la règle de premier arrivé, premier servi (PAPS
ou FCFS en anglais) en station alors que l’autre permet la réservation en avance de créneaux de
charge. Nous avons également comparé ces deux stratégies de communication à une troisième
stratégie ne permettant pas la communication mais où les VEs optimisent leur plan de charge
pour minimiser leur temps de trajet.

Plusieurs niveaux de saturation de l’infrastructure de charge ont été étudiés pour cerner
au mieux les performances de chaque stratégie de contrôle (100, 180 et 300 VEs). Des critères
de qualité ont été définis pour comparer les stratégies entre elles et ainsi déterminée la ou les
stratégies les plus pertinentes :

1. concernant la longueur des files d’attente, le nombre de véhicules attendant ne doit pas
dépasser deux fois le nombre de chargeurs en station ;

2. le temps d’attente avant une charge ne doit pas dépasser 30 minutes.
Il apparaît que la communication associée à une règle dePAPS représente toujours lameilleure

stratégie. Ceci est dû au fait que la communication PAPS permet une meilleure répartition des
véhicules dans les stations par rapport à la stratégie sans communication grâce au partage d’in-
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formation en temps réel concernant les temps d’attente. La stratégie communication PAPS va-
lide les deux critères dans les cas où 100 et 180 VEs parcourent l’autoroute pendant la journée.
Dans le cas de la réservation, le critère de file d’attente est respecté pour 100 et 180 VEs dans
la flotte grâce au partage d’information mais le temps d’attente lui peut dépasser une heure
pour certains véhicules. Ceci est dû au fait que la réservation est possible pour l’ensemble de
la flotte et les créneaux de charge deviennent de plus en plus morcelés au fur et à mesure que
les réservations augmentent.

Pour le cas où il y a 300 VEs dans la flotte, aucune stratégie ne valide les critères car la
saturation de l’infrastructure est trop importante pour être corrigé par une stratégie de contrôle
et il faut considérer l’ajout de nouveaux chargeurs pour améliorer l’expérience de recharge.

Dans ce même chapitre, nous avons mesuré la robustesse de la stratégie de communi-
cation lorsque des véhicules non communiquant sont injectés dans la flotte de véhicule. Les
performances de la communication sont lentement dégradées au fur et à mesure que la pro-
portion de VEs non communiquant augmente car les informations échangées sont demoins en
moins nombreuses. Cependant, la communication permet de réduire le temps de trajet moyen
non seulement pour les véhicules communiquants mais aussi pour l’ensemble de la flotte. Les
conducteurs de véhicule ont donc tout intérêt à communiquer s’ils veulent avoir plus de chance
de réduire de façon conséquente leur temps de trajet. Néanmoins, il faudra s’attendre à ce que,
lors de la mise en place de la stratégie de communication, peu de véhicules l’utiliseront et donc
il faudra trouver un moyen d’améliorer la robustesse de la stratégie de communication ou bien
il faudra permettre en premier lieu la réservation pour le petit nombre de véhicule utilisant le
partage d’information en temps réel. Pour la suite des chapitres, nous supposons que 100% de
la flotte utilise la stratégie de communication PAPS.

Le Chapitre 5 détaille le second niveau d’amélioration que nous avons étudié, à savoir le
dimensionnement de l’infrastructure de recharge à développer lorsque la stratégie de commu-
nication décrite précédemment est utilisée. Pour permettre une mobilité propre et abordable,
nous avons dimensionné l’infrastructure pour des VEs d’autonomie limitée (60kWh). Ce chapitre
vise à évaluer les bénéfices qu’apporte la stratégie de communication dans la réduction du coût
du réseau de charge en comparant les infrastructures optimales à développer quand les VEs
communiquent et quand ils ne communiquent pas. L’optimisation de l’infrastructure est mené
pour minimiser le coût annuel équivalent journalier de l’infrastructure tout en garantissant un
temps d’attente limite en station qui ne doit pas être dépassé. Afin de vérifier la contrainte
de temps d’attente en station en fonction du nombre de chargeurs dans chaque station de
charge, nous utilisons l’environnement de simulation présenté dans le chapitre 3 afin de tester
une ou plusieurs flottes de VEs sur l’infrastructure proposée. La taille des flottes étudiées pour
ce dimensionnement est de 500 VEs et correspond à une saturation de l’autoroute française A6
pendant 10h. Le temps de simulation étant long lorsque les véhicules utilisent la communica-
tion (environ 30 minutes par infrastructure), nous avons limité à 5 le nombre de flottes testées
simultanément.

Le problème a été résolu grâce à l’algorithme Grey Wolf Optimiser (GWO) qui minimise le
coût de l’infrastructure tout en limitant le temps d’attente en station. Le GWO est un algorithme
évolutionnaire basé sur la tactique de chasse des loups gris et a été choisi pour sa plus rapide
convergence. Nous avons réalisé plusieurs optimisations en jouant sur les paramètres de simu-
lation tels que le temps d’attentemaximal autorisé (20 ou 30minutes), les niveaux de puissance
disponibles en station (50 et/ou 175 kW) ou encore la valeur du temps des conducteurs (20€/h
ou 50€/h). On constate que la communication permet de réduire de façon notable (jusqu’à 26
%) le coût de l’infrastructure par rapport à une situation où aucun VE ne communique.

Enfin, nous avons étudié l’influence de la puissance de charge des véhicules sur le temps
7



passé en station ainsi que sur le coût de l’infrastructure à développer dans le Chapitre 6. En
effet, augmenter la puissance de charge permet de diminuer le temps de charge et par consé-
quent le temps d’attente mais cela signifie que l’infrastructure doit s’équiper en chargeurs de
puissance plus élevée qui sont plus coûteux. L’objectif premier de l’optimisation est de mini-
miser le temps passé en station pour les conducteurs et le second objectif est de minimiser le
coût de l’infrastructure. Comme dans le chapitre 5, le problème est soumis à une contrainte sur
le temps d’attente avec un temps maximal accepté de 15 minutes et de la même façon, l’envi-
ronnement de simulation a été utilisé pour évaluer les temps d’attente en station et vérifier le
respect ou non de la contrainte mais il a aussi été utilisé pour calculer le premier objectif de
l’optimisation, à savoir le temps moyen passé en station .

Pour cette optimisation multi-objectifs, les véhicules ne suivent pas de stratégie de com-
munication mais une stratégie plus simple visant à s’arrêter à la dernière station atteignable
sans optimiser la recharge. Le temps de simulation pour cette stratégie étant moins important
que pour la stratégie de communication, nous avons testé simultanément 100 flottes de 50 VEs
pour vérifier la contrainte et calculer le temps moyen passé en station. Un algorithme différen-
tiel avec une convergence utilisant le même principe que l’algorithme NSGA-II a été utilisé pour
résoudre le problème d’optimisation.

Nous avons tracé les fronts de Pareto pour plusieurs proportions (1%, 5% et 100%) de vé-
hicules à recharge ultra rapide (puissance de recharge ≈ 350 kW) dans la flotte. Les résultats
obtenusmontrent qu’augmenter la puissance de charge des véhicules permet,même sans com-
munication, de diminuer de plus de 50% le temps passé en station sans engendrer de coût
supplémentaire pour l’infrastructure. En effet, même si les véhicules qui rechargent ultra rapi-
dement nécessitent des chargeurs beaucoup plus coûteux car délivrant plus de puissance, le
nombre de chargeurs à installer en station pour réduire la file d’attente est faible car, les VEs se
rechargeant plus vite, la file d’attente est beaucoup moins importante. De plus, on peut obser-
ver que entre une infrastructures correspondant à une situation avec 1% de véhicules pouvant
se recharger ultra-rapidement et une correspondant à une situation avec 100% de véhicule à
charge ultra-rapide, la puissance a installée augmente de seulement 27% alors que le temps
moyen en station est diminué de 55%. Ces résultats sont cependant à prendre avec précau-
tion car pour l’instant aucun VE avec une aussi grande puissance de charge n’existe et la charge
ultra-rapide pourrait endommager la batterie et accélérer son vieillissement.

En conclusion, l’environnement de simulation ainsi que les méthodes que nous avons dé-
veloppé et intégrée à l’environnement nous permettent d’évaluer la pertinence des différentes
stratégies de charge permettant de favoriser l’adoption des VEs. En particulier, nous avons pu
observer que la mise en place d’une stratégie de charge avec communication en temps réel
permet d’utiliser plus efficacement une infrastructure donnée et par conséquent de réduire
le besoin en infrastructure. Si cette stratégie est couplée à une augmentation de la puissance
de charge, elle permettra sans surcoût d’améliorer l’expérience des conducteurs de véhicule
électrique en réduisant le temps passé en station.

Les perspectives de ces travaux de thèse sont nombreuses et visent notamment l’adapta-
tion de la stratégie de communication à tout type de perturbation (véhicules non communi-
quant, ralentissement, déviation dû à un accident). Il conviendrait aussi de considérer lors de
l’optimisation du plan de charge, d’autres objectifs qui pourraient impacter la satisfaction du
conducteur (nombre d’arrêts, taux de CO2 de l’électricité rechargée...). Concernant le dimen-
sionnement de l’infrastructure, il serait intéressant d’évaluer l’évolution des besoins en infra-
structure en fonction de l’augmentation des véhicules électriques sur les routes au lieu de di-
mensionner seulement pour une taille de flotte. Enfin, l’environnement de simulation ainsi que
les méthodes développées pour ces travaux de thèse pourront être utilisé pour étudier des dé-
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fis liés à d’autres types de transport (bus ou camions électriques...) ou d’autres types de trajets
(trajets en ville).
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1 - General introduction: techno-economic aspects of fast
charging for long-distance trips
The paramount environmental need to decrease Greenhouse Gas (GHG) emissions to reach

Carbon Net Zero by 2050 has led automotive makers (Original Equipment Manufacturers -
OEMs) to accelerate the electrification of their fleet. At the same time, electric vehicle (EV) sales
have exploded during the past three years, and the number of EVs on the road continues to
grow rapidly. There were more than 10 million EVs on the world road in 2020 (1% of the total
cars registered worldwide) [28], and now, there are more than 26 million. According to the
IRENA (International Renewable Agency), EVs are expected to be 157 million in 2030 and more
than 1 billion in 2050 (Figure 1.1) [1]. In France, the cumulative number of plug-in EVs on the
roads was by the end of 2022 above 1million [29]. This noticeable increase can be explained by
public incentives to buy electric cars and amore responsible collective awareness of the climate
emergency.

Figure 1.1: Passenger electric cars on the world roads [1]
However, even if the number of EVs is rapidly growing, most EV models’ limited range (300

km on average) still disincentives to EVs’ acceptability, especially for long-distance trips. Indeed,
a gas-powered car has an average of 650 km, which is twice the average range for an EV. Though
some EV models can reach the same range as average intern-combustion engine (ICE) vehicles
(for example, TeslaModel S and future Peugeot e3008), they need bigger batteries that increase
their price (approx. 100 €/kWh) and their environmental footprint.

Due to this limited range, long-distance trips are only possible if EV drivers rely on a public
fast-charging infrastructure (≥ 50 kW DC), enabling rapid energy recovery (less than 30 minutes
to charge 80% of the battery capacity). At the beginning of this present thesis in 2021, the public
fast-charging infrastructure was relatively sparse in France (only 140 out of 440 highway service
areas proposed at least one fast-charging point [30]). It was discouraging EV purchases due to
range anxiety. Now, thanks in part to the Government subvention of 100 million euros, almost
all the service areas propose a fast-charging station (FCS) [9], making the charging network
dense enough to reduce range anxiety (on average, one station every 50 km). Nevertheless, this
current charging infrastructure is unlikely to support the growing number of EVs, and solutions
should be foreseen to address this problem and avoid the upcoming infrastructure saturation.
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Moreover, even if some EV model can charge in less than 15 minutes from 10% to 80% of
their battery capacity, this is not the case formost EVs (approx. 30minutes), and this is still three
times the refuelling time for a conventional gas-powered vehicle. The extended charging times
can cause longer waiting times in stations if the use of the infrastructure is not optimised and if
the infrastructure itself is not adapted to the EV fleet. However, as installing public fast-charging
stations is costly (up to 120,000e for a 350-kW charger), the planning of the infrastructure to
uptake the EV drivers’ expectations should be optimised too.

Thesis objectives
Therefore, the objectives of this thesis are:

• Propose and evaluate the performance of a control strategy based on real-timecommunication to optimise the charging plan of EVs going on a long-distance tripand stopping in fast-charging stations to recover energy.
• Quantify the benefit of that control strategy when it comes to optimising the fast-charging infrastructure itself since the control strategy is supposed to use moreefficiently the available charging network.
• Establish the trade-off between the reduction of infrastructure cost and the reduc-tion of the time spent in stations according to EV charging powers.

Yet, optimising the fast-charging service on the highway for long-distance trips imposes
knowing the technical aspects of an electric vehicle and the fast-charging service itself and un-
derstanding the economic and environmental problems raised by such a service. After present-
ing the general context of this thesis work in Section 1.1, we analyse the technical and economic
aspects in Sections 1.2 and 1.3 before concluding in Section 1.4 and giving the structure of this
manuscript.

1.1 . Climate change context
To limit the global warming of the planet to 1.5°C and avoid difficult living conditions due

to climate change, the IPCC 1 has set a target of net zero CO2 emissions by 2050 (Figure 1.3)
called the Carbon Net Zero 2050 target. A reduction in all GHG emissions must accompany this
substantial reduction of CO2 emissions.

The road transport sector is responsible for 12% of the worldwide GHG emissions, so the
transition of this sector to low-carbon fuels is essential. In Europe, the European Parliament
has set the emission targets for the sales of new passenger cars to an average of 43 gCO2/kmby 2030 (-55% compared with the target of 95 gCO2/km set for 2021) and 0 gCO2/km by 2035
[31]. The first objective for 2030 forces the automotive industry to focus on the development of
electric vehicles (EVs), particularly plug-in electric vehicles, which can be plugged and charged.
The second target imposes that even new plug-in hybrid electric vehicles (PHEV) must not be
sold by 2035. Thus, the battery-electric vehicle (BEV) will be the major plug-in EVs on the roads.
Today, the BEV part in the EV fleet is two-thirds, and the PHEV part is one-third.

Stellantis has set amore restrictive objective concerning the emission targets: reaching Car-
bon Net Zero by 2038 instead of 2050 across Scope 1, 2 and 3 (Figure 1.4).

However, the electrification of the transport sector and the energy sector to decarbonise
themwill lead to a shortage of some rawmaterials that are not for now rare but that can become

1Intergovernmental Panel on Climate Change
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Figure 1.2: Worldwide emissions pathways consistent with implemented policies andmitigationstrategies to limit the global warming to 1.5°C and 2°C [2]

critical in the future years (lithium, copper, rare earth metals · · · ) [32]. Thus, regarding those
supply risks, we can wonder if BEVs should be the only low-carbon technology to be developed
and automotive makers also focus on other alternative fuels such as bio-fuels and hydrogen.
This matter will not be discussed in this present thesis but is a crucial subject to bear in mind.
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Figure 1.3: Global GHG emissions per sector in 2016 [3]

Figure 1.4: Target CO2 emissions for all Stellantis Scopes (legend: (1) Includes Scopes 1 and 2(-75% in absolute emissions – ton of CO2 equivalent) and Scope 3 (-50% in emission intensity –ton of CO2 equivalents per vehicle) [4]

1.2 . Technological aspects
To understand the stakes of the thesis subject, we should first define a long-distance trip and

then focus on the technological aspects of the electric vehicle, the battery and the fast charging
infrastructure.
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1.2.1 . Long distance trips
Nowadays, most EVs can drive more than 200 km on the highway without charging. Still,

according to different mobility surveys, a long-distance trip is defined as a journey of more
than 100 km [33], so, in our case studies, we define trips that are in the range [100, 600] km.
Moreover, in [33], a long-distance trip or journey accounts for one round trip, but in the present
manuscript, we consider only one way of the journey as a long-distance trip.

Long-distance trip with an all-electric vehicle
A long-distance trip is a journey over 100 km (80 km by air) needing at least one fastcharge on the highway (speed limit > 100 km/h).

1.2.2 . Electric vehicles
1.2.2.1 . Low emission vehicles

There are two different types of electric vehicles: the all-electric vehicles without internal
combustion engine (ICE)/gasoline engine and the hybrid vehicles that combine an electricmotor
with a conventional ICE (see Figure 1.5). The all-electric vehicles include the battery electricvehicles (BEV) with a battery alimenting the motor and the fuel-cell vehicles with a fuel cell
converting the hydrogen in electric current to power the vehicle. Hybrid vehicles can either be
plugged in to charge their battery (PHEV) or can only regenerate their energy by braking (HEV).
The HEVs are not considered low emission vehicles (LEV) since they emit more than 50 CO2/km.
This thesis does not study fuel-cell vehicles as the technology is less mature (less energy effi-
ciency, complex hydrogenmanagement . . . ) than the plug-in electric vehicle for passenger cars.

Figure 1.5: Electric vehicle categories
In this study, we will not consider the PHEVs since the models have, on average, only 50 km

of range and use the fuel tank instead of the battery on the highway for long-distance mobility.
Thus, this work only focuses on BEVs.

1.2.3 . Batteries
For BEV, thebattery range is a factor thatmust be consideredwhen optimising the charging

service for long-distance electric mobility since it will partly influence the behaviour of the driver
(range anxiety for example). Traction batteries are a reversible means to transform chemical
energy into electrical energy thanks to an oxidation-reduction reaction. Two electrochemical
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battery technologies exist: the lithium-ion battery (the most common) and the solid-state bat-
tery. The first technology is heavier and capable of fast charging; the second has a higherenergy density but experiences accelerated ageing when fast charged.

The lithium-ion battery is, for now, the major energy storage used for EVs and is the most
mature technology. The battery comprises an anode made from carbon or lithium titanate, a
cathode generally made with Lithium Cobalt Oxide (LiCoO2) and a liquid electrolyte.Even if the electric motor conversion efficiency is 95% far better than the one of a powered
gas engine (30% in the ideal case for the Carnot cycle), the energy density of a lithium-ion battery
is very low (100-265 Wh/kg or 250-670 Wh/L) compared with a fossil fuel (approx. 10 kWh/kg or
10 kWh/L). It is the central aspect responsible for EVs’ short range (see Figure 1.6). According to
Figure 1.6, fossil fuels have good energy density, and hydrogen is the most energised fuel with
the higher specific mass density. Yet, for the hydrogen gas at 700 bar, the energy density of the
total fuel storage (gas + tank) is 7MJ/kg instead of 140MJ/kg since the tank represents 95%of the
storage mass and the H2, 5%. Moreover, the efficiency of the total hydrogen cycle (electrolysis
to convert water into hydrogen and then fuel cell to perform the reverse transformation) to
power a fuel-cell vehicle is, for now, not as efficient as a Li-ion battery pack.

Figure 1.6: Selected energy densities of different components [5]
The range of the battery for an electric vehicle is given according to the test made with

a WLTP cycle (Worldwide Harmonised Light Vehicles Test Procedure), but in fact, the accuraterange is most of the time lower and can be downgraded with a higher consumption ratein case of cold weather or higher speed. Typically, the highway’s consumption rate is twice
as much as in urban areas except for some car models with a better aerodynamic shape (e.g.,
sedan EVs). Indeed, the WLTP cycle is designed for urban areas where the EV will be able to
regenerate energy and will drive at slower pace compared to highway.

Solid-state batteriespropose an alternative to lithium-ion batteries. They are usuallymade
with lithiummetal electrodes (LMB = lithiummetal battery) and solid electrolyte. Since the elec-
trolyte is solid and not liquid as in the Li-ion batteries, the specific energy density of the cell is in-
creased and the safety is improved with no possible leakage or inflammation of the electrolyte.
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This represents an opportunity to reduce the weight and clutter imposed by Lithium-ion bat-
tery and thus, reduce the specific cost (€/ kWh) thanks to the downsizing and the compactness
of the technology (packaging opportunity, less materials use and manufacturing) [7]. Reducing
the weight of the battery also reduces the vehicle consumption and the downsizing reduces its
environmental footprint.

However, fast charging provokes an accelerated aging of solid-state cells by exacerbating
the growth of nodules and dendrites on the lithium metal anode, which degrade the battery
efficiency. Hence, solid-state batteries cannot be fast-charged. According to [34], as it is more
cost-effective to develop batteries that can fast-charge than higher density batteries that cannot
fast charge, the lithium-ion battery is for now the best solution for long-distance mobility. J.-
Y. Hwang et al. [35] have found a promising way to impede the ageing of solid-state battery
due to fast charging, but for now, solid-state battery technology is not mature enough to be
commercialised as storage for EV applications [7].

1.2.3.1 . EV environmental impact
If we only consider the tank-to-wheel impact, the battery electric vehicle is a zero-emission

vehicle while in use, but in fact, the reality is more complex. Indeed, BEVs would be 100% zero-
emission vehicles if the electricity they use comes from not emitting energy sources (renewable
energies or nuclear). In France, we can say that BEVs are low-emission vehicles thanks to the
nuclear energy part of the electric mix, but we cannot say so for other countries (e.g., Germany
and Poland).

Moreover, the construction of the battery is responsible for high CO2 emission (50 kg CO2per kWh from the mine to the export point) leading to manufacturing of EVs more energy in-
tensive than conventional gasoline-powered vehicles (see the EV "carbon debt" in Figure 1.7) [6].
The EV should drive a certain amount of km to compensate for the extra CO2 emissions of the
battery construction. Therefore, a life-cycle assessment of the battery cell should be led to ex-
haustively evaluate the EV technology’s environmental impact (Figure 1.8).

Figure 1.7: Carbon debt of an EV driving in France according to the size of the battery capacity [6]

To reduce the environmental impact of EV batteries, the European Commission has planned
to set mandatory minimum levels of recycled content for 2030 and 2035. Ageing batteries can
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Figure 1.8: System boundaries for the LCA of the EV battery [7]

be re-purposed to support the electric grid and store energy generated by intermittent renew-
able energies (wind power, PV · · · ) [36].

Conclusion on the battery technologies and environment challenges
Promising battery technologies (solid state batteries) are emerging to reduce EV weightand environmental impact with less raw materials needed, but they are not mature yet.Therefore, for now, with Li-ion batteries, we should plan to keep limited-range vehiclesand develop the fast-charging infrastructure instead of adding raw materials for higher-range battery packs.

1.2.4 . Fast-charging infrastructure
1.2.4.1 . Charging types

An EV can charge using AC or DC charging points [37]. The onboard charging unit of the
EV manages the AC-charging to a power usually up to 7 kW (single phase) because the AC-DC
converter needed for this power can be placed onboard. However, the charging time for this
kind of power is very long (approx. 7 hours) and not feasible for long-distance trips. To reduce
the charging time for long-distance trips, the charging power should be increased (≥ 50 kW ), but
the needed AC-DC converter becomes too large to be placed on board, so it is directly located in
the charging point. This is called "DC charging" or charging level 3 [38] and it enables to recover
80% of the battery capacity in less than 30 minutes (fast charging). For this current thesis, as
we focus on long-distance trips, we consider only the DC charging level.

For DC fast charging, there are different types of charging plugs and vehicle communication
standards: the CCS 2 used in the US and Europe, the CHAdeMO used in Japan and finally, the
GB/T used in the People’s Republic of China [39]. In France, the CHAdeMo, the CCS and the AC
Type 2 (43 kW) used to be compulsory on a charging point, but since 2021, the CHAdeMo is no
longer mandatory with the adoption of the CCS standard by most of the OEMs (Figure 1.11).

1.2.4.2 . DC charging
2Combined Charging System
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Table 1.1: DC charging characteristics
Power (kW DC) Current intensity (A) Voltage (V)50 - 350 125 (50 kW) - 500 (350 kW) 400 - 1000

The charging time of an EV is linked to the charging power of the battery pack that de-
pends on the SoC of the EV [19, 40]. The representation of the power according to the SoC
is also called the "charging curve". Figure 1.9 shows that there are as many charging curves
as EV models. However, those curves can be classified according to the six main categories
of charging methods [41]: Constant Current-Constant Voltage (CC-CV - the most used), Con-
stant Power-Constant Voltage (CP-CV), Multistage Constant Current - Constant Voltage (MCC-
CV), Pulse Charging, Boostcharging with CC-CV-CC-CV scheme and Variable Current Profile [42].

Figure 1.9: Charging curves of different EV models on a charger > 100 kW [8]
To understand the charging process, we study here the most simplified model for the bat-

tery cell: the association of an intern resistance 𝑅 in series with an open-circuit voltage source
𝑉𝑂𝐶 (Figure 1.10a). The open-circuit voltage 𝑉𝑂𝐶 evolves with the SoC of the EV. To avoid dam-
aging the battery, the current should be limited at high SoC to keep the voltage cell,𝑉𝑐𝑒𝑙𝑙 , underits maximum value [41]. This is why the Battery Management System gradually decreases the
current after a certain time, andwe observe the charging power drops for high SoC in Figure 1.9.
Often, the charge is limited to 80% of SoC to avoid the longer charging times beyond that SoC.
As an example, we represent in Figure 1.10b the evolution of the current 𝑖𝑐 in the cell and the
voltage cell 𝑉𝑐𝑒𝑙𝑙 according to the time in the CC-CV mode: during the Constant Current phase,
𝑉𝑐𝑒𝑙𝑙 is increasing and then when 𝑉𝑐𝑒𝑙𝑙 is near its maximum value, the current is decreased to
keep a constant voltage cell (Constant Voltage phase).
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(a) Simplified model of a battery cell
(b) CC-CV charging profile

Figure 1.10: Battery model (a) and charging process (b)
In addition, the real charging power during a charging session is limited by either the char-

ging power of the EV (see Figure 1.9) or by the charging power the charger can deliver.
Evenwith fast charging, recovering energy during long-distance trips takes time (on average,

20 minutes to charge from 10% to 80% of SoC) and increases the trip time, especially if the
infrastructure is insufficient and generates waiting queues in stations.

Therefore, it is essential to develop the charging network to avoid long waiting queues and
a significant increase in the trip time.

1.2.4.3 . Charging network
A charging network is a network of charging stations (CSs). Concerning the management

of the charging service, a distinction is to be made between the charging point operators
like Ionity, Total Energies (Figure 1.11a), Fastned (Figure 1.11b), Izivia ... and the e-mobilityoperators like Chargemap (Figure 1.12), Freshmile, Plugsurfing ... [43].

Charging point and mobility operators
A charging point operator (CPO) installs and manages the charging stations of a char-ging network.An e-mobility operator or E-mobility Service Provider (EMSP) manages charging ac-cess to several charging networks and payments with a pass or a mobile application.Usually, an EV driver pays a subscription to one or more EMSPs to access charging pointsfrom multiple partner networks. The EMSP often provides some tools like a chargingplanner or interactive charging maps listing the charging stations’ positions and details.
At the beginning of this thesis (in 2021), the public charging infrastructure on the highway in

France was insufficient to support the charging demand for long-distance trips, especially with
charging stations spaced too far apart. Indeed, in May 2021, 140 out of 440 highway service
areas proposed at least one fast-charging point for long-distance trips. To downplay this lack
of infrastructure, the French program ADVENIR (see the section about stakeholders in Section
1.3.1) was aiming to equip all the service areas with aminimum of two ultra-rapid chargers (150
kW) before the end of 2022. Nowadays, the objective is almost reached with 99% of the service
areas equipped (Figure 1.13).

The price at a station depends on the operator (Ionity – 0.79 €/kWh [44], Fastned – 0.59€/kWh ...) but the offers change. In any case, charging at a public fast charging point is more
expensive than at home, except for some parking lots that offer free charging but at a lower
power.

1.2.4.4 . Connection to the grid
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(a) Total Energies charging station (b) Fastned charging point
Figure 1.11: Charging points in a charging station

Figure 1.12: Position of charging points from the application Chargemap (not only on highwayservice areas)

According to the CRE 3, the connection to the grid of fast charging points (≥ 150 kW) on
highway service areas would be done on the medium-voltage distribution grid (HTA in France).

In the literature, a lot of papers deal with smart charging to balance the grid power, ensure
grid safety and limit charging impact on the grid [25,45–48]. Those studies are generally about
grid balance in cities or microgrids where the charging is localised in the same area and is com-
petitive with the evening peak load. On the contrary, fast charging spreads during the day and
is less competitive with the evening peak load. However, according to a study conducted for
highways in Texas [25], the fast-charging demand needs high peak powers that could lead to
congestion on the grid if the electric network is not reinforced. In France, a report [13] by Ene-
dis and Rte, French operators respectively of the distribution and transmission networks, gives
in 2021 an insight on the development of the fast-charging infrastructure on French highways
and the impact of the charging network on both the distribution and transmission grids. Like
in [25], the report concludes that the grid should be reinforced but with relatively low expenses
for both French operators compared with their annual investment in the grid.

Indeed, the report establishes that by 2035, the charging infrastructurewill need an installed
3Commission de Régulation de l’Energie
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Figure 1.13: Equipment level of the 440 highway service areas in France in June 2023 [9]

(a)
(b)

Figure 1.14: (a) Fast-charging station connection to the grid [10]; (b) Cumulative investmentcosts in the electric grids (transmission and distribution) during the period 2021-2028 and 2021-2035 for the connection of the charging stations on highway needed for the light long-distancemobility
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power from 2 GW (reference scenario) to 5 GW (high variant scenario), which corresponds to 4
MW and 12 MW in average per area. The total cost of developing the grid (distribution and
transmission) to support the power supply of the fast charging infrastructure on the highway
by 2035 is estimated to 300 M€ for the reference scenario and 600 M€ for the high variant
scenario. Figure 1.14b details the costs of the different expenditure items; we notice that most
are dedicated to creating new distribution lines (HTA lines). Those costs represent respectively
only 0.3% and 0.6% of the investment planned by the grid operators. More specifically, for the
15 years from 2020 to 2035, the transmission network (HTB) expects to invest from 60 to 90 M€
(according to the scenario) in the punctual reinforcements of the 63 kV/90 kV grid needed for
the fast charging.

The relatively low costs of the connections and the reinforcements of the grid needed to en-
sure the power supply of the fast-charging infrastructure are encouraging for the development
of light electric mobility over long distances. We can add that the connection and reinforcement
of the grid do not present technical difficulties, and the fast charging on the highway will have
a limited impact on the balance of the grid.

However, the connection to the grid takes time and installing a new charging station can last
several years from the project start to the charging point effectively running. Therefore, theinstallation of charging points must be anticipated, or solutions to manage the chargingfor long-distance trips should be implemented.

Vehicle-to-grid is also an interesting aspect of EV technology to support the electrical grid
[49]. However, as the subject of this thesis is linked to long-distance trips, the vehiclewill have no
interest in giving energy back to the grid (or to other users) because it will need all its available
energy to reach its destination, except if the battery of the EV is big enough to charge other
cars during trip stops. Consequently, we will not work on vehicle-to-grid (more generally, V2X)
problematics in the context of this thesis.

1.2.4.5 . Alternative ways for charging
Other ways of charging EVs exist, such as battery swapping, inductive charging and redox

flow battery use.
The battery swapping consists of changing the discharged battery with a fully charged one.

The time to swap one battery can compete with the time needed for refuelling at the gas station
for a conventional thermal vehicle. However, this method is very costly. Drivers can also con-
sider loaning an additional battery when they go on long-distance trips to avoid transporting
an oversized battery when commuting (short-distance trips).

Inductive charging lanes are portions of the road with coils underneath that establish a
magnetic field thanks to an electric current circulating in the coils. This magnetic field enables
the creation of an electric current in another coil entering the magnetic field. This second cur-
rent is used to charge the battery of an EV as it is driving on the road. This technology will not be
studied in this thesis but represents another exciting alternative to fast-charging infrastructure
for long-distance trips. A cost-efficiency comparison is led in [50] between the fast-charging
infrastructure and inductive lanes and concludes that the fast-charging infrastructure develop-
ment is more cost-effective than installing inductive lanes.

A redox flow battery is an electrochemical cell battery where the two chemical compon-
ents of the reaction are dissolved in liquids from two different tanks. A membrane separates
the tanks. The battery works as a fuel cell (we can replace the liquids with new ones like for
fossil fuels or hydrogen) or as a rechargeable battery. Thus, the flow battery can reduce the
charging time thanks to tank refuelling, but this kind of battery is less powerful and requires
more complex electronics.
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1.3 . Economic and societal aspects
After summarising the technological aspects of the subject, we develop in this section the

economic perspectives of the fast-charging service from drivers’ and investors’ points of view.
1.3.1 . Stakeholders

The development of the fast charging infrastructure and services linked to electric mobility
over long distances involves many stakeholders (Figure 1.15). The automotive makers (Stel-
lantis, Tesla, Renault. . . ) need to comply with European environmental objectives and have
interest in the development of such an infrastructure that can improve EV drivers’ satisfac-tion and so increase EV purchases. Highway operators have to consider the layout of service
areas to build new charging sockets. Electric grid operators should consider new loads in the
electric network management with new transformers for the fast charging points. Public insti-
tutions (e.g., European Union) set the directives to follow and the penalties for the automotive
makers who do not reach the targets (€95 per sold car per gram of CO2 above the targets). Gov-ernments use public incentives to accelerate the transition to electric vehicles: the French gov-
ernment dedicated €100 million to help build fast charging points on the 440 highway service
areas. By the end of 2022, the objective was that each service area had at least four charging
points with 2 of more than 150 kW. Governments can also grant a bonus for purchasing an
electric car (up to €6,000 in France), but that incentive will soon be over.

Figure 1.15: Stakeholders of the fast charging infrastructure development
AVERE is the European Association for Electromobility and gathers actors in electric mobility

from collectivities, associations, and industries. AVERE-France is one of the ADVENIR program
project managers that aims to fund the development of private or public charging points with
energy efficiency certificate (CEE in French) [51]. Through this program ADVENIR, the French
government planned to invest 100-million-euro incentives in the purchase and installation (elec-
tric connection downstream the delivery point) of more than 45,000 new charging points by the
end of 2023.

In France, there is no partnership between automotive makers and the government to
develop charging infrastructure. Still, for instance, in Germany, automotive makers (BMW,

24



Daimler. . . ) have participated in the private/public partnership at the origin of the fast-charging
network Ionity. The automotive maker Tesla had first developed its own infrastructure network
only for Tesla drivers, but now the Tesla superchargers are open to all the other brands.

The strategies differ from one stakeholder to another. Still, their diversity should be con-
sidered to see how electric mobility over long distances will be improved thanks to the devel-
opment of a high-power charging network. The elaboration of an economic model and the
calculation of the CAPEX and OPEX depend on the projection scenarios and the stakeholders
considered. We present the e-mobility on long distances from the point of view of an EV driver
(section 2.1.2) before dealing with the infrastructure operator/investor’s point of view (section
2.1.3).

1.3.2 . Social aspect: driver’s point of view
The section on the technology aspects (Section 1.2) sheds light on the different challenges

electric mobility faces, especially when we compare the performance of the conventional ICE
vehicle with one of the electric vehicles. Indeed, as consumers are used to the performance of
ICE cars, the transition to an electric car is uneasy. We can identify from Figure 1.16 that the two
main drawbacks to EV adoption are range anxiety and long charging times that deter using an
EV for long-distance trips.

Figure 1.16: Comparison of the range and refuelling time performances of the different vehiclepropulsion systems
According to Faizal et al. [52], range anxiety is the first drawback to EV adoption. This aspect

is closely connected to the feeling that the public charging network is not dense enough and
that acquiring a higher battery range is costly (second drawback according to [52]). Therefore,
two solutions exist to mitigate range anxiety:

1. The driver buys an EV with higher battery capacity, but the cost of owning is increased
(approx. 100 €/kWh) as well as the environmental footprint of the EV (see Section 1.2.3.1).

2. CPOs install a denser charging network with a maximum distance between two charging
stations.
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For the spacing of the charging stations, G. Napoli et al. [53] set the maximum distancebetween two charging stations to 0.8 ·𝑟𝑚𝑖𝑛, with 𝑟𝑚𝑖𝑛 theminimum range in the EV fleet on the
highway. Indeed, the drivers seem to perceive they are safe if they use only 80% of their battery
capacity [54]. In the study, 𝑟𝑚𝑖𝑛 is 133 km, so the maximum distance should be approximately100 km. S. Funke et al. [55] establish the same maximum value (100 km between two charging
stations). In France, the government expects a denser network with a charging station in every
service area on the highway, so on average, a charging station every 50 km.

Concerning long charging times, when an EV owner needs their car for commuting, they
can usually wait the whole night or the whole day to charge (the charging can last 7 hours on
a level 1 charging point). However, for long-distance trips, the EV driver aims to charge as fast
as possible, so they need public fast-charging infrastructure with DC power (≥ 50 kW). Faster
charging also reduces station waiting time (see Section 1.2.4.2). Nevertheless, even with high
charging rates, the charge is still longer than refuelling.

Moreover, the higher the SoC of the EV is, the lower the charging power is due to technical
constraints and the management of the charging to avoid damaging the battery (see Section
1.2.4.2). Therefore, optimising the charging stops and the energy recovered in stations to charge
the battery in the best SoC range (when the power is the highest) is beneficial to gain as much
time as possible for long-distance trips.

A report from ACOZE France [56] defines the quality criteria the charging service should
observe to improve the EV driver’s experience on the highway: the waiting time should not
exceed 30 minutes per charging session, and the length of the waiting queue length should be
limited to 2 or 3 times the number of chargers in stations. ACOZE suggests building parking
spots dedicated to waiting for EVs to avoid congestion in the charging parking lot.

Regarding the technical challenges and the EV drivers’ expectations, the solutions tomitigate
extended trip times due to long charging times are:

1. Increasing the power rate in stations
2. Increasing the number of station charging points to avoid long waiting times.
3. Planning the charging of the EV to benefit from SoC ranges for which the charging rate is

the highest.
Concerning the first solution, the charging cost for a driver is usually higher for higher char-

ging rates. Thus, to evaluate the performances of the different fast-charging strategies we study
in this present thesis, we should take into account the charging cost in addition to the trip time
to model the discontent of an EV driver using the charging service. Moreover, to benefit
from high charging rates, the drivers must possess an EV capable of ultra-fast charging. There-
fore, we develop in this thesis an analysis of the trade-off between the time gain in sta-tions compared with the cost of the infrastructure to develop according to the chargingpower of the EV fleet.

Highlights on the EV owner’s point of view
The charging service for the EV should propose:

• A charging network dense enough to mitigate range anxiety according to the EVrange.
• A sufficient number of charging sockets and adequate station charging rates tolimit waiting time.
• A planning of the charging to get lower charging times.

26



1.3.3 . Charging point operator’s point of view
According to the EV drivers’ expectations and solutions that need to be implemented tomit-

igate charging service challenges, the development of fast-charging stations is vital. In the white
paper by M. Nicholas and D. Hale from ICCT4 [38], the relationship between the deployment of
fast-charging infrastructure and the number of EVs on the road seems to be more complex
than a simple proportional evolution. Indeed, in the beginning, a necessary minimal number
of fast-charging stations should be built for geographical cover (limited range) to incite the pur-
chase of EVs. Then, as long as stations are not highly saturated, the installed charging points
can support more EVs. S. Funke et al. [55] also underline that the number of charging stations
can be relatively low from a technical point of view. Still, to deal with range anxiety, we need to
add more charging stations to reduce the distance between them and reassure drivers.

Moreover, fast-charging points are costly (up to 120,000 e [26]) so, CPOs or investors must
establish a business model to size the infrastructure as close as possible to charging demand.
They first need to evaluate the charging needs and then compute the investment and operating
costs of the infrastructure according to the stakeholders considered in the model. To evaluate
the future charging needs, the investors have to quantify the future number of EVs on the roads
that will use the highway charging services. However, this task is uneasy as traffic flow data is
not always open. When the CPOs manage to define the traffic flow, they can choose to size
the infrastructure according to an average traffic flow or according to high-traffic situations.
The first consideration is limiting the infrastructure cost and ensuring good profitability of the
infrastructure. Still, the risk is that long waiting times increase drivers’ dissatisfaction during
occasional high traffic flow. For the second consideration, the investor ensures that the wait-
ing time is limited, but the infrastructure is oversized. Therefore, to avoid long waiting times
and oversizing, a charging strategy must be found to use more efficiently the charginginfrastructure when it is saturated.

Once the charging needs are evaluated, the calculation of the CAPEX and OPEX depends on
the projection scenarios and the stakeholders considered.

Highlights on the CPOs’ point of view
Fast-charging infrastructure is essential to mitigate the charging service drawbacks, butas a DC-charging point is costly, developing the fast-charging infrastructure is costly, es-pecially for ultra-rapid charging rates (350 kW). Therefore, such infrastructure develop-ment should be optimised to limit its costs while improving EV drivers’ experience onlong-distance trips. A solution should be implemented to use the charging infrastructuremore efficiently.

1.4 . Conclusion and presentation of the manuscript structure
The purpose of this PhD thesis ismainly to help automotivemanufacturers such as Stellantis

abide by the environmental objectives defined by the European Standards and the Carbon Net
Zero 2050 strategy. To reach those objectives, the acceptance of EVs must be improved to
pursue the development of the technology. For this thesis work, we choose to focus on the long-
distance perspective of electric mobility as it is a significant issue for battery electric vehicles
and because the literature already proposes many works about urban electric mobility but a
few about long-distance electric mobility [20].

4International Council of Clean Transportation
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In this general introduction, we have analysed the technical, economic and social aspects of
the fast-charging service that would enable electric mobility over long distances. This overview
points out the complexity of this subject where different aspects affect the charging service
(vehicle characteristics, user needs, charging infrastructure characteristics and weather con-
ditions [57]) with different interconnected networks (highway network, power grid and fast-
charging infrastructure network) [58] and where trade-offs have to be made between the ob-
jectives of the different stakeholders (EV drivers’ satisfaction, infrastructure cost minimisation
· · · ).

Consequently, the fast-charging infrastructure should be optimised, and new chargingstrategies should be implemented to control the EV fleet charging and help limit the infra-
structure cost while improving EV drivers’ satisfaction.

To address this issue, we first present in Chapter 2 the various optimisation methods and
parameters already considered in the state of the art and the research activities led on the
subject to extract the research gaps that drive this PhD thesis.

Then, we present in Chapter 3 the simulation framework we use to experiment and test
the different charging strategies we study during this thesis. The framework was first imple-
mented by J. Hassler et al. [21] and enables to dynamically simulate a flow of EVs during a day
on a highway with charging stations. The first strategy tested, thanks to the framework, is a
strategy of fleet control based on communication between EVs and charging stations to limit
waiting time in stations. The strategy is called the First-Come First-Served communication since
the priority in stations is based on the First-come-first-served rule. The previous study of the
strategy has shown that the EV drivers’ experience can be improved by the use of the FCFS com-
munication strategy with, for instance, a reduction of the travelling time thanks to a better use
of the charging infrastructure [21].

To go further in the performance evaluation of the FCFS communication strategy, we imple-
ment another control strategy, the reservation strategy, where the EVs communicate their char-
ging plans but also book charging time slots. The comparison of both charging strategies is led
in Chapter 4 to determine which control strategy most benefits the EV drivers.

Concerning the optimisation of the charging infrastructure, we show in Chapter 5 the be-
nefit of the FCFS communication strategy in the reduction of the infrastructure costs by com-
puting thanks to a Grey Wolf optimiser the optimal infrastructure when the fleet uses the FCFS
communication strategy. The EV drivers’ expectations are modelled as a maximum waiting time
guarantee by the optimal infrastructure.

Finally, as increasing the charging rate would positively impact the trip time but is costly, we
analyse inChapter 6 the trade-offbetween the infrastructure cost and the time spent in stations
according to the share of ultra-fast-charging EVs (EVs charging at ≈ 350 kW) in the fleet. We
optimise the infrastructure to be developed thanks to a multi-objective optimiser: a differential
algorithm with NSGA-II convergence.
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2 - Literature review on charging strategy optimisation
Considering its technological, economic and societal aspects, the electric mobility on long-

distance proves to be a complex problem that should be solved thanks to multi-level andmulti-
criteria optimisation. Section 2.1 presents the different aspects of the charging service that
can be optimised. Then, we focus on the optimisation methods from the literature that are
applied to the specific subject of this thesis: development of an optimal EV charging control to
reduce charging and waiting time and optimisation of the charging infrastructure. As explained
in Section 1.3.3, to propose an efficient charging service that improves EV drivers’ satisfaction,
we need to evaluate the future charging needs for long-distance trips. Thus, we first determine
in Section 2.2 the different methods that are used in the state of the art to estimate the future
charging volume and establish charging demand scenarios. Then, in Section 2.3, we depicts the
charging control strategies evoked in the literature before presenting the different methods
used to optimise the infrastructure (Section 2.4).
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2.1 . How can we optimise the charging service?
2.1.1 . Charging service optimisation: a multi-objectives problem

The aim of this thesis is to improve EV’s acceptance by drivers but also to take into account
the point of view of other stakeholders such as investors, grid operators and charging infra-
structure operators through an optimised development and operation of the fast charging in-
frastructure on highway.

According to S. Jawad and J. Liu [58], the development and the use of the fast charging in-
frastructure leads to an interdependence of multiple networks: electric power networks, trans-
portation networks and charging service network scheduling. To efficiently plan each network,
a cooperative coordination of those interdependent networks is paramount and shouldmix the
forecasting for EV charging, transportation traffic and load on the power system. Concerning
the impact of the long distance mobility on the electric power network in France, we have seen
in Section 1.2.4.4 that the impact will be limited according to French operators of the grid and
will require little grid reinforcements compared to their annual investment forecast on the grid.
Consequently, the impact on the grid is not studied in the thesis.

In addition, with the power grid and the traffic fluency constraints, we should above all
consider in the study EV driver’s satisfaction by reducing range anxiety and travelling time
while minimising the cost of the charging infrastructure.

The travelling time can be divided in three parts: the driving time, the waiting time andthe charging time. The driving time does not differ from the one of a conventional ICE car
except when the EV drivers slow down to preserve their range. Indeed, the driving style highly
affect the consumption of the EV [19,59], especially high speeds that significantly increase the
consumption. However, as the driving style depends on the driver behaviour, we consider thespeed as an exogenous variable of the problem and we do not include the speed as a variable
in our work. The waiting time depends on the availability of the charging infrastructure and
can be reduced by a denser network and/or a more efficient use of the infrastructure. Thecharging time is limited by either the power of charge of the EVs or the power of the station:
the higher the minimum charging power of charge is, the quicker is the charge. The EV driver
can also optimise it charging plan by choosing the strategic level of SoC to charge.

Therefore, to improve the charging service, the optimisation should take into account the
battery capacity to find the optimised number and location of the charging stations and find the
optimised sizing (number of charging points) and power of the charging stations to avoidwaiting
time and reduce charging time. The control of the charging represents also an important lever
for action by using more efficiently the infrastructure and the EV state. We differentiate in the
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rest of the chapter two categories of charging strategies that are usingmulti-objectivemethods:
the control strategies 2.1.3.3 and the sizing strategies 2.1.3.4.

2.1.2 . Social cost for the EV drivers
As explained in Section 2.1.2, an EV driver expects to find a certain level of charging service

quality when going on long-distance trip to be satisfied. Each drawback to EV adoption can
be associated to a social cost that the charging service aim to minimise or at least reduce to
improve EV drivers’ satisfaction and mitigate the challenge. This social cost is used in cost-
efficiency analysis of different solutions to mitigate a problem or in optimisation problem as an
objective to minimise. We present in Section 2.1.2.1 a cost efficiency analysis where the social
cost for the driver is the cost of ownership. In Section 2.1.2.2, the social cost is associated with
the trip time.

2.1.2.1 . Cost of ownership
As presented in Section 2.1.2, the two solutions to mitigate range anxiety are: increase the

battery or develop the charging infrastructure. To evaluate the cost-efficiency of the first solu-
tion, S. Funke et al. [55] compute the infrastructure cost (see Section 2.1.3) and the cost of own-
ership of an EV according to its battery capacity and consider in the calculation the rent of an
ICE vehicle if the range is not sufficient to realise a long distance trip with at most two charging
stops. The cost of ownership in [55] is evaluated as the difference of equivalent annual cost,
Δ𝐸𝐴𝐶, between an EV and a conventional ICE vehicle (2.1). The Equivalent Annual Cost (𝐸𝐴𝐶)
corresponds to the annuity whose net present value is equal to the net present value of the
investment. The CAPEX difference between an EV and an ICE vehicle corresponds mainly to the
battery purchase price (100 to 350 €/kWh in the study). The OPEX includes operation andmain-
tenance costs, annual cost for renting a conventional ICE car for long distance trips if the battery
capacity is not enough and the charging/refuelling cost proportionate to the fuel consumption
and the annual travelled kilometers.

Δ𝐸𝐴𝐶 = (𝑂𝑃𝐸𝑋𝐸𝑉 −𝑂𝑃𝐸𝑋𝐼𝐶𝐸) + (𝐶𝐴𝑃𝐸𝑋𝐸𝑉 − 𝐶𝐴𝑃𝐸𝑋𝐼𝐶𝐸) ×
𝑟 (1 + 𝑟)𝐿

(1 + 𝑟)𝐿 − 1
(2.1)

With 𝐿 the number of periods (the car life time) and 𝑟 is the discount rate.
According to [55], investing in fast-charging infrastructure is alwaysmore cost-efficientthan investing in high battery range. The result of the study is logical: longer battery range

induces more individual cost than the public development of the fast charging infrastructure.
Developing the fast-charging infrastructure instead of increasing battery range might also have
a more beneficial ecological impact since more range currently means more battery materials
use so more ecological impact. However, studies should be led to justify that the infrastructure
would not need in that case more materials than the whole longer-range battery packs would
have.

2.1.2.2 . Trip time cost
Another drawback we identified in Section 2.1.2 is the long charging time that extends the

trip time. Thus, the social cost can be defined as a trip time cost. T. Oda et al. [15] perform a
cost-benefit analysis on the addition of a charging point in a station according to the number
of EVs entering a station per day and determines that a charging point should be added every10 ± 3 EVs per day to limit thewaiting time to 10 minutes for 90% of the fleet. In this study,
the social cost is the waiting time. In [55], to estimate the number of charging points needed in
stations, S.Funke et al. add a charging pointwhen theaveragewaiting time in stations exceed
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five minutes. We see later in Sections 2.3 and 2.4 that multiple papers from the literature use
the waiting time or the trip time as a social cost to be minimised.

2.1.3 . Economic model for the charging infrastructure
As alreadymentioned in Section 1.3.3, a CPO needs to evaluate the future charging demand

(Section 2.1.3.1) before computing the investment and operating costs of the infrastructure
according to the stakeholders considered in the model.

2.1.3.1 . Evaluation of the charging needs
To evaluate the future charging needs, the investors have to quantify the future number of

EVs on the roads that will use the highway charging services. The way the number of EVs on the
highway is forecast varies from a study to another: the evaluation of the charging infrastructure
needs can be static with a constant number of EVs on the road [60, 61] or more precise with a
dynamic evolution of the number of EVs on the roads [11,50]. In addition, some studies focus on
evaluating the charging needs according to average traffic flow [53] while other prefer to size
the infrastructure based on peak traffic flow [13, 50] during holidays departure for instance.
The first consideration limit the infrastructure cost but the risk is to have during occasional high
traffic flow, very long waiting time. For the second consideration, we ensure that the waiting
time is limited but the infrastructure is oversized.

After evaluating the future volume of EVs on the highway, the charging demand should be
evaluated according to long-distance trips statistics. As it is uneasy to find public detailed trip
data listing origin and destination of the trip as well as location of charging stops, the papers in
the literature usually feed their model with public available traffic data on road sections [55,62,
63] or with trip details [64] to determine the location of the future charging stops. We detail in
Section 2.2 the various means used in the literature review to define the charging needs.

2.1.3.2 . CAPEX and OPEX for the infrastructure
Once the charging needs are evaluated, the calculation of the CAPEX and OPEX depends on

the projection scenarios and on the stakeholder considered. For future works on the calcula-
tion of the infrastructure costs in this thesis, the CAPEX and OPEX calculation for the charging
infrastructure mix the expressions given in the literature.J. Serradilla et al. [11] presented in 2017 the business model of the charging network with
the different elements that should be considered when evaluating the CAPEX and OPEX of the
fast charging infrastructure. This article aims to enlighten the future investments and policy
decisions in the Rapid Charge Network project (RCN) in the UK. The Figure 2.1 summarises all
the sources of costs and revenues for a FCI. The identified stakeholderswere the site owners,the infrastructure service suppliers and the charging service operator.E. Suomalainen and F. Colet [50] propose a cost-efficiency comparison of the fast-charging
infrastructure and the charging lane in France. W. Kong et al. [45] aim to plan the charging sta-
tions sitting thatminimise the fast-charging infrastructure cost and satisfy the constraints linked
to the drivers, the traffic flow and the power grid. In [61], the authors optimise the location and
the size of the charging stations.

According to the previous studies, we can deduce a general expression of the infrastructure
cost as the following Net Present Value (NPV):

𝑁𝑃𝑉 = −𝐼𝐶𝑃 − 𝐶𝑖𝑛𝑠𝑡𝑎𝑙. +
𝐿∑︁

𝑘=1

−𝐼𝐶𝑃,𝑘 − 𝐶𝑖𝑛𝑠𝑡𝑎𝑙.,𝑘 − 𝐶𝑂&𝑀 + 𝐸𝑠𝑜𝑙𝑑 · (𝑝𝑐𝑙𝑖𝑒𝑛𝑡 − 𝑝𝑒𝑙𝑒𝑐.)
(1 + 𝑟)𝑘

(2.2)
With 𝐼𝐶𝑃 and 𝐶𝑖𝑛𝑠𝑡𝑎𝑙. respectively the cost of the chargers installed during year 0 of the

investment and their installation cost. The terms 𝐼𝐶𝑃,𝑘 and 𝐶𝑖𝑛𝑠𝑡𝑎𝑙.,𝑘 represent the same costs
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Figure 2.1: Sources of costs and revenues from the operation of a recharging service [11]
during year 𝑘 if the infrastructure is dynamically built. 𝐶𝑂&𝑀 stands for the operation cost
and maintenance. The energy sold during a year is 𝐸𝑠𝑜𝑙𝑑 , the price paid by the client using thecharger is 𝑝𝑐𝑙𝑖𝑒𝑛𝑡 and 𝑝𝑒𝑙𝑒𝑐 the electricity price paid by the charging operator.According to a paper from Lux Research (2017) [12], the cost of the building and operating
of a 120 kWcharging point is evaluated to $27,000 (e23,000) and the cost is doubled for a 350 kW
charging point 2.2. Those costs seem to be less than the other costs mentioned in other papers
cited in this section (for instance, 70,000e for a 150-kW charging point in a 8-port station in [55]
or 120,000 e for a 350-kW chargers in [65].

Figure 2.2: Resulting cost per charging station of 6 ports for 120 kW and 350 kW fast charging,segmented by charging station component [12]
As the parameters to compute the NPV vary from a study to another, we choose to consider

in our thesis work the cost information listed in the data source of the paper E. Suomalainenand F. Colet [65] that gives more detailed costs. This data source is a working paper published
in ICCT in 2019 [26]. The Table 2.1 sums up the estimated cost of one charger hardware.

In the sameworking paper, the installation costs per charger are also depicted. They include
the labor, materials, permit and taxes costs. According to the installation cost presented in the
working paper and in [55], it is more interesting to install more than one charger in the same
station to reduce the installation cost per charger.

2.1.3.3 . Optimisation in control strategies
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Table 2.1: Estimated DC fast charge hardware cost
Level and power Hardware cost per-charger
DC fast 50 kW $28,401 (24,000 e)
DC fast 150 kW $75,000 (63,500 e)
DC fast 350 kW $140,000 (118,500 e)

One of this thesis objectives is to propose a charging strategy that help driver using more
efficiently the infrastructure already installed. This charging strategy relies on the control of the
charging and can, according to the literature, optimise different aspects of an EV charging plan:
what is the optimal path to the destination, where and when the EV will stop to charge, which
amount of energy the EV should recover... Section 2.3 gives references about charging control
strategies that inspired the ones we present in this thesis work, the FCFS communication and the
reservation strategies.

2.1.3.4 . Optimisation in sizing strategies
The other objective of this thesis is to size the charging infrastructure to minimise its cost

and to satisfy drivers’ expectations that is usually be able to reach its destination, reduce its
trip time and its charging cost. The planning of the infrastructure can concern only the location
of the station (especially for maximum flow coverage) or both station locations and number of
charging points per power level in each location. Section 2.4 describes the state of the art of
those infrastructure planning methods.

2.2 . Modelling charging demands
From cost-efficiency analysis of the charging service to charging control of the fleet, the

authors in the literature propose different methods to generate charging demand scenarios.
Depending on the study, authors can use only historical charging data to evaluate the waiting
time in station anddeduce theneeded infrastructure tomitigate it or use trafficflow information
on the road (highway or not) (Section 2.2.1) to deduce the charging demand in stations (Section
2.2.2).

2.2.1 . Modelling the traffic flow
The traffic flow can be determined according to different methods and its use depends on

the objectives of the charging strategy or the service quality criteria observed. To test the ef-
ficiency of control strategies for EV charging, the papers use either complete trip generations
such as in [20, 24, 66] or traffic flow on section roads (for instance in [67]). When the cost-
efficiency analysis or the optimisation deals with the charging station location and sizing, the
authors propose also to either based their charging demand estimation on complete trips or
on traffic flow between nodes of the transportation network. Usually, when the objective is
the maximisation of the share of covered trip (Section 2.4.1), the traffic flow is represented as
complete Origin-Destination (O-D) trips [22, 68]. On the contrary, when the objective is more
oriented on reducing the social cost (for instance the waiting time), the evaluation of traffic flow
on road sections is more used to deduce the charging demand in stations [53,61].

2.2.1.1 . Share of EVs in the fleet
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Before evaluating the traffic flow, the share of EVs on the road has to be defined. Indeed,
the existing data concern usually traffic flow mixing ICE vehicles and EVs. Moreover, for long-
distance trips, EV owners do not necessary use their EV since the EV was initially an urban tech-
nology due to its limited range and was not designed for long distance trips [50]. According to
a survey by Enedis [69], approximately 50% of EV owners use their EV for long-distance travels.

2.2.1.2 . Trips from data source
The easiest way to generate complete trips is to use data from real trips databases such as

in [64], [13] and [70]. The trips are sampled from complete Origin-Destination trips database
that give more or less details on the vehicle journeys. For instance, in [64] or in [70], complete
itineraries of vehicle are used to estimate where an EVwould stop to charge whereas in [22], the
database only gives O-D pairs and a shortest-path between the origin and destination is found
to create the routing of the vehicle.

2.2.1.3 . Trips from entry/exit probability
When we do not have O-D trips from real world dataset, we can create trips on the highway

according to arbitrary or real-world based entry and exit probabilities on an highway in addition
to the time of entrance. For instance in [71], the arrival rate on the highway follow a Poisson
law and the O-D pair are randomly selected. In [24], the time of entrance is selected according
to hourly entrance flow on the French highway A6 that is deduced from opendata source.

2.2.1.4 . Traffic on road sections
Other papers evaluate the charging needs only according to traffic on road sections near a

station and do not consider complete trips. In [55] and in [61], the charging demand per hour in
each potential charging station location is statistically estimated from traffic volumes near the
station that is reconstituted from German traffic data. In [50], the traffic volume on the whole
highway corridor is considered without differentiating the traffic on smaller sections.

2.2.2 . Modelling the charging demand in stations
Once the traffic flow is estimated, the effective charging demand in stations or on specific

road sections is evaluated. The demand in a station can be directly deduced from traffic volume,
battery range and charging frequency but it can also be evaluated with more complex models
of EV charging process such as queueing theory and charging distribution depending on the EV
charging strategy.

2.2.2.1 . No strategy when choosing the charging stop
E. Suomalainen and F. Colet [50] evaluate the cost of the charging infrastructure to be

developed on the French highway A6 according to the peak charging demand on the highway.
This power peak is simply computed with:

𝑃
𝑝𝑒𝑎𝑘 𝑝𝑒𝑟 𝑠𝑡𝑎𝑡𝑖𝑜𝑛
𝑡 = 𝑒 × 𝑑 × 𝐸𝑉ℎ𝑖𝑔ℎ𝑤𝑎𝑦,𝑝𝑒𝑎𝑘

𝑡 (2.3)
With 𝑒 the consumption rate of the EV, 𝑑 the distance between stations and 𝐸𝑉ℎ𝑖𝑔ℎ𝑤𝑎𝑦,𝑝𝑒𝑎𝑘

𝑡 the
traffic peak on the highway A6 in year 𝑡 (this traffic peak is established to 9600 vehicles per
hour). A similar method is used in [53] to determine the number of charging points according
to the traffic flow near the charging station and in [63], the demand for a charging station is the
peak traffic volume times the estimated energy consumption between the station and the next
station (flow-capturing approach).

In [13] and in [64], the position where the EV stops to charge is evaluated from O-D trips
(with starting time) and the battery capacity of the EVs and then, the power needed per hour is
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evaluated to deduce the sizing of the charging stations. In [13], the number of charging points
is set such as there is no waiting time during the 30th busiest hour of the year (Figure 2.3).

Figure 2.3: Number of service areas equipped with high power charging points [13]

2.2.2.2 . Charging stops depending on the EV strategy
The charging demand in a station can also depend on the EV strategy that choose the station

to charge.
Some of the papers use game theory to determine where the EVs are going to charge. Game

theory is the use of mathematical models to analyse the strategy of several rational decision-
makers dealing with a competitive situation where the outcome of a participant’s choice of ac-
tion depends critically on the actions of other participants. This theory can be useful to un-
derstand and model the uncertain behaviour of decision makers for example in case of price
variations. As wewill see later in the chapter, game theory is used in [72] where a game problem
is solved by finding one of the Nash Equilibrium of this game if one exists. The Nash equilibrium
is the situation where no player can improve its outcome by being the one to change his or her
strategy. In Nash equilibrium, the outcome is optimal for each player considering the decision
of others.

Other papers will determine where the EV charge thanks to simulation of complete trips
where the EVs optimise their charging stops [20,24].

2.2.2.3 . Queuing theory
After determining where the EVs are going to stop, the model of the charging process can

go further. For control strategy based on waiting time information-sharing [73] or for sizing
strategies linked to waiting time reduction, the waiting time can be estimated according to
queuing theory [15,55,60,61].
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In the queuing theory, the waiting system is defined with a flow of “clients” whose arrival
spread over time and who ask for a service. One random variable A rules the arrival process of
the client and another randomvariable S represents the service timedistribution. The simplified
Kendal notation 𝐴/𝑆/𝑠 gives the first letter of the process followed by each random variable (A
and S) and “s” informs on the number of “servers” that can perform the service. For instance,
the𝑀/𝐺/𝑠 queuingmodel corresponds to a queuemodel where the arrivals areMarkovian (M),
the service durations have a General distribution (G) and there are s servers. Markovian stands
for an evolution of the arrivals during a time period following a Poisson process of rate 𝜆 or an
exponential process.

Markov chain uses a chain of states and a matrix of probability to describe the probability
to be in a certain state at the next iteration considering the previous state. As found in the
literature [14,55,60], the queuing evolution at a station is oftenmodelled by a 𝑀/𝑀/𝑠/𝑁 model
with its Markov chain following a birth-and-death process (see Figure 2.4):

• The arrival time follows a Poisson process with an arrival rate 𝜆 (birth rate).
• The charging duration follows an exponential distributionwith an average duration of 1/𝜇
(𝜇 is the death rate).

• There are s charging points and 𝑁 − 𝑠 waiting places.
• There is only one charging queue for all the charging points.

Figure 2.4: Markov chain describing a flow of EVs in a charging station with 𝑠 charging pointsand 𝑁 − 𝑠 waiting places [14]
Shabbar et al. [60] introduce a probability 𝛼 that characterises the choice of an EV to stop

andwait at a full station (all the charging points are busy) or to continue its trip (see the resulting
Markov chain and probability expression in the paper). The arrival rate can differ from a station
to another to take into account the local charging demand and dimension more adequately
every charging station [55]. The arrival rate at a given station is deduced from the traffic situ-
ation on the highway segment near the station or according to the charging selection strategy
of the EVs. The average waiting time in stations given in [60] is:

𝑊𝑞 = 𝐿𝑞/𝜆𝑎 (2.4)
Where 𝐿𝑞 represents the average amount of time the EVs spend in the queue and 𝜆𝑎 is the realarrival rate in stations.

The averagewaiting time is often used to scale the fast charging station by adding an average
waiting time criterion. For instance, Funke et al. [55] set the average waiting time criterion to 5
minutes: if𝑊𝑞 exceeds 5 minutes, another charging point should be added to the station.

In [72], a birth-death process is used for the 𝑀/𝑀/𝑠/𝑐 queuemodel associated to the char-
ging queue at stations. The arrival rate at a station is derived from the EV strategies. In [15], the
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arrival rate in the station is not deduced from traffic flow but according to a real-world charging
dataset. In this paper, a cost efficiency analysis is done using queuing theory to determine for
how many charges per day in a station, a charging point should be added (Figure 2.5): a new
fast-charging unit should be added if the number of EV per day per charging station is equal to
10 ± 3 to guarantee a 10-minutes maximum waiting time.

Figure 2.5: Cost-benefit analysis for installing an additional charging point (QCU = quick chargingunit) [15]

2.3 . Control strategies of the charging in the literature
A strategy improving the charging experience of EV drivers, before adding new charging

points, proposes charging services based on the control of the charging to deal with a sparse
charging infrastructure before developing the charging infrastructure itself.

The objectives of those strategies are numerous such asminimising the variation of the grid
load orminimising the travelling time of each EV. Theway the control of the charging schedule is
done depends on the studies. Most of the time, real-time information-sharing between stations
and EVs such as pricing feedback (Section 2.3.1) or congestion feedback on the road or in sta-
tions (Section 2.3.2) in stations enable to manage the charging schedule of the EVs [58]. The EVs
can plan the optimal next station where they should stop but, in case of multiple needed char-
ging stops, they should also consider planning their whole charging schedule (Section 2.3.3). We
describe in Section 2.3.4 the paper dealing with both congestion in stations thanks to real-time
information-sharing and whole charging stops planning.

2.3.1 . Dynamic pricing to control EV charging
The price variation of the electricity during the day is a classic lever to delay the electric de-

mand to off-peak periods. The same mechanism can be used to control the charging schedule
(when) or location (where) of the EVs. Amin et al. [16] reviews the different dynamic pricing
schemes that a station operator can adopt to influence and coordinate EVs’ charging plans and
reduce the impact of the charging infrastructure on the electric grid. Depending on the cited
papers in the review, the dynamic pricing can be used to minimise the power loss on the grid,
minimise the peak demand, maximise renewable energy sources contribution in the EV char-
ging or simply minimise energy cost.
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In addition to the review of dynamic pricing schemes that are given in the literature to con-
trol EV charging, Amin et al. first arbitrate between a centralised (the decision is made by the
aggregator) and a distributed (the decision is made by the driver) framework to manage the
charging process strategy of EVs. The aggregator is the interface between drivers and network
operators. The distributed framework is more acknowledged in a context of EV charging con-
trol because it is more flexible and more scalable with less computational complexity. Then,
the paper aims to determine which dynamic pricing policies should be preferred among Real
Time Pricing (RTP), Time of Use (TOU), Critical Peak Pricing (CPP) or Peak time Rebates (PTR) (see
Figure 2.6 for the definitions). It appears that the RTP scheme is the most encouraging solution
since it is fairer and enables higher economic efficiency than the other schemes. However, RTP
presents higher billing instability since the price is varying every hour.

Figure 2.6: Dynamic charging pricing schemes [16]
Other papers present dynamic pricing method and model the interaction between the dif-

ferent stakeholders of the system thanks to the game theory. For instance, Tan & Wang [72]
describe a two-levelhierarchical game approach (game theory) tomodel the pricing strategy of
fast charging stations inurban area as a non-cooperative game and that simulates the choice of
charging stations by EVs thanks to multiple evolutionary game formulations. The upper level is
associated to the fast charging stations’ pricing strategywhere each station aims tomaximise
its profit where the electricity price purchase for the CS is based on TOU pricing according to the
load on the grid. The Nash equilibrium of the non-cooperative game on this level is computed
thanks to Particle Swarm Optimisation (PSO). The lower level is designed for EVs chargingnavigation strategies that depend on the price set by fast charging stations (FCSs). This
study aims to show the interest of a pricing strategy adopted by FCSs for electric network and
EV drivers. Indeed, the real time evolution of the pricemakes EVs charge at off-peak hoursand reduces in the same time the trip time of EVs compared with a short-path strategy. This
pricing strategy is used in an urban context and not in a long-distance trip situation but, this
might be implemented for fast-charging stations on the highway.

Rana et al. [49] propose also a two-layer approach with cooperative games where the en-
ergy is traded between Evs who want to discharge and others who want to charge. The negoti-
ations of the energy price are done in peer-to-peer mode through a cloud server. However, this
system is not applicable in our work since we suppose that no EV will accept to discharge during
a long distance trip as it will accentuate the refuelling time problem we are trying to palliate in
this thesis. Still, we can imagine an equivalent trading system where the EVs deal charging time
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slots by biding for instance the price they are willing to pay according to their state of charge.
In another paper, C. Liu et al. [17] also describes a peer-to-peer trading system using block-chain where EVs, solar panels and storages can trade electricity among them to minimise the
power grid fluctuations and flatten the power consumption profil (Figure 2.7). Again, the applic-
ation of thismechanism is implemented formicrogrids and not for long-distance travels but this
Peer-to-Peer trading system using blockchain could be used to set secured and decentralised
reservations of charging time slots in fast charging stations.

Figure 2.7: Structure of the proposed P2PEBT system transaction process [17]
Other papers focus on flattening the load on the power grid thanks to dynamic pricing [48,

74,75]. In [46], amethod is implemented tomodulate the charging power of idle EVs tominimise
divers aspects linked to the grid operation such as load peak and grid loss and minimise the
charging cost and time to charge on the EV side in an area mixing residential, industrial and
commercial activities. In all those papers, they observe how the EVs are acting according to
pricing policies under scheduling constraints but only for EVs that are idle (at home or at work)
and not travelling. The different models could be adapted to long distance trips if we see the
time of pausing as schedule constraint but the EV might not be enough time idle to delay the
charging time.

Yeh and Tsai [47] focus on a dynamic pricing that maximises the parking lot agent revenues
in a case of regular charging (as opposed to fast charging). In a case of fast charging, the charging
price is not considered and the objective of the charging controller is to minimise the charging
time of the EV agents by allocating charging power to EVs thanks to a genetic algorithm.

Finally, Bernal et al. [76] present the optimal charging price and reservation fees a char-
ging station operator should set to maximise its operation revenue from charging service and
participation in real time electricity market. The EVs can reserve in advance a charging slot
specifying its arrival time and expected charging time but according to the reservation fee and
the probability to be served without booking, the EV decides if it should book or not a charging
session.

Highlights on pricing variation control strategies
All the charging strategies relying on price control we depict in this section (exceptmaybethe latest [76]) are set for urban area where pricing schemes help to shave the peakload on the electric grid and we did not find references about charging price variationstrategies for long distance trips. However, some of those pricing mechanism can beadapted to charging on highways, for instance, using smart contracts [17] to influencethe choice of fast-charging schedule and location according to the carbon footprint ofthe electricity. Still, as we do not study the impact of the long-distance charging on theelectric power grid, those considerations are perspectives of this thesis work.
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2.3.2 . Reducing the travelling time with information-sharing
Other papers more oriented toward selection of the next optimal charging station during

trips, set the minimisation of the travelling time or the waiting time as the primary objective
instead of playing on the charging price modulation to redirect the EVs to less crowded sta-
tions. According to [71], EV coordination on-the-move should be decentralised to reduce the
computation time and be adequate for real-time scheduling.

The literature on decentralised charging strategies using communication between EVsand stations to reduce waiting time by selecting the optimal station to charge is rich. Qin et
al. [71] propose a coordination scheme where EVs can communicate with the nearest charging
station and select the stationwith theminimumwaiting time for their next charging session. The
waiting time is estimated thanks to EVs’ communication of charging intentions. The method
given by Yang et al. in [77] also selects the next charging stop with the minimum waiting time.
However, there, the waiting time is estimated according to the current waiting queue at the
station rather than on waiting time prediction.

A reliable reservation process called REBECA is depicted in [73, 78] to guarantee the effi-
ciency of the charging service and thus reduce charging delays at stations. The EVs are allocated
with the charging time slots that will minimise the latency time of the EV (the time before the
EV will be charged including travelling time to the station and the estimated waiting time there)
and maximise the power use in stations by balancing EVs between stations. This last objective
is meant to increase the average use rate of the stations and might help reducing the charging
point needed in stations if we want to minimise the charging infrastructure cost.

Yudovina et al. [79] demonstrate how decentralised policies to assign EVs to near char-
ging stations can reduce waiting time. Gusrialdi et al. [67] goes further with a mathematical
demonstration proving the benefit of a decentralised charging strategy based on a consensusamong EVs approaching the same charging station. The EVs agree on which EVs will charge at
that station and which EVs will stop at the next station to distribute the EVs in stations evenly
and reduce waiting time. The method relies on V2V communication and vehicle to stationcommunication.

Y. Luo et al. [80] propose a method based on weighting the road links between nodes
of the transportation network to solve a multi-objective optimisation with a Dijkstra al-gorithm. The weights of the road are modified in real-time according to the updates from
the transportation system and the grid system tominimise the travelling time and the trafficcongestionnear charging station and tomaximise the grid safetyperformance. Themethod
determines the optimal charging station for each EV thanks to a shortest-path research using
the weights.

A. Viziteu et al. [18] use reinforcement learning to optimise the selection of the next char-
ging station and the charging time interval to avoid long waiting queues according to the length
of the trip, the current battery charging state and the reservations made in each station on the
road. As it is uneasy to create a dataset with all the optimal solution for every potential road
situations, supervised learning is not possible to address this problem and reinforcement learn-
ing should be used instead. The authors choose a Deep Q-Network (DQN) to learn the optimal
strategy: where to stop and which time interval should be booked in stations. The steps of the
optimisation using the trained DQN model are shown in Figure 2.9. Due to a lack of real-world
trip data, the authors have trained their model with multi-agent simulations to reproduce real-
world cases. This method represents an interesting perspective of our thesis work as it can be
adapted to our problem and trained using the multi-agent simulation framework to improve
the control strategies we propose in this manuscript.

However, all those previously mentioned papers only focus on reducing the waiting time
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Figure 2.8: Charging station and charging time interval selection with a trained DQNmodel [18]

or the travelling time for the next charging stop and do not seek to optimise the whole char-
ging plan of EVs during their trip that might need several charging stops. The charging plan
represents the energy charged at each station along the way.

2.3.3 . Complete charging plan optimisation
Some papers propose centralised strategies to optimise the charging schedule of all EVs.

In [81] , the authors propose a genetic algorithm to optimise EVs routing and charging according
tomultiple objectives, including theminimisation of the travelling time. However, the proposed
centralised method is tested on a fleet with only 6 EVs whereas we need to find solutions for
fleets with at least 100 EVs to represent future flows of EVs on highway. The proposed method
seems hardly scalable on a large vehicle flow because of computation time and according to
[71], EV coordination should bedecentralised to reduce the computation time andbe adequate
for real-time scheduling of large EV fleet charging.

Like in the next three papers, dynamic programming is often used to solve the charge
planning problem. Pourazarm et al. in [82] propose a way to minimise the travelling time and
the charging time for a large fleet by decomposing the flow of EVs in sub-flows with the same
charging strategy. Wang et al. [83] optimises the routing of one EV to minimise like in [82]
the travelling and charging time but [83] includes in addition the charging cost as an objective.
None of the two previously cited papers considers the waiting time in the routing optimisation
contrary to Souley et al. [19] that integrates a fixed waiting time at stations. Still, this waiting
time is not updated according to the real affluence at the station.

Figure 2.9: Optimal energy profile results for a long distance trip on the highway for severalinitial State of Energy (SOE) presented in [19]
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In the paper by F.He et al. [84], the objective is to minimise the trip time of the BEV con-
sidering the travelling time and the charging time based on the level of drivers’ range anxiety.
The problem is formulated as different network equilibrium problems that are solved iterat-
ively with CPLX to find the equilibrium flow pattern (which route and where to charge) an EV
should follow from the origin of its trip to its destination. In this paper, the waiting time is not
considered.

Highlights on complete charging plan strategies
In this section, all the papers optimise the complete charging plan of the EVs to reducetravelling time and/or charging time. However, the waiting time is not considered duringthe optimisation [81–84] or is supposed to be constant during the day [19] whereas it canhave an important weight in the trip duration and highly variates according to the timeof day.

2.3.4 . Complete charging plan optimisation with information-sharing
To take into account the real-time affluence in stations when optimising the whole charging

plan, Del Razo et al. [20] proposes a decentralised strategy where EVs can dynamically send
booking requests for their whole trip according to the optimal charging schedule found by an
improved A* shortest-path search algorithm. The problem is formulated as a graph of states
(see Figure 2.10) and the shortest path is the path that minimises the trip time for each EV,
including the waiting time. The waiting time is deduced from the reservation made by the EVs.

Figure 2.10: Graph of states for one EV [20]
The trip characteristic generated for the simulation are data-driven. The performances of

this smart charging scheduler are compared to the situation where EVs charge to the last sta-
tion they can reach (LiR: last in range) and the results showed that the scheduler improves EVs
situation by reducing the queue lengths and enables to predict on a short term the power needs
for charging.

However, the authors in [20] do not optimise the charging plan but the charging schedule
since they do not consider the energy amount charged at a station as an optimisation variable.
In contrast, it is a critical parameter whenminimising the total travelling time. Indeed, the arrival
time at one station, and consequently the waiting time, depends on the charging time at the
previous stations and thus depends on the quantity of energy charged there. Therefore, most
strategies we depict in this thesis use the optimal control of the energy quantity charged at each
stop for the whole trip instead of only optimising the charging stop schedule.
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J. Hassler et al. [21] propose a service of communication that aim to optimise both the char-
ging time and the waiting time dynamically. Through this communication service, the EVs can
share they intention of charge to charging stations to reduce their travelling time and charging
cost. The implemented framework simulates off-line a flow of EVs during one day on a highway.
As in [20], the charging stations compute the estimated waiting time at station according to the
intention of charge the EVs have previously sent and each EV establishes the charging plan that
minimises the individual objective function 𝐶:

𝐶 = (1 − 𝑋).𝑇𝑡𝑟𝑖 𝑝 + 𝑋.𝐶𝑡𝑟𝑖 𝑝 (2.5)
Where 𝑇𝑡𝑟𝑖 𝑝 is the total trip time the EV will spend on the highway (including charging and

waiting time), 𝐶𝑡𝑟𝑖 𝑝 is the energy cost of the trip and 𝑋 reflects the driver preferences in term
of cost or time savings (0≤ 𝑋 ≤1). No reservation of charging time slot are made so the rule
at a station is on a first-come-first-served basis. The article compares the performance of the
service of communication to the situation where the EVs do not communicate (without commu-
nication scenario) and another of global optimisation where the flow of vehicle is not simulated
but the optimal charging planning for each EV is calculated thanks to a differential evolutionalgorithm. The Pareto curves of the different scenarios are shown in Figure 2.11. According to
the figure, the communication scenario gives similar results than the global optimisation and
can be executed dynamically while the EVs are driving (contrary to the differential evolution
algorithm) which is encouraging.

Figure 2.11: Cost- trip time Pareto curve [21]

Control strategy selection
The communication service proposed in papers [21,24] is the FCFS communication strategythat we study in this thesis and that we describe in Section 3.1.4.

2.3.5 . Introducing priority level among EV drivers
Most control strategies presented in the previous sections rely on thepriority rule for char-ging based on the time of arrival in stationswithout pre-emption. This priority rulemeans
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that the first-arrived EV in station will be served first (FCFS) and the non-pre-emption sig-
nifies that if 𝐸𝑉𝑣 is already charging, it cannot stop its charging to let another EV with higher
priority charge. Other control strategies are based on sorting the Evs according to their priority
level and depending on themethod, the higher prioritised EVs can pre-empt or not the charging
session of lower prioritised EVs (see [85] for the definition of pre-emptible queues in advance
reservation systems). The priority level can be set according to the role of the EV (for instance
military or police vehicles) [86] or according to the time of the reservation, in other words, the
firsts EVs to book are the first to be served. Note that when a paper speaks about reservation
request or booking, the priority is not always based on the first who made the reservation but
can be based on the first arriving in station [20,73].

Y. Cao et al. [86] aim to optimise the selection of the charging station to minimise charging
waiting time (elapsed time before being charged) by proposing a centralised strategy where
EVs canmake reservation and according to their level of priority, they can pre-empt the charging
of an EV with lower priority. The reservations enable the charging station to estimate future
waiting times. The article concludes that reservation with pre-emption and different levels of
priority reduce more efficiently the average waiting time in stations for both High and Low-
prioritised EVs compared with only reservation system without pre-emption and a First-Come-
First-Served (FCFS) rule in station. The FCFS reservation strategy described here is somehow
similar to the FCFS communication strategywedevelop in this thesis work, this is whywe compare
in Chapter 4 the FCFS communication strategy to another strategy with a different priority rule in
stations.

As we do not want to set high-priority categories of EVs and we do not want to allow pre-
emption in the charging service to avoid user discontent, we review in next paragraph the
strategies based on strict reservation of charging time slot to define a new priority rule.

R. Flocea et al. [87] propose a priority level based on advanced reservation to avoid wait-
ing queue in stations without overlapping charging sessions. The driver can book charging ses-
sions several days in advance before a long-distance trip to guarantee no other EV will be ableto charge during that reserved time interval. The driver has to precise the starting and end-
ing times of the charging session. This reservationmodel is the one called planned reservation
by Basmadjian et al. in [88]. Basmadjian et al. oppose the planned reservation to the ad-hocreservation. With the ad-hoc reservation, the EV books a charging session for a given dura-
tion prior arriving in station (for instance 20 minutes before arriving) and the charging point
appears as occupied to other EVs as soon as the EV confirms the reservation. According toBasmadjian et al., the planned reservation is better at reducing trip time than the ad-hoc re-
servation. B.Vaidya and H.Mouftah [89] describe the same planned (or advanced) reservation
system as the two previous papers [87, 88] and propose in addition a method to optimise the
slot allocation in the charging point by minimising the discontent factor of the EVs. The discon-
tent factor of the user depends on different aspects such as the waiting time, the reservation
duration and the received energy. The charging sessions are non-pre-emptive so a charging
session cannot be stopped and then resume later.

In [66], I. García-Magariño et al. evaluate the benefit of charging time slot booking in the
reduction of the average trip time and waiting time in the stations of a city. For this purpose,
the paper implements a multi-agent framework to compare the reservation strategy with other
charging policies. In the reservation strategy described here, each EV has to charge once on
its way and aims to minimise its trip time. The EV select its station according to the charging
time-slot available in the station to reduce its waiting time there and its detour time to the
station. Upon selecting the charging station, the EV books the available charging session that is
the closest to its estimated arrival time in the station. After running the multi-agent simulation,
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the reservation strategy proves to reduce significantly the average trip and waiting times of the
whole fleet compared with a strategy without communication and reservation.

Highlight on reservation strategies
The reservation strategy we compare in Chapter 4 to the FCFS communication strategy isinspired by the planned reservation described in the previously mentioned papers [66,87–89], especially [66]. Indeed, we do not wish to consider pre-emption possible in thereservation process to reduce EV driver discontent. To compare the planned reservation
strategy to the FCFS communication strategy, we develop a similar multi-agent frameworkto the one presented in [66].

2.4 . Fast-charging infrastructure planning
We have seen in Section 2.3 the possible control strategies of the charging to improve the

use of the charging infrastructure but another way to enhance the charging service is to de-
velop the charging network itself. As the development of fast-charging stations is costly (see
Section2.1.3) but is necessary for the adoption of EVs, the location and sizing of the infrastruc-
ture should be optimised. The optimal location and sizing depend on the traffic flow on the dif-
ferent sections of the highway, the range of the EV, the load distribution on the power network,
etc. Generally, the optimal locations of the charging stations are selected among the existing
highway service/rest areas, which reduces the possibilities but the problem is still complex. The
variables we want to maximise or minimise by selecting the best location and sizing are various
and influence the method used to solve the problem.

2.4.1 . Maximise the share of long distance trips covered
As explained in Section 2.1.1, the infrastructure should be developed to favour EV adoption,

especially to reduce range anxiety and effectively cover long-distance trip demands. In the lit-
erature, the planning of the infrastructure to maximise the share of long distance trips covered
is done by optimising the location of the charging station.

The paper [22] uses a fuel-refuelling location model [90] to maximise the share of long-
distance trip (>50 miles = 80 km) completed in the USA in function of the number of charging
stations the budget can afford (constraint). The studied network consists in nodes and links
of the highway network in the USA (846 nodes as potential station locations) and the demand
for each link is also considered. As explained in Section 2.2.1, the demand is modelled from a
reduced dataset of Origin-Destination trips in the US. The number of stations varies from 50 to
250 stations and different battery range scenarios are tested (from 60 miles to 300 miles). The
problem is solved with a branch-and-bound algorithm. The article concludes that batteriesof more than 250 miles (400 km) of range do not benefit much the drivers since all thetrips are already covered with a 250-mile battery and 150 stations (Figure 2.12). With only
100 stations placed strategically, 93% of the trips are covered for a battery of 200miles (320 km)
and with 150 stations, almost 99% of the trips are served for the same battery range. Therefore,
it is more efficient to strategically place the charging stations instead of increasing the battery
range. Yet, a range of at least 100-miles appears to be necessary in order to completemore than
85% of the trip with the maximum count of station (250) because for 60-mile range, the share
of covered trips drops to 65% with 250 stations. A 200-mile battery with 150 stations seems to
be a good compromise in terms of cost and trips covered with 98.79% of the trips covered.

H. Gao et al. [91] use a two-level model to find the fast charging station location that
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Figure 2.12: Share of long distance trip covered according to the range and the number ofstation [22]

also maximise the coverage flow under elastic demand (demand heavily affected by price).
The paper takes into account the presence of gasoline-powered vehicle to model the traffic and
determine the relationship between the location of the CSs and the traffic flow distribution. The
model is implemented in two levels. On the upper level, amaximum-flow covering model
positions the charging stations on links with higher demands. On the lower level, the SUE-ED
model (stochastic user equilibrium model under elastic demands) distributes the EVs on the
different paths and computes the travel cost for the user using a mixed-integer non-linearproblem formulation solved by a heuristic algorithm.

Napoli et al. [92] optimise the position and the number of charging points in stations to
circumvent range anxiety and propose theminimum number of charging stations and charging
points on the highway network. The authors model the highway network as a graph and con-
sider the minimum range among the commercialised EVs to determine the maximum distance
between stations. The sizing of the charging stations is determined according to traffic flow on
each link of the graph (see Section 2.2.1 for the method). The charging stations are iteratively
added on each link by starting from primary nodes (cities or towns considered to have char-
ging stations) to respect the maximum distance between stations. This method is tested on the
Italian highway network with average hourly trend for weekday traffic flow representing the
highest average traffic situation.

In [68], Y. Wang et al. go further by optimising both the location and the sizing of the char-
ging station to maximise the share of charged plug-in EV flows in the network under budget
constraint. A plug-in EV flow is a flow of EVs on the same Origin-Destination trip and this flow
is considered as charged when all the EVs in the flow can be charged in the stations they have
selected according to their utility function. The charge of the whole flow is possible only if the
stations are correctly spaced and if the capacity of the charging stations (number of EV that can
be charged per day) is sufficient. The problem is formulated with an extended version of the
flow refuelling location model used in [22] and solved with three different algorithm: a genetic
algorithm, a heuristic algorithm implemented by the authors and an algorithmmixing a genetic
algorithm and the heuristic.
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2.4.2 . Reduce social cost with infrastructure development
Other optimisations aim in reducing the social cost of the drivers. The social cost can in-

clude the travelling time, the charging cost, the EV cost or only the waiting time. To reduce the
social cost, the infrastructure can be planned with either an objective directly representing this
social cost while the cost of the infrastructure is reduced or the optimisation can only have the
infrastructure costminimisation as objective while the social cost is represented as a constraint.

2.4.2.1 . Social cost reduction as a constraint
Q. Yang et al. [14] focuses on the optimal sizing (number of charging points and waiting

space) of the charging stations in an urban area to maximise the profit of CS operators. The
profit of an operator includes the profit from charging service but also the penalty costs of
waiting and rejection (when an EV cannot wait because there is no waiting place left) as well as
the maintenance cost. The charging demand is determined thanks to a temporal analysis of
EV’s SoC based on aMonte Carlo simulation and an iterative evolution (every 30min) of each EV
state. The iterative evolution is ruled by a Markov transition probability matrix that determines
the probability for an EV to go from a certain state to another. The temporal state of a PEV
can be driving, charging at a station or parking. The arrival at station is model by a Poisson
process and the arrival rate 𝜆 is deduced from the previously determined statistical evolution
of the states (number of EVs in a certain state at a given hour) and a charging time in average of
1/𝜇 (30 min in the article). The results gives that themaximum profit of $859.43 in a day can
be achieved with 11 charging sockets and 7 waiting spaces at each station. However, thoseresults concern an urban simulation and should be adapted to long-distance trip.

W. Kong et al. [45] proposes a two-level method to minimise the construction cost of the
charging infrastructure by selecting the optimal combination of locations for the charging sta-
tions while satisfying the constraints linked to the driver, the traffic fluency and the load on the
electricity network.The first level of the model computes the combination of CS locations thatminimise the cost of the infrastructure and then the model runs a simulation on 24-hour
traffic to check the constraints of the second level. If one of the constraints of the second
level is not satisfied, the algorithm removes the combination from the possible solutions and
starts again from the first level. The algorithm goes on until it finds a solution satisfying all the
constraints. The constraint linked to the driver satisfaction imposes that the charging waiting
time for an EV should be less than a giving threshold and the constraint on traffic efficiency
verifies that the congestion rate of the road after the adding of a CS is still acceptable. The
constraint on the MV/LV transformers limits the voltage shift (deviation of the three-phase
power supply voltage compared to the nominal voltage) to 7%. The paper works on an urban
case study and the locations of charging stations are not selected among service areas but
among areas of the town which differs from our subject on long-distance trips. However, the
two-level optimisation depicted in [45] is interesting as it uses a simulation of a traffic flow to
check that the constraint linked to the charging waiting time are met. We use the samemethod
to check the waiting constraint in Chapters 5 and 6.

In [63], Bräunl et al. propose a strategy to determine the location and size (number of char-
ging points and their power) of DC fast charging limiting the cost of the charging infrastructure
needed to be installed on theWestern Australia highway networks. This charging infrastructure
must ensure a complete coverage of the highway network and limit the waiting time in stations
to 60 minutes with the proper power and number of charging points (50, 150 or 350 kW). The
charging demand for each site is based on traffic flow capturing and is estimated according
to real-world traffic data (see Section 2.2.2). The stations are sized according to charging peak
demand during a day that was averaged over a week.
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Shabbar et al. [60] aim to maximize the net profit of the charging station operators by
optimizing the location and sizing of the CSs under budget and routing constraints. A birth-
death Markov chain model gives the relationship among the charging demand, the charging
station size (number of charging points) and capacity (number of EVs that can charge or wait
in the station). The location of CSs are determined using a Grey Wolf Optimization (GWO)algorithm [93] (meta-heuristic algorithm) to maximise the net profit of CSs. The net profit is
estimated thanks to theMarkov-chainmodel at each iteration. The constraints deal with con-struction cost, available routes between CSs, waiting time, and the maximum distancean EV can drive after a 100% charge. The study on an urban area concludes that slow char-
ging stations should be placed in areas with low charging demands and fast charging stations
need to be placed on areas with higher demands.

According to [60], genetic algorithmandParticle SwarmOptimization are alsometa-heuristic
algorithm but the GWO algorithm is the fastest and most efficient meta-heuristic algorithm in
this case. This is why, in the development of this manuscript, we consider this optimiser to plan
the infrastructure in Chapter 5

In Chapter 5 and 6, we choose also to size the infrastructure with the waiting time as a
constraint and not as an objective to focus more on the charging operator point of view by
setting the infrastructure cost minimisation as an objective. Still, in Chapter 6, the waiting time
is a constraint but the time spent in stations (charging time and waiting time) is an objective of
the multi-objective optimisation we perform and we see in Section 2.4.2.2 the existing methods
to minimise the social cost (time spent in stations).

2.4.2.2 . Social cost reduction as an objective
In [94], A. Saldarini et al. detail a method consisting in adding charging stations and char-

ging points in already existing stations of a specific highway to minimise the travelling time of
EVs. In the paper, the siting of new charging stations and the sizing of all the charging stations is
determined to reduce the waiting time in the worst case scenario. The author use agent-based
simulation to determine the waiting time for a given scenario. This waiting time is deduced
from the distribution of EV agents in the stations and the amount of energy they are recovering
according to their trip characteristic, the model of their car and their consumption. As the con-
sumption depends partially on the weather, the worst scenario is a case of cold weather and
high traffic. The optimisation of the infrastructure enable to save a trip time of nineteen hours
over all the EVs of the tested fleet.

The paper by J. Liu et al. [61] goes further and propose amulti-objective optimisation to
the location and sizing of the CSs in order to satisfy charging demand, limit EV drivers waiting
cost and reduce the construction cost of the infrastructure. The problem is presented as amixed integer nonlinear problem (MINLP) and is solved thanks to a genetic algorithm. The
decision variable is a logical vector specifying if a service area on the motorway have charging
facilities or not. The optimisation is performed over three scenarios. The first one aims to
minimise only the construction cost of the infrastructure. The two other scenarios minimises
respectively the total social cost (construction cost, waiting cost and inconvenient driving cost)
and the charging station operating cost (waiting cost and construction cost).

2.4.3 . Minimise the CO2 emissions
The reduction of CO2 emissions (while driving) often stands for PHEVs and might not be

a major subject of concern for the development of fast-charging infrastructure on highway.
Indeed, the PHEVs will use their fossil fuel tank during long-distance trips. However, in addition
with the emissions generated by the use of gasoline with a PHEV, the article [95] also considers
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the emissions generatedwhenproducing a kWhof electricity for the calculations of the objective
function. Thus, themethod described in the article might be adapted for a case study with BEVs
on a highway instead of PHEVs in urban area. A Particle Swarm Optimizationmethod is used
to solve the problem and the candidate gasoline stations for the implementation of charging
station are selected using taxi GPS tracking data and parking lot events.

2.4.4 . Infrastructure optimisation under information-sharing
Some papers dealing with infrastructure planning consider in addition that the EVs in the

fleet optimise their charging strategy according to the waiting time announced in stations in
real-time thanks to information-sharing between EVs and the stations. As we have seen it in
Section 2.3.2, knowing the waiting time or the affluence in station in real-time help the EVs ad-
apt their charging and use more efficiently the infrastructure. In that condition, the charging
infrastructure needs are decreased and the papers in this section propose methods to take
into account real-time information sharing between EVs and stations when optimising the in-
frastructure.

For instance, C. Vandet and J. Rich [96] propose to optimise the placement and the sizing of
the charging infrastructure when a part of the fleet is using real-time waiting-time information
from the stations. The charging demand in space and time is determined thanks to a discrete
event simulator that maps trips sampled from a real-world large-scale trip diary and a given
charging infrastructure. The waiting times estimated thanks to a G/G/c queueing process and
other KPIs are extracted from the simulation and then used in the optimiser that will change
the infrastructure and feed it to the event simulator. The same process is repeated until the
optimisation converges.

To optimise the infrastructure on the Denmark highway networks under maximumwaiting-
time guarantee, J. Rich et al. [97] use an improved version of the information-sharing system
presented in [96] for the simulation of the charging demand: the charging stations also share
prediction of the waiting time as it is the case in the FCFS communication strategy we propose
to study in this thesis. J. Rich et al. evaluate the infrastructure needs according to different
accepted level of waiting time for 99%of the fleet and 100%of the fleet. It appears that sizing the
infrastructure to amaximumwaiting time for the 99%percentile of thewaiting-time distribution
saves a significant amount of chargers to be installed (15%) and limiting the waiting time to
10 minutes, only need 250 additional chargers compared with a waiting-time guarantee of 20
minutes.

The previous papers [96, 97] give interesting method to size the infrastructure when the
fleet is using information-sharing to estimate the waiting time. However, in those papers, the
charging strategy of the EVs seems to be different to an optimisation of the whole charging
plan as the charged amount in station is not optimised like in the FCFS communication strategy.
Moreover, the charging demand is evaluated with probability for an EV to charge at a given sta-
tionwhereaswewant to evaluate the precise impact linked to information-sharing and charging
plan optimisation on the infrastructure to be developed. Regarding the complexity of our prob-
lem, we need to consider the use of other optimisation methods.

A solution closer to our problem is presented in A. Pan et al. [70]. A. Pan et al. optimise the
siting and the sizing of charging stations for electric taxis (ETs) to minimise several objectives
such as the infrastructure cost, the cost associated to electric grid loss, the passengers electric
taxi cost if their demand is not covered and the electric taxi driver cost (time and/or charging
cost). They propose a method that first establish the charging demand of the ET by supposing
the charging infrastructure already deployed and simulating in the network ET agents and pas-
senger agents thanks to real-world trip data of taxis (see Section 2.2.1). The ET agents can com-
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municate with the charging stations and retrieve information about the queuing time or char-
ging price in station to optimise their charging station selection according to their preferences
(minimising charging cost and/or trip time. Thanks to those simulations, key sitings of charging
station are identified and then amulti-objective optimisation is solved with an improved genetic
algorithm to determine which charging station siting should be chosen and which sizing. The
evaluation of the multi-objective cost function is done thanks to the agent simulations.

Highlight on the infrastructure optimisation under information-sharing
As we want to see the benefit of a control strategy (the FCFS communication strategy) onthe reduction of the infrastructure cost in Chapter 5, we need to simulate the interactionbetween the EVs and the charging stations as it is the case in [70] where the problemis solved with a genetic algorithm. Therefore, unlike [97] that find the use of genetic al-gorithm or simulated annealing not appropriate to the scale of the problem, we use alsoan evolutionary based algorithm (Grey Wolf Optimiser) to optimise the charging infra-structure when the fleet use a control strategy based on real-time information-sharing.

2.5 . Conclusion
We review the different control and sizing strategies to optimise or improve the charging

service. Regarding the state of the Art and the problematics of our thesis work, we identify that
the FCFS communication strategy presented in [24] is the most complete control strategy that
minimise the total travelling time in real-time thanks to an optimisation of the whole charging
plan (stations to stop and energy to be recovered in stations) and information-sharing about
waiting time predictions. However, the priority rule in stations is based on the arrival time of EVs
in stations (FCFS) and as the EVs are not cooperating with each other, we can wonder if another
priority rule would not bemore adapted. Therefore, we will test another control strategy where
the EVs book charging sessions and the priority is define according to the time of the reservation
(the reservation strategy). To compare the different control strategies, we need a multi-agent
simulation framework [66] where the EVs are the agents and the charging infrastructure is the
environment.

We also aim to show the benefit of a strategy based on communication between EVs and
the infrastructure development by optimising the infrastructure when all the EVs of a fleet are
using communication. Regarding the complexity of the problem and the literature review, we
choose to optimise the infrastructure with an evolutionary solver (Grey Wolf Optimiser) and we
define the waiting time as a constraint and not as an objective to emphasise the CPO’s point
of view. Another objective of this thesis is to evaluate the impact of the EV charging power on
the infrastructure cost and the social cost (time spent in stations) and for this purpose, we test
an evolutionary optimiser to plan the charging infrastructure with different share of ultra-fast
charging EVs in the fleet.

Finally, as the optimisation of the charging strategies should be done to correspond to real-
istic charging demands, we generate for all the case studies of this manuscript complete long
distance trips that are inspired from real-world data statistics on traffic flow, EV long-distance
trips from Stellantis-connected vehicles and EV model characteristics from the market. Those
trips are then simulated in the framework developed to answer the different problematics of
this thesis.

Themindmap in Figure 2.13 sums up the implications and links between the different stake-
holders and parameters of the multi-objective problem we are facing.
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Figure 2.13: Mind map of the thesis subject toward EV’s acceptance
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3 - Simulation frameworkand charging strategywith real-
time communication
This thesis work is a straight continuation of the PhD thesis by Jean Hassler [98]. This pre-

vious work proposes a means to control the charging of an EV fleet going on long-distance
highway trips. The control was imagined to be possible thanks to a high-level charging service
establishing a communication in real-time between EVs and CSs. The EVs using the service fol-
low the FCFS communication strategy, a distributed charging strategy where they evaluate the
optimal charging plan minimising their trip time and charging cost. To study the interest of
such a charging strategy, a simulation framework was implemented in [98] to run multi-agent
simulation modelling the interactions between EVs and CSs. We will give in Section 3.1 the de-
tails of the simulation framework and define a charging plan as well as the FCFS communication
strategy imagined in [98] before giving in Section 3.2 the improvements we realise on the sim-
ulation framework. Then, we will present in Section 3.4 the different methods of charging plan
optimisation we inherit or investigate to select the most appropriate method.
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3.1 . Simulation framework
3.1.1 . Framework description

The framework enables the simulation of a daily flow of electric vehicles going on the high-
way for a long-distance trip (see Figure 3.1). It consists in:

• A highway represented by a set of entrances/exits E and 𝑁𝐶𝑆 fast-charging stations (CSs)
CS. The whole infrastructure has a finite set of charger types, 𝑃 (|𝑃 | = 𝑁𝑝), with 𝑝 𝑗 ∈ 𝑃the power rate of one charger type. One 𝐶𝑆𝑖 ∈ CS, with 𝑖 ∈ {1 , . . . , 𝑁𝐶𝑆}, is described byits position on the highway, and its number of sockets per charger type 𝑠𝑖, 𝑗 ( 𝑗 ∈ J1, 𝑁𝑝K).

• A fleet F of EVs travelling on the highway. Each 𝐸𝑉𝑣 ∈ F, with 𝑣 the position of the EV in the
order of entrance on the highway, has its intrinsic parameters (battery capacity 𝐸𝑏𝑎𝑡𝑡 ,𝑣 ,maximum charging power 𝑃𝑣 and consumption 𝜌𝑣) and trip characteristics (entrance andexit number respectively noted 𝑜𝑣 and 𝑑𝑣 with [𝑜𝑣 , 𝑑𝑣] ∈ E2, entry time 𝑡𝑖𝑛,𝑣 and SoC at
entrance 𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 ,𝑣).

• A program simulating an EVs flow on the highway for one day. We use a multi-agent sim-
ulation (MAS) to precisely model the interactions between the EVs (the agents) and the
highway with its charging infrastructure (the environment). Depending on the strategy of
the EVs (described later in Section 3.1.5) and their trip characteristics, the program com-
putes where, when, and for how long the EVs will stop to charge (charging plan) and then
the model deduces the waiting time (see Section 3.2.2) for each EV at each stop. With the
FCFS communication strategy, the day is divided into time stepsΔ𝑡 where EVs communicate
their charging plan and adapt to the waiting time announced at the station.

The MAS permits the simulation of complete journeys to consider trip coherence and optimise
the whole charging plan instead of modelling affluence in a station with stochastic models from
queuing theory [20].

For a given fleet F, each 𝐸𝑉𝑣 ∈ F has a target SoC, 𝑆𝑜𝐶𝑡𝑎𝑟 ,𝑣 , it should have when reaching
its highway target exit 𝑑𝑣 to have enough energy to finish its trip. To leave the highway with atleast 𝑆𝑜𝐶𝑡𝑎𝑟 ,𝑣 , 𝐸𝑉𝑣 will have to charge during its trip a certain amount of energy 𝐸𝑡𝑜𝑡𝑎𝑙,𝑣 that isevaluated by 𝐸𝑉𝑣 ’s computer according to the SoC at entrance 𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 ,𝑣 , the consumption of
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Figure 3.1: Details of the simulation environment with the inputs and the outputs of the MAS

the EV 𝜌𝑣 considered as a constant, the distance 𝐷𝑣 between the entrance 𝑜𝑣 and the exit 𝑑𝑣and 𝑆𝑜𝐶𝑡𝑎𝑟 ,𝑣 (3.1).
𝐸𝑡𝑜𝑡𝑎𝑙𝑣 = (𝑆𝑜𝐶𝑡𝑎𝑟 ,𝑣 − 𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 ,𝑣) × 𝐸𝑏𝑎𝑡𝑡𝑣 + 𝜌𝑣 × 𝐷𝑣 (3.1)

During the simulation, each 𝐸𝑉𝑣 will compute its optimal charging plan 𝜔∗
𝑣 (see Section 3.1.2 forthe definition of a charging plan) tominimise its discontent factor (see Section 3.1.3) and ensure

it will leave the highway with enough SoC (𝑆𝑜𝐶𝑡𝑎𝑟 ,𝑣) to reach its final destination. The EVs’ SoCis also constrained and must always be above a threshold: 𝑆𝑜𝐶𝑚𝑖𝑛.
3.1.2 . Charging plan

We should first define what a charging plan is in this thesis report and the difference
between a charging plan and a stop plan or charging schedule.

Stop plan and charging plan
Stop plan: lists the stations where the EV plans to stop to charge and possibly the char-ger type used (level of charging power). In [20], this charging stop plan is referred to ascharging schedule.Charging plan: like a stop plan, lists the stations where the EV plans to stop to chargeand the power level used but also depicts the amount of energy charged in each stationfrom the stop plan.
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The expression of a charging plan 𝜔𝑣 of 𝐸𝑉𝑣 is given by (3.2).

𝜔𝑣 =

(
𝑥𝜔
𝑝𝜔

)
=

(
𝑥1 . . . 𝑥𝑁𝐶𝑆

𝑝1 . . . 𝑝𝑁𝐶𝑆

)
with 𝑁𝐶𝑆∑︁

𝑖=1

𝑥𝑖 = 𝐸𝑡𝑜𝑡𝑎𝑙,𝑣 (3.2)
Where 𝑥𝑖 is the amount of energy charged at the station 𝐶𝑆𝑖 and 𝑝𝑖 is the power level of thecharging point selected at station 𝐶𝑆𝑖.Souley et al. [19] proposes an optimisation of the EV’s speed in addition to the charging plan.

Still, we focus only on the charging plan as it is difficult to impose an exact speed on the vehicle
even if the EV is autonomous, for instance, with traffic jams. Thus, in this thesis, the driving
speed is an exogenous variable of the problem and we consider it constant. Its value equals the
speed limit, 𝑠𝑝𝑒𝑒𝑑𝑣 , that is, either the speed limit authorised on the road section (𝑠𝑝𝑒𝑒𝑑𝑟𝑜𝑎𝑑)or the speed (𝑠𝑝𝑒𝑒𝑑𝑑𝑟𝑖𝑣𝑒𝑟 ) the EV driver observes to limit its consumption for example when
driving an urban type EV with shorter range (3.3).

𝑠𝑝𝑒𝑒𝑑𝑣 = 𝑚𝑖𝑛(𝑠𝑝𝑒𝑒𝑑𝑑𝑟𝑖𝑣𝑒𝑟 , 𝑠𝑝𝑒𝑒𝑑𝑟𝑜𝑎𝑑) (3.3)
3.1.3 . Charging plan optimisation to minimise user’s discontent factor

We define for each 𝐸𝑉𝑣 a discontent factor (3.4) that takes into account the charging cost
𝐶𝑐ℎ𝑎𝑟𝑔𝑒 (3.7) and the total travel time 𝑇𝑡𝑟𝑖 𝑝 (3.5) of the EV driver including the driving time, the
waiting time and the charging time. A coefficient 𝑋 ∈ [0 , 1] models the user preferences
between the reduction of the travel time and the charging cost in the discontent factor.

𝐷𝐹𝑣 (𝜔𝑣) = (1 − 𝑋) · 𝑇𝑡𝑟𝑖 𝑝 (𝜔𝑣) + 𝑋 · 𝐶𝑐ℎ𝑎𝑟𝑔𝑒 (𝜔𝑣) (3.4)
3.1.3.1 . Trip time 𝑇𝑡𝑟𝑖 𝑝

The trip time 𝑇𝑡𝑟𝑖 𝑝 expression is given by (3.5).
𝑇𝑡𝑟𝑖 𝑝 (𝜔𝑣) = 𝑇𝑡𝑟𝑎𝑣𝑒𝑙 + 𝑇𝑐ℎ𝑎𝑟𝑔𝑒 (𝜔𝑣) + 𝑇𝑤𝑎𝑖𝑡 (𝜔𝑣) + 𝑇𝑜𝑡ℎ𝑒𝑟 (𝜔𝑣) (3.5)

With:
𝑇𝑡𝑟𝑎𝑣𝑒𝑙: time spent on the road driving, we assume that the speed of 𝐸𝑉𝑣 is constant andequal to 𝑠𝑝𝑒𝑒𝑑𝑣 (3.3).
𝑇𝑐ℎ𝑎𝑟𝑔𝑒 (𝜔𝑣): time spent charging, depends on the charging powers selected in stations(

𝑝1, · · · , 𝑝𝑁𝐶𝑆

) , the charging power limitation of 𝐸𝑉𝑣 , 𝑃𝑣 , and the amount of energy charged
in stations (

𝑥1, · · · , 𝑥𝑁𝐶𝑆

) (see Section 3.2.1).
𝑇𝑤𝑎𝑖𝑡 (𝜔𝑣): time spent waiting for an available charging point (see Section 3.2.2).
𝑇𝑜𝑡ℎ𝑒𝑟 (𝜔𝑣): aggregated time to stop (deceleration to enter a station), to plug the EV and to

accelerate when leaving a station. We suppose that the charging stations can only be located
in highway service areas, so we assume that the detour time is short, and we set 𝑡𝑜𝑡ℎ𝑒𝑟 to 5
minutes per stop [20]. 𝑡𝑜𝑡ℎ𝑒𝑟 can also be seen as a time that penalises the action to stop.

We note 𝑇𝐶𝑆 the total time spent in stations by 𝐸𝑉𝑣 during the trip and it corresponds to:
𝑇𝐶𝑆 (𝜔𝑣) = 𝑇𝑐ℎ𝑎𝑟𝑔𝑒 (𝜔𝑣) + 𝑇𝑤𝑎𝑖𝑡 (𝜔𝑣) + 𝑇𝑜𝑡ℎ𝑒𝑟 (𝜔𝑣) (3.6)

3.1.3.2 . Charging cost 𝐶𝑐ℎ𝑎𝑟𝑔𝑒

The total cost of the charge for the whole trip is:

𝐶𝑐ℎ𝑎𝑟𝑔𝑒 (𝜔𝑣) =
𝑁𝐶𝑆∑︁
𝑖=1

𝑥𝑖,𝑣 × 𝑝𝑐ℎ𝑎𝑟𝑔𝑒 (𝑝𝑖) (3.7)
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𝑝𝑐ℎ𝑎𝑟𝑔𝑒 (𝑝𝑖) corresponds to the price of the charge at the power level 𝑝𝑖. We suppose the
charging price increases with the power level [44]. In real life, the CPOs propose subscriptions
to their customers to reduce the charging price 𝑝𝑐ℎ𝑎𝑟𝑔𝑒 but regarding the wide spectrum of
subscription modalities and prices, we focus on the simplest pricing previously described.

3.1.3.3 . Value of time
The parameter 𝑋 depends on the value of time, noted 𝑣𝑜𝑡, of a driver. The value of time is the

price that travellers are willing to pay to decrease their trip time. According to Hess et al. [99], if
𝑤𝑡 and 𝑤𝑐 are respectively the time and cost weights in the utility function of a travelling option
for the user (here one option is one charging plan), the 𝑣𝑜𝑡 is 𝑤𝑡

𝑤𝑐
(see Appendix A.1). The utility

function of the driver is the discontent factor 𝐷𝐹, so the expression of 𝑋 according to the 𝑣𝑜𝑡
is:

𝑣𝑜𝑡 =
𝑤𝑡

𝑤𝑐

=
1 − 𝑋
𝑋

⇒ 𝑋 =
1

1 + 𝑣𝑜𝑡 (3.8)
Therefore, when 𝑋 is not equal to 0 or 1, we have to specify the 𝑣𝑜𝑡𝑣 of the driver to reflect thedriver’s preferences.

3.1.3.4 . Objective of the charging plan optimisation
The objective of each EV is to compute the optimal charging plan that minimises its discon-

tent factor 𝐷𝐹𝑣 (3.4) while complying with the constraints on the SoC (3.9, 3.10, 3.11, 3.12).
𝑂𝑏 𝑗𝑒𝑐𝑡𝑖𝑣𝑒 : min

𝜔𝑣

( 𝐷𝐹𝑣 (𝜔𝑣) ) (3.9)
𝑠.𝑡. 𝑆𝑜𝐶𝑣 ≥ 𝑆𝑜𝐶𝑚𝑖𝑛 (3.10)
𝑠.𝑡. ∀ 𝑥𝑖,𝑣 > 0, 𝑆𝑜𝐶𝑜𝑢𝑡,𝑖,𝑣 ≤ 80% (3.11)
𝑠.𝑡. 𝑆𝑜𝐶𝑒𝑛𝑑,𝑣 ≥ 𝑆𝑜𝐶𝑡𝑎𝑟 ,𝑣 (3.12)

The constraint (3.10) represents the threshold belowwhich the SoCmust not fall. We set this
threshold to 𝑆𝑜𝐶𝑚𝑖𝑛 = 15% to model range anxiety. Concerning the charging, as the charging
rate drops for values of SoC > 80% and charging above this value accelerates the ageing of the
battery [100], we constrain the vehicles in the simulation to charge only up to 80% of SoC (3.11).
The last constraint (3.11) stands for the final condition on the SoC.

In Section 3.4, we will detail the method used in this thesis to optimise the charging plan
and present the other methods we tested.

3.1.4 . Charging strategies
How the EVs interact with the charging infrastructure depends on the charging strategy used

by the fleet. We define in the following text box the charging strategy.
Charging strategy
A charging strategy describes how an EV determines its charging plan to minimise itsdiscontent factor 𝐷𝐹.A centralised charging strategy means that the optimisation of EVs’ charging plans isdone by a central entity (a mobility operator for example). The objective of the optimisa-tion is for the whole fleet and not for an individual EV.A decentralised charging strategymeans that the optimisation of the charging plan isdone individually by each EV.
Nowadays, it is possible to plan in advance where and how much we will charge during a

long-distance trip, for example, with the application A Better Route Planner [101]. J. Hassler [98]
57



implemented a charging strategymodelling that charging strategy where the EVs optimise their
charging plan𝜔 before going on a trip. EVs do not communicatewith the charging infrastructure
in real time, so this strategy is named the no-communication strategy.

No-communication strategy
The no-communication strategy represents the strategy of reference existingnowadays thanks to cloud applications. The EVs do not communicate during the tripand calculate their charging plan to minimise their travelling time, only knowing the po-sition and the charging power of the CSs. They do not know the estimated waiting timeat the station. The rule at the station is first come, first served (FCFS).The objective to minimise for the no-communication strategy does not include the waitingtime (3.13).
𝑂𝑏 𝑗𝑒𝑐𝑡𝑖𝑣𝑒 : min

𝜔𝑣

((1 − 𝑋) ×
(
𝑇𝑡𝑟𝑎𝑣𝑒𝑙 + 𝑇𝑐ℎ𝑎𝑟𝑔𝑒 (𝜔𝑣) + 𝑇𝑜𝑡ℎ𝑒𝑟 (𝜔𝑣)

)
+ 𝑋 ×𝐶𝑐ℎ𝑎𝑟𝑔𝑒 (𝜔𝑣)) (3.13)

Another application, Charge Finder enables one to know in real time the number of available
charging sockets in the stations on the way. We choose to not include in the no-communication
strategy the feature of knowing in real time the share of charging sockets currently available
since it already implies communication in real time between the EVs and the CSs.

J. Hassler proposed a strategymore elaborated than the one proposed by Charge Finder [98]
to use more efficiently the charging resources. This strategy, called the FCFS communication
strategy enables, like Charge Finder, a communication in real time between the EVs and the
CSs, but in the new strategy, the CSs can estimate the future waiting time in stations thanks to
a communication by the EVs of their intended charging plan.

FCFS communication strategy
With the FCFS communication strategy, the EVs on the road regularly communicatetheir charging plan to stations and determine their charging plan 𝜔∗ to minimise theirdiscontent factor 𝐷𝐹 in accordance with the estimated waiting times communicated bythe stations. The rule at a station is FCFS as for the no-communication strategy.Therefore, the objective includes the waiting time (3.14).
𝑂𝑏 𝑗𝑒𝑐𝑡𝑖𝑣𝑒 : min

𝜔𝑣

((1−𝑋)×
(
𝑇𝑡𝑟𝑎𝑣𝑒𝑙 + 𝑇𝑐ℎ𝑎𝑟𝑔𝑒 (𝜔𝑣) + 𝑇𝑤𝑎𝑖𝑡 (𝜔𝑣) + 𝑇𝑜𝑡ℎ𝑒𝑟 (𝜔𝑣)

)
+𝑋×𝐶𝑐ℎ𝑎𝑟𝑔𝑒 (𝜔𝑣))

(3.14)
The information exchanges between the EVs and the CSs can be established via the mobile

network (3G-4G). It is already done for connected vehicles and most new EV models, so the
coordination is technically feasible. By managing the communication, the computation and
the choice of the best charging plan, using an automatic planner would avoid the dangerous
distraction of the driver, who would only have to follow the instructions of the EV’s monitor like
a GPS.

In the next section, Section 3.1.5, we see the detailed steps of the multi-agent simulation
according to the charging strategy.

3.1.5 . The steps of the Multi-Agent Simulation
3.1.5.1 . No-communication strategy

When the EVs follow the no-communication strategy, they compute before travelling the op-
timal charging plan 𝜔∗

𝑛𝑜𝐶𝑜𝑚.
that will minimise their discontent factor 𝐷𝐹 without knowing the
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waiting time in stations since they do not communicate with the CSs. Once they have determ-
ined their charging plan 𝜔∗

𝑛𝑜𝐶𝑜𝑚.
, they follow this plan no matter what happens during the trip.

As no charging plan changes during the day, the simulation framework only determines the
waiting queues and computes each charging session’s waiting time (see Section 3.2.2). We re-
trieve the total trip time 𝑇𝑡𝑟𝑖 𝑝 (𝜔∗

𝑛𝑜𝐶𝑜𝑚,𝑣
), including the computed waiting time for each 𝐸𝑉𝑣 atthe end of the simulation.

3.1.5.2 . FCFS Communication strategy
For the FCFS communication strategy, as the EVs and the CSs communicate in real time,

we need to divide the simulated day into constant time intervals to describe the interaction
between the EVs and the CSs during each time interval. A time interval starting at time 𝑡 − 1 and
ending at time 𝑡 represents the iteration "𝑡" and lasts Δ𝑡 minutes (Δ𝑡 is constant).

Each station 𝐶𝑆𝑖 has a charging request table 𝑅𝑖 listing the latest charging request sent byeach EV identified by 𝑖𝑑𝐸𝑉 . One charging request is associated to the optimal charging plan
of an EV and precises the EV’s 𝑖𝑑, estimated arrival time 𝑡𝑖𝑛,𝑖 (𝜔∗) and estimated charging time
𝑡𝑐ℎ𝑎𝑟𝑔𝑒,𝑖 (𝜔∗).

During the simulation, the steps described in Figure 3.2 are executed at each iteration 𝑡
(every Δ𝑡).

• Step 1: 𝐸𝑉𝑣 asks the stations in their charging plans about the estimated waiting times.
• Step 2: each station 𝐶𝑆𝑖 , upon receiving the id, 𝑖𝑑𝑣 , during step 1, computes the corres-
pondingwaiting times according to the information received during the previous iteration
𝑡−1 (𝑅𝑖 (𝑡−1)) from the whole fleet and sends the waiting times back to 𝐸𝑉𝑣. Section 3.2.2describes how the charging station𝐶𝑆𝑖 computes the waiting times according to the char-
ging request table 𝑅𝑖.

• Step 3: 𝐸𝑉𝑣 computes the optimal charging plan 𝜔∗
𝑣 according to the estimated waiting

times.
• Step 4: 𝐸𝑉𝑣 informs the stations from its optimal charging plan 𝜔∗

𝑣 of its estimated arrival
time 𝐴.𝑇 . and estimated charging time 𝐶.𝑇. (and charging socket) in station.

• Step 5: according to the 𝐴.𝑇 . and𝐶.𝑇. received, each charging station updates its charging
request table 𝑅𝑖 that will be used to compute the waiting times during the next iteration.

Each 𝐸𝑉𝑣 starts in advance the communication process (execution every Δ𝑡 of step 1 to step
5) before entering the highway. This anticipation time before entering the highway is noted as
𝑇𝑎𝑑𝑣. and J. Hassler determined in his thesis [98] that the adequate tuple (𝑇𝑎𝑑𝑣., Δ𝑡) is equal to(20, 5) minutes. Those values will be used in the rest of the manuscript. When an EV starts
the communication process, we say that this EV is "on the road" even if the EV is not effectively
driving on the highway.
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Figure 3.2: Communication scheme in the FCFS communication strategy

3.2 . Major MAS features details
3.2.1 . Charging time calculation

The charging of an EV is a complex process that depends on various parameters, such as
the value of open circuit voltage of a battery cell 𝑉𝑂𝐶 varying with the SoC, the intern resist-
ance 𝑅 depending on the SoC and the cell temperature 𝑇 . As those data are confidential (intern
resistance 𝑅(𝑆𝑜𝐶,𝑇), open-circuit voltage 𝑉𝑂𝐶 and temperature of the cells evolutions accord-
ing to the SoC), we choose to simplify the problem and take as models charging curves given
by charging operators (like Fastned [102]) or other database listing EV model characteristics
(automobile propre [23], insideEV [103]). From those charging curves, we select some points
and approximate the curve linearly as it is possible to deduce the charging time from linear
approximation, as we will see next.

The charging power curve corresponds to the minimum between the power 𝑝𝑖, 𝑗 delivered
60



by the socket of type 𝑗 at station𝐶𝑆𝑖 and the power 𝑃𝑣 accepted by 𝐸𝑉𝑣 during the charge (3.15).
𝑃𝑐ℎ𝑎𝑟𝑔𝑒,𝑖, 𝑗 (𝑆𝑜𝐶) = 𝑚𝑖𝑛(𝑝𝑖, 𝑗 , 𝑃𝑣 (𝑆𝑜𝐶)) (3.15)

Thus, the charging curve of the EV is modified according to the power limitation of the charger
(in fact, the current limitation of the socket since the battery pack imposes its voltage). We give
examples of an EV’s charging curves for different power levels of the charger (Figure 3.3).

Figure 3.3: Simplified charging curves of aMegane-etech on chargers with different power rates(50, 100, 150 kW) [23]
To compute the charging time, we have to distinguish the part of the charging curve that is

constant from the linear ones.
On the interval [𝑆𝑜𝐶𝑖 , 𝑆𝑜𝐶𝑖+1 [, if the function 𝑃(𝑆𝑜𝐶) is constant and equal to 𝑃𝑐𝑠𝑡 , the char-ging time in second on that part between 𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 and 𝑆𝑜𝐶𝑒𝑛𝑑 is directly:

𝑡𝑐ℎ𝑎𝑟𝑔𝑒 =
𝐸𝑏𝑎𝑡𝑡

3600 · 𝑃𝑐𝑠𝑡

· (𝑆𝑜𝐶𝑒𝑛𝑑 − 𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 ) (3.16)
Where 𝐸𝑏𝑎𝑡𝑡 is the battery capacity of the EV. We prove this result in Appendix A.3.1.
If the function 𝑃(𝑆𝑜𝐶) is linear on the interval [𝑆𝑜𝐶𝑖 , 𝑆𝑜𝐶(𝑖 + 1) [ (see Figure 3.4), we express

𝑃(𝑆𝑜𝐶) as follow :
𝑃 (𝑆𝑜𝐶 (𝑡)) =𝑎𝑖 , (𝑆𝑜𝐶 (𝑡) − 𝑆𝑜𝐶𝑖) + 𝑏𝑖 with 𝑎𝑖 = 𝑃𝑖+1 − 𝑃𝑖

𝑆𝑜𝐶𝑖+1 − 𝑆𝑜𝐶𝑖

,

𝑃𝑖+1 =𝑃 (𝑆𝑜𝐶𝑖+1) , 𝑃𝑖 = 𝑃 (𝑆𝑜𝐶𝑖) and 𝑏𝑖 = 𝑃𝑖
(3.17)

In this case, the expression of the charging time 𝑡𝑐ℎ𝑎𝑟𝑔𝑒 is given by the equation (3.18).
𝑡𝑐ℎ𝑎𝑟𝑔𝑒 =

𝐸𝑏𝑎𝑡𝑡

3600 · 𝑎𝑖
· log

((
𝑆𝑜𝐶𝑒𝑛𝑑 − 𝑆𝑜𝐶𝑖 +

𝑏𝑖

𝑎𝑖

)
/
(
𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 − 𝑆𝑜𝐶𝑖 +

𝑏𝑖

𝑎𝑖

))
(3.18)

We prove this result in Appendix A.3.2.
In some case studies, we assume, like in [40], that 𝑃𝑣 (𝑆𝑜𝐶) is linear on the interval [15, 80]%with the slope depending on the charging coefficient 𝑐𝑣 and 𝑃𝑚𝑎𝑥,𝑣 representing the intersec-tion between the linear curve 𝑃𝑣 (𝑆𝑜𝐶) and the axis 𝑥 = 0 (3.19). The 𝑆𝑜𝐶 (𝑡) is expressed in

percentage (%).
𝑃 (𝑆𝑜𝐶 (𝑡)) = 𝑃𝑚𝑎𝑥,𝑣 −

𝑐𝑣

100 · 𝐸𝑏𝑎𝑡𝑡

· 𝑆𝑜𝐶 (𝑡) (3.19)
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Figure 3.4: Charging power linear according to the SoC on interval [𝑆𝑜𝐶𝑖 , 𝑆𝑜𝐶𝑖+1 [

3.2.2 . Waiting time calculation
3.2.2.1 . Steps of the calculation

Regarding the First-Come-First-Served (FCFS) priority rule in stations, the waiting time de-
pends on the arrival time 𝑡𝑖𝑛 of the EV in the stations. This is why when an EV communicates its
optimal charging plan, it should precise its estimated arrival time (see 𝐴.𝑇 . for step 4 in Figure
3.2).

According to [104], in a queueing system with multiple servers, having one single queue for
all the servers instead of one queue per server reduces the average waiting time. However,
when the EVs are using the no-communication or FCFS communication strategy, EVs are op-
timising the charging power they are going to use so they knowwhen entering a station at which
type of socket, 𝑗 , they will plug. Therefore, two EVs waiting for different socket types do not wait
for the same service and should wait in two different lines. This is why we implement one queue
per charger type 𝑗 in each station with multiple charger types.

The waiting queue and the waiting time in the simulation framework are computed thanks
to the process described in Figure 3.5.

Firstly, during the Step 2 described in Figure 3.2, for each possible charging plan 𝜔𝑣 ∈ Ω𝑣of the 𝐸𝑉𝑣 , one 𝐶𝑆 ∈ CS computes the estimated waiting time asked by 𝐸𝑉𝑣 given its arrival
time 𝑡𝑖𝑛 (𝜔𝑣) at this station for this specific plan 𝜔𝑣. For this calculation, 𝐶𝑆 keeps a chargingrequest table 𝑅 listing the latest charging request sent by each EV identified by 𝑖𝑑𝑣 (so one EVcannot have more than one request in 𝑅). For Step 2, the table 𝑅 is in read-only mode, so it
contains requests that are up to date with the previous iteration (𝑡 −1). When an EV asks for the
estimated waiting time in the station according to its arrival time,𝐶𝑆 will determine the position
𝐾 of this EV in the order of arrival of all the EVs listed in 𝑅(𝑡 − 1). Then, according to the number
of charging points 𝑠𝑖 at the station, 𝐶𝑆 deduces the estimated waiting time:

• If 𝐾 ≤ 𝑠, the EV will not wait.
• If the (𝐾 − 𝑠)𝑡ℎ EV leaving the station leaves before the arrival of the considered EV, the
EV will not wait.

• In all other cases, the waiting time equals the difference between the departure hour of
the (𝐾 − 𝑠)𝑡ℎ EV leaving the station and the arrival time of the EV.
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Figure 3.5: Waiting time computation steps for the FCFS communication strategy (on the right)with a schematic example (on the left)

Secondly, during Step 5 (Figure 3.2), the table 𝑅 is in write mode and registers the new
charging requests the EVs have selected according to the previously estimated waiting time
computation. After registration, the CS establishes the current waiting queue at the station
to estimate the departing hour of the EVs from the station. The EVs registered in the table
𝑅 are ordered by arrival time. A vector 𝑇 is initialised with the departure times (arrival time
𝑡𝑖𝑛𝑘 + charging time 𝑐𝑡𝑘) of the first 𝑠 EVs of the table. Then, the algorithm takes the next EV
in the ordered table that is not in 𝑇 and compares the minimum departure time 𝑡𝑜𝑢𝑡𝑚𝑖𝑛

in the
vector 𝑇 with the arrival time 𝑡𝑖𝑛𝑠+1 of the next EV. If 𝑡𝑜𝑢𝑡𝑚𝑖𝑛

> 𝑡𝑖𝑛𝑠+1 , the next EV will wait during
𝑡𝑜𝑢𝑡𝑚𝑖𝑛

− 𝑡𝑖𝑛𝑠+1 . Else, there is no waiting time. The departure time of the next EV (arrival time +
charging time + waiting time) replaces 𝑡𝑜𝑢𝑡𝑚𝑖𝑛

in 𝑇 and so on (see Figure 3.5).
As the waiting time estimations during Step 2 (Figure 3.2) are based on information from the

previous iteration (𝑡 − 1), the actual waiting time in a station might differ as the EVs can update
their charging plan at every iteration. This is why, even if we consider an ideal situation in the
simulations (see Section 4.2.2 in Chapter 4), the charging plans change during the simulations
with the FCFS communication strategy.

I corrected the algorithm to have a more accurate estimation of the waiting time: J. Hassler
was estimating the waiting time according to the 𝑁 𝑡ℎ EV leaving the station, whereas this es-
timation should be done according to the (𝑁 − 𝑠)𝑡ℎ. The demonstration is given in Appendix
A.2.

3.2.2.2 . The Waiting table𝑊𝑇
In the inherited version of the framework, the EVs asked the waiting time for each 𝜔, gener-

ating asmany requests as charging plans they have inΩ. Tomake the communication of waiting
times between the stations and the EVs more feasible in real life, we implemented an algorithm
that builds only one waiting time table 𝑊𝑇 depending on the EV requesting waiting time in-
formation. Then, sharing this waiting timetable requires only one communication between the
charging station and the EV. In addition, using the waiting time table𝑊𝑇 enables speeding up
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the computation of the waiting time during the simulation since the station needs to perform
the calculation only once instead of for each charging plan.

We know that the waiting time in a station is not continuous according to the arrival time but
is piecewise linear (see Figure 3.6). Therefore, the waiting table𝑊𝑇𝑖,𝑣 of the station 𝐶𝑆𝑖 for 𝐸𝑉𝑣

Figure 3.6: Non-continuity of waiting time according to the arrival time of an EV (𝐸𝑉𝑣) in a station(𝐶𝑆𝑖).
lists the time interval during which the waiting time is linear according to the arrival time of 𝐸𝑉𝑣(see Figure 3.6). For each time interval,𝑊𝑇𝑖,𝑣 gives the lower and upper bounds of the interval(𝑡𝑙𝑜𝑤 , 𝑡𝑢𝑝) and the constant parameters (𝑎, 𝑏) of the straight curve. Thus, for a given arrival time
𝑡𝑖𝑛, the waiting time 𝑡𝑤𝑎𝑖𝑡 can be directly expressed by (3.20).

𝑡𝑤𝑎𝑖𝑡 (𝑡𝑖𝑛) = 𝑎.(𝑡𝑖𝑛 − 𝑡𝑙𝑜𝑤) + 𝑏 with 𝑡𝑙𝑜𝑤 ≤ 𝑡𝑖𝑛 < 𝑡𝑢𝑝 (3.20)
We use a similar process as in Figure 3.5 to determine 𝑎 and 𝑏.

3.3 . Generation of the case studies
In this manuscript, we present three different case studies:
• Case study 1: 3 fleets are generated to represent 3 different traffic situations (100, 180
and 300 EVs). The case study is used in this chapter to test the charging plan optimisa-
tion methods (Section 3.4.5) and in Chapter 4 to compare the performance of the control
strategies.

• Case study 2: 5 fleets are generated to represent 5 different crowded days with 500 EVs
going on long-distance trips. The case study is used in Chapter 5 to evaluate the benefit
of the FCFS communication strategy in reducing the cost of the optimal infrastructure to
be developed.

• Case study 3: 100 fleets are generated to represent 100 different low traffic days (50 EVs).
The case study is used in Chapter 6 to evaluate the trade-off between the infrastructure
cost and the time spent in stations according to the share of ultra-fast charging vehicles
(charging power = 350 kW) in the fleet.

For all the case studies, we consider the French A6 highway from Paris to Lyon. However, in
each case study, the parameters concerning the highway environment change (position of the

64



entrance/exit, probability for an EV to enter at a given entrance ...). We detail in Section 3.3.1
the disposable data sources we found for long-distance trip generation, and we explain which
ones were used to generate the charging scenarios studied in this manuscript. We present in
Section 3.3.2 how the entrance time (𝑡𝑠𝑡𝑎𝑟𝑡 ,𝑣) is selected for each EV according to the case studyand thenwe summarise the different trip parameters for each case study in Sections 3.3.3, 3.3.4
and 3.3.5.

3.3.1 . Data sources
A multi-agent simulation enables the study of the charging strategy with trip-based simu-

lations instead of queuing theory statistics computed from the traffic per highway section (see
Section 2.2). However, retrieving long-distance trip open data is uneasy, and most of the time,
the data are incomplete or not detailed enough to be of use in our model. Still, we have found
one study [105] realised by the INSEE1 with long-distance trip data (departing day and hour,
town of origin and destination of the trip) but the trips concern the whole France so we did
not have enough data to sampled specific trips on one specific highway (as we are focusing on
a corridor and not on a network).Still, this data could represent a good trip database for the
following studies. Other information concerning long-distance travel in France can be found
in [27], and we used data from Opendata.gouv [106] to get the AADT on A6 highway sections
and set the entry/exit probabilities.

Nevertheless, as we are dealing with electric vehicles and the previous data only gives in-
formation about all vehicles, ICE and electric vehicles, we do not have information concerning
the SoC of the EVs and the behaviour of EV drivers, whereas we need to precise the SoC when
the EV enter the highway to generate adequate trips (see 𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 ,𝑣 in Section 3.1.1). This is
why we contacted the fablab of Stellantis to work on data collected by Stellantis-connected EVs.
Appendix B.2 explains how we exploit the raw data from connected vehicles.

Thanks to work on the connected vehicles data, we identified, for one year, 380 connected
EVs that have made at least one long-distance trip, as we defined it in the textbox 1.2.4.3. The
selected journeys are the trips with a distance travelled superior to 100 km and where at least
one charging session occurred on the highway as defined in Section 1.2.1.

To circumvent the lack of complete trip data, the entrance, 𝑜𝑣 , and the exit, 𝑑𝑣 , of an EV areselected according to the entry probabilities on the highway, and this probability changes from
one study to another. Since we do not have specific data about long-distance travel on Highway
A6, we arbitrarily set the entry and exit probabilities to roughly reflect the annual average daily
traffic (AADT) on A6 sections with more or less details.

3.3.2 . Entrance time
Each EV’s entrance time for all case studies is determined according to the average incoming

flow per hour on the French A6 highway in Ile-de-France (Figure 3.7a). The blue curve in Figure
3.7a is the resulting average of the hourly traffic on the road sections leading to the highway
A6 in Ile-de-France. The hourly traffic data can be found on the website data.gouv [106] and
comes from inductive loop counters that measure the number of vehicles driving past their
loop during an hour. We then simplified the blue curve to obtain a vehicle flow between 3:00
a.m. and 11:00 p.m.

The entrance time is consistent with the demand on the highway we found in the literature
[25] as the cumulative power on the highway, like the entrance time, is spread during the day
without a charging peak as it is the case for residential charging during evening peak (Figure
3.7b). A similar distribution of long-distance trip starting time is used in [94] where the EV agents

1French National Institute of Statistics and Economic Studies
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(a) (b)
Figure 3.7: Figure (a): Average incoming vehicle flow per hour of the French highway A6 in Ile-de-France [24]. The blue curve is the resulting average of the A6 highway sections in Ile-de-Francetraffic flow inductive loop data counting. Figure (b): Cumulative charging power drawn duringthe day on residential and highway charging stations (HFC stands for Highway fast-chargingstation) [25]

constituting the tested fleet commence their journeywith uniformly distributed times across the
day.

The entrance time for one EV is obtained by iso-probabilistic transformation of the cumu-
lative density function of the hourly traffic flow curve in Figure 3.7a. The method is explained in
Appendix B.1.

3.3.3 . Case study 1
Use cases: in the comparison of charging plan optimisation methods and in the comparison of

the FCFS communication and reservation strategies.
The highway environment for Case study 1 is given by Figure 3.8. This is a simplified version

of the French A6 highway with 6 stations and 11 entrances/exits. Three different traffic situ-ations are generated with one fleet per traffic situation: low traffic situation (100 EVs), average
traffic situation (180 EVs) and high-traffic situation (300 EVs). Each fleet includes 3 differenttypes of EVs listed in Table 3.1. The entrance, 𝑜𝑣 , and the exit, 𝑑𝑣 , of each EV is selected accord-ing to the entry/exit probabilities depicted in Figure 3.8, and the trip length must be higher than
100 km. The SoC at entrance 𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 ,𝑣 is randomly selected between 50 and 100 % and a SoC
when leaving the expressway, 𝑆𝑜𝐶𝑒𝑛𝑑 , set to 20%. Table 3.2 summarises the trip generation
parameters of Case study 1.

3.3.4 . Case study 2
Use case: in the comparison of optimal infrastructure to be deployed under FCFS communication

strategy and under no-communication strategy.
The highway environment of the Case study 2 is depicted in Figure 3.9 and represents the

real French A6 highway. The positions of the service areas are the real ones but the number of
entrance and exit is simplified (there are around 50 entrances/exits in reality).

The 𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 of each EVs is established according to the density function in Figure 3.10. In
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Figure 3.8: Highway description for the comparison of the charging strategies
Table 3.1: Type of EVs considered in the study

EV Type Batterycapacity(kWh)
Maximumchargingpower 𝑃𝑚𝑎𝑥,𝑣(kW)

𝑐𝑣 𝜌𝑣

Speedlimit(km/h)
Percentagein the fleet

urban 50 50 250 0.15 110 30%
sedan 60 100 500 0.18 130 60%
luxury 95 125 1062 0.18 130 10%

Table 3.2: Parameters of Case study 1
Parameter Value
Strategies FCFS communication strategy and

reservation strategy

Battery capacity depends on the EV type (see Table3.1)
Charging power see 𝑃𝑚𝑎𝑥,𝑣 and 𝑐𝑣 in Table 3.1

Number of traffic situation 3 (100, 180 and 300 EVs)
Number of fleet per trafficsituation 1

Number of charging point perCS 3
entrance/exit selection Entry/exit probability in Figure 3.8and 𝐷 > 100 km

𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 𝑈 ( [50, 100]%)

𝑆𝑜𝐶𝑒𝑛𝑑 20%
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Figure 3.9: French highway A6 with simplified entrances/exits

Case study 1 (see Section 4), we supposed that the SoC when entering the highway was uni-
formly distributed from 50 % to 100 % because we assumed that a driver prefers charging at
home before a long distance trip instead at highway service areas where the charging price is
higher. It is surprising to see that, in Figure 3.10, a part of the EVs enters the highway for a long
distance trip with less than 50 % of SoC. This might be due to EVs driving in other countries than
France where the configuration of highways is different: for instance, in Germany, it is easier
to leave the highway to find a fast charger in an urban area near the highway that is cheaper
because it is not on a service area. We could not filter those kind of results because of the close-
ness of the charging station to the highway or other reasons we could not determine from the
data.

Figure 3.10: SoC at entrance distribution of the long distance trips extracted from the 380 Stel-lantis connected EVs
As in this case study we optimise the charging infrastructure, we need different fleets to

represent different days sowe generate 5 fleets of 500 EVs (see Table 3.3). To partially reflect the
sensitivity of the charging strategies to the trip parameters, we introduce two differentmethods
explained later in Section 5.3.2 to select the exit 𝑑𝑣 of each EV. The method used depends on
the fleet.

3.3.5 . Case study 3
2SoC distribution given in Figure 3.10.
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Table 3.3: Parameters for the trip generation according to the fleet
Fleet 𝑖 Exit selectionmethod 𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡,𝑣 selectionmethod 𝑃𝑚𝑎𝑥,𝑣 (kW) 𝑐𝑣 (-)

𝐹1
see section5.3.2

SoC distribution2truncated (50% -100 %) 140 6000

𝐹2 - SoC distributiontruncated (50% -100 %) 130 6000

𝐹3 - SoC distributiontruncated (50% -100 %) 130 6000
𝐹4 - SoC distribution 130 5000
𝐹5 - SoC distribution 130 5000

Table 3.4: Parameters of Case study 2
Parameters Value
Strategies FCFS communication strategy and

no-communication strategy

Number of traffic situation 1 (500 EVs)
Number of fleet per trafficsituation 5

Number of charging point perCS - (optimisation)
Charging power in stations Depends on the Optimisation ({175}or {50, 175} kW)

Battery capacity 60 kWh
Charging power see column 𝑃𝑚𝑎𝑥,𝑣 and 𝑐𝑣 in Table 3.3

entrance/exit selection Depends on the fleet (see Section 5.3)
𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 see column 𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡,𝑣 in 3.3
𝑆𝑜𝐶𝑒𝑛𝑑 𝑈 ( [20, 30]%)

Use case: in the establishment of the trade-off between time spent in stations and infrastructure
cost with different share of ultra-fast-charging EVs

The highway environment for the Case study 1 is given by Figure 3.11 and represents the
French highway A6 with all the real entrance/exits. The entrance and exit probabilities are given
in Figure 3.13 and Table 3.5 summarises the parameters of the case study.
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Figure 3.11: French highway A6
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Figure 3.12: Charging curves of the 100kW and350kW-charging EVs
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Figure 3.13: Entry and exit probabilities of eachentrance/exit of the highway
Table 3.5: Parameters of Case study 3

Parameters Value
Strategies Last station reachable strategy

Number of traffic situation 1 (50 EVs)
Number of fleet per traffic situation 100
Number of charging point per CS - (optimisation)

Battery capacity 70 kWh
Charging power see Figures 3.12

entrance/exit selection Entry/exit probability from Figure 3.13
𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 𝑁 (80%, 15) truncated at 40% and 95%
𝑆𝑜𝐶𝑒𝑛𝑑 20%

3.4 . Methods for the charging plan optimisations
3.4.1 . Charging plan optimisation challenges

Concerning the charging plan optimisation (3.9), the objective of the optimisation, 𝐷𝐹𝑣 , de-pends on 𝑇𝑐ℎ𝑎𝑟𝑔𝑒 (𝜔𝑣) (3.5). Yet, the charging time with a fast charger is usually not a linear
function of the energy charged [40] (see Section 3.2.1). If the charging time dependence on the
energy is not linear, neither the trip time optimisation is, so we cannot solve the problem with
linear programming.
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Moreover, for the FCFS communication strategy, the objective of the optimisation includes
𝑇𝑤𝑎𝑖𝑡 (𝜔𝑣) (3.5), which is the sum of waiting time at each station where the EV stops to charge
(𝑥𝑖 >0). As the waiting time in a station depends on the arrival time in this station, we need
to compute the optimal charging plan based on the arrival time at each station. This arrival
time depends on the amount of energy recovered at the previous stations and the power used
to charge that energy (as 𝑇𝑐ℎ𝑎𝑟𝑔𝑒 depends on the charging power). In addition, the waiting
time is not continuous according to the arrival time (see Figure 3.6), so we do not have one
mathematical expression of the waiting time according to the arrival time. Thus, we need todiscretise the energy charged in stations to have a list of arrival time values and deduce the
waiting time for each value.

To circumvent all those challenges, Jean Hassler implemented an exhaustive method de-
picted in Section 3.4.2 that list possible discretised charging plans before evaluating them and
deducing the optimal one. We improved the exhaustive method during this present thesis, and
we ran it for all the case studies presented in this manuscript because of its implementation
maturity. However, we explored other charging plan optimisationmethods, such as the genetic
algorithm described in Section 3.4.3 and the dynamic programming in Section 3.4.4. We will
see that the last method, the dynamic programming method, could represent an interesting
alternative to the exhaustive method, especially for real-world applications.

We set a case study to test the three optimisation methods and determine the best method
in Section 3.4.5.

The discontent factor 𝐷𝐹 to be minimised also includes the cost of the charge, but as we
consider the charging price linear according to the charged energy, the optimisation of 𝐷𝐹 is
not complicated by the charging cost.

3.4.2 . Exhaustive or "brute force" method
The exhaustive method is the method of reference for the charging plan optimisation as it

was tested and checked during the previous thesis and this current thesis. It is also simple to
check the correctness of its results since all possible solutions are listed.

As a reminder, the exhaustive method for optimising the charging plan lists possible dis-
cretised charging plans before computing the objective value for each potential solution to find
the optimal one. Since the computation time of the charging plan listing rapidly grows with the
number of stops in the charging plans (combinatorial), we need for this method a limited num-
ber 𝑁𝑙𝑖𝑚𝑖𝑡 , 𝑣 of stops in the charging plans to be able to list them in a feasible time. Initially, we
will assume that 𝑁𝑙𝑖𝑚𝑖𝑡 equal to the minimum number of charging stops (𝑁𝑚𝑖𝑛,𝑣) the EV needsto reach its destination with 𝑆𝑜𝐶𝑡𝑎𝑟 ,𝑣 (𝑁𝑙𝑖𝑚𝑖𝑡 = 𝑁𝑚𝑖𝑛).

Therefore, before listing the charging plans, 𝐸𝑉𝑣 determines the minimum number of char-
ging stops (𝑁𝑚𝑖𝑛, 𝑣). For this purpose, 𝐸𝑉𝑣 establishes the last station on the road it can reach
with its initial SoC, 𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 ,𝑣. Then, it assumes that its battery is charged to 80% at that sta-
tion and the EV reiterates the process until it virtually reaches the destination. 𝑁𝑚𝑖𝑛, 𝑣 is thenthe number of time 𝐸𝑉𝑣 stops to charge the battery to 80%. The charging plan found with thismethod is called the "last-reachable charging plan" and is written 𝜔𝑙𝑟 ,𝑣.

Then, the 𝐸𝑉𝑣 lists in Ω𝑣 all the possible charging plans with 𝑁𝑚𝑖𝑛 charging pauses it canfollow to reach its destination. One charging plan 𝜔𝑣 ∈ Ω𝑣 (Equation 3.2) is a list of 𝑁𝑚𝑖𝑛 tuples
(𝑖𝑘 , 𝑥𝑖𝑘 ) where 𝑖𝑘 ∈ {1 , . . . , 𝑁𝐶𝑆} identifies a station on the path of 𝐸𝑉𝑣 and 𝑥𝑘 > 0 the amount
of energy planned to be stored at station 𝐶𝑆𝑖𝑘 (see equation 3.21). For one list of station IDs
(𝑖1, ..., 𝑖𝑁𝑚𝑖𝑛

) representing one-stop plan (see textbox 3.1.2), we discretise the total energy 𝐸𝑡𝑜𝑡𝑎𝑙𝑣and constitute all the possible combination of discretised energies 𝑥𝑖𝑘 that we distribute among
the stations from the stop plan.
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𝜔𝑣 =

(
𝑖1 . . . 𝑖𝑁𝑚𝑖𝑛

𝑥𝑖1 . . . 𝑥𝑖𝑁𝑚𝑖𝑛

)
with 𝑁𝑚𝑖𝑛∑︁

𝑘=1

𝑥𝑖𝑘 = 𝐸𝑡𝑜𝑡𝑎𝑙𝑣 (3.21)

It is possible to add a charging stop to the 𝑁𝑚𝑖𝑛, 𝑣 stops to offer more charging plans and
increase the flexibility of the FCFS communication strategy. However, as the listing of the char-
ging plans is combinatorial, the computation time when listing the charging plans before the
beginning of the simulation is exponential with respect to the number of stops, and the calcula-
tion time at each iteration also increases according to the number of stops. This is why we are
limiting the possibility of adding one charging stop only to the EVs with 𝑁𝑚𝑖𝑛, 𝑣 ≤ 2. We note
𝑁𝑙𝑖𝑚𝑖𝑡 , 𝑣 , the maximal number of charging stops a charging plan 𝜔𝑣 is allowed to have.To speed up the calculations, we detail before the simulation for each charging plan the
driving time between two stations (with a constant speed 𝑠𝑝𝑒𝑒𝑑𝑣), the estimated charging time
(see 3.2.1), the estimated SoC when entering each CS of the charging plan and the SoC when
leaving them. Those elements are kept in a 𝑑𝑎𝑡𝑎𝑐ℎ𝑎𝑟𝑔𝑒 structure during the simulation. To sim-
plify the simulation, we suppose those elements never change during the simulation, and only
the waiting time and the estimated arrival time (depending on the waiting time in the previous
stations) are updated at each iteration 𝑡. Consequently, there is no difference between the es-
timated state variables (𝑆𝑜𝐶𝑖𝑛,𝑣,𝑖 , 𝑆𝑜𝐶𝑜𝑢𝑡,𝑣,𝑖 , 𝑡𝑐ℎ𝑎𝑟𝑔𝑒,𝑣,𝑖 , 𝑡𝑑𝑟𝑖𝑣𝑒) and the actual state of the EVwhenit effectively reaches a station during the simulation.

As we are only updating the waiting times for each listed charging plan before determining
the minimal value of a list of times during the simulation, using the exhaustive method is fast.
Although the computation time increases exponentially with the number of charging stops, this
time stays under 1 second. However, suppose we want to consider traffic hazards (difference
between estimated driving time and actual ones) or different charging times from the estimated
ones. In that case, we have to update the information listed in 𝑑𝑎𝑡𝑎𝑐ℎ𝑎𝑟𝑔𝑒, which can be time-
costly.

During the simulation, one step executed at each iteration 𝑡 consists in updating the EV’s
optimal charging plan (step 3 on Figure 3.2). As explained in Section 3.4, we use for all thecase studies in this manuscript the exhaustive method (Section 3.4.2) to optimise the charging
plan of the EVs since it was the method implemented by J.Hassler [98] and so, the more mature
approach.

However, the performance of the FCFS communication strategy were downgraded due to
the way the charging plans were listed for the exhaustive method in the inherited version. We
explain in Appendix D.1 the correction we brought to the algorithm.

Even if we improved the way the charging plans were listed to give more flexibility to the EV,
the exhaustivemethod still has amajor issue: the optimisation depends on a limited number of
charging stops, 𝑁𝑙𝑖𝑚𝑖𝑡 , 𝑣. As we will see in the following chapters (especially in Section 4.4 and inSection 4.6.1.3), it can be beneficial to add as many charging stops as possible and, so we need
to find charging plan optimisations methods that do not depend on the number of charging
stops.

3.4.3 . Evolutionary algorithm for the resolution
An evolutionary algorithm is one method that does not need a presetting of the maximum

charging stop number and can handle complex problems like ours. We tested the genetic al-
gorithm (GA) [107]. The GA is inspired by the natural selection process and works on a popula-
tion of individuals representing for each of them a solution to the optimisation problem, here
a charging plan (3.2). The 𝑖𝑡ℎ gene of an individual gives the amount of energy 𝑥𝑖 charged at the
𝑖𝑡ℎ station along the way of the EV, and 𝑥𝑖 > 0 means that the EV will stop and charge at the
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corresponding station𝐶𝑆𝑖. If the charging stations have several levels of charging power 𝑝𝑖 , thegene should also give the power level used per station (see Figure 3.14).

Figure 3.14: Description of a gene representing one charging plan with 𝑥𝑖 the amount of energycharged in 𝐶𝑆𝑖 and 𝑝𝑖 the power of the socket used
We use the genetic algorithm "ga()" by Matlab [108] to perform the optimisation. The con-

straints on the SoC are linear according to the optimisation variables (the vector of energy
charged per station 𝑥), so we only need to define the matrix Aineq and the vector bineq rep-
resenting the linear constraints of the algorithm (3.22).

𝐴𝑖𝑛𝑒𝑞.𝑥 ≤ 𝑏𝑖𝑛𝑒𝑞 (3.22)
We define next the expression of the constraints according to the charging plan (the optimisa-
tion variable). As there is no constraint on the power used in the station, we suppose in the rest
of this section that a gene represented by 𝑥 only describes the 𝑥𝑖 and not the 𝑝𝑖.It is possible to convert the first constraint (3.10) on the SoC threshold 𝑆𝑜𝐶𝑚𝑖𝑛 below which
𝐸𝑉𝑣 cannot fall into a constraint only on the SoC when 𝐸𝑉𝑣 drives past a charging station
(𝑆𝑜𝐶𝑖𝑛,𝑖,𝑣):

∀𝑖 ∈ J 1; 𝑁𝐶𝑆K, 𝑆𝑜𝐶𝑖𝑛,𝑖,𝑣 ≥ 𝑆𝑜𝐶𝑚𝑖𝑛 (3.23)
However, this constraint (3.23) is non-relevant for 𝑖 = 1 since 𝑆𝑜𝐶𝑖𝑛,1,𝑣 does not depend on thecharging plan (𝑥, 𝑝), only on the initial 𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 ,𝑣 that is not an optimisation variable. Thus,
we focus on 𝑖 ∈ J 2; 𝑁𝐶𝑆K because 𝑆𝑜𝐶𝑖𝑛,1,𝑣 (𝑖 = 1). Moreover, 𝑆𝑜𝐶𝑒𝑛𝑑,𝑣 (𝑖 = 𝑁𝐶𝑆 + 1) is also
constrained by the 𝑆𝑜𝐶𝑚𝑖𝑛 so, if we assume that 𝑖 = 𝑁𝐶𝑆 + 1 represents the exit 𝑑𝑣 , we shouldapply the constraint for 𝑖 ∈ J 2; 𝑁𝐶𝑆 + 1K. Therefore, the constraint (3.23) can be expressed withthe variables of the charging plan to be optimised (linear constraint):

∀𝑖 ∈ J 2; 𝑁𝐶𝑆 + 1K, 𝑆𝑜𝐶𝑖𝑛,𝑖,𝑣 = 𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 −
𝑖−1∑︁
𝑘=0

𝑐𝑜𝑛𝑠𝑘→𝑘+1 +
𝑖−1∑︁
𝑘=1

𝑥𝑘 ≥ 𝑆𝑜𝐶𝑚𝑖𝑛 (3.24)

with 𝑐𝑜𝑛𝑠.𝑘→𝑘+1 the energy consumption (%) between the station 𝐶𝑆𝑘 and 𝐶𝑆𝑘+1. The indice
𝑘 = 0 corresponds to the entrance 𝑜𝑣 so the consumption 𝑐𝑜𝑛𝑠.0→1 is the consumption between
the entrance and the first station 𝐶𝑆1. The constraint (3.24) is represented by matrix 𝑁𝐶𝑆𝐶𝑆 𝐴1and vector 𝑏1 defined as follow:

𝐴1 = − 1

𝐸𝑏𝑎𝑡𝑡

©«
1 0 . . . . . . 0
1 1 0 . . . 0
...

...
... . . .

...

1 1 1 . . . 1

ª®®®®¬
, 𝑏1 =

©«
𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 ,𝑣 −

∑1
𝑘=0 𝑐𝑜𝑛𝑠𝑘→𝑘+1 − 𝑆𝑜𝐶𝑚𝑖𝑛

𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 ,𝑣 −
∑2

𝑘=0 𝑐𝑜𝑛𝑠𝑘→𝑘+1 − 𝑆𝑜𝐶𝑚𝑖𝑛

...

𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 ,𝑣 −
∑𝑁𝐶𝑆

𝑘=0 𝑐𝑜𝑛𝑠𝑘→𝑘+1 − 𝑆𝑜𝐶𝑚𝑖𝑛

ª®®®®¬
The constraint (3.11) concerning the final SoC when 𝐸𝑉𝑣 charges in a station can be ex-

pressed by:

∀𝑖 ∈ J 1; 𝑁𝐶𝑆K such as 𝑥𝑖 > 0, 𝑆𝑜𝐶𝑜𝑢𝑡,𝑖,𝑣 = 𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 −
𝑖−1∑︁
𝑘=0

𝑐𝑜𝑛𝑠𝑘→𝑘+1 +
𝑖∑︁

𝑘=1

𝑥𝑘 ≤ 80% (3.25)
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Therefore, the constraint (3.25) is represented bymatrix 𝑁𝐶𝑆×𝑁𝐶𝑆 𝐴2 and vector 𝑏2 definedas follow:

𝐴2 =
1

𝐸𝑏𝑎𝑡𝑡

©«
1 0 . . . . . . 0
1 1 0 . . . 0
...

...
... . . .

...

1 1 1 . . . 1

ª®®®®¬
, 𝑏2 =

©«
−𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 ,𝑣 + 𝑐𝑜𝑛𝑠𝑜𝑣→1 + 𝑆𝑜𝐶𝑚𝑎𝑥

−𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 ,𝑣 +
∑1

𝑘=0 𝑐𝑜𝑛𝑠𝑘→𝑘+1 + 𝑆𝑜𝐶𝑚𝑎𝑥

...

−𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 ,𝑣 +
∑𝑁𝐶𝑆−1

𝑘=0 𝑐𝑜𝑛𝑠𝑘→𝑘+1 + 𝑆𝑜𝐶𝑚𝑎𝑥

ª®®®®¬
In the same way, the final constraint (3.12) on 𝑆𝑜𝐶𝑒𝑛𝑑,𝑣 according to the charging plan is

represented by matrix 1 × 𝑁𝐶𝑆 𝐴3 and scalar 𝑏3 defined as follow:
𝐴3 = − 1

𝐸𝑏𝑎𝑡𝑡

(
1 1 1 . . . 1

) , 𝑏3 =

(
𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 ,𝑣 −

∑𝑁𝐶𝑆

𝑘=0 𝑐𝑜𝑛𝑠𝑘→𝑘+1 − 𝑆𝑜𝐶𝑡𝑎𝑟 ,𝑣

)
(3.26)

Finally, the matrix Aineq and the vector bineq are given by the equation (3.27).
𝐴𝑖𝑛𝑒𝑞 =

©«
𝐴1
𝐴2
𝐴3

ª®¬ , 𝑏𝑖𝑛𝑒𝑞 =
©«
𝑏1
𝑏2
𝑏3

ª®¬ (3.27)
The GA is a non-deterministic method, meaning we can have different final results with

the same input (the initial population). This is why we need to set stopping criteria to end the
GA and retrieve the best solution found so far. One of the stopping criteria is the number of
iterations without significant changes to the best solution. With the GA fromMatlab, we can set
a FunctionTolerance threshold that made the "algorithm stop if the average relative change
in the best fitness function value overMaxStallGenerations generations is less than or equal
to FunctionTolerance" [108]. To avoid long computation time in case the FunctionTolerance
threshold is not hit, we set a maximum number of iterations,MaxGenerations.

Another parameter of the GA is of importance: to be sure that the constraints on the SoC
are taken into account, we notice after several tests that we need a low ConstraintTolerance
threshold (for example, 1e-10).

3.4.4 . Dynamic programming
The charging plan optimisation problem can be assimilated into an optimal control problem

(3.28). The state variable is the SoC of the EV because of the constraints on the SoC in (3.28) and
the control variables are 𝑥𝜔 (the vector of energies charged in each station, see Section 3.9)
and 𝑝𝜔 (the vector of charging power used in each station). The set of charging plans is noted
Ω.

{ 𝑥∗𝜔 , 𝑝∗𝜔 } =𝑎𝑟𝑔𝑚𝑖𝑛(𝑥𝜔 , 𝑝𝜔 ) ∈Ω𝐷𝐹𝑣 (𝑥𝜔 , 𝑝𝜔)
s.t. 𝑆𝑜𝐶𝑣 ≥ 15%

s.t. ∀ 𝑥𝑖 > 0, 𝑆𝑜𝐶𝑜𝑢𝑡,𝑖,𝑣 ≤ 80%

s.t. 𝑆𝑜𝐶𝑒𝑛𝑑,𝑣 ≥ 𝑆𝑜𝐶𝑡𝑎𝑟 ,𝑣

(3.28)

One of the usual methods to solve an optimal control problem is dynamic programming (DP)
by R. Bellman [109] if the problem is divisible into sub-problems. We will explain in Appendix C
how the problem is subdivided and in which order wewill implement the forward and backward
method of dynamic programming.

The constraint on the 𝑆𝑜𝐶𝑒𝑛𝑑,𝑣 and the control variable 𝑥 force us to keep track of the SoCevolutionwhen the EV leaves a station (𝑆𝑜𝐶𝑜𝑢𝑡 ).Thus, we choose to break down the problem into
subproblems linked to a station, and we define the SoC when the EV leaves a station, 𝑆𝑜𝐶𝑜𝑢𝑡 , asthe state variable. The subproblem 𝑖 is the subproblem linked to the station 𝐶𝑆𝑖 and returnsas result for a given 𝑆𝑜𝐶𝑜𝑢𝑡,𝑖:
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• the minimum needed time 𝑡𝑡𝑟𝑖 𝑝 𝑚𝑖𝑛,𝑜𝑣→𝑖

(
𝑆𝑜𝐶𝑜𝑢𝑡,𝑖

) from the beginning of the trip to have
𝑆𝑜𝐶 = 𝑆𝑜𝐶𝑜𝑢𝑡,𝑖 when leaving the station 𝐶𝑆𝑖.

• the associated partial charging plan (𝑥1, . . . , 𝑥𝑖; 𝑝1, . . . , 𝑝𝑖)∗ that enables to reach the SoCtarget 𝑆𝑜𝐶𝑜𝑢𝑡,𝑖 with the minimum trip time 𝑡𝑚𝑖𝑛,𝑜𝑣→𝑖

(
𝑆𝑜𝐶𝑜𝑢𝑡,𝑖

) .
As explained in Section 3.4.1, the energy charged 𝑥𝑖 in stations should be discretised, so weneed to discretise also the 𝑆𝑜𝐶𝑜𝑢𝑡 that depends on 𝑥𝑖. Thewhole process is depicted in AppendixC with an example.
We need the results of the previous subproblem to solve the current subproblem mostly

because of the waiting time that depends on the arrival time in station . Thus, wemust start the
problem resolution from the beginning of the trip (forward method) to record the arrival time
at each station according to the time spent in the previous stations.

With this dynamic programming method, the charging plan optimisation is independent of
the number of charging stops (see Appendix C). There is no need to list all the possible charging
plans before starting the simulation or to update information in 𝑑𝑎𝑡𝑎𝑐ℎ𝑎𝑟𝑔𝑒 (see Section 3.4.2)
if a change occurs for an item other than the waiting time because the change will already be
updated when initialising the parameters of the optimisation.

3.4.5 . Comparison of the charging plan optimisation methods
In this part, we will only focus on the trip time minimisation in 𝐷𝐹 (𝑋 = 0 in (3.4)) because,

as mentioned in Section 3.4.1), the charging cost is linear according to the charged energy. We
take the highway of Case study 1 described in Section 3.3.3 to compare the three optimisation
methods. The highway layout is described by Figure 3.8.

We create an 𝐸𝑉𝑡𝑒𝑠𝑡 going on this highway for a long-distance trip with the characteristics
given in Table 3.6. To simplify the problem, we assume the charging power to be constant
according to the SoC and equal to the power level delivered by the station (𝑃𝑣 = 𝑝𝑖).

Table 3.6: Characteristics of 𝐸𝑉𝑡𝑒𝑠𝑡
Intrinsic parameters Trip parameters
Parameter Value Parameter Value
𝐶 (kWh) 50 𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 (%) 85.3

𝑠𝑝𝑒𝑒𝑑𝑑𝑟𝑖𝑣𝑒𝑟 (km/h) 130 𝑆𝑜𝐶𝑡𝑎𝑟 (%) 20
𝜌 (kWh/km) 0.22 𝑜, 𝑑 (∈ E) 1, 9

charging coefficient 𝑐𝑣() 250 𝑡𝑠𝑡𝑎𝑟𝑡 9:00 am

3.4.5.1 . With no waiting time
Wefirst optimise the charging plan using the threemethods without considering the waiting

time (for the no-communication strategy). As 𝑡𝑑𝑟𝑖𝑣𝑒 does not depend on the charging plan (the
optimisation variable), the fitnesses of the different solutions given in this section are the time
spent in station 𝑇𝐶𝑆 (𝑇𝐶𝑆 = 𝑇𝑐ℎ𝑎𝑟𝑔𝑒 + 𝑇𝑤𝑎𝑖𝑡 + 𝑇𝑜𝑡ℎ𝑒𝑟 ) instead of the whole trip time 𝑇𝑡𝑟𝑖 𝑝.

3.4.5.1.1 Exhaustive method
The exhaustive method gives the following charging plan with 𝑁𝑙𝑖𝑚𝑖𝑡 = 𝑁𝑚𝑖𝑛 and the energy
discretisation step equals to 0.25 kWh: The fitness of this optimal charging plan without the
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Table 3.7: Charging plan𝜔𝐸𝑥. computedwith the exhaustivemethod andΔ𝐸 = 0.25 kWh
chargingstation

𝑖

energycharged 𝑥𝑖(kWh) 𝑡𝑖𝑛,𝑖 𝑡𝑤𝑎𝑖𝑡,𝑖 (s) 𝑡𝑐ℎ𝑎𝑟𝑔𝑒,𝑖(s) 𝑆𝑜𝐶𝑖𝑛,𝑖(%) 𝑆𝑜𝐶𝑜𝑢𝑡,𝑖(%) 𝑝𝑖 (kW)
1 9 09:27:42 0 624 58.9 76.9 100
3 32.25 10:42:42 0 1228.8 15.3 79.3 125
4 13.5 12:05:02 0 786 20.84 47.84 100
5 27.66 12:52:17 0 1096.61 15.28 70.6 125

driving time 𝑡𝑑𝑟𝑖𝑣𝑒 is 𝑇𝐶𝑆 = 62.26 minutes with four stops (𝑁𝑚𝑖𝑛 = 4). The computation time of
the optimisation part was in average 1.55 seconds, but the initialisation of 𝑑𝑎𝑡𝑎𝑐ℎ𝑎𝑟𝑔𝑒 lasted 832seconds.

As the initialisation of 𝑑𝑎𝑡𝑎𝑐ℎ𝑎𝑟𝑔𝑒 is quite long, we run the same optimisation with a step
equal to 0.5 kWh to reduce the computation time and summarise the results in Table 3.8.
Table 3.8: Charging plan 𝜔𝐸𝑥. computed with the exhaustive method and Δ𝐸 = 0.5 kWh
chargingstation

𝑖

energycharged 𝑥𝑖(kWh) 𝑡𝑖𝑛,𝑖 𝑡𝑤𝑎𝑖𝑡,𝑖 (s) 𝑡𝑐ℎ𝑎𝑟𝑔𝑒,𝑖(s) 𝑆𝑜𝐶𝑖𝑛,𝑖(%) 𝑆𝑜𝐶𝑜𝑢𝑡,𝑖(%) 𝑝𝑖 (kW)
1 9 09:27:42 0 624 58.9 76.9 100
3 32 10:42:42 0 1221.6 15.3 79.3 125
4 14 12:04:55 0 804 20.84 47.84 100
5 27.41 12:52:28 0 1089.41 15.28 70.6 125

The fitness of this optimal charging plan without the driving time 𝑡𝑑𝑟𝑖𝑣𝑒 is 𝑇𝐶𝑆 = 62.32minutes so the EV only lost 3 seconds in station compared to the case where the energy step is
more precise (Δ𝐸 = 0.25 𝑘𝑊ℎ). The EV stops at the same stations as the case with more precise
stops. The optimisation part lasted 216milliseconds and was 7 times faster than the case with
Δ𝐸 = 0.25 𝑘𝑊ℎ. The initialisation of 𝑑𝑎𝑡𝑎𝑐ℎ𝑎𝑟𝑔𝑒 took 71,7 seconds to complete, which is more
than 10 times faster than the other case with more precise energy steps. Therefore, for the
exhaustive method, a high precision on Δ𝐸 is not necessary since we gain only 3 seconds on
the fitness 𝑇𝐶𝑆 with Δ𝐸 = 0.25 𝑘𝑊ℎ compared with Δ𝐸 = 0.5𝑘𝑊ℎ for more than 7 times longer
calculations when initialising 𝑑𝑎𝑡𝑎𝑐ℎ𝑎𝑟𝑔𝑒 and optimising the charging plan. This is why, for the
rest of the manuscript, we use Δ𝐸 = 0.5𝑘𝑊ℎ or higher values.

3.4.5.1.2 Genetic Algorithm
With the GAmethod, as explained in Section 3.4.3, the result of the GA is non-deterministic con-
trary to the two other methods we studied in this manuscript, so the result returned by the GA
might be a local minimum and not the global minimum of the objective. We have run a first op-
timisation with MaxGenerations = 6000, FunctionTolerance = 1e-6 and as initial population, the
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solution𝜔𝑙𝑟 which value is given in (3.29). The result was returned in 20 seconds but correspon-ded to a fitness of 70 minutes which is more than the result found by the exhaustive method.
We tested another combination of GA options summarised in Table 3.9. The MaxGenerations
equals 6000 for all the tests.

𝜔𝑙𝑟 =
(
0 9.83 29.94 31.06 11.58 0

) (3.29)

Table 3.9: GA options, initial population and results obtained according to the optim-isation parameters

Result Functiontoler-ance
Initialpopula-tion

𝑇𝐶𝑆(min) Computationtime (s) nb. iter-ations
1 1e-6 𝜔𝑙𝑟 47.98 50.6 100
2 1e-10 𝜔𝑙𝑟 70.07 20 1985
3 0 𝜔𝑙𝑟 69.5 120 6000
4 0 - 62.77 116 6000
5 1e-10 - 62.6 32 985
6 0 𝜔𝐸𝑥. 62.3 17 805

Table 3.10: Detailed charging plans computed with the GAmethod according to the GAoptions described in Table 3.9
Result 𝜔∗ (kWh)
1 (

0 9.6 28.8 30.2 13.9 0
)

2 (
0 8.9 31.9 17.1 24.6 0

)
3 (

0 8.9 29.5 29.8 14.2 0
)

4 (
10.5 0 27.8 16.2 27.8 0

)
5 (

10.1 0 29.0 15.5 27.8 0
)

6 (
8.9 0 32.3 13.5 27.7 0

)
When the FunctionTolerance is set to 0, the algorithm only stops when the maximum num-

ber of iteration (MaxGeneration) is reached, so after 6000 iterations (approximately 120 seconds
of computation). If we want to reduce the number of iteration, and so the computation times,
we should set the FunctionTolerance to a non null value (for instance 1.e-10). Several results
enable to have a solution after less than 50 seconds with FunctionTolerance = 1e-10.

We notice that the initial population is important too since when we initialise with 𝜔𝑙𝑟 (res-ults 1 to 3), the algorithm converges to solutions with high values of fitness (68, 69.5 and 70.7
minutes) and when we do not initialise the population (results 4 to 5), the algorithm finds solu-
tions with a fitness approaching the fitness given by the exhaustive method (62.31 minutes).
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The results 1 to 3 seem to have fall into a local minimum. When we give as initial population
the charging plan found by the exhaustive method 𝜔𝐸𝑥. (result 6), the algorithm converges to
a better solution with a fitness equal to 62.25. However, this last result supposes we already
know the result of the exhaustive method which is not the aim here if we want to replace the
exhaustive method.

The results are very different from a running of the GA to another and the time to compute
the best solution varies from 17 to 120 seconds so the GA seems to be inappropriate for the
optimisation of a charging plan. Yet, this algorithm is interesting if we want to compute the best
solution and to compare it with the result given by the exhaustive method.

3.4.5.1.3 Dynamic programming
We use a discretisation step of 0.5 % of SoC for the dynamic programmingmethod. This corres-
ponds to a SoC of 0.25 kWh (Δ𝐸 = 0.25 𝑘𝑊ℎ). The charging plan given by the Dynamic method
is shown in Table 3.11.

Table 3.11: Charging plan computed with dynamic programming
chargingstation

𝑖

energycharged 𝑥𝑖(kWh) 𝑡𝑖𝑛,𝑖 𝑡𝑤𝑎𝑖𝑡,𝑖 (s) 𝑡𝑐ℎ𝑎𝑟𝑔𝑒,𝑖(s) 𝑆𝑜𝐶𝑖𝑛,𝑖(%) 𝑆𝑜𝐶𝑜𝑢𝑡,𝑖(%) 𝑝𝑖 (kW)
1 9.25 09:27:42 0 633 58.5 77 100
3 32.5 10:42:51 0 1236 15 80 125
4 13.5 12:05:18 0 786 21 48 100
5 28 46353.46 0 1106.4 15 71 125
The fitness of the optimal charging plan found by DP is 62.69 seconds and the computation

time is 0.26 seconds
3.4.5.1.4 Comparison of the results

The charging plan given by the three methods are similar with the EV stopping in the same sta-
tions to charge (𝐶𝑆1, 3, 4 and 5). The energy charged in each station differs by only 0.25 kWh
from one method to another. The total amount of energy charged is higher for the DP method,
83.25 kWh, against 82.41 kWh for the exhaustive method since we overestimate the consump-
tion in the DP method for computation purposes.

Table 3.12 sums up the computation time of the different optimisationmethods, the energy
charged, and the time spent in station 𝑇𝐶𝑆 per solution.We have seen in Section 3.4.5.1.1 the exhaustive method with Δ𝐸 = 0.5 𝑘𝑊ℎ is more inter-
esting than the same method with Δ𝐸 = 0.25 𝑘𝑊ℎ. In addition, the exhaustive method with
Δ𝐸 = 0.5𝑘𝑊ℎ gives a better fitness 𝑇𝐶𝑆 (𝜔∗

𝑣) than dynamic programming with Δ𝐸 = 0.25 𝑘𝑊ℎ

(62.32 seconds against 62.69 seconds). Theperformance of the dynamic programming is slightly
outperformed by the exhaustivemethod becausewe need to round the SoC froma subproblem
to another in dynamic programming and we choose to overestimate the consumption between
stations, leading to a higher amount of energy to charge, 𝐸𝑡𝑜𝑡𝑎𝑙 , with DP (see Table 3.12).Moreover, the exhaustive method with Δ𝐸 = 0.5 𝑘𝑊ℎ is the fastest method to optimise
the charging plan (see column "Time to optimise 𝜔𝑣") even if DP method is almost as fast (0.26
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Table 3.12: Comparison of the optimisation methods without waiting time

Method Time toinitialise
𝑑𝑎𝑡𝑎𝑐ℎ𝑎𝑟𝑔𝑒 (s)

Time tooptimise 𝜔𝑣(s)
𝐸𝑡𝑜𝑡𝑎𝑙 (𝜔∗

𝑣)(kWh) 𝑇𝐶𝑆 (𝜔∗
𝑣)(min)

Exhaustive(Δ𝐸 = 0.25 𝑘𝑊ℎ) 832 1.55 82.41 62.26
Exhaustive(Δ𝐸 = 0.5𝑘𝑊ℎ) 71.7 0.216 82.41 62.32

GA - 17 − 116 82.4 62.25 −70.07
DP(Δ𝐸 = 0.25 𝑘𝑊ℎ) - 0.26 83.25 62.69

seconds against 0.216 seconds). The exhaustive method is faster because the charging plan
data are already listed in 𝑑𝑎𝑡𝑎𝑐ℎ𝑎𝑟𝑔𝑒, and the algorithm only needs to update the waiting time
and find the minimum in a list of values. However, if Δ𝐸 = 0.25 𝑘𝑊ℎ, the optimisation takes
longer times (1.55 seconds) since the number of waiting times to update is higher and we can
assume the optimisationwould be slowed down also ifΔ𝐸 = 0.5 𝑘𝑊ℎ but the number of stations
on the road is increased, since the number of listed charging plans would be increased too.

The time to list the data in 𝑑𝑎𝑡𝑎𝑐ℎ𝑎𝑟𝑔𝑒 for the exhaustive method with Δ𝐸 = 0.5 𝑘𝑊ℎ is still
quite long (71.7 seconds) even if it is feasible before going on a long-distance trip and far less
than for the case with Δ𝐸 = 0.25 𝑘𝑊ℎ. The use of this method is not recommended for a situ-
ation where the 𝑑𝑎𝑡𝑎𝑐ℎ𝑎𝑟𝑔𝑒 has to be updated entirely regularly (for instance, in case of a traffic
jam and real-life variation of SoC). For this situation, the DP Method is more advisable since it
does not need the initialisation phase with the building of 𝑑𝑎𝑡𝑎𝑐ℎ𝑎𝑟𝑔𝑒. Still, for the majority of
the studies in this manuscript, the traffic situation is ideal, so 𝑑𝑎𝑡𝑎𝑐ℎ𝑎𝑟𝑔𝑒 do not need to be up-dated during the simulation and, as we are optimising the charging plan of hundreds of EVs at
the same time in the framework, we aim to use the method with the fastest optimisation part.

We should also mentioned that the EV we tested in this Section needs to perform at least
four stops (𝑁𝑚𝑖𝑛 = 4) which leads to high computation time. For others EVs with 𝑁𝑚𝑖𝑛 < 4,
the computation times with the exhaustive method is significantly reduced whereas the com-
putation time for the dynamic programming will be the same as it depends on the number
of stations on the road and not on the number of stops. Consequently and as the exhaustive
method is the most mature method of charging plan optimisation in our framework, we used
this method for the majority of the studies even if the DP method is promising.

The Genetic Algorithm appears to be the less interesting method since it is not regular on
the results returned and is slower than the two other methods in the best case (17 seconds).
Even if the GA enables to find the charging plan with the best fitness among the three method
(62.25 seconds), this result is obtained when initialising the GA population with the result of the
exhaustive method 𝜔𝐸𝑥. so this means longer computing times.

3.4.5.2 . With waiting time
Now, we test the exhaustive and the dynamic programming methods with waiting times to

evaluate if the dynamic programming gives similar results compared to the exhaustivemethod,
which is the reference method for the charging plan optimisation (see Section 3.4.2). The GA
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was not tested with waiting time since we have shown in the previous section, Section 3.4.5.1.4,
that the GA is outperformed by the two other methods.

The waiting time tables𝑊𝑇𝑠 were computed from the reservation tables 𝑅 obtained for the
simulation of Case study 1 with 180 EVs and FCFS communication strategy.

The result returned by the exhaustive method is detailled in Table 3.13.
Table 3.13: Charging plan computed with the exhaustive method (Δ𝐸 = 0.5 𝑘𝑊ℎ) withwaiting times
chargingstation

𝑖

energycharged
𝑥𝑖(kWh) 𝑡𝑖𝑛,𝑖 𝑡𝑤𝑎𝑖𝑡,𝑖 (s) 𝑡𝑐ℎ𝑎𝑟𝑔𝑒,𝑖(s) 𝑆𝑜𝐶𝑖𝑛,𝑖(%) 𝑆𝑜𝐶𝑜𝑢𝑡,𝑖(%) 𝑝𝑖 (kW)

1 9 09:27:42 0 624 58.9 76.9 100
3 29.5 10:42:42 0 1149.6 15.3 74.3 125
4 32 12:03:43 0 1452 15.34 79.34 100
5 11.91 13:02:04 269.11 643.01 46.78 70.6 125

Weperformed the optimisationwith dynamic programming and detailed the results in Table
3.14.

Table 3.14: Charging plan computed with dynamic programming (= 0.25 𝑘𝑊ℎ)
chargingstation

𝑖

energycharged
𝑥𝑖(kWh) 𝑡𝑖𝑛,𝑖 𝑡𝑤𝑎𝑖𝑡,𝑖 (s) 𝑡𝑐ℎ𝑎𝑟𝑔𝑒,𝑖(s) 𝑆𝑜𝐶𝑖𝑛,𝑖(%) 𝑆𝑜𝐶𝑜𝑢𝑡,𝑖(%) 𝑝𝑖 (kW)

1 9.25 09:27:42 0 633 58.5 77 100
3 32.5 10:42:51 0 1236 15 80 125
4 29.5 12:05:18 0 786 21 80 100
5 12 13:02:09 263.71 1106.4 47 71 125

Both methods return very similar results: the charging plans change in the same way com-
pared with the case without waiting times (Sections 3.4.5.1.1 and 3.4.5.1.3) by charging more
at station 4 (32 kWh and 29.5 kWh respectively for the exhaustive method and the dynamic
programming). The waiting time in station 5 is nearly the same (269 and 263 seconds). The fit-
ness of the exhaustive method is still slightly less than the fitness of the dynamic programming
(68.96 minutes against 69 minutes). Therefore, the dynamic programming represents a correct
alternative to the exhaustive method.

Highlights for the comparison of the three charging plan optimisation methods
The dynamic programming method represents a promising option for the computationof the charging plan as it does not depends on the number of stops of the charging planand gives similar results as the exhaustive method in a feasible time (less than 1 second).Even if the optimal charging plan returned by the dynamic programming increases thetrip time compared with the exhaustive method, the difference is insignificant (less than
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1 minutes). For real-life application, the dynamic programming appears to be the bestsolution as it does not need an initialisation of the charging plan (as it is the case for theexhaustive method) and therefore can adapt more quickly to a change in the Ev’s stateor in the traffic.The genetic algorithm is not adapted for both ideal cases and real-life applications.

3.5 . Conclusion
Wepresented in this chapter the simulation framework and the FCFS communication strategy

we inherited from the previous thesis by J.Hassler [98]. The simulation framework is a tool
to evaluate the interest of the FCFS communication strategy, and we will compare in the next
chapter, Chapter 4, the communication strategy with another charging strategy, the reservation
strategy. We also proposed some improvements to the simulation framework, such as another
method for the optimisation of the charging plan with dynamic programming (Section 3.4.4) or
a correction and a speeding up of the waiting time calculation (Section 3.2.2.2). We will see in
the following chapters howwe use the simulation framework to answer the scientific objectives
of the thesis.
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4 - Control of theelectric vehiclefleet charging: FCFS com-
munication or reservation strategy
In Chapter 3, we described the charging strategy controlling the charging of EVs thanks to

real-time communication between EVs and charging stations. The rule at the station is set to
first-come-first-served (FCFS) for this strategy. Contrary to [67], the coordination of the EV for
the FCFS communication strategy does not rely on a consensus between EVs to choose which
EVs will charge at the near station and which EVs are going to charge at the next station. The
FCFS communication strategy is based on a non-cooperative game since each EV optimises its
charging plan individually, only knowing the waiting time estimation given by the stations. The
non-cooperation combined with an FCFS rule at the station does not ensure that one EV will
effectively charge during the time window that minimises its trip time. Let’s consider 𝐸𝑉1 en-tering the highway first and minimising its trip time if it charges in station 𝐶𝑆𝑖 during the time
window 𝜏. It is possible that another EV, 𝐸𝑉2, arrives before 𝐸𝑉1 in 𝐶𝑆𝑖 and goes past 𝐸𝑉1 tocharge during the time interval 𝜏. Given all those considerations, we study another strategy in
this chapter, the reservation strategy, that enables the EVs to book time slots in advance, min-
imising their trip time. We will detail the steps of the reservation strategy before comparing that
strategy to the FCFS communication strategy to evaluate which priority rule at stations, FCFS or
reservation, will enhance the charging service the most.

Results similar to the first part of this chapter are presented in an article published in the
journal Transportation Research Part D: Transport and Environment: Comparison of decent-
ralised fast-charging strategies for long-distance trips with electric vehicles, Anastasia Popiolek,
Zlatina Dimitrova, Marc Petit, Philippe Dessante [110].

In the second part, we will perform the robustness study of the best charging strategy and
propose solutions to improve it if necessary.
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4.1 . Changing the priority rule: the reservation strategy
4.1.1 . Reservation strategy description
4.1.1.1 . Priority rule

We found in the literature many references about the reservation strategy [20,67,73,76,87–
89].

The reservation system described by [20] and in [67], if we disregard the way the optimisa-
tion of the charging plan is realised (see Section 3.1.4 in Chapter 3), looks like the FCFS commu-
nication strategy (Section 3.1.4) with the same priority rule in stations (FCFS). The stations do not
impede the EVs from charging if they do not reserve a charging point, and the bookings evoked
in those papers are, in fact, notifications sent by EVs that the stations keep in memory to es-
timate waiting times. J. Rezgui and D.Said [73] evoke a "pre-reservation" of charging time slots,
but even if the way they describe their reservation request looks like a booking of charging time
slot, the priority rules in the station seem to be based on FCFS. Indeed, the EVs are served "upon
arrival" and "without delay" if a socket is available, no matter if another EV requests a charging
session starting shortly after.

The reservation system described by B. Vaidya et al. in [89] enables the EVs to book ahead
of-time charging sessions in stations with a priority rule set according to the order of reserva-
tion and not according to the arrival time in the station. Bernal et al. [76] consider a charging
strategy based on advanced reservation, and the servers are allocated in a first-reserved-first-
allocated manner. R. Basmadjian et al. [88] also focuses on strategies that rely on reservation
as a priority rule.

As we want to evaluate the impact of the priority rule in stations, we choose to consider a
reservation strategy inspired by the ones presented in [88] and detailed in [89]. R. Basmadjian
et al. [88] defines two types of reservation systems: the ad-hoc reservation and the plannedreservation (see the text box 4.1.1.1).
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The different reservation strategies (priority rule)
Ad-hoc reservation: The EV 𝑣 near a station books a charging session starting whenthe station receives the reservation. Then, 𝑣 has a certain delay (for example, 20 min) toreach the station and start a charging session. During that delay, no other EV can chargeat the socket booked by 𝐸𝑉𝑣. After 𝐸𝑉𝑣 arrives, it can start its session and charge withoutspecifying when the charging session will stop.Planned reservation: The EV 𝑣 sends in advance a reservation notification to each sta-tion 𝑖 in its charging plan𝜔𝑣 with its estimated arrival time 𝑡𝑎𝑟𝑟 ,𝑣,𝑖 and the estimated char-ging time 𝑡𝑐ℎ𝑎𝑟𝑔𝑒,𝑣,𝑖 so that each station makes a strict reservation starting from 𝑡𝑎𝑟𝑟 ,𝑣,𝑖modulo a certain waiting time and lasting 𝑡𝑐ℎ𝑎𝑟𝑔𝑒,𝑣,𝑖. During that booked time interval, noother EV can charge on the charger blocked by the station for 𝑣.
According to R. Basmadjian et al. [88], the planned reservation is more efficient than thead-hoc reservation. Moreover, the solution proposed by [89] can be assimilated to a planned

reservation, so we choose to implement a reservation strategy with a priority rule based onplanned reservation.
4.1.1.2 . Planned reservation

The reservation strategy relies on the same principles as the FCFS communication strategy (see
Figure 4.1) except that the EVs following the reservation strategy can book charging time slots
in advance as we have seen previously (Section 4.1.1.1). This is a decentralised strategy where
each EV 𝑣 individually computes the charging plan 𝜔𝑣 (3.2) that minimises its discontent factor
𝐷𝐹𝑣 (3.4) knowing the estimatedwaiting time according to a given arrival time in the station. The
reservation order determines the priority in the station and not according to the order of arrival
in the station (FCFS). That priority rule induces a different method to compute the estimatedwaiting time in the station described in Section 4.1.2.

Figure 4.1: Communication scheme in the FCFS communication and reservation strategies
Here, we define the time notions we will use to explain the reservation steps.
Def. : Time slot and time interval for charging session (see Figure 4.2)
Time slot: noted 𝛿𝑡 is a unit of time delimited by the estimated timestamp of two eventsthat will occur in the station. An event can be either the arrival or the departure of anEV. Thus, a time slot can be delimited by two arrival times, two departure times or one
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arrival time and one departure time.Time interval: noted 𝜏 is an accumulation of adjacent time slots 𝛿𝑡 that can be bookedahead of time for a charging session.
At every step of time 𝑡 during the simulation, each 𝐸𝑉𝑣 ∈ F in the fleet computes the total

travelling time 𝑇𝑡𝑟𝑖 𝑝 (𝜔𝑣) for each possible charging plan 𝜔𝑣 like for the FCFS communication
strategy (Figure 4.1). Then, the 𝐸𝑉𝑣 deduces the charging plan 𝜔∗

𝑣 with the minimal discon-
tent factor 𝐷𝐹𝑣 (3.4) and makes a reservation at the stations corresponding to the charging
sessions listed in 𝜔∗

𝑣 with the estimated arrival time 𝑡𝑎𝑟𝑟 ,𝑣 and the duration of the charging ses-sions 𝑡𝑐ℎ𝑎𝑟𝑔𝑒,𝑣. Then, each station that has received a notification reserves a strictly delimited
time interval 𝜏𝑣 corresponding to the demand.

4.1.2 . Waiting queue construction and waiting time estimation
We describe in this section how the waiting queue is built and how the waiting times are

estimated for the reservation strategy.

Figure 4.2: Waiting time computation schematic example for the reservation strategy
With the reservation strategy, when EV 𝑣 is about to enter the highway (with an anticipation

period lasting 𝑇𝑎𝑑𝑣.), it computes its optimal charging plan 𝜔∗
𝑣 according to the time intervals

already reserved by other EVs. It sends reservation requests to the charging stations in 𝜔∗
𝑣 ,and each 𝐶𝑆𝑖 will book a charger for the adequate time interval 𝜏𝑖,𝑣. For example, in Figure 4.2

representing the reservation table of 𝐶𝑆𝑖 , 𝐸𝑉4 is the 4th EV to enter the highway. 𝐸𝑉4 will enterthe highway in less than 𝑇𝑎𝑑𝑣. minutes, and we are at the iteration 𝑡. 𝐸𝑉1, 𝐸𝑉2 and 𝐸𝑉3 havealready booked a charging session at 𝐶𝑆𝑖 (𝐸𝑉𝑘 is the 𝑘 𝑡ℎ EV entering the highway). The 𝐸𝑉4 isthe next one to make its reservation. It will reach the charging station before 𝐸𝑉3, so a chargingsocket would be free at that time (𝑠𝑖 = 2 and 𝐸𝑉2 will be the only one charging), but the time
interval 𝜏 free before the arrival of 𝐸𝑉3 will not be enough to charge 𝐸𝑉4: 𝐸𝑉4 will have to booka time interval 𝜏′ at the end of 𝐸𝑉2’s charging session.Formally, for each possible charging plan 𝜔𝑣 ∈ Ω𝑣 , the EV 𝑣 will ask the estimated waiting
time at each station. For this calculation, the station 𝐶𝑆𝑖 ∈ CS:

86



• Builds a timetable listing by crescent order the arrival and departure times of each EV that
has booked a charging session.

• Computes the number of bookings 𝑏 in each time slot 𝛿𝑡.
• Finds, according to the arrival time 𝑡𝑎𝑟𝑟 ,𝑣,𝑖 of 𝑣, the nearest time interval 𝜏 such that for
each time slot 𝛿𝑡 of that time interval, 𝑏 𝛿𝑡 < 𝑠𝑖 , and lasting enough for the 𝐸𝑉𝑣 to charge.If 𝜏 contains the arrival time of the EV 𝑣, 𝑡𝑎𝑟𝑟 ,𝑣,𝑖 , there will be no waiting time. EV 𝑣 will
have to wait until 𝜏 starts.

When 𝐸𝑉𝑣 selects the charging plan𝜔∗
𝑣 , the CS will similarly update all the estimated waiting

times.
In an ideal situation with no traffic jams or longer charging sessions than predicted, the EVs

do not change their booking during the simulation. In fact, in this situation, the first reservation
made by the EVs when they enter the highway corresponds to the best charging plan they can
follow, given the bookings of the other EVs on the road. Thus, all the EVs will keep their first
reservations for their whole trip before entering the highway, and no EVwill change its bookings.
In this chapter, we hypothesise that traffic is ideal when comparing the FCFS communication and
reservation strategies.

4.2 . Methodology of the charging strategies comparison
4.2.1 . Comparison method

We want to evaluate which real-time information-sharing charging strategy proposes the
best service quality concerning the EVs’ discontent factor 𝐷𝐹 minimisation (see Section 3.1.3).
As in [84], we choose to consider for this case study to simplify the problem only considering the
travelling time 𝑇𝑡𝑟𝑖 𝑝 (3.5) in the minimisation of 𝐷𝐹. However, we will see in Section 5.2.3.2 that
the reason given in [84] to justify the consideration of only the travelling time in the objective
of EV is debatable when the charging price is more than doubled on the highway (in [84] the
charging cost is 0.12 $/kWh whereas on highways in Europe, it starts at 0.3 $/kWh). We also add
two quality criteria described in subsection 4.2.2 to evaluate the performance of each real-time
information-sharing strategy.

In addition to the comparison of the two real-time information-sharing strategies, we com-
pare those dynamic charging strategies with the no-communication strategy, which represents
the current charging strategy an EV can follow thanks to existing charge planning applications
(A better route planner [101], Chargemap, ...). The last strategy is a reference to assess how
a dynamic strategy with real-time information-sharing such as the FCFS communication or the
reservation strategy can improve the current charging service proposed to EV drivers on long-
distance trips.

As explained previously, we consider only the travelling time in the discontent factor for this
comparison, so the aim of each EV 𝑣 following either the no-communication, the FCFS communic-
ation or the reservation strategies is to minimise the travelling time (3.5) by choosing the optimal
charging plan 𝜔𝑣 according to the processes explained in Sections 3.1.5 and 4.1.1. We use theexhaustive method to compute the optimal charging plan (Section 3.4.2) with only the min-
imum number of charging stops possible (𝑁𝑙𝑖𝑚𝑖𝑡 = 𝑁min) for the first comparison (Section 4.3)
and then we permit the addition of another charging stop (𝑁𝑙𝑖𝑚𝑖𝑡 = 𝑁min + 1)) for the second
comparison (Section 4.4.2).

The difference between the no-communication strategy and the two other strategies is that
the EVs do not know thewaiting time in the station. So we remind that for the no-communication
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strategy, ∀ 𝜔𝑣 ∈ Ω𝑣 , 𝑇𝑤𝑎𝑖𝑡 (𝜔𝑣) = 0. The reservation strategy differs from the no-communication
and the FCFS communication strategies in the priority rule at stations: we have a reservation
priority and an FCFS rule, respectively (see Figure 4.3).

Figure 4.3: Information shared and priority rule in station according to the strategy
We use the MAS framework described in Chapter 3 to simulate the behaviour of the EVs in

the fleet according to the charging strategy.
Insurance companies and the government advise drivers to stop 15 minutes every 2 hours

to avoid accidents due to fatigue [111] and 𝑇𝑐ℎ𝑎𝑟𝑔𝑒 and 𝑇𝑤𝑎𝑖𝑡 represent means to satisfy the
recommended pausing. This is why, to evaluate the real impact of longer charging times on
the total travelling time, we compare the trip time 𝑇𝑡𝑟𝑖 𝑝,𝑣 of EV 𝑣 to the trip time 𝑇𝑡𝑟𝑖 𝑝𝑐𝑜𝑛𝑣,𝑣 of aconventional vehicle (ICE - internal combustion engine) making the same trip and stopping 15
minutes every 2 hours as recommended (4.1).

𝑇𝑡𝑟𝑖 𝑝𝑐𝑜𝑛𝑣,𝑣 = 𝑇𝑡𝑟𝑎𝑣𝑒𝑙,𝑣 + 𝑇𝑝𝑎𝑢𝑠𝑒,𝑣 + 𝑇𝑜𝑡ℎ𝑒𝑟𝑐𝑜𝑛𝑣,𝑣 (4.1)
𝑇𝑝𝑎𝑢𝑠𝑒,𝑣: time equivalent to all the 15-minute stops every 2 hours.
𝑇𝑜𝑡ℎ𝑒𝑟𝑐𝑜𝑛𝑣,𝑣 : time during which the vehicle is not driving at its maximum speed, so this

includes the time to stop (deceleration to enter the service area), to look for a parking lot and
to accelerate when leaving the service area. We consider that if a conventional vehicle needs
to refuel on the highway, as a refuelling lasts at most 5 minutes and a conventional vehicle
needs to refuel less often than an EV, the time the conventional vehicle takes to wait, refuel
and pay will not exceed the cumulated pausing time 𝑇𝑝𝑎𝑢𝑠𝑒,𝑣. As we include the time to start a
refuelling session in 𝑇𝑝𝑎𝑢𝑠𝑒,𝑣 , we set 𝑇𝑜𝑡ℎ𝑒𝑟𝑐𝑜𝑛𝑣,𝑣 to 2minutes per stop (deceleration, acceleration
and movement to a parking place).

𝑇𝑡𝑟𝑎𝑣𝑒𝑙,𝑣 is equal for the electric and the conventional vehicle, so we technically compare
𝑇𝑐ℎ𝑎𝑟𝑔𝑒,𝑣 + 𝑇𝑤𝑎𝑖𝑡 ,𝑣 + 𝑇𝑜𝑡ℎ𝑒𝑟 ,𝑣 with 𝑇𝑝𝑎𝑢𝑠𝑒,𝑣 + 𝑇𝑜𝑡ℎ𝑒𝑟𝑐𝑜𝑛𝑣,𝑣 .We introduce the time loss ratio to measure the adequate time lost compared with a con-
ventional vehicle due to longer charging and waiting times for EVs (4.2).

𝑇𝐿%,𝑣 = −
𝑇𝑡𝑟𝑖 𝑝𝑐𝑜𝑛𝑣,𝑣 − 𝑇𝑡𝑟𝑖 𝑝,𝑣

𝑇𝑡𝑟𝑖 𝑝𝑐𝑜𝑛𝑣,𝑣
(4.2)
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In a case the charging and waiting times together last less than the recommended breaking
time𝑇𝑝𝑎𝑢𝑠𝑒,𝑣 , the result of Eq. (4.2) will be negative. To avoid that, we consider that the EV driverwill stay longer in the station (bymoving to a parking place during𝑇𝑝𝑎𝑢𝑠𝑒𝑒𝑥𝑡.,𝑣 minutes) to respect
the minimum pausing time 𝑇𝑝𝑎𝑢𝑠𝑒,𝑣.

𝑇𝑡𝑟𝑖 𝑝,𝑣 = 𝑇𝑡𝑟𝑎𝑣𝑒𝑙,𝑣 + 𝑇𝑐ℎ𝑎𝑟𝑔𝑒,𝑣 + 𝑇𝑤𝑎𝑖𝑡 ,𝑣 + 𝑇𝑜𝑡ℎ𝑒𝑟 ,𝑣 + 𝑇𝑝𝑎𝑢𝑠𝑒𝑒𝑥𝑡.,𝑣 (4.3)
With 𝑇𝑝𝑎𝑢𝑠𝑒𝑒𝑥𝑡.,𝑣 = max(𝑇𝑝𝑎𝑢𝑠𝑒,𝑣 − (𝑇𝑐ℎ𝑎𝑟𝑔𝑒,𝑣 + 𝑇𝑤𝑎𝑖𝑡 ,𝑣 + 𝑇𝑜𝑡ℎ𝑒𝑟 ,𝑣), 0)

4.2.2 . Quality criteria and hypotheses
A charging strategy will be beneficial if all the quality criteria explained next are validated.

The quality criteria used in this study were mentioned in a report by ACOZE France [56]. They
can be formulated as follows:

Quality criteria
1. Queue length in a station should be at most twice the number of charging points.
2. Waiting time for each charging session ≤ 30 minutes.

The report establishes that EV drivers would rather wait in a dedicated parking place than
in an informal queue, and the number of dedicated places should be at least two per charging
point. As wewant to set themost restrictive criterion, we consider that the number of dedicated
places is equal to the minimum required, so they should be two. Concerning the charging ses-
sions, we suppose, like in [89], they are non-pre-emptive, meaning they cannot be interrupted
and started later.

We hypothesise that the EV drivers follow the indications given by themodel and charge the
exact amount of energy as required by the planner. No EV stays in chargemore than necessary.
In real life, the driver might not strictly respect the instructions and stay longer. However, in-
troducing 𝑇𝑜𝑡ℎ𝑒𝑟 when calculating the total trip time should consider this delay for other users.
We also assume that once an EV starts to slow down to enter the station 𝑖 in its charging plan
(at 𝑡𝑖𝑛,𝑖,𝑣), it cannot change its charging plan concerning the station 𝑖 and will stay in the stationto charge even if the waiting queue is longer than expected. Furthermore, we suppose that the
traffic is fluent with no traffic jams delaying the arrival of some EVs at a station.

We also assume that, whatever the strategy an EV follows, once an EV slows down to enter
a station, it will stay in the station and charge the exact amount of energy in its charging plan
even if the waiting queue is longer than expected.

4.2.3 . Case study
We consider for the comparison of the strategies (see Figure 4.4) the case study 1. The

highway has six charging stations with three charging outlets each (𝑠𝑖 = 3 for 𝐶𝑆𝑖) of the same
power level 𝑝𝑖. However, the power level 𝑝𝑖 can differ fromone station to another. The charging
power level can be 50, 100 or 125 kW.With a number 𝑠 = 3 per station, the waiting queue length
should not exceed 3 × 2 = 6 EVs as stated by the first quality criterion (see Section 4.2.2).

To test the strategies over different traffic situations, we generate three fleets, each with a
different number of EVs. One fleetwith 180 EVsmodels the daily EV trafficonhighways in France
in 2021. The number of 180 EVswas calculated according to the total number of vehicles and EVs
registered in France and the annual average daily traffic (AADT) on motorways in France. Argus
estimated the number of all-electric passenger cars and utility vans to be 248,000 [112], and
AVERE France counted 338,000 [113]. We took the average of both estimations, corresponding
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Figure 4.4: Highway description for the comparison of the charging strategies

to an all-electric vehicle share of 0.72% with 40.8 million cars licensed in France. The AADT
of light-duty vehicles on French motorways was approximately 24,600 in 2017 [114], and we
suppose it remains constant until 2021. We obtain a current daily traffic of 0.72

100 × 24, 600 ≈ 180

EVs. We also generate a fleet of 100 EVs and another with 300 EVs.
Since we are comparing three charging strategies over three traffic situations, we have to

simulate nine scenarios: one per traffic situation and a charging strategy. For one scenario, all
the EVs in the fleet use the same charging strategy. We will simulate in Section 4.6 the case
where EVs of the same fleet can have different strategies. We will see in Section 4.3 that, on
the one hand, the scenarios with 100 EVs lead to a low saturation of the infrastructure with
few EVs waiting in stations and, on the other hand, the scenarios with 300 EVs induce a heavy
saturation.

The three fleets are generated in the same way. Each EV has a SoC at the entrance of the
highway 𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 randomly selected between 50 and 100 % and a SoC when leaving the ex-
pressway, 𝑆𝑜𝐶𝑒𝑛𝑑 , set to 20% as in [83]. The EV time of entrance on the highway, 𝑡𝑖𝑛, is chosenaccording to the method explained in Appendix B.1.

Each fleet includes three types of EV to represent the diversity of EV models on the road in
2021 (see Table 4.1).

Table 4.1: Type of EVs considered in the study

EV Type Batterycapacity(kWh)
Maximumchargingpower 𝑃𝑚𝑎𝑥, 𝑣(kW)

𝑐𝑣 𝜌𝑣

Speedlimit(km/h)
Percentagein the fleet

urban 50 50 250 0.15 110 30%
sedan 60 100 500 0.18 130 60%
luxury 95 125 1062 0.18 130 10%

4.3 . Results of the comparison
We first compare the time loss ratio for all the scenarios in Section 4.3.1 before presenting

the quality evaluation of each charging strategy in Section 4.3.2.
4.3.1 . Time loss ratio comparison

Figure 4.5 depicts the distribution in quartiles of the time loss ratio 𝑇𝐿% (4.2) for the nine
scenarios studied in this chapter.
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Figure 4.5: Time loss ratios 𝑇𝐿% for each strategy (no com.: no-communication, com.: FCFScommunication, res.: reservation) in the different situations of traffic (100 EVs, 180 EVs, 300EVs) regarding the time 𝑇𝑡𝑟𝑖 𝑝𝑐𝑜𝑛𝑣 a conventional ICE vehicle would spend making the same trip.The graph corresponding to the 300-EV scenarios has a different scale for the y-axis.

The red segment on each boxplot corresponds to the median of the data set, and the red
crosses point out the outliers1 (see Figure 4.5).

Table 4.2: Average trip length and trip time 𝑇𝑡𝑟𝑖𝑝 per EV

Average trip Average 𝑇𝑡𝑟𝑖𝑝 (h)
scenario length (km) Conventionalvehicle No-communication FCFS commu-nication Reservation
100 EVs 465 4h09 4h35 4h35 4h35
180 EVs 479 4h17 5h05 4h46 4h55
300 EVs 469 4h10 8h41 6h43 7h02
In the case of a 100-EV fleet, the three strategies (no communication, FCFS communication and

reservation strategies) have the samemedian value, approximately 10.5% of time lost compared
with the trip time of a conventional vehicle (Equation 4.1). This percentage is equivalent to a
time loss of 26 minutes. We get the same time loss on average, which means that to make a
trip of 465 km (average trip length in the 100-EV fleet), an ICE vehicle pausing as recommended
(𝑇𝑝𝑎𝑢𝑠𝑒𝑐𝑜𝑛𝑣 ) will take 4h 09 whereas an EV will on average spend 26 minutes more on the road

1An outlier is a value that is 1.5 interquartile ranges above the upper quartile (75%) or below the lowerquartile (25 %) of the distribution [115]
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for the same trip length. We can wonder if those 26minutes are reducible or not. Let’s consider
the average waiting time for the three strategies: it does not exceed 2 minutes for the 100-EV
traffic situation (Table 4.3). Thus, this traffic situation corresponds to a light saturation of the
infrastructure, and there is notmuch room formanoeuvre to reduce the time loss by playing on
the waiting time. The time loss is primarily due to the charging time 𝑇𝑐ℎ𝑎𝑟𝑔𝑒 and 𝑇𝑜𝑡ℎ𝑒𝑟 inducedby the charging stops that are not compressible since the EVs need to charge to reach their des-
tination. We evaluate theminimum charging time the fleet can have on average with the results
of the scenario with no-communication strategy. This strategy should have theminimumaverage
charging time compared to the other strategies since the EVs following the no-communication
strategy minimise only the charging time and do not consider the waiting time. We have, on
average per EV, the sum of 𝑇𝑐ℎ𝑎𝑟𝑔𝑒 and 𝑇𝑜𝑡ℎ𝑒𝑟 equals 48 minutes (Table 4.4) with two charging
stops which means that, on average, 𝑇𝑐ℎ𝑎𝑟𝑔𝑒 = 48 − 2 × 𝑇𝑜𝑡ℎ𝑒𝑟 = 38 minutes, a result similar
to average charging time for long-distance trip in France evaluated to 30 minutes by the study
in [116].

Two outliers for the scenario 100 EVs/ reservation strategy lose more than 30% of 𝑇𝑡𝑟𝑖 𝑝𝑐𝑜𝑛𝑣(Figure 4.5), and we will decide in Section 4.3.2.1 if those two outliers can be accepted in the
performance evaluation of the reservation strategy.

Table 4.3: Average waiting time per EV (min)
Scenario No-communication FCFScommunication Reservation
100 EVs 0.97 0.63 2
180 EVs 24.53 6.34 12.83
300 EVs 245.8 124.4 143.8

Concerning the situation with 180 EVs, the dynamic strategies (FCFS communication and
reservation) enable a decrease in the time loss median compared with the no-communication
strategy, but the more noticeable improvement is reached by the FCFS communication strategy
with an apparent reduction of the maximum time loss from 58% to 30% compared with the no-
communication strategy (see Figure 4.5). The FCFS communication strategy enables keeping the
average waiting time under 4 minutes, which is four times less than for the reservation strategy
and eight times less than for the no-communication strategy (Table 4.3). The FCFS communication
strategy also proves to be efficient in reducing the trip time when we look at the average trip
time. For an average trip of 479 km lasting 4h17 with an ICE vehicle, the average trip time is
4h46 for the FCFS communication, while it lasts 4h55 with reservation and 5h06 without com-
munication. Although the reservation strategy reduces the median time losses and average trip

Table 4.4: Average 𝑇𝑐ℎ𝑎𝑟𝑔𝑒 + 𝑇𝑜𝑡ℎ𝑒𝑟 per EV (min)
Scenario No-communication FCFScommunication Reservation
100 EVs 47.97 47.99 48
180 EVs 48.16 48.81 49.3
300 EVs 47.73 50.21 50.64
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time compared with the no-communication strategy, multiple outliers see their 𝑇𝐿% increase
tomore than 50% for this strategy (Figure 4.5), which is worse than for the scenario of reference
without real-time information-sharing.

For the scenarioswith the 300-EVfleet, the infrastructure is highly saturatedwith an explod-
ing time loss for all the strategies (Figure 4.5). However, real-time information-sharing strategies
drastically reduce median and average time losses (Table 4.2). FCFS communication saves on
average 43.5% of time losses compared with reference strategy, and reservation saves 36.5%
(Table 4.2). Again, the FCFS communication strategy has the best performance and also guaran-
tees a maximum time loss of 150% (Figure 4.5) contrary to the reservation strategy that reaches
almost 200%.

4.3.2 . Quality evaluation
4.3.2.1 . Light saturation (100 EVs)

According to the results presented in Section 4.3.1, the traffic with 100 EVs results in a low
saturation of the charging infrastructure. We can come to the same conclusion when we look
at the queue length for the no-communication strategy on Figure 4.6: at most, two EVs wait
concurrently when there is no communication. Therefore, as the EVs hardly wait and are not
coordinated (no-communication strategy), the charging infrastructure is adapted to a traffic
flow of 100 EVs daily.

From Figure 4.6, all the charging strategies validate the first criterion (Section 4.2.2) since
for each of them, the queue is never exceeding the queue length threshold of 6 EVs waiting
simultaneously in the same station.

Figure 4.6: Length of the waiting queue in each station throughout the day for the 100-EV fleetaccording to the strategy. The dashed curve illustrates the first quality criterion.
The second criterion can be verified thanks to Figure 4.7 depicting for each strategy the

cumulative waiting time distribution of the fleet. The y-axis gives the share of EVs in the fleet
waiting less than the x-amount of time in a station. The second criterion is validated if the
curve stays on the left side of the dashed curve representing the quality threshold of 30minutes
since this case means that the share of EVs waiting more than 30 minutes before charging is
null. In the scenario with no-communication strategy, the second criterion is validated (Figure
4.7a), whereas the EVs are not coordinated. Although the FCFS communication strategy enables
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some EVs to save a few minutes and fulfils the second criterion (Figure 4.7b), this strategy is
of little use in this situation of light saturation because the no-communication strategy is already
enough to fulfil the second quality criterion. However, the reservation strategy makes 2 EVs wait
for nearly twice as much as the waiting time threshold in station 5 (Figure 4.7c), whereas the
charging infrastructure is very lightly saturated. Those 2 EVs correspond to the outliers we have
seen in Section 4.3.1 and, because of the high waiting times experienced by those vehicles, we
choose to consider that the reservation strategy invalidates the second criterion.

(a) without communication (b) with FCFS communication (c) with reservation
Figure 4.7: Cumulative distribution of waiting time in each station for the 100-EV fleet. Thedashed line illustrates the second quality criterion.

Highlights for the light traffic situation
As an intermediate conclusion, using the FCFS communication strategy is unnecessary forthis light saturation situation since the strategy of reference without communication val-idates all the quality criteria. The reservation strategy penalises some EVs with high wait-ing time and consequently does not fit with the performances we defined for the servicequality.

4.3.2.2 . Average traffic (180 EVs)
Wenow compare the strategies over a situation corresponding to the average EV daily traffic

in 2021 (180 EVs). With the no-communication strategy, station n°3 saturates at some hours
(Figure 4.8a) withmore than 6 EVs in the queue between 3:00 pm and 8:00 pm. The third station
saturates mostly because it has the highest available power (125 kW), so the EVs select this
station to charge faster and supposedly reduce their travelling time. This station is also in the
middle of the highway, so it is more likely to be on the path of EVs, contrary to stations at the
ends of the highway. The other stations do not experience much saturation, with queue length
staying under 4 EVs during the day. The strategy of FCFS communication reduces by three the
maximum queue length in station 3 and keeps the queue under 6 EVs for all the stations (Figure
4.8b ). The FCFS communication strategy validates the first quality criterion. With the reservation
strategy, the first quality criterion is also validated, the waiting queue being always under six
EVs (Figure 4.8c), but the performance of the FCFS communication model is slightly better with
fewer EVs waiting in the queue. For this first criterion, we can see the advantages enabled by
a dynamic charging strategy in the case of moderate saturation of the charging infrastructure.

Concerning the second quality criterion, we have represented each station’s cumulative dis-
tribution of waiting time (Figure 4.9). For the FCFS communication strategy, 2 EVs are waiting
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Figure 4.8: Length of the waiting queue in each station throughout the day for the 180-EV fleetaccording to the strategy. The dashed curve illustrates the first quality criterion

longer than the accepted time limit of 30 minutes (Figure 4.9b), but since the waiting time is
only a few minutes longer (respectively 2 and 5 minutes) than the threshold, we choose to con-
sider that the FCFS communication strategy validates this criterion. We will see in Section 4.4.2
that this choice is relevant. On the contrary, when reservations are made possible (Figure 4.9c),
15% of the fleet waits more than 30 minutes before charging, with some EVs experiencing two
to almost four times the maximum acceptable waiting time. The reservation strategy does not
validate the second criterion. We will explain in Section 4.4 the reason for those long waiting
times and give propositions to improve the performance of the reservation strategy.

However, we notice that the reservation strategy is beneficial for the EVs entering the highway
first since they can secure charging sessions by booking time intervals before other EVs reach
the station and take the slots as it can happen with the FCFS communication strategy (first-come-
first-served basis). In fact, contrary to the strategy with FCFS communication, EVs never change
their charging plan during the trip because if no perturbation occurs on the road, their first
reservations correspond to the combination of time slots that best minimise their travelling
time, knowing all the reservations already done. Nevertheless, with that strategy, the later an
EV enters the highway, the higher the risk is for this EV to experiencewaiting time as the number
of available best-suited time intervals is going down.

According to Figure 4.9, FCFS communication and reservation better balance the vehicle flow
over the stations with fewer EVs charging at the most saturated station, station 3 (130 EVs
without communication and less than 110 EVs with FCFS communication or reservation). We
can point out that station 6 is used in the FCFS communication and reservation strategies while
no EV stops there with no communication. Both dynamic strategies increase the use rate of
the whole infrastructure. However, the FCFS communication strategy is more interesting since it
reduces the maximum waiting time in each station, contrary to the reservation strategy.

Highlights for the average traffic situation
Thus, as the reservation strategy does not validate the second quality criterion with highertime losses for some outlier EVs (see Figure 4.5), the FCFS communication strategy repres-ents the best choice for this traffic situation.
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(a) without communication (b) with FCFS communication (c) with reservation
Figure 4.9: Cumulative distribution of waiting time in each station for the fleet of 180 EVs. Thedashed line illustrates the second quality criterion.

4.3.2.3 . Heavy saturation (300 EVs)
Suppose we raise the number of EVs during a day to 300. In that case, we already observe

a significant saturation of the charging infrastructure (see Figure 4.10), whereas the number
of EVs is not even doubled compared with the previous traffic case. FCFS communication and
reservation strategies highly improve the situation for the EV drivers, dividing by almost three
the queue length in station 3 compared with the no-communication strategy. Still, the queue
length for both dynamic strategies reaches high values ( 25 EVs > 6 EVs) throughout most of the
day, invalidating the first quality criterion.

Figure 4.10: Length of the waiting queue in each station throughout the day for the 300-EV fleetaccording to the strategy. The dashed curve illustrates the first quality criterion
The second quality criterion is also not fulfilled with either FCFS communication or reservation

strategy (see Figure 4.10b & 4.10c) even if the studied dynamic strategies enable to reduce the
waiting time in station 3 drastically (Table 4.3). This reduction in trip time is made possible
by better allocating the EV fleet to the whole infrastructure instead of overloading station 3. In
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fact, with FCFS communication and reservation strategies, one-third of the fleet is dispatched from
stations 3 and 5 to the other stations. In return, the waiting time in stations 2 and 4 is far more
significant than for the no-communication strategy.

(a) without communication (b) with FCFS communication (c) with reservation
Figure 4.11: Cumulative distribution of waiting time in each station for a fleet of 300 EVs
Still, even if the FCFS communication strategy (and to a minor extent the reservation strategy)

helps reduce the trip time and better allocate the EVs to the whole infrastructure, the highway
service areas will probably not be able to handle the maximum queue length of 25 EVs (Figure
4.10b & 4.10c).

Highlights for the heavy traffic situation
Thus, the enhancement of the charging service with either FCFS communication or re-servation is limited. We must find other solutions to complete those dynamic chargingstrategies, such as adding new charging points (at station 3, for example) to satisfy thequality criteria in this heavy traffic situation. Wewill see in Chapter 5 howwe can optimisethe infrastructure when the EVs use the FCFS communication strategy to plan their trip.

4.3.3 . Highlights on the comparison of the different strategies with 𝑁𝑙𝑖𝑚𝑖𝑡 =
𝑁𝑚𝑖𝑛

Table 4.5 sums up the performance results of each strategy considering the traffic situation.
With poor saturation of the charging stations (100 EVs), the FCFS communication and the

reservation strategies hardly enhanced the situation for EVs because the quality criteria asked by
the drivers are already fulfilled with a strategy of no communication. The charging infrastructure
is adapted for this traffic flow, so users already experience very few waiting times when they
do not use any coordination. The reservation strategy invalidated the quality criterion based
on station waiting time, leading to a worse situation than a strategy with no communication.
Consequently, both dynamic strategies appeared to be of little use with low saturation of the
charging infrastructure.

If we consider amoderate infrastructure saturation, like in the second situationwith daily av-
erage traffic flow (180 EVs), FCFS communication between EVs and stations validates both wait-
ing queue length and waiting time quality criteria. The FCFS communication strategy improves
EVs’ charging experience by fairly balancing the fleet over the whole charging infrastructure.
On the contrary, the reservation strategy shows less attractive performances by invalidating the
waiting time criterion with EVs waitingmore than one hour and a half, which is worse thanwhen
EV drivers do not communicate. Yet, the results obtained for the reservation strategy should be
considered carefully as the framework imposes some limits that penalise this strategy and that
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Table 4.5: Performance results of each charging strategy (no communication, FCFS com-munication and reservation) for the three traffic situations. A check mark means thatthe strategy for the described saturation validates the quality criterion; conversely, across means the criterion is not validated.
No communication FCFS communication Reservation
1st cri-terion 2nd cri-terion 1st cri-terion 2e cri-terion 1st cri-terion 2e cri-terion

Low sat-uration Timeloss +30 min +30 min +30 min

100 EVs Qualitycri-teria ✓ ✓ ✓ ✓ ✓ ✗

Mediumsatura-tion
Timeloss +50 min +35 min +40 min

180 EVs Qualitycri-teria ✗ ✗ ✓ ✓ ✓ ✗

High sat-uration Timeloss +4h35 min +2h35 min +2h55 min

300 EVs Qualitycri-teria ✗ ✗ ✗ ✗ ✗ ✗
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we will expose in Section 4.4.1. However, with the current framework, the FCFS communication
strategy is the best solution to reduce travelling time and increase EVs’ acceptability without
building new charging sockets.

With a high saturation level for the charging infrastructure (300 EVs), FCFS communication
and reservation improve the situation for EVdrivers comparedwith the no-communication strategy.
Indeed, the trip time is reduced on average by 42% with the reservation strategy and 52% with
the FCFS communication strategy. However, those dynamic strategies need to be revised to fulfil
the quality criteria set by the drivers. We should consider installing new charging points besides
developing one of the dynamic charging strategies to meet them (see Chapter 5).

4.4 . Limitations of the reservation strategy
4.4.1 . Reasons why the reservation does not validate the waiting criterion

We pointed out in the previous subsections (of the Section 4.3) that, for the reservation
strategy, some EVs were experiencing high waiting times compared to the rest of the fleet, which
led to the invalidation of the second criterion for this strategy. Those significant waiting times
can be explained either by the conditions of the EVwhen entering the highway or by themodel’s
limits in the framework. For instance, EVs with a low SoC (around 50%) when entering the high-
waymust stop at the first station they are passing by, even if there is a longwaiting time. Indeed,
their SoC will go under 15% if they try to reach another station, and the simulation model does
not allow this (see the first constraint in Equation 3.9). Concerning the limit of the model, we
use the exhaustive method (Section 3.4.2) to optimise the charging plans with several charging
sessions restrained to the minimum (𝑁𝑙𝑖𝑚𝑖𝑡 = 𝑁𝑚𝑖𝑛) so the adaptability of EVs charging plans
is reduced by removing interesting charging combinations with more stops than the minimum
required. The absence of these possible solutions means that some EVs wait longer than they
would if they could spread the energy required for charging over a larger number of stations.
We could have added the possibility for EVs to book in the same station time slots that are not
adjacent to avoid EVs waiting in front of free sockets because their charging time 𝑡𝑐ℎ𝑎𝑟𝑔𝑒,𝑣 doesnot fit into the time interval during which the socket is free. However, adding this possibility
would have made some EVs have very fragmented charging sessions, with multiple going and
comings between the chargers and the free parking places to let other EVs that have booked
earlier charge.

Thus, we should consider in the model the possibility of having charging plans in Ω𝑣 withmore charging stops than the minimum required (𝑁𝑙𝑖𝑚𝑖𝑡 ≥ 𝑁𝑚𝑖𝑛) to see if the performances
of the reservation strategy can approach the ones of the FCFS communication strategy, but this
would mean that some EVs will have to stopmore often than necessary and risk having a highly
fragmented trip with many stops. Moreover, if we authorise more charging stops for the reser-
vation strategy, we should also authorise it for the FCFS communication strategy. Consequently,
the performances of the FCFS communication strategy might also outperform the ones of the
reservation strategy. In addition, the reservation strategy will unlikely reach the lowest waiting
time average for the fleet contrary to the FCFS communication strategy because the first EVs to
reserve charging time slots do not take into account the attendance in the station since the re-
servation will guarantee no waiting time for them. With the FCFS communication strategy, all EVs
are compelled to consider the waiting time in stations since the priority in the stations is FCFS:
they will fan out more evenly by themselves among stations to avoid long waiting files. To have
more precise ideas on that possibility, we will test in the next section, Section 4.4.2, the effect
on charging strategies of having the possibility to add one charging stop to the charging plan.

99



4.4.2 . Comparison of the strategies with a possible additional stop, 𝑁𝑙𝑖𝑚𝑖𝑡 =
𝑁𝑚𝑖𝑛 + 1

In this subsection, we enable the EVs with 𝑁𝑚𝑖𝑛 ≤ 2 to have in their charging plan an addi-
tional charging stop so, for those EVs, 𝑁𝑙𝑖𝑚𝑖𝑡 = 𝑁𝑚𝑖𝑛 +1 (see Section 3.4.2). To evaluate the effecton the trip time of authorising one additional charging stop, we verify the second criterion for
all the charging strategies in the scenario with 180 EVs in the fleet. The case study is the same,
except EVs can have an extra stop in their charging plan.

We obtain Figure 4.12 after the simulations. We notice that the reservation strategy still leads
some EVs to wait for more than the waiting time threshold even if the waiting time for those EVs
is reduced compared to the situation with 𝑁𝑙𝑖𝑚𝑖𝑡 = 𝑁𝑚𝑖𝑛 (see Figure 4.9). The maximum waiting
time peak is reduced by almost 30%, and the average waiting time is decreased from nearly
13 minutes to less than 7 minutes (see Figures 4.9c and 4.12c). However, this is not enough to
validate the second criterion.
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Figure 4.12: Cumulative distribution of waiting time in each station for the fleet of 180 EVs. Thedashed line illustrates the second quality criterion.

As foreseen in Section 4.4.1, the FCFS communication strategy still performs best compared
to the other strategies with an even lower waiting time maximum: it decreases from 35 to 22
minutes. However, as we test the effect of adding a charging stop in only one situation, we
cannot conclude that adding a stop in the charging plan is always beneficial for the whole fleet.
Still, we can state that the number of stops allowed influences the global performances of a
real-time information-sharing strategy.

However, although the performances of the FCFS communication and reservation strategies
are improved with the possibility of an additional charging point, the no-communication strategy
does not benefit from that possibility. The proportion of EVs waiting in station 3 is increased:
60% of the EVs charging at station 3 are waiting compared with 50% in the case "𝑁𝑙𝑖𝑚𝑖𝑡 = 𝑁min"(Figures 4.9a and 4.12a). Moreover, the waiting time maximum rises by 25% from 80 minutes
to 100 minutes. This might be due to the higher number of charging sessions in station 3 (6 EVs
in addition compared with the case "𝑁𝑙𝑖𝑚𝑖𝑡 = 𝑁𝑚𝑖𝑛).

Highlights on the strategies comparison with an additional charging stop (𝑁𝑙𝑖𝑚𝑖𝑡=𝑁𝑚𝑖𝑛+1)
The possibility to add a stop to the minimal number of required charging stops improvesthe performances of the FCFS communication and reservation strategies concerning thewaiting time. However, those improvements are insufficient for the reservation strategythat still invalidates the second quality criterion.

4.5 . Overall highlights on the comparison of the FCFS communic-
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ation strategy and the reservation strategy
In this chapter, we studied the interest of two charging strategies relying on real-time information-

sharing between EVs and charging stations and decentralised charging plan optimisation. Both
strategies, FCFS communication and reservation strategies, appear to be away to reduce, on aver-age, the total travelling time for EV drivers on a long-distance trip without adding new charging
points. They lead to more efficient use of the charging infrastructure.

Wehave studied the strategies’ performanceover three different trafficflowsituations thanks
to a MAS framework to evaluate the limits of the FCFS communication and reservation strategies.
For each trafficflowsituation, wehave compared theperformances of the real-time information-
sharing strategies regarding a strategy of reference (no-communication) when EVs cannot com-
municate their charging plan or book charging time slots.

When the infrastructure was lightly saturated (100 EVs), the quality criteria were already
fulfilled by the reference strategy without communication, so the dynamic strategies such as
the FCFS communication and reservation strategies are unnecessary. The reservation strategy
evenmade the situationworse for 1% of the fleet comparedwith the no-communication strategy.

For daily average traffic (180 EVs), the FCFS communication strategy validated all the quality
criteria and proved to be efficient in the improvement of EV drivers’ travelling experience as
the strategy of reference did not validate any of the criteria in this situation. The reservation
strategy effectively reduced the waiting queue throughout the day but had bad performances
concerning the second criterion, with EVs waiting far more than 30 minutes before charging.

The last situation with 300 EVs on the highway represented a day with a high saturation of
the charging infrastructure. Even though the FCFS communication and reservation strategies
fanned out the fleet more evenly over the highway’s different charging stations, none valid-
ated a quality criterion. This situation pointed out the limit of the real-time information-sharing
strategies studied in this chapter, and we will see in Chapter 5 other solutions to complement
and support the use of a real-time information-sharing strategy.

As the reservation strategy never validates the quality criterion based on the waiting time,
we proposed to add a charging stop in the EVs’ charging plan to improve the reservation service
quality. To compare the strategies with the same hypothesis, we tested the three strategies
when EVs can stop at an additional charging station. This possibility reduces the waiting time
maximum and average for the FCFS communication and reservation strategies, but this was not
enough for the reservation strategy, which still invalidates the second quality criterion. The
FCFS communication strategy appears to be the best charging strategy with a priority rulebased on FCFS. Moreover, according to ACOZE [56], the possibility to reserve a charging ses-
sion should not be considered as it brings more complexity and reduces the use rate of the
infrastructure (as we have seen in the Section 4.3). The reservation could also create conflict
and frustration.

Consequently, we choose to use as optimal control of the fleet the FCFS communication
strategy for the next chapters.
The results obtained for this study show that the FCFS communication strategy enables to

improve the global situation of EV drivers going on long-distance trips. Yet, we made the hypo-
thesis that the traffic is fluent, and we did not take into account traffic incidents in the simula-
tion, such as traffic jams, that can delay the arrival of some EVs in a station. However, as the
FCFS communication strategy is based on dynamic scheduling, we expect EVs to adapt to traffic
changes by updating their charging plans. Wewill test the robustness of the FCFS communication
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strategy in the next section, Section 4.6.

4.6 . Robustness study of the fleet control
We have seen in the previous sections that the rule of the first-arrived-first-served (FCFS)

is better than the reservation when the EVs communicate. Now, we want to evaluate the ro-
bustness of the FCFS communication strategy. We will see how the EVs following the FCFS com-
munication strategy react to the introduction of disturbers in the fleet that do not communicate
(following the no-communication strategy).

4.6.1 . Introduction of disturbers in the fleet
4.6.1.1 . Disturbers definition

The disturbers are EVs going on long-distance trips and using the charging infrastructure
but not communicating with the charging stations. They follow the no-communication strategy
and may disturb the real-time coordination of other EVs that share information with the infra-
structure. We want to evaluate the impact of different percentages of disturbers in a fleet.

Disturber definition
Disturber: An EV following the no-communication strategy whereas other EVs in the fleetfollow the FCFS communication strategy
When entering a charging station, we hypothesise that the disturbers indicate to the station

the time they will spend charging: this is a strong hypothesis but feasible in reality. We assume
that once an EV (whether a disturber or not) slows down to enter a station, it will stay in the
station and charge the exact amount of energy in its charging plan, even if the waiting queue is
longer than expected.

4.6.1.2 . Case study and notations
The case study is based on amedium saturation (180 EVs) fromSection 4.3.2.2with the same

fleet. We run 100 simulations with the simulation framework for each percentage of disturbers
𝑥𝑑𝑖𝑠𝑡.. For one simulation, the disturbers are selected randomly among the 180 Evs of the fleet
according to the percentage of disturbers 𝑥𝑑𝑖𝑠𝑡.: for instance, if 𝑥𝑑𝑖𝑠𝑡. = 10%, we randomly select
18 EVs in the fleet and run a simulation with those 18 EVs as disturbers and the other EVs using
the FCFS communication strategy. The EV’s characteristics remain unchanged (same intrinsic
and trip characteristics). Since the addition of a charging stop to the minimum number of stops
(𝑁𝑙𝑖𝑚𝑖𝑡 = 𝑁𝑚𝑖𝑛) improves the quality of the FCFS communication strategy (see Section 4.4.2), we
keep this parameter for the simulations in this section.

We note 𝐹𝑥, 𝑓 the 𝑓 𝑡ℎ fleet tested with 𝑥% of disturbers. 𝑇𝐶𝑆 (𝑣𝑥, 𝑓 ) is the total time spent in
stations (charging + waiting time + 𝑇𝑜𝑡ℎ𝑒𝑟 ) by 𝐸𝑉𝑣 in the situation described by the fleet 𝐹𝑥, 𝑓 .Similarly, 𝑇𝐶𝑆 (𝑣0) is the total time spent in stations by this same 𝐸𝑉𝑣 in the situation without
disturbers (𝑥 = 0%). The relative additional time spent in stations by 𝐸𝑉𝑣 in the fleet 𝐹𝑥, 𝑓(or time loss) compared with the FCFS communication scenario (𝑥 = 0) corresponds to:

Δ𝑇𝐶𝑆 (𝑣𝑥, 𝑓 ) =
𝑇𝐶𝑆

(
𝑣𝑥, 𝑓

)
− 𝑇𝐶𝑆 (𝑣0)

𝑇𝐶𝑆 (𝑣0)
(4.4)

We note Δ𝑇𝐶𝑆

(
𝐹𝑥, 𝑓

) the average relative additional time spent in stations by the EVs
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of the fleet 𝐹𝑥, 𝑓 (4.5).
Δ𝑇𝐶𝑆 (𝐹𝑥, 𝑓 ) =

1

𝑁𝐸𝑉

·
∑︁

𝑣𝑥, 𝑓 ∈𝐹𝑥, 𝑓

Δ𝑇𝐶𝑆

(
𝑣𝑥, 𝑓

) (4.5)
Aswewant to assess the robustness of the FCFS communication strategy to the introduction

of disturbers, we also look at the average Δ𝑇𝐶𝑆 of the FCFS communication users for the
situation given by the fleet 𝐹𝑥𝑑𝑖𝑠𝑡. , 𝑓 . We note this relative additional time Δ𝑇𝐶𝑆 (𝐹𝑥𝑑𝑖𝑠𝑡. , 𝑓 ,𝑐𝑜𝑚.)(4.10) with 𝐹𝑥𝑑𝑖𝑠𝑡. , 𝑓 ,𝑐𝑜𝑚. the part of the fleet 𝐹𝑥𝑑𝑖𝑠𝑡. , 𝑓 containing only the communicating EVs.

Δ𝑇𝐶𝑆 (𝐹𝑥𝑑𝑖𝑠𝑡. , 𝑓 ,𝑐𝑜𝑚.) =
1

(1 − 𝑥/100) · 𝑁𝐸𝑉

·
∑︁

𝐸𝑉𝑣∈𝐹𝑥𝑑𝑖𝑠𝑡. , 𝑓 ,𝑐𝑜𝑚.

Δ𝑇𝐶𝑆

(
𝑣𝑥𝑑𝑖𝑠𝑡. , 𝑓

) (4.6)
In addition, we compute the average relative additional time spent in stations by an EV

when it communicates and when it is a disturber according to the percentage of disturbers:
Δ𝑇𝐶𝑆,𝑐𝑜𝑚. (𝑣𝑥) (4.7) and Δ𝑇𝐶𝑆,𝑛𝑜 𝑐𝑜𝑚. (𝑣𝑥𝑑𝑖𝑠𝑡. ) (4.8).

Δ𝑇𝐶𝑆,𝑐𝑜𝑚. (𝑣𝑥𝑑𝑖𝑠𝑡. ) =
1∑100

𝑓 =1 𝑐𝑎𝑟𝑑
(
𝐹𝑥𝑑𝑖𝑠𝑡. , 𝑓 ,𝑐𝑜𝑚.

) · ∑︁
𝑓 ∈J1,100K |𝐸𝑉𝑣∈𝐹𝑥𝑑𝑖𝑠𝑡. , 𝑓 ,𝑐𝑜𝑚.

Δ𝑇𝐶𝑆

(
𝑣𝑥𝑑𝑖𝑠𝑡. , 𝑓

) (4.7)

Δ𝑇𝐶𝑆,𝑛𝑜 𝑐𝑜𝑚. (𝑣𝑥𝑑𝑖𝑠𝑡. ) =
1∑100

𝑓 =1 𝑐𝑎𝑟𝑑
(
𝐹𝑥, 𝑓 ,𝑛𝑜 𝑐𝑜𝑚.

) · ∑︁
𝑓 ∈J1,100K |𝐸𝑉𝑣∈𝐹𝑥𝑑𝑖𝑠𝑡. , 𝑓 ,𝑛𝑜 𝑐𝑜𝑚.

Δ𝑇𝐶𝑆

(
𝑣𝑥𝑑𝑖𝑠𝑡. , 𝑓

) (4.8)

Finally, we note Δ𝑇𝐶𝑆,𝑥 the average relative additional time spent in stations per EV accord-
ing to the percentage of disturbers,Δ𝑇𝐶𝑆,𝑥,𝑐𝑜𝑚., the average relative additional time spent in sta-
tions per EVwhen they communicate according to thepercentage of disturbers andΔ𝑇𝐶𝑆,𝑥,𝑛𝑜 𝑐𝑜𝑚.,the average relative additional time spent in stations per EV when they are disturbers according
to the percentage of disturbers (4.11).

Δ𝑇𝐶𝑆,𝑥𝑑𝑖𝑠𝑡. ,𝑐𝑜𝑚. =
1

𝑁𝐸𝑉

·
𝑁𝐸𝑉∑︁
𝑣=1

Δ𝑇𝐶𝑆,𝑐𝑜𝑚.

(
𝑣𝑥𝑑𝑖𝑠𝑡.

) (4.9)

Δ𝑇𝐶𝑆,𝑥𝑑𝑖𝑠𝑡. ,𝑛𝑜 𝑐𝑜𝑚. =
1

𝑁𝐸𝑉

·
𝑁𝐸𝑉∑︁
𝑣=1

Δ𝑇𝐶𝑆,𝑛𝑜 𝑐𝑜𝑚. (𝑣𝑥) (4.10)

Δ𝑇𝐶𝑆,𝑥𝑑𝑖𝑠𝑡. =
1

100
·
100∑︁
𝑓 =1

Δ𝑇𝐶𝑆

(
𝐹𝑥𝑑𝑖𝑠𝑡. , 𝑓

) (4.11)
(4.12)

Note that the average of Δ𝑇𝐶𝑆 (𝐹𝑥𝑑𝑖𝑠𝑡. , 𝑓 ) (4.5) for a share of disturbers 𝑥𝑑𝑖𝑠𝑡. is Δ𝑇𝐶𝑆,𝑥𝑑𝑖𝑠𝑡.(4.11) and the average of Δ𝑇𝐶𝑆 (𝐹𝑥𝑑𝑖𝑠𝑡. , 𝑓 ,𝑐𝑜𝑚.) (4.10) is Δ𝑇𝐶𝑆,𝑥𝑑𝑖𝑠𝑡. ,𝑐𝑜𝑚. (4.11).
4.6.1.3 . Results

Figure 4.13a depicts the distribution of the average relative additional time spent by the
users of the FCFS communication strategy in the station, Δ𝑇𝐶𝑆 (𝐹𝑥𝑑𝑖𝑠𝑡. , 𝑓 ,𝑐𝑜𝑚.), compared with
the situation without disturbers (4.10). The time spent in stations we take as a reference for the
situation without disturbers (0%) is given in Section 4.4.2 when all the EVs communicate (FCFS
communication strategy) and 𝑁𝑙𝑖𝑚𝑖𝑡 = 𝑁𝑚𝑖𝑛 + 1 if 𝑁𝑚𝑖𝑛 ≤ 2. We also plot the distribution of
Δ𝑇𝐶𝑆

(
𝐹𝑥𝑑𝑖𝑠𝑡. , 𝑓

) corresponding to the average relative additional time spent in stations by all the
EVs in the situation described by the fleet 𝐹𝑥𝑑𝑖𝑠𝑡. , 𝑓 (see Figure 4.13b).According to Figure 4.13a, the average relative additional time spent in stations per EV com-
municating, Δ𝑇𝐶𝑆,𝑥𝑑𝑖𝑠𝑡. ,𝑐𝑜𝑚., over all the simulations, is linear according to the disturber per-
centage. Hence, the performances of the FCFS communication strategy are slowly downgraded
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Figure 4.13: Distribution of Δ𝑇𝐶𝑆 (𝐹𝑥𝑑𝑖𝑠𝑡. 𝑓 ,𝑐𝑜𝑚.) and Δ𝑇𝐶𝑆 (𝐹𝑥𝑑𝑖𝑠𝑡. , 𝑓 ) with the averages of thosedistributions according to the percentage 𝑥𝑑𝑖𝑠𝑡. of disturbers in the fleet.

when we introduce disturbers not communicating, even if we suppose the disturbers indicate
their charging timewhen entering stations (strong hypothesis). In fact, the FCFS communication
is sometimes not enough when, for instance, a communicating EV realises too late that a dis-
turber is ahead of them in the waiting queue and cannot change their plan. Indeed, suppose a
disturber 𝐸𝑉𝑣 stops at 𝑡𝑖𝑛,𝑖,𝑣 in the station 𝐶𝑆𝑖 during iteration 𝑡 and a communicating EV, 𝐸𝑉𝑣′ ,plans also to stop during iteration 𝑡 but 𝑡𝑖𝑛,𝑖,𝑣′ > 𝑡𝑖𝑛,𝑖,𝑣 , and there are no other free chargers:
𝐸𝑉𝑣′ will be aware too late of the presence of the disturber and will not be able to change its
plan to avoid waiting time. If nowwe assume 𝐸𝑉𝑣′ stops during the iteration 𝑡+1 and not duringthe iteration 𝑡, 𝐸𝑉𝑣′ will be able to change its plan only if it has enough range to reach𝐶𝑆𝑖+1 or ifthey did not already pass the station𝐶𝑆𝑖−1 and can still stop there to charge. In the other cases,
𝐸𝑉𝑣′ will have to wait for a charging socket to be free in station 𝐶𝑆𝑖.Nevertheless, the FCFS communication increases the probability for an EV to reduce its rel-
ative time loss comparedwith the situationwhere all the EVs communicate: the average relative
time loss, Δ𝑇𝐶𝑆,𝑥𝑑𝑖𝑠𝑡. ,𝑐𝑜𝑚., for the communicating EVs stays always under Δ𝑇𝐶𝑆,𝑥𝑑𝑖𝑠𝑡. ,𝑛𝑜 𝑐𝑜𝑚., theaverage relative time loss for the disturbers (Figure 4.14).

Therefore, themore the EVs are communicating, the less the ones communicating are losing
time, but also the whole fleet sees its relative time loss decreased compared with the situation
with 100 % of disturbers (Δ𝑇𝐶𝑆,100,𝑛𝑜 𝑐𝑜𝑚. = 51%). The FCFS communication strategy might not
be robust, but it enables to limit the average time loss for communicating EVs, Δ𝑇𝐶𝑆,𝑥𝑑𝑖𝑠𝑡. ,𝑐𝑜𝑚.,to 10% when the percentage of disturbers is under 30 % of the fleet. For higher disturbers
percentages, as the information quality decreases logically with fewer EVs communicating, the
FCFS communication is insufficient to avoid long waiting times. Thus, we should think of an
additional means to back up the FCFS communication strategy in evaluating the waiting time
estimation when there aremore than 30% disturbers. This additional feature will also be of use
when there are no disturbers in the fleet since even with 100% of real-time information sharing;
the received information depends on the charging plan selected during the previous iteration
and not the current iteration (see Section 3.2.2).

4.6.1.4 . Suggested improvements of the FCFS communication strategy
With or without disturbers, using an event handler to update the charging plans as soon

as an event happens and not at every constant timestep represents a solution. Still, the risk of
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this solution is that we fall into an infinite loop when some EVs compete for the same charging
session. Each of them oscillates between two or more charging plans when one changes its
charging plan: we need to set a limit of changes made after an event associated with a charging
plan update.

Another solution would be to determine, thanks to statistics or reinforcement learning, the
waiting time profile considering the previous intentions of charge sent by the EVs during the
whole day and even during other crowded days instead of considering only the charging request
sent at the previous iteration (𝑡 −1). The paper [71] proposes a solution with the same idea that
might be adaptable to the FCFS communication strategy presented in this manuscript.

For high shares of disturbers in the fleet, the solution may be to use the reservation strategy
for the communicating EVs instead of the FCFS communication strategy. Still, the efficiency of
this solution remains to be proven and the percentage threshold of disturbers above which
the reservation strategy performs better than the FCFS communication strategy has to be determ-
ined. Moreover, the reservation strategy might worsen the situation for the disturbers since
the preemption is not possible in the simulation (the reason why is given in Section 4.4.1) and
the reservation of charging session will induce more significant delays for the charging of non-
communicating EVs compared with the FCFS communication. In fact, communication without
reservation (FCFS communication) is beneficial for the whole fleet as it reduces the average time
in stations per EV and not only for the communicating EVs (see the distribution Δ𝑇𝐶𝑆

(
𝐹𝑥𝑑𝑖𝑠𝑡. , 𝑓

)
in Figure 4.13b).

4.7 . Conclusion
105



Firstly, we have compared two communication strategies with different station rules: the
FCFS communication and the reservation strategies. Both strategies, FCFS communication and
reservation strategies, are a way to reduce the waiting queue length in stations and the aver-
age travelling time for EV drivers on a long-distance trip without adding new charging points.
They lead to more efficient use of the charging infrastructure on average, but the communic-
ation strategy is the charging strategy with the best performance. The underperformance of
the reservation is due to the non-preemption that sometimes forces the non-utilisation of free
chargers if an EV with higher priority arrives and the remaining time to charge is insufficient
to start and finish a charging session. The preemption could improve the performance of the
reservation strategy, but it will introduce other inconveniences the drivers will likely not accept.
This is why the FCFS communication strategy remains the best strategy in comparison.

From a certain level of saturation (300-EV scenario in this case study), even if the FCFS com-
munication (and to a lesser extent the reservation) enables to reduce by 52% the average trip
time compared with the no-communication strategy, the real-time communication is not suffi-
cient to meet the quality criteria so we need to add more charging points to improve drivers’
satisfaction. In the next chapter, Chapter 5, we will see how we can optimise the infrastructure
size to be developed when the fleet is using the FCFS communication strategy.

Secondly, we have quantified the time loss experienced by the EVs when one part of the
fleet is not communicating and the other is using the FCFS communication strategy. The best
charging strategy with the presence of disturbers not communicating is not performing as well
as with 100% of communicating EVs, but still, the FCFS communication strategy enables to reduce
the average time spent in stations compared to the situation when no EV is communicating
(situation of no-communication). The FCFS communication strategy can be improved with means
to anticipate more accurately the waiting time by crossing the information retrieved from an
iteration to another (statistics, reinforcement learning...).

For the rest of the manuscript, we will keep the FCFS communication strategy as the best
control strategy of the fleet charging, and we will assume there are no disturbers in the fleet.
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5 - Thebenefits of communication in reducing infrastruc-
ture costs with limited-range electric vehicles
We have seen in Chapter 4 the benefit of the FCFS communication strategy for a given in-

frastructure layout that is subject to medium saturation. For higher saturation, we have seen
that strategy is not sufficient to reduce the waiting time so we need to efficiently add charging
points. In this chapter, we will prove the value of considering the communication strategy when
sizing the charging infrastructure, especially if the range of the EVs is limited. With this in mind,
we propose a multi-level optimisation where the lower level is dedicated to the optimisation of
the charging plan for the EVs on the highway thanks to the communication strategy and the up-
per level aims to optimise the infrastructure itself (location and sizing of the charging stations).
Firstly, we present in Section 5.1 the challenges raised by the sizing of the charging infrastructure
on the highway if we want to reduce the size of the EV’s battery pack. Secondly, we introduce in
Section 5.2 the optimisation problem of the charging stations’ planning to minimise the cost of
the infrastructure while guaranteeing aminimum level of service. Then, in Section 5.3, we detail
the different scenarios we studied with each time a comparison of the optimal infrastructure
layout obtained for the communication strategy and the one obtained for the no-communication
strategy representing the situation of reference. Section 5.4 sums up the results for the different
scenarios.

A part of this chapter results has been published and presented during the 2023 IEEE Trans-
portation ElectrificationConference: A. Popiolek, P. Dessante,M. Petit, Z. Dimitrova, etM.Waraq,
"Highway charging infrastructure costs reduction for limited-range electric vehicles with real-
time communication", in 2023 IEEE Transportation Electrification Conference Expo (ITEC), june
2023, p. 1-8. doi: 10.1109/ITEC55900.2023.10186939. [117]
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5.1 . Fast-charging infrastructure development challenges withlimited-range batteries
5.1.1 . Short range and infrastructure needs

As we have seen in Section 2.1.2, the shorter range of most EVs compared to traditional
internal-combustion-engine (ICE) vehicles discourages their use for long-distance trips or leads
to the purchase of high-range models with larger batteries. However, larger batteries increase
the environmental impact of an EV due to high CO2 emissions during battery production, res-
ulting in higher total emissions for EV production than for conventional ICE vehicles (see Sec-
tion 1.2.3.1). To reduce the number of mileages needed to repay the manufacturing emissions
"debt", the battery capacity should be limited (≤60 kWh), according to the French Environment
and Energy Management Agency (ADEME) [6].

As a shortened battery range induces more charging events, the charging point operators
(CPOs) must densify the fast-charging network and add new charging points to enable long-
distance trips and limit the waiting time in stations [55]. To hasten the charging process, the
charging power must be high (≥ 50 kW) but fast-charging points are costly (approximately
€60.000 per 150-kW charging point [26]), so the charging network deployment must be optim-
ized (see Section 2.4).

5.1.2 . Infrastructure optimisation with FCFS communication strategy
Most of the optimisation methods listed in Section 2.4 passively capture the existing char-

ging demand for long-distance trips. Suppose the infrastructure is dimensioned to fit the av-
erage demand during the year. In that case, the waiting time will explode during traffic peaks
(e.g. holiday departures) and discourage long-distance trips with an EV. On the contrary, if the
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stations are scaled to avoid long waiting times during those occasional crowded days, the in-
frastructure will be oversized compared with the demand for the rest of the year when the
number of long-distance trips drops, creating an important difference between the revenues
and the investments. Thus, CPOs need a way to control the charging demand to circumvent
the infrastructure oversizing and to support the occasional charging demand peaks. We have
seen in Chapter 4 that the communication strategy increases the infrastructure’s rate of use
and represents an interesting control strategy of the fleet to tackle this problem.

Vandet and Rich [96] show the benefit of information-sharingwhen sizing the charging infra-
structure for the Greater Copenhagen Area, and Rich et al. [97] take the samemodel to optimise
the charging infrastructure this time for long trips on Denmark state roads. Those papers pro-
pose amethod tominimise the infrastructure cost while guaranteeing a limitation of thewaiting
time under various thresholds. In this present chapter, we aim also to measure the infrastruc-
ture cost gains provided by the FCFS communication strategy (see description in Section 3.1.4)
compared to an infrastructure developed in case of no-communication.

To guarantee a good level of charging service, we chose, like in [97] to constrain the waiting
time of each charging session under a given threshold. Yet, contrary to [97], we want to guar-
antee this level of service during traffic peaks [50] for holiday period and not only for average
traffic during the year, so we generate fleets that represent a typical day of holiday departure.
In this chapter, we base our scenario on the French highway A6 with the real positions of the
actual service areas where the charging stations are or will be installed. We approximate the
size of the fleets we study to 500 EVs which corresponds to 10 hours of saturation (𝑡𝑠𝑎𝑡. = 10 h)
of the highway lanes (2 lanes on average on A6, 𝑛𝑙𝑎𝑛𝑒 = 2) and a future share of 3% of EVs on the
French roads (𝑛𝐸𝑉,% = 3%) with only 50% of EV owners taking their EV to go on long-distance
trips (𝑛𝑡𝑟𝑖 𝑝,% = 50%) [69]. The saturation of the highway is modelled by the lane capacity 𝑙𝑙𝑖𝑚𝑖𝑡(1730 vehicles/h [118]) so we can approximate the fleet size to:

𝑡𝑠𝑎𝑡. · 𝑛𝑙𝑎𝑛𝑒 · 𝑙𝑙𝑖𝑚𝑖𝑡𝑛𝐸𝑉,% · 𝑛𝑡𝑟𝑖 𝑝,% = 519 ≈ 500 (5.1)
For a given infrastructure layout, when the FCFS communication strategy is used, we need to

compute with the multi-agent simulation the interaction between the EVs from the generated
fleets and the stations to retrieve the real waiting time the EVs experience during a simulated
day and compare those times to the threshold. However, a multi-agent simulation is time-
costly (a few tens of minutes for a large fleet of 500 EVs) so testing all the combinations of
infrastructure layout with an exhaustive method is possible but not recommended for such a
complex problem. Thus, we use a meta-heuristic algorithm evolutionary-based, the Grey Wolf
Optimiser (Section 5.2), to optimise the infrastructure layout under the waiting time constraints.

5.2 . Method: infrastructure optimisation with Grey Wolf Optim-iser (GWO)
5.2.1 . Problem formulation: upper-level optimisation

We note 𝑁 𝑓 the number of fleets (so the number of crowded days) that are tested at the
same time to check the waiting time constraint. Indeed, as we are using MAS and regarding
the high number of parameters that influence the fleet’s characteristics (see Section 3.1.1), we
have to verify the waiting time guarantee on several fleets to get closer to the infrastructure
proposing the highest quality service. However, since we did not have time to perform the
optimisation on a high number of fleets, we only study five fleets with the method and leave
the optimisation of the infrastructure for a larger number of fleets to industrials.
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Concerning the cost reduction, the objective of the optimisation problem is theminimisation
of the daily equivalent annual cost of the fast-charging infrastructure 𝐷𝐸𝐴𝐶𝐹𝐶𝐼 (5.2) (seeSection 5.2.2). As the French government plans to equip all the service areas with charging
stations in the near future, we add the constraint that all service areas have at least one charging
point (5.4). We hypothesise that the charging stations can only be located in service areas and
that an unique CPO operates the whole infrastructure. The number of service areas is noted
𝑁𝑎𝑟𝑒𝑎The whole optimisation problem is given by Equation 5.2.

𝑂𝑏 𝑗𝑒𝑐𝑡𝑖𝑣𝑒 : min
𝑠

𝐷𝐸𝐴𝐶𝐹𝐶𝐼 (𝑠) (5.2)
𝑠.𝑡.∀𝐸𝑉𝑣 , ∀ 𝐶𝑆𝑖 ∈ CS, 𝑡𝑤𝑎𝑖𝑡 ,𝑣,𝑖 ≤ 𝑇𝑡ℎ𝑟𝑒𝑠. (5.3)

∀𝑖 ∈ J 1; 𝑁𝑎𝑟𝑒𝑎K ∃ 𝑗 ∈ J 1; 𝑁𝑝K 𝑠𝑖, 𝑗 ≥ 1 (5.4)
The vector 𝑠 lists the number of chargers (or sockets) per station according to their rate, so

with 𝑁𝑝 different charging rates possible in the infrastructure, we have:for 𝑖 ∈ J 1; 𝑁𝑎𝑟𝑒𝑎K,
𝑠[𝑁𝑝 .𝑖] = 𝑠𝑖,𝑁𝑝

: number of charger with the highest-rate type 𝑝𝑁𝑝
in 𝐶𝑆𝑖 ,

𝑠[𝑁𝑝 .𝑖 − 1] = 𝑠𝑖,𝑁𝑝−1 : number of chargers with a charging rate 𝑝𝑁𝑝−1 in 𝐶𝑆𝑖 ,
· · ·
𝑠[𝑁𝑝 .𝑖 − (𝑁𝑝 − 1)] = 𝑠𝑖,1 : number of lowest-rate 𝑝1 chargers in 𝐶𝑆𝑖.

In Chapter 4, the maximum charging power in the case study was 125 kW as only few EV
models were able to charge above that power at the beginning of this thesis, but now, regarding
the current charging power installed in stations [44, 119], the maximum power in this chapter
is 350 kW (𝑝𝑁𝑝

= 350 𝑘𝑊ℎ) and the possible charging rates are 𝑃 = {50, 175, 350} 𝑘𝑊 .
To show the benefit of sharing information in real time on theminimisation of infrastructure

cost, for each study presented in this chapter, we evaluate the optimal infrastructure when
the EVs use the FCFS communication strategy but also when the EVs do not communicate (no-
communication strategy - see 3.1.4) to represent the infrastructure we should develop in the
current situation.

5.2.2 . Charging infrastructure cost 𝐷𝐸𝐴𝐶𝐹𝐶𝐼
The cost of the charging infrastructure is usually evaluated as the equivalent annual cost

of the infrastructure [45, 55, 61]. The equivalent annual cost 𝐸𝐴𝐶 of the FCI is the equivalent
constant annuity whose net present value (NPV) over the lifetime 𝐿 of the infrastructure is equal
to the NPV of the installed FCI itself [55]. The definition of the infrastructure NPV is given by:

𝑁𝑃𝑉 (𝐹𝐶𝐼) =
𝐿∑︁

𝑘=1

𝑅𝑘 − 𝐶𝑘

(1 + 𝑟)𝑘
− 𝐼0 (5.5)

With 𝑅𝑘 the revenue of the 𝑘 𝑡ℎ year and 𝐶𝑘 the cost during the 𝑘 𝑡ℎ year. 𝐼0 represents theinitial investment during the year 0 and 𝑟 is the discount rate. According to the definition of
𝐸𝐴𝐶𝐹𝐶𝐼 , we have:

𝑁𝑃𝑉 (𝐹𝐶𝐼) = 𝑁𝑃𝑉 (𝐸𝐴𝐶𝐹𝐶𝐼 ) ≡
𝐿∑︁

𝑘=1

−𝐸𝐴𝐶𝐹𝐶𝐼

(1 + 𝑟)𝑘
= − (1 + 𝑟)𝐿 − 1

𝑟.(1 + 𝑟)𝐿 × 𝐸𝐴𝐶𝐹𝐶𝐼 (5.6)

If we suppose the revenues 𝑅𝑘 and the costs 𝐶𝑘 constant from one year to another and
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equal respectively to 𝑅 and 𝐶, we obtain the expression:
𝑁𝑃𝑉 (𝐹𝐶𝐼) = 𝑁𝑃𝑉 (𝐸𝐴𝐶𝐹𝐶𝐼 )

⇒ (1 + 𝑟)𝐿 − 1

𝑟.(1 + 𝑟)𝐿 × (𝑅 − 𝐶) − 𝐼0 = − (1 + 𝑟)𝐿 − 1

𝑟.(1 + 𝑟)𝐿 × 𝐸𝐴𝐶𝐹𝐶𝐼

⇒ 𝐸𝐴𝐶𝐹𝐶𝐼 =
𝑟 · (1 + 𝑟)𝐿
(1 + 𝑟)𝐿 − 1

× 𝐼0 + 𝐶 − 𝑅

However, this formulation, at least in the way it is used in the previously cited references,
implies that the number of chargers in stations is fixed during the lifetime of the infrastructure
with all the investment performed the year 0. Yet, the fleet of EVs is currently growing quickly
and is not going to reach a steady state soon so the infrastructure should be planned dynam-
ically too [50]. Nevertheless, as the running time of our simulation is high and to simplify the
problem, we assume like in the previously cited references that we are planning the infrastruc-
ture for a steady state in the evolution of EVs on the road.

As each simulation accounts for a one-day situation, we compute the daily equivalent annual
cost to represent the infrastructure cost 𝐶𝐹𝐶𝐼 . This daily equivalent annual cost is simply the
equivalent annual cost of the FCI 𝐸𝐴𝐶𝐹𝐶𝐼 divided by 365. Precisely, 𝐷𝐸𝐴𝐶𝐹𝐶𝐼 is the sum of the
investment cost at the year 0 (including the hardware cost, 𝐶ℎ𝑎𝑟𝑑., of each charger and their
installation cost, 𝐶𝑖𝑛𝑠𝑡𝑎𝑙𝑙.), and the annual maintenance and operation cost, 𝐶𝑂&𝑀 , minus the
daily average revenue, 𝑅𝑎𝑣𝑔, during the year (5.7). According to [26], the hardware and the
installation costs are both proportional to the charger power since the higher the power is, the
higher the furniture and the grid connection will cost (see Table 5.1 for the installation costs).
The same relation is observed for the O&M cost since the CPO will have to pay a subscription
that increases with the grid connection power.

𝐷𝐸𝐴𝐶𝐹𝐶𝐼 (𝑠) =
𝑟 (1 + 𝑟)𝐿

365((1 + 𝑟)𝐿 − 1) ·
𝑁𝑎𝑟𝑒𝑎∑︁
𝑖=1

𝑁𝑝∑︁
𝑗=1

(
𝑠𝑖, 𝑗 · [𝐶ℎ𝑎𝑟𝑑., 𝑗 + 𝐶𝑖𝑛𝑠𝑡𝑎𝑙. (𝑠𝑖, 𝑗)]

+ 1

365
· 𝐶𝑂&𝑀 − 𝑅𝑎𝑣𝑔 (𝑠)

(5.7)

We choose a discount rate 𝑟 rather high for a partnership between private and public stake-
holders (𝑟 = 10% like in [61]) since the help of public actors in France is now limited to the
creation of new charging stations and not to the addition of chargers in existing charging sta-
tions.

Concerning the revenue, as the fleets we simulate represent crowded days and not an aver-
age traffic day, the real annual average daily revenue perceived by the CPO should be computed
according to the average traffic day. In Chapter 4, we evaluate the average daily BEV traffic on
the highway to 180 EVs so, as a crowdedday is represented by a fleet of 500 EVs in this case study
(see Section 5.1), the average daily traffic is one third of a crowded day traffic ( 500/180 ≈ 1/3).
Therefore, we assume that the annual average daily revenue is one third of a crowded-day rev-
enue. The revenue of one crowded day is the net revenue perceived by the operator during
that day and, as we test 𝑁 𝑓 crowded days (one day per fleet), the daily average revenue 𝑅𝑎𝑣𝑔 isgiven by:

𝑅𝑎𝑣𝑔 =
1

3
· 1

𝑁 𝑓

·
𝑁 𝑓∑︁
𝑓 =1

∑︁
𝑣∈𝐹 𝑓

[
𝐶𝑐ℎ𝑎𝑟𝑔𝑒,𝑣 − 𝐸𝑡𝑜𝑡𝑎𝑙,𝑣 · 𝑝𝑒𝑙

] (5.8)
The electricity price 𝑝𝑒𝑙 represents the price paid by the CPO per kWh sold and we set it

to 0.15 e as we suppose the industrial electricity price given in [55] (0.13 e/kWh) has slightly
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increased since 2019. In reality, the real electricity price the charging operator pays depends on
the charging power but we use an electricity price independent from the charging power and
we assume that the price difference is included in the operation and maintenance costs 𝐶𝑂&𝑀of the chargers (linked to the charger’s power). The charging cost for an EV driver, 𝐶𝑐ℎ𝑎𝑟𝑔𝑒,𝑣 , isdefined in Section 3.1.3.

As we mention it before, the installation cost per charger depends on the level 𝑝 𝑗 of thecharger but also on the number of chargers with the same charging power level 𝑠𝑖, 𝑗 installed inthe station [26] (Table 5.1). Table 5.2 gives the values of the different parameters to compute
the 𝐷𝐸𝐴𝐶𝐹𝐶𝐼 .
Table 5.1: Charger hardware installation cost according to the level of power. The fig-ures are obtained from [26] by multiplying the installation costs expressed in dollar bythe changing rate of 0.88 to convert the costs in euro

Installation cost per charger depending on the number of chargers
to install in the station (ke)

chargerpower 1 charger 2 3 - 5 more than 6
50 kW 40 32 24 16
175 kW 1 42 33.5 25 16.4
350 kW 58 46.2 34.4 22.5

5.2.3 . Waiting time constraint 𝑇𝑡ℎ𝑟𝑒𝑠 and lower-level optimisation
As previously mentioned in Section 5.1, the constraint on the waiting time is checked thanks

to a simulation of one or several fleets representing a crowded day on the highway using the
simulation framework described in Chapter 3. This part of themethod corresponds to the lower
optimisation level with the optimisation of the discontent factor for all EVs. 𝑁 𝑓 is the number
of fleets 𝐹 tested during the evaluation of one given layout 𝑠 in the optimisation problem (5.2)
and 𝑁𝐸𝑉 is the number of EVs in each fleet 𝐹 𝑓 .

5.2.3.1 . Waiting time threshold 𝑇𝑡ℎ𝑟𝑒𝑠
Depending on the optimisation (see Section 5.3.3), we evaluated the infrastructure needs

for two different waiting time thresholds 𝑇𝑡ℎ𝑟𝑒𝑠:
• 𝑇𝑡ℎ𝑟𝑒𝑠. = 30 minutes. In Chapter 4, the maximum waiting time accepted was 30 minutes
but if we want to size the infrastructure for the near future, as the infrastructure and the
new EV models enable more and more ultra-fast charging, the exigence of drivers will be
higher in quality of service.

1We consider 150 and 175-kW chargers equivalent2prices charged by Fastned [119] for charging at 175kW chargers and by Ionity in France [44] at 50 kWand 350kW chargers.3indicative hardware costs for the 350-charger given by an ABB exhibitor at the Paris Auto Show 2022,the hardware cost for the other power rates correspond to an annual decrease by 3% of the costs givenin [26] from 2019 to 2022.
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Table 5.2: Values of the parameters used in this chapter

parameter description value %
𝑝𝑒𝑙

electricity price per kWhfor industrials (e) 0.15
𝑝𝑐ℎ𝑎𝑟𝑔𝑒, 𝑗

energy price per kWh forEV drivers (e) 0.35 (50 kW)/ 0.59 (175kW)/ 0.79 (350 kW) 2
𝐶ℎ𝑎𝑟𝑑., 𝑗

hardware cost pernetworked charger (e)
22,000 (50 kW)/ 60,000(175 kW)/ 90,000 (350 kW)3

𝐶𝑂&𝑀 maintenance cost 1% of the investment
𝑟 discount rate 10%
𝐿 lifetime of the chargers 15 years

𝑁𝑎𝑟𝑒𝑎
number of service areasalong the highway 13

𝑁 𝑓
number of fleets in thesample 1-5

• 𝑇𝑡ℎ𝑟𝑒𝑠. = 30minutes to evaluate the gain on the infrastructure cost and the degradation of
the trip timewe can expect if we authorise 10minutesmore on thewaiting time threshold
as it is the case in Chapter 4.

5.2.3.2 . Value of time when 𝑁𝑝 > 1

When running the MAS (for the communication and the no-communication strategy), each
EV optimise its charging plan depending on the trip time and the charging cost (see Section
3.1.3). If there is only one available power level, 𝑝, in the infrastructure (𝑁𝑝 = 1), as we as-
sume the charging price proportional to the energy charged (𝐸𝑡𝑜𝑡𝑎𝑙, 𝑣) (see Section 3.1.3.2), thecharging price 𝐶𝑐ℎ𝑎𝑟𝑔𝑒, 𝑣 is always the same whatever the charging plan is (5.9). Therefore, we
do not need to consider the charging cost (and consequently the drivers’ value of time) when
optimising the charging plan (𝑋 = 0).

𝐶𝑐ℎ𝑎𝑟𝑔𝑒, 𝑣 (𝜔∗
𝑣) =

𝑁𝐶𝑆∑︁
𝑖=1

𝑝𝑐ℎ𝑎𝑟𝑔𝑒 (𝑝∗𝑖 ) · 𝑥∗𝑖 = 𝑝𝑐ℎ𝑎𝑟𝑔𝑒 (𝑝) · 𝐸𝑡𝑜𝑡𝑎𝑙,𝑣 (5.9)

However, if there aremultiple charging rates possible in the infrastructure (𝑁𝑝 > 1), we have
to take into account the drivers’ value of time (included in 𝑋) since the charging price depends
on the power of the socket used (𝑝 𝑗 ). In Section 4.2.1, we choose to consider only the trip time
in the discontent factor as indicated in [84], but, on European highways, the kWh price is higher
than 0.12 $/kWh (prices start at 0.3 €/kWh on fast DC chargers and can go up to 0.8 €/kWh), so
the charging cost should be considered in the discontent factor.

The values of time used in this chapter are:
• 𝑣𝑜𝑡 = 20 e/hr: this value comes from the paper [64] that evaluates the median personal
value of time to 19 e/h that we round up to 20 e/hr. We found a similar value of time, 20
$/hr, for the lowest vot considered in [120].
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• 𝑣𝑜𝑡 = 50 e/hr: this value is similar to one of the values of time given in [120] (50 $/hr).
This value represents the vot for professional trips and for users giving more importance
to the reduction of their trip time, especially the ones investing in more expensive cars to
have more battery capacity and higher charging rates.

5.2.3.3 . Lower-level optimisation with the no-communication strategy
When the strategy used by the EVs is without communication (no-communication strategy), as

the EVs establish their charging plan before their trip and do not interact with the infrastructure,
the charging plan of each EV stays the same during the whole day, and the MAS only serves to
emulate the waiting queue and to compute the final waiting time for each charging session.
The time cost for those calculations is relatively low compared to when we have to simulate
real-time interactions (for communication strategy) but still, the number of combination is high
so we cannot test all the layout combinations.

In a casewhere there is only one possible charging rate in the infrastructure (𝑁𝑝 = 1), we can
simplify the optimisation and compute iteratively the optimal infrastructure. The EVs following
the no-communication strategy optimise their charging plan only according to the location and
the power level in the charging stations. As the station locations are fixed with the constraint
of one station at each service area (5.4) and if the power level is the same for all the stations,
we only need to simulate once the fleet on the highway with one charging point per station
(initial infrastructure) to know where the EVs from the fleet are going to stop. Since the EVs
will not change their plan, whatever the number of charging points will be in stations, we can
determine the optimal infrastructure iteratively by emulating the infrastructure with the MAS
and then adding one charging point in the station with the smallest position on the road where
at least one EV waits more than the waiting-time threshold. Therefore, we do not need a GWO
to test charging point distribution among the stations when there is only one power level in the
infrastructure.

When 𝑁𝑝 > 1, determining the optimal infrastructure is more complex. We can determine
iteratively the sufficient infrastructure for the no-communication strategy like for the case 𝑁𝑝 = 1

with an initial infrastructure with one charger per power level. Again, we add, progressively,
station after station, one charging point per power level for which at least one EV waits more
than the waiting-time threshold. As we will see in Section 5.4.2.2 and in Section 5.4.3, the value
of the 𝑣𝑜𝑡may lead thewhole fleet choosing only on power level across thewhole infrastructure.
Therefore, in this situation, proposing different power levels per station is useless. However,
if the revenue for one charger type is higher but is not chosen by the EVs if they have access
to several power levels in a given station, the optimisation will favour the solutions with, in this
given station, only one available power level, the one giving the highest revenue, to force the
EV to charge at this power level. Therefore, if we authorise a station to have only one charger
type but the whole infrastructure can propose different power level, it is not possible to find
iteratively the best combination of charging points. Thus, the GWO should be used to optimise
the infrastructure

5.2.3.4 . Lower-level optimisation with the communication strategy
When the strategy used by the EVs is the communication strategy, the MASs have longer

running time since we need to detail the interaction between the EVs and the CSs at every
iteration 𝑡, so we need to use the grey wolf optimiser to determine the optimal infrastructure
(see Section 5.2.4 for GWO algorithm). For this strategy, the constraint on the waiting time is
expressed as a penaltywe add to the cost𝐶𝐶𝐹𝐼 (𝑠) of the layout 𝑠. The penalty 𝑡𝑝𝑒𝑛, 𝑣, 𝑖 is null if noEV in all the tested fleets experiment a waiting time above𝑇𝑡ℎ𝑟𝑒𝑠; it is exponential with respect tothe gap between thewaiting time above the threshold and𝑇𝑡ℎ𝑟𝑒𝑠 for each EVwaiting longer than
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accepted (5.10). The times are in seconds in the penalty expression with 𝑇𝑝𝑒𝑛 = 10000 𝑠𝑒𝑐𝑜𝑛𝑑𝑠

and𝑇𝑔𝑎𝑝 = 60 𝑠𝑒𝑐𝑜𝑛𝑑𝑠. To avoid useless long running time, we stop theMAS for a layout as soon
as one EV waits more than twice the threshold 𝑇𝑡ℎ𝑟𝑒𝑠 and start the next simulation for another
layout.

𝑡𝑝𝑒𝑛, 𝑣, 𝑖 = 𝑇𝑝𝑒𝑛 ·
exp

(
max

(
𝑡𝑤𝑎𝑖𝑡 , 𝑣, 𝑖 − 𝑇𝑡ℎ𝑟𝑒𝑠, 0

)
− 1

)
exp

(
𝑇𝑔𝑎𝑝 − 1

) (5.10)
The step of the multi-level optimisation realised with a Grey Wolf Optimiser is described in

the next section (Section 5.2.4).
5.2.4 . Grey Wolf Optimiser

As explained in Section 5.1, the complexity of the problem (non easily differentiable and
similar to a combinatorial problem) and the running cost of the fitness evaluation due to the
use of multi-agent simulations to compute the constraints lead us to solve the problem with
a meta-heuristic algorithm. We selected an evolutionary algorithm, the Grey Wolf Optimiser
(GWO) [93], as it converges fast thanks to the use of the three best solutions at the same time
to update the population to be tested at the next iteration of the optimiser [60]. We have tested
the Genetic Algorithm from Matlab and a differential evolution algorithm based on NSGA-II for
other studies about sizing the infrastructure (see Chapter 6) but the running time was too long
to consider those methods when simulating the FCFS communication strategy.

This GWO is inspired by grey wolves’ hunting tactic to encircle and hunt prey. In this chapter,
the position of the prey is the optimal layout 𝑠∗ of the infrastructure for our problem and at
each iteration of the algorithm, the wolves in the pack update their positions (𝑠) to get closer to
the prey. As a reminder, the vector 𝑠 lists the number of charging points at each service area
according to the power level and describes the infrastructure layout (Section 5.2). The fitness
of one grey wolf (whose position corresponds to one layout 𝑠) is the cost function 𝐶𝐹𝐶𝐼 (𝑠).In the hierarchy of the grey wolf pack, the alpha (𝛼), beta (𝛽), and delta (𝛿) wolves lead the
rest of the pack to the prey at the position 𝑠∗. In our case, we do not know where the prey is
since we are looking for its position so we suppose that the leading wolves are the ones with a
better knowledge of the prey position. Consequently, at each update of the wolves’ position, we
place the alpha wolf at the position with the best fitness found so far and we give the second-
best and third-best positions respectively to the beta and delta wolves. To model at the same
time the hierarchy in the pack, the hunting (exploration), and the encircling (convergence) of
the prey, the position 𝑠(𝑘) of each wolf at the 𝑘 𝑡ℎ iteration is updated as follow:

−−→
𝐷𝛼 = |−→𝐵1.

−→𝑠𝛼 − −→𝑠 (𝑘) | −−→
𝐷𝛽 = |−→𝐵2.

−→𝑠𝛽 − −→𝑠 (𝑘) | −−→
𝐷 𝛿 = |−→𝐵3.

−→𝑠𝛿 − −→𝑠 (𝑘) | (5.11)
−→𝑠1 =

−→𝑠𝛼 − −→
𝐴1.

−−→
𝐷𝛼

−→𝑠2 =
−→𝑠𝛽 − −→

𝐴2.
−−→
𝐷𝛽

−→𝑠3 =
−→𝑠𝛿 −

−→
𝐴3.

−−→
𝐷 𝛿 (5.12)

−→𝑠 (𝑘 + 1) = ⌊
−→𝑠1 + −→𝑠2 + −→𝑠3

3
⌋ (5.13)

The coefficient of vectors −→𝐴 𝑗 and −→
𝐵 𝑗 are computed as follow:

𝐴 𝑗 ,𝑚 = 2 𝑎 𝑟1 − 𝑎 𝐵 𝑗 ,𝑚 = 2 𝑟2 (5.14)
with 𝑟1 and 𝑟2 random values uniformly distributed between 0 and 1 and 𝑎 given by:

𝑎 = 2 − 𝑘 2

𝑀𝑎𝑥𝑖𝑡𝑒𝑟
(5.15)

𝑀𝑎𝑥𝑖𝑡𝑒𝑟 is the maximum number of iterations that can be performed during the optimisa-
tion. In AppendixD.2, we detail howwe corrected and adapted the 2011 version of the algorithm
developed by S. Mirjalili [121] to our problem.
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Table 5.3: Parameters of the Grey Wolf Optimiser
Optimisation Number of grey wolves inthe pack Number of iterations(𝑀𝑎𝑥𝑖𝑡𝑒𝑟 )

Optimisation 1-3 20 20
Optimisation 4-6 30 20

As presented in Section 5.2.3, the constraint on the waiting time is checked thanks to a sim-
ulation of the infrastructure layout that is evaluated (Figure 5.1). We remind here that to avoid
long computation time, we stop the MAS as soon as one EV experiences a waiting time twice as
much as𝑇𝑡ℎ𝑟𝑒𝑠. In addition, to accelerate the GWO convergence, we introduced a novel possible
update to the position of the grey wolves, specifically adding charging points to stations where
EVs had previously encountered waiting times that violated the constraints. This modification
is described in Appendix D.2.

Figure 5.1: Fitness calculation for one wolf
The Grey Wolf Optimiser is stopped after a maximum number of iterations 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 and theoptimal layout corresponds to the wolf’s position with the minimal fitness in the pack, so the

latest alpha wolf’s position.
The choice of the GWO parameters is inspired by the paper [60] that has a population size

of 50 grey wolves and 20 iterations. We keep 20 iterations but reduce the population size to 20
as the evaluation of the fitness of one individual takes time (approx. 30 min if need to simulate
the whole day).

We run the two-level optimisation by paralleling the calculation on 12 matlab workers. We
can use 24 workers but, as the size of the fleets containing EVs’ 𝑑𝑎𝑡𝑎𝑐ℎ𝑎𝑟𝑔𝑒 is important, the jobs
are slowed down when the fleets’ data are copied 24 times instead of 12 times.

5.3 . Case studies
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5.3.1 . Highway details
The considered highway in this chapter is a more precise version of the French highway

A6 compared with the case study in Chapter 4. Still, we reduce the number of entrances/exits
and the probability of entry or exit at each highway exit is arbitrarily set according to a rough
approximation of Average Annual Daily Traffic (AADT) on each section of the French highway A6
and to the closeness of large agglomerations such as Paris and Lyon.

Figure 5.2: French highway A6 with simplified entrances/exits
We keep the same service areas as highway A6 (13 service areas so 𝑁𝑎𝑟𝑒𝑎 = 13) for the case

study and those areas are the potential locations of the charging stations (today, almost all ser-
vice areas of the highway are equipped [122]). Note that the number of charging stations more
than doubles compared with Case study 1 from Chapter 4 but the computation of 𝑑𝑎𝑡𝑎𝑐ℎ𝑎𝑟𝑔𝑒(Section 3.4.2) with Δ𝐸 = 0.5𝑘𝑊ℎ is still feasible in a reasonable running time. However, when
𝑁𝑝 > 1, the parallelisation of the computation is not possible for Δ𝐸 = 0.5𝑘𝑊ℎ since the size
of 𝑑𝑎𝑡𝑎𝑐ℎ𝑎𝑟𝑔𝑒 is too important to be handled by the workers. Therefore, when 𝑁𝑝 > 1, we use
𝑑𝑎𝑡𝑎𝑐ℎ𝑎𝑟𝑔𝑒 with Δ𝐸 = 1𝑘𝑊ℎ to reduce the size of 𝑑𝑎𝑡𝑎𝑐ℎ𝑎𝑟𝑔𝑒 and make the parallelisation pos-
sible.

5.3.2 . Characteristics of EV fleets
As explained in Section 5.2.1, we optimise the infrastructure over five different fleets (𝐹1 to

𝐹5) and we present in this section, how we generate the trip parameters.
5.3.2.1 . Entrance (𝑜𝑣) and exit (𝑑𝑣) choice

Concerning the spatial parameters of each trip, the entrance 𝑜𝑣 , where 𝐸𝑉𝑣 enters the high-way is selected according to the entry probabilities depicted in Table 5.4. Since we do not have
specific data about long-distance travel on highway A6, we arbitrarily set the entry and exit
probabilities we gave in Table 5.4 to roughly reflect the annual average daily traffic (AADT) on
A6 sections.

To partially reflect the sensitivity of the charging strategies to the trip parameters, we intro-
duce two different methods explained later to choose the highway exit point for each EV.

The first method selects the EV’s exit, 𝑑𝑣 , according to the exit probability specified in Table5.4. The fleets 𝐹1, 𝐹2 and 𝐹3 are based on that first method. We obtain fleets where the ma-
jority of the generated trips cover the whole length of the highway, as we can see in Figure 5.5,
Figure 5.6 and Figure 5.7: the number of EVs in fleet 𝐹1, 𝐹2 and 𝐹3 passing in front of each
service area is in average equal to 70% of the fleet size (𝑁𝐸𝑉 = 500 EVs).

In the secondmethod, the exit points selected by the EVs depend on the travelling distance
distribution given in [27] and summedup in Table 5.5.Wegenerate twofleets, 𝐹4 and 𝐹5, withthe second method.

We notice in Section 5.4 (Figure 5.8 and Figure 5.9) a higher number of EVs travelling the
first half of the highway (until service area 6) for both fleets 𝐹4 and 𝐹5 compared with the fleets
𝐹1, 𝐹2 and 𝐹3.
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Table 5.4: Location of entrances/exits and entry/exit probabilities for the different fleetsbased on simplified A6 AADT

nentry 1 2 3 4 5 6 7
Location (km) 0 46 80 112 153 190 235
Entry probability for all the fleets(%) 45 6 2 2 2 2 2
Exit probability for 𝐹1, 𝐹2 and 𝐹3(%) 0 0 0 5 5 5 5

nentry 8 9 10 11 12 13 14
Location (km) 264 304 330 355 385 425 450
Entry probability for all the fleets(%) 2 30 5 0 0 0 0
Exit probability for 𝐹1, 𝐹2 and 𝐹3(%) 5 5 5 5 20 10 30

Table 5.5: Number of long-distance journeys by cars in 2014 according to the distance[27]

Distance (km) 100-300 300-600 600-1000 >1000
Number of journeys (mil-lions) 87 47.1 19.7 2.9

5.3.2.2 . 𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 and 𝑆𝑜𝐶𝑡𝑎𝑟 choice
The SoC of each EV when they enter the highway (𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 ,𝑣) is picked according to the SoCdistribution extracted from Stellantis connected vehicles data (see Figure 5.3 and Appendix B.2).

To have an idea of the impact of the 𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 ,𝑣 distribution on the sizing of the highway, we
truncated the distribution in Figure 5.3 from 50% of SoC for the fleets 𝐹1 to 𝐹3 and we kept theoriginal distribution for the fleets 𝐹4 and 𝐹5.The target SoC required by the EV when leaving the highway is uniformly distributed in the
interval [20, 30]%.

5.3.2.3 . Charging curves
For the EV model with a 60-kWh battery pack, we take as example two models: the Renault

Megane e-tech whose charging curve is given in [23] and in [102] and the Nissan Ariya 4 [123].
We approximate both charging curves linearly (see Figures 5.4a and 5.4b).

The fleets 𝐹2 and 𝐹3 have a charging curve associated to the Megane E-Tech and fleets 𝐹4and 𝐹5 are associated to the Ariya (see 𝑃𝑚𝑎𝑥,𝑣 and 𝑐𝑣 in Table 5.6). The fleet 𝐹1 is a mix between
4The charging curve of the Nissan Ariya 63 kWh is given at 6’14” in the video
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Figure 5.3: SoC at entrance distribution of the long distance trips extracted from the 380 Stel-lantis connected EVs

(a) Megane e-tech - 𝑃𝑚𝑎𝑥, 𝑣 = 130𝑘𝑊 , 𝑐𝑣 = 6000
(b) Nissan Ariya 63 kWh - 𝑃𝑚𝑎𝑥, 𝑣 = 130𝑘𝑊 , 𝑐𝑣 =

5000

Figure 5.4: Charging curves of the Megane e-tech and the Nissan Ariya. The curve noted ’model’corresponds to the charging curve implemented to compute the charging times in our simula-tion.

the two charging curve.
Table 5.6 recaps the parameters for the trip generation per fleet.
5.3.3 . Optimisations description

To comply with ADEME recommendation [6], the battery capacity for all the EVs in the fleets
is 60 kWh.

We first optimise the infrastructure for one fleet at the time and with one level of power
(𝑁𝑝 = 1). For this optimisation (optimisation 1), as we consider only one charging rate in sta-
tions and as EV models on the roads today with a 60-kWh battery pack have a charging power
under 175 kW, the only available power is 175 kW. We set as waiting time threshold 𝑇𝑡ℎ𝑟𝑒𝑠 =

20 min. The revenue is not consider when optimising the 𝐷𝐸𝐴𝐶𝐹𝐶𝐼 for Optimisation 1 since
all the chargers in the infrastructure have the same power (𝑃 = {175 𝑘𝑊}) so the same char-

5SoC distribution given in Figure 5.3.
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Table 5.6: Parameters for the trip generation according to the fleet
Fleet 𝑖 Exit selectionmethod 𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡,𝑣 selectionmethod 𝑃𝑚𝑎𝑥,𝑣 (kW) 𝑐𝑣 (-)

𝐹1 simplified AADT SoC distribution5truncated (50% -100 %) 140 6000

𝐹2 simplified AADT SoC distributiontruncated (50% -100 %) 130 6000

𝐹3 simplified AADT SoC distributiontruncated (50% -100 %) 130 6000
𝐹4 distance SoC distribution 130 5000
𝐹5 distance SoC distribution 130 5000

ging price. Consequently, as the charging price is proportional to the energy charged (Section
3.1.3.2), one fleet generates the same income (𝑝𝑐ℎ𝑎𝑟𝑔𝑒 (175 𝑘𝑊) × ∑

𝑣∈𝐹 𝐸𝑡𝑜𝑡𝑎𝑙,𝑣) whatever theinfrastructure layout is so there is no use in comparing the revenues in the optimisation. How-
ever, we precise the revenue generated 𝑅𝑎𝑣𝑔 for each fleet to compute the daily equivalent
annual cost 𝐷𝐸𝐴𝐶𝐹𝐶𝐼 of the optimal layout associated to each fleet.

Then, for the second optimisation (Optimisation 2), we plan the optimal infrastructure for
the five fleets at the same time as if each fleet represents a crowded day that might occur
during the year. There is still only one charging type (𝑃2 = {175 𝑘𝑊}) and the waiting time
threshold is equal to 20 minutes (𝑇𝑡ℎ𝑟𝑒𝑠 = 30 min). When it comes to the no-communication
strategy, the optimal infrastructure guaranteeing the waiting time threshold for all the fleets is
built iteratively with all the fleets tested at each iteration to progressively determine the optimal
number of charger in each station suitable for all the fleets.

In Optimisation 3, to assess the influence of the waiting time threshold on the infrastruc-
ture development, we perform the same optimisation as Optimisation 2 but with 𝑇𝑡ℎ𝑟𝑒𝑠 = 30
minutes.

For Optimisation 4 and Optimisation 5, 𝑁 𝑓 = 5 and 𝑁𝑝 > 1. As the power level choice is
{50, 175, 350} and a 60-kWh EV can charge only up to 130 kW, we test two charging power levels:
50 and 175 kW. In Optimisation 4, the 𝑣𝑜𝑡 of all the EVs is 20 e/h whereas it is equal to 50 e/h
in Optimisation 5.
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Table 5.7: Parameters according to the optimisation
Optimisation 𝑇𝑡ℎ𝑟𝑒𝑠 𝑁 𝑓 𝑁𝑝 𝑃 (kW) capacitybattery (kWh) vot (€/h)
Optimisation1 20 min 1 1 {175} 60 -
Optimisation2 20 min 5 1 {175} 60 -
Optimisation3 30 min 5 1 {175} 60 -
Optimisation4 20 min 5 2 {50, 175} 60 20
Optimisation5 20 min 5 2 {50, 175} 60 50

5.4 . Optimisation results
5.4.1 . Optimisation 1: optimisation for each fleet individually (𝑁 𝑓 = 1 )
5.4.1.1 . Optimal infrastructure comparison for the strategies with and withoutcommunication

For this optimisation, there is only one charging power level possible (175 kW) and the wait-
ing time threshold 𝑇𝑡ℎ𝑟𝑒𝑠 is equal to 20 minutes.

Table 5.8 summarises the costs 𝐷𝐸𝐴𝐶𝐹𝐶𝐼 and the number of charging points obtained
for each fleet and each strategy. We indicate as well the daily equivalent annual expenditure,
𝐷𝐸𝐴𝐸𝐹𝐶𝐼 , that refers to the cost of the FCI 𝐷𝐸𝐴𝐶𝐹𝐶𝐼 without considering the revenue 𝑅𝑎𝑣𝑔(5.7). A negative 𝐷𝐸𝐴𝐶𝐹𝐶𝐼 means that the infrastructure is profitable. We notice that all the
infrastructure layouts found for both charging strategies are profitable with the definition of
the revenue we considered: one third of the revenue generated during the crowded day rep-
resented by the fleet (5.8). The limit of revenue for which the infrastructure layouts obtained for
the communication strategy are still all profitable is 13.5% of the revenue generated during a
crowded day and for the no-communication strategy, this revenue is 14.5% of this crowded-day
revenue.

According to Table 5.8, we can say that the communication strategy always permits to de-
crease both the number of optimal charging points and the infrastructure cost 𝐷𝐸𝐴𝐶𝐹𝐶𝐼 com-
pared with the no-communication strategy (see the line "𝐷𝐸𝐴𝐶𝐹𝐶𝐼 reduction" in the Table 5.8)
whatever the trip generation probabilities are. The lowest relative reduction concerns the fleet
𝐹2 where the communication decreases the 𝐷𝐸𝐴𝐸𝐹𝐶𝐼 by 12.2% and the equivalent annual cost
𝐷𝐸𝐴𝐶𝐹𝐶𝐼 by 8.3% with 6 chargers less than for the reference case without communication.
However, for the other fleets, the communication brings more noticeable benefits and even
enables a reduction of 15% for fleet 𝐹1. As we use an evolutionary algorithm, the optimal layout
we found for 𝐹2 might not be the global minimum, and a better result may exist with an even
lower 𝐷𝐸𝐴𝐶𝐹𝐶𝐼 .The communication enables the fleets to flatten the peak of charging points in the sta-
tion 5 needed with the strategy without communication (see Figure 5.12a, Figure 5.8b, Fig-
ure 5.12b and Figure 5.9b). In fact, the communication spreads more evenly the EVs across the
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Table 5.8: Number of charging points per station and daily equivalent annual cost
𝐷𝐸𝐴𝐶𝐹𝐶𝐼 of the optimal infrastructure according to the fleet and the strategy (𝑇𝑡ℎ𝑟𝑒𝑠 =20 min)

Fleet 𝐹1 𝐹2 𝐹3 𝐹4 𝐹5

Total number of CPs w/o com-munication 38 40 35 41 39
Total number of CPs with com-munication 28 34 29 32 30
Total number of CPs reduction(%) 26.3 15 17.1 22 23.1

𝐷𝐸𝐴𝐸𝐹𝐶𝐼 w/o communication(€/day) 1,202 1,264 1,121 1,285 1,261
𝐷𝐸𝐴𝐸𝐹𝐶𝐼 with communication(€/day) 929 1,110 959 1,034 991
𝐷𝐸𝐴𝐸𝐹𝐶𝐼 reduction (%) 22.7 12.2 14.4 19.5 21.4
Total energy charged by the fleet(kWh) 20,582 21,377 20,868 22,878 22,077
𝑅𝑎𝑣𝑔 (€/day) 3,019 3,135 2,686 2,944 2,841
𝐷𝐸𝐴𝐶𝐹𝐶𝐼 w/o communication(€/day) −1,817 −1,871 −1,537 −1,659 −1,580
𝐷𝐸𝐴𝐶𝐹𝐶𝐼 with communica-tion (€/day) −2,090 −2,025 −1,727 −1,910 −1,850
𝐷𝐸𝐴𝐶𝐹𝐶𝐼 reduction (%) 15 8.3 8.4 12.1 13.7
𝑇𝐶𝑆 w/o communication(min/EV) 36.8 43.8 40.1 40.6 39.5
𝑇𝐶𝑆 with communication(min/EV) 37.7 45.1 41.5 43.7 40.0
𝑇𝐶𝑆 reduction (%) −2.4 −3.1 −3.5 −7.6 −1.3

stations [124] because the EVs adapt their charging stops to the affluence in stations, so the
highly crowded stations without communication see their demand decreases with communic-
ation.

Nevertheless, concerning fleets 𝐹1, 𝐹2 and 𝐹3, even if the strategy of communication de-
creases the global number of points needed (Table 5.8), some stations have their number of
points increased compared to the case without communication, creating new charging points
peak instead of flattening them (Figure 5.5b, Figure 5.6b and Figure 5.7b). This is due to the
decrease of the installation cost for one charger when the number of points installed in the
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same station increases: the optimizer favours the solution with some large stations to make
the charger cost go down and where the rest of the stations have only one point to satisfy the
second constraint in (5.4).

Moreover, although the number of EVs going past each station is approximately the same
for the fleets 𝐹1, 𝐹2 and 𝐹3 (Figure 5.5a, Figure 5.6a and Figure 5.7a), the peaks of charging
points are not necessarily located at the same stations. For instance, a peak is located at station
9 (where more EVs move past compared with other stations) for the fleets 𝐹1 and 𝐹2 but theoptimal infrastructure for fleet 𝐹3 as a peak at station 8 and 10 and not at station 9. We can
conclude that the number of EV passing in front of stations is insufficient to forecast the optimal
infrastructure: it also depends on the time when the EVs move past the station, the SoC of the
EVs at that time and the information previously shared by the EVs. This complexity corroborates
the need for a meta-heuristic algorithm to test randomly different layouts of the infrastructure
and approach the optimal charging network.

Finally, concerning the average time spent in stations (𝑇𝐶𝑆), its value is always slightly higherfor the communication strategy compared with the no-communication strategy. This result is
certainly due to the fact that the communicating EVs spent more time charging than the non-
communicating EVs because, when optimising their charging plan, they do not focus on minim-
ising only their charging time, contrary to the non-communicating EVs.
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(b) with communication strategy
Figure 5.5: Optimal infrastructure (left axis) and number of EVs passing in front of each station(right axis) for 𝐹1

5.4.1.2 . Highlights and limit of the optimisation on one fleet at a time
The optimal infrastructure with the communication strategy is always better than the one

with the no-communication strategy (on average 18.1 % of 𝐷𝐸𝐴𝐸𝐹𝐶𝐼 and 11.5 % of 𝐷𝐸𝐴𝐶𝐹𝐶𝐼reduction). In addition, the optimal infrastructure found in this study for the communication
might not be the best one since we use a non-deterministic algorithm (GWO) whereas the op-
timal infrastructure computed for the no-communication is the infrastructure with the global
minimum for the 𝐷𝐸𝐴𝐶𝐹𝐶𝐼 (see Section 5.2.3.3). Thus, the gain in infrastructure cost we foundbetween both strategies is likely to be even bigger.

We studied the interest of the communication strategy on only five fleets. Still, as the cost
reduction is similar for each case, whereas the trip generation method was different, we can
state that the communication always enables the infrastructure cost reduction. Nevertheless,
we have seen that the resulting optimal infrastructure differs from one fleet to another (see
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(b) with communication strategy
Figure 5.6: Optimal infrastructure (left axis) and number of EVs passing in front of each station(right axis) for 𝐹2
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(a) with no-communication strategy
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(b) with communication strategy
Figure 5.7: Optimal infrastructure (left axis) and number of EVs passing in front of each station(right axis) for 𝐹3
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(a) with no-communication strategy
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(b) with communication strategy
Figure 5.8: Optimal infrastructure (left axis) and number of EVs passing in front of each station(right axis) for 𝐹4

1 2 3 4 5 6 7 8 9 10 11 12 13

Station n°

0

1

2

3

4

5

6

7

n
u

m
b

e
r 

o
f 

c
h

a
rg

in
g

 p
o

in
ts

 i
n

 t
h

e
 C

S

0

50

100

150

200

250

300

350

400

450

(a) with no-communication strategy
1 2 3 4 5 6 7 8 9 10 11 12 13

Station n°

0

1

2

3

4

5

6

7

n
u

m
b

e
r 

o
f 

c
h

a
rg

in
g

 p
o

in
ts

 i
n

 t
h

e
 C

S

0

100

200

300

400

500

n
u

m
b

e
r 

o
f 

E
V

s
 p

a
s
s
in

g
 i
n

 f
ro

n
t 

o
f 

th
e

 C
S

(b) with communication strategy
Figure 5.9: Optimal infrastructure (left axis) and number of EVs passing in front of each station(right axis) for 𝐹5
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Figure 5.5 to Figure. 5.9). Since each fleet can represent a high-traffic situation in real life, we
should compute the optimal infrastructure for all the fleets simultaneously and then compare
those optimisation results for the communication and the no-communication strategies. By
optimising the infrastructure for several fleets at the same time, the optimal infrastructure for
the communication strategy should less overfit the charging infrastructure to only one specific
fleet and this is what we study in next section.

5.4.2 . Optimisation 2 and 3: optimisation for all the fleets (𝑁 𝑓 = 5) with onecharging rate (𝑁𝑝 = 1)
For this second optimisation, we take the same fleets 𝐹1, 𝐹2, · · · , 𝐹5 as for Optimisation 1

but now, when we evaluate the waiting time constraint, we test the infrastructure layout on the
five fleets (so 𝑁 𝑓 = 5 in the formulas in Section 5.2) to guarantee the waiting time maximum for
all the fleets at the same time. We perform Optimisation 2 where 𝑇𝑡ℎ𝑟𝑒𝑠 = 20 minutes (Section
5.4.2.1) and then Optimisation 3 with 𝑇𝑡ℎ𝑟𝑒𝑠 = 30 (Section 5.4.2.2) minutes to assess how the
waiting time threshold influences 𝐷𝐸𝐴𝐶𝐹𝐶𝐼 . For both thresholds, we run several times the
GWO and for each run, we initialised the pack of grey wolfs with the best layout found during
the previous optimisation.

5.4.2.1 . Optimisation 2: 𝑇𝑡ℎ𝑟𝑒𝑠 = 20 minutes
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Figure 5.10: Optimal infrastructure (left axis) and number of EVs passing in front of each station(right axis) for the five fleets (𝑃 = {175} kW and 𝑇𝑡ℎ𝑟𝑒𝑠 = 20 min)

Table 5.9 summarises the costs 𝐷𝐸𝐴𝐶𝐹𝐶𝐼 and the number of charging points obtained for
each strategy. The FCFS communication strategy proves again its efficiency to reduce 𝐷𝐸𝐴𝐶𝐹𝐶𝐼compared with the situation of reference with even larger reduction percentages than in Op-timisation 1 (26.0 % according to Table 5.9). This improved performance is due to the fact that
with the no-communication strategy, the EVs do not change their charging plan during their trip
so the CPO is often compelled to put in a station the highest number of charging points among
all the individual optimal infrastructure to guarantee for all the fleets a waiting-time maximum
whereas it is not the case with the communication strategy (Figure 5.10b).

5.4.2.2 . Optimisation 3: 𝑇𝑡ℎ𝑟𝑒𝑠 = 30 minutes
For this optimisation, 𝑇𝑡ℎ𝑟𝑒𝑠 = 30min. Figure 5.11 gives the optimal infrastructure computed

for no-communication and communication strategies. We observe that the infrastructure for
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Table 5.9: Number of charging points per station and daily equivalent annual cost
𝐷𝐸𝐴𝐶𝐹𝐶𝐼 of the optimal infrastructure according to the strategy

Strategy No-communication Communication Reduction (%)
Total number of CPs 45 36 20
𝐷𝐸𝐴𝐸𝐹𝐶𝐼 (€/day) 1,567 1,152 26
𝐷𝐸𝐴𝐶𝐹𝐶𝐼 (€/day) −1,357 −2,009 26.0
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Figure 5.11: Optimal infrastructure (left axis) and number of EVs passing in front of each station(right axis) for the five fleets (𝑃 = {175} kW and 𝑇𝑡ℎ𝑟𝑒𝑠 = 30 min)

the communication strategy presents peaks of chargers in some stations while the others have
only one or two chargers. Again, like in Optimisation 1, this result is due to the reduction of
charger cost when the number of installed chargers in a station increases. We can wonder if the
presence of those charger peaks in some stations will be a problem if we test the infrastructure
with other generated fleets or if the communication strategy will help keeping the waiting time
threshold under 𝑇𝑡ℎ𝑟𝑒𝑠 = 30 minutes

Table 5.10 summarises the costs 𝐷𝐸𝐴𝐶𝐹𝐶𝐼 and the number of charging points obtained for
each strategy when 𝑇𝑡ℎ𝑟𝑒𝑠 = 30 minutes. According to the results, the communication strategy
still performs better compared with the no-communication and the increase of the waiting time
threshold to 30 minutes allows to reduce the 𝐷𝐸𝐴𝐶𝐹𝐶𝐼 by more than 13% in a case of no-
communication and by only 4 % in a case of communication. However, that lower reduction
with communication is likely due to the non convergence of the GWOand a better infrastructure
layout might exist for the communication strategy when 𝑇𝑡ℎ𝑟𝑒𝑠. = 30 minutes.

5.4.3 . Optimisations 4 and 5: optimisation for all the fleets (𝑁 𝑓 = 5) withmultiple charging rates (𝑁𝑝 > 1)
In this section, we present the results of Optimisation 4 and 5 where the stations can pro-

pose two power levels: 50 kW and 175 kW. When multiple charging rates are considered in
stations, we attribute to the drivers a 𝑣𝑜𝑡. In Optimisation 4, this value is equal to 20 e/h and
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Table 5.10: Number of charging points per station and daily equivalent annual cost
𝐷𝐸𝐴𝐶𝐹𝐶𝐼 of the optimal infrastructure according to the strategy (𝑇𝑡ℎ𝑟𝑒𝑠 = 30 minutes).The percentages in parenthesis represent the relative reduction of each result com-pared with the equivalent result from Optimisation 2

Strategy No-communication Communication Reduction (%)
Total number of CPs 41 32 22
𝐷𝐸𝐴𝐸𝐹𝐶𝐼 (€/day) 1,3512 (-13.8%) 1,065 (-8%) 21
𝐷𝐸𝐴𝐶𝐹𝐶𝐼 (€/day) −1,810 -(13.5%) −2,096 (-4%) 15.8

for Optimisation 5, it is equal to 50 e/h. We remind that the possible available power levels
in each station are: 50 and 175 kW. The waiting time threshold is again 20 minutes for both
Optimisations.

For Optimisation 4, we first determine by iteration the optimal infrastructure for the no-
communication strategy considering that all stations propose at least one charger per power
level and then we remove the powers that were not used per station if any. We obtain the
infrastructure layout presented in Figure 5.12a and notice that no 175-kW chargers are kept in
the process because all EVs choose the 50-kW sockets to charge. This choice is due to the 𝑣𝑜𝑡
of the EVs (𝑣𝑜𝑡 = 20 e/h) that favour cheaper solutions (𝑝𝑐ℎ𝑎𝑟𝑔𝑒 (50𝑘𝑊) = 0.35 e/kWh) even if
they will take more time to charge. The 𝐷𝐸𝐴𝐶𝐹𝐶𝐼 of the layout presented in Figure 5.12a is
−132 e/day instead of −1,357 e/day as in Optimisation 2 (Section 5.4.2.1): the 50-kW chargers
are cheaper to install compared with 175-kW chargers but the revenue they generate is not as
important as for an infrastructure with only 175-kW chargers. Thus, if the CPO want to increase
their revenue, they should propose only 175 kW in stations to force EVs to charge at 175 kW.
In addition, the number of charging points to install with only 175-kW chargers is far less than
with only 50-kW chargers (50 against 89).

However, as the 50-kW chargers are cheaper to install, it may be possible to find a layout
for which the 𝐷𝐸𝐴𝐶𝐹𝐶𝐼 is lower than −1,357 e/day (only 175 kW chargers) with some stations
equipped only with 50-kW chargers and the others with only 175-kW sockets. We run the GWO
to find those layouts for communication and no-communication strategy but the optimiser did
not converge to a layout with a lower 𝐷𝐸𝐴𝐶𝐹𝐶𝐼 than the ones found with Optimisation 2 (𝑃 =

{175𝑘𝑊}).
For the Optimisation 5, the 𝑣𝑜𝑡 is now equal to 50e/h and the infrastructure layout obtained

by iteration for the no-communication strategy is given in 5.12b. Now, like for the 𝑣𝑜𝑡 = 20 e/h,
the drivers only select one type of chargers but this time, they choose the 175-kW level. The
high value of the 𝑣𝑜𝑡 (50 e/h is considered as the 𝑣𝑜𝑡 of the drivers travelling for professional
purpose) have led all the drivers to choose the highest power level to charge faster and gain
time even if the charging price is highwer. Again, we have run GWO to find better layouts but
the optimiser did not propose better values than Optimisation 2.
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Figure 5.12: Infrastructure layout obtained by iteration for the five fleets without communica-tion (𝑁 𝑓 = 5, 𝑁𝑝 = 2)

5.5 . Conclusion
We have proved in this chapter the benefit of the communication since it helps reduce by

at least 15 % (for the Optimisation with 𝑁 𝑓 = 5) the fast-charging infrastructure daily equival-
ent annual cost while guaranteeing a waiting-time maximum in stations. We compared the
performance of the strategies on only five different fleets but according to the all the results,
the communication always lead to an infrastructure with the lower cost compared with the no-
communication strategy.

However, we use a strict threshold on the waiting time, meaning that 100% of the charging
sessions should respect the constraint. Yet, we can wonder if we will still get the same level of
cost reduction between the FCFS communication strategy and the No-communication strategy if
we authorise the constraint to be met for the 99% percentile of the waiting-time distribution
instead of 100% (like in [97]).

We also tested different value of waiting time threshold and we found that increasing the
threshold from 20 minutes to 30 minutes reduces by 13% the costs for the no-communication
strategy but by only 4% for the communication strategy. However, this last result should be
taken carefully as we are not assured that the optimal layout found for the communication
strategy is the best layout. More iterations of the GWO should be carried on.

Concerning the 𝑣𝑜𝑡, we tested two values but for the first one, 20 e/h, all the non commu-
nicating EVs prefer charging at 50 kW and for the second value, 50 e/h, all the drivers select
175-kW chargers. In the first case with 20 e/h, the infrastructure found iteratively includes only
50 kW chargers so the profitability of the infrastructure is smaller, the number of chargers to
install is much higher and the . For next studies, we should consider several class of drivers with
a different 𝑣𝑜𝑡 in each class to better model the real-world strategy the EV drivers will follow and
optimise the infrastructure accordingly.

For the evaluation of the infrastructure cost, as the number of EVs is growing and the in-
frastructure must be deployed accordingly, we should think about a way to compute the infra-
structure cost dynamically according to the evolving needs and not with a constant cost as in a
steady-state.

Finally, to take into account both CPOs and EV drivers’ point of view, the next step is to estab-
lish the trade-off between the time spent in station 𝑇𝐶𝑆 and the cost of the charging infrastruc-

129



ture thanks to a multi-objective optimisation. We will detail this multi-objective optimisation in
Chapter 6.
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6 - Trade-off between fast-charging and infrastructure
development cost
Wehave seen in the previous chapter the charging infrastructure optimisationwith the FCFS

communication strategy, where we perform a mono-objective optimisation of the charging in-
frastructure. The EVs in the fleet had the same charging power characteristics. In this chapter,
wewant to focus on another aspect the charging service, the influence of the charging power on
the infrastructure to be developed independently of the FCFS communication strategy. EV drivers
expect ultra-fast charging sessions to hasten the charging process, so they will tend to buy EV
models with high charging rates. We will present in this chapter a multi-objective optimisation
of the infrastructure cost and the average time spent in stations for fleets using a new strategy,
the last reachable station strategy. This chapter assesses the trade-off between the benefit of
increasing the proportion of high-charging-rate EVs in the fleet and the infrastructure cost. We
will first present the impact of the charging power on the need for infrastructure and the in-
fluence of the battery pack characteristics on the charging rate accepted by the EV. Secondly,
we will present the method used for the multi-objective optimisation before giving the results
of the case studies based on the French highway A6. We will size the infrastructure according
to the average annual daily traffic (AADT) on the highway instead of the traffic during crowded
days.

The case studies in this chapter were established before the studies from Chapter 5, so
some of the parameters taken for the scenarios in this present chapter are different and might
be less representative of the situation nowadays. Still, they constitute a starting point for the
reflection on the charging rate impact on the time spent in stations and on the infrastructure
cost that could be adapted later to case studies with FCFS communication strategy.
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6.5.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.1 . Fast charging challenges
As we have seen in 1, one of the levers to improve the acceptance of EVs is the reduction

of the charging time for long-distance trips. The charging time reduction directly enables the
reduction of the trip time 𝑇𝑡𝑟𝑖 𝑝,𝑣 but, it indirectly induces the reduction of the waiting time as a
lower service time (here the charging represents the service) implies a lower waiting time.Thus,
it should be interesting to increase the DC charging rate of an EV to charge faster and reduce
both charging time and waiting time.

6.1.1 . Increasing the charging rate and infrastructure needs
If the power increases on the EV side, adequate infrastructure should be developed to pro-

pose high charging rates (350 kW). As installing ultra-fast charging points (350 kW) generates
higher costs [26, 63], we can wonder to what extent the gain of time induced by ultra-fast-
charging EVs (UFC EVs) and high power infrastructure is worthwhile compared with the addi-
tional cost of the adapted infrastructure. To answer that question, we tune the share of UFC
EVs travelling on the highway and, for a given percentage, we determine the pareto front that
compares the cost of the charging infrastructure built and the time saved with that infrastruc-
ture layout. To evaluate the average time spent in stations, 𝑇𝐶𝑆 (𝑠), for each infrastructure lay-out, we simulate fleets of 50 EVs to get a first insight into the infrastructure to be developed in
case of a low AADT on the highway. We did not have time to explore the case with more EVs (in
Chapter 4, we considered the AADT equals to 180 EVs). Still, this study gives some elements to
evaluate the infrastructure needs if we size the infrastructure according to a low long-distance
trips AADT on the highway instead of the EV volume on the highway during a crowded day (like
in Chapter 5).

In this chapter, like in the previous chapter (Chapter 5), we determine the infrastructure
needs thanks to the simulation of real-world long-distance trips with the simulation frame-
work. However, we assume that the drivers follow another strategy, the last-reachable-stationstrategy (LRS strategy). Unlike the no-communication and FCFS communication strategies, the LRS
strategy is not based on optimising the charging plan, but on the last station an EV can reach
with a full charge. This strategy is supposed to report on the behaviour of EV drivers who prefer
to charge the maximum energy they can (80% of the battery) before leaving the station and
make the minimum number of stops.

Last-reachable station strategy
𝐸𝑉𝑣 using the last-reachable station strategy charges to 80% of SoC at the furthest char-ging station it can reach with 𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 ,𝑣. Then, it charges again to 80% of SoC at the lastreachable station and so on until it reaches its destination 𝑑𝑣. As the EVs are not op-timising their charging plan, they must choose a charging power level when stopping ina station with multiple charging rates. Thus, when in such a charging station, the EVsstart charging at the most powerful chargers by order of arrival (FCFS) and if one level ofpower is saturated, the EVs charge at a lower level. When all chargers are used, the EVswait until a charger becomes free.
The LRS strategy was chosen in [20] as a strategy of reference to prove in comparison the

efficiency of the communication strategy proposed in this same paper. For the studies in this
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chapter, we choose this strategy to represent the ’worst’ situationwhere the EVs do not optimise
their charging (whereas it is the case with no-communication and communication strategies) and
do not communicate (contrary to the FCFS communication strategy).

6.1.2 . Battery architecture and battery cell c-rate
The DC charging rate of an EV depends on different characteristics of the battery pack but

also on the way the BMS manages the charging. The significant characteristics impacting the
charging rate are the battery architecture (400V and 800V), the c-rate of the battery cell, and the
battery’s capacity. The battery is in fact a battery pack of several battery cells that are organised
in a certain architecture: SsPp where S gives the number of battery cells in series and P the
number of battery cells in parallel. Thus, the nominal voltage of a battery pack is 𝑉𝑝𝑎𝑐𝑘 = 𝑆 ×
𝑉𝑐𝑒𝑙𝑙 with 𝑉𝑐𝑒𝑙𝑙 the nominal voltage of the battery cell. The battery architecture 400V or 800V
indicates in which range the nominal voltage of the battery pack, 𝑉𝑝𝑎𝑐𝑘 , is: between 150 and
450V we speak of ’400V architecture’ and from 450V to 870V, we consider the battery has a
800V architecture [125].

We note the battery capacity 𝐸𝑏𝑎𝑡𝑡 (in kWh) and the constant current intensity the battery
can deliver during one hour, 𝐶𝑏𝑎𝑡𝑡 (in Ah). The conversion from𝐶𝑏𝑎𝑡𝑡. to 𝐸𝑏𝑎𝑡𝑡 is 𝐸𝑏𝑎𝑡𝑡. = 𝐶𝑏𝑎𝑡𝑡.×
𝑉𝑝𝑎𝑐𝑘 .The c-rate of the battery cell indicates how fast a battery cell can charge: the higher the c-rate
is, the faster the battery cell can charge. The c-rate is equivalent to an intensity and is expressed
in A and most of the time we speak of the c-rate as 1C, 2C, C/10 · · · , with C the battery capacity
𝐶𝑏𝑎𝑡𝑡.. If a battery cell can charge only up to 2C, it means that the totality of the battery cell
capacity can be restored in minimum 30 minutes:

𝐶𝑏𝑎𝑡𝑡. = 𝑐𝑟𝑎𝑡𝑒 × Δ𝑡 ⇒ 𝐶𝑏𝑎𝑡𝑡. = 2𝐶𝑏𝑎𝑡𝑡. × Δ𝑡 ⇒ Δ𝑡 =
1

2
h (6.1)

Now that the battery characteristics are explained, lets see the characteristics of the DC
chargers. The indication of power given for each type of chargers, for instance 175 and 350
kW is incomplete since, in reality, it is often the current intensity delivered by the charger that
limits the charging speed. Nowadays, the 175kW chargers deliver a maximum of 350 A and
the 350kW chargers, 500A, but those maximumwill certainly be higher in the future. Therefore,
if the current intensity 𝐼𝑐ℎ𝑎𝑟𝑔𝑒𝑟 is limited on the charger side, it is interesting to increase the
voltage of the battery pack𝑉𝑝𝑎𝑐𝑘 (by switching from a 400V architecture to an 800V architecture)
to charge at a higher power 𝑃 the battery since 𝑃 = 𝑉𝑝𝑎𝑐𝑘 × 𝐼𝑐ℎ𝑎𝑟𝑔𝑒𝑟 . This is why some OEMs
have changed the battery architecture of their EV models to an 800V architecture to benefit
from higher charging rates.

However, because of the maximum c-rate a battery cell can handle, the difference of power
we can have between an 800V architecture and a 400V architecture is not as big as we can
expect. For instance, lets consider two EV models, a 70kWh Hyundai Ioniq 5 with an 800V ar-
chitecture and another model, identical to the Ioniq 5 but with a 400V architecture. The battery
cell c-rate is set to 3C and the battery capacity to 60 Ah. If we charge those two models on a
350kW charger, the Ioniq will charge at a maximum of 240 kW and the 400V model at 220 kW
(Figures 6.1a and 6.1b). For the 800V architecture, the limitation of the charging power is due to
the battery c-rate maximum of 3C since the current intensity from the charger can go up to 250
A (500 / 2) in a branch but the battery cell can only handle 180 A (3 times 60 A with the c-rate =

3C). On the contrary, for the 400V architecture, the limit is on the charger side with up to 166 A
per branch.

Consequently, the 800V architecture is not the only battery characteristic that differentiate
the fast-charging and the ultra-fast-charging EVs, the charging speed depends on other battery
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(a) Charging process of an 800V system EV (Hyundai Ioniq 5 - 72.8 kWh) on a 350 kW charger.

(b) Charging process of a 400V system EV (72.8 kWh) on a 350 kW charger ;
Figure 6.1: Charging process of a 70 kWh EV with 𝐶𝑏𝑎𝑡𝑡. = 60 Ah and c-rate = 3𝐶

characteristics too and the battery management system also plays a role in accelerating the
charging process. Note however that the 800V architecture is interesting for bigger battery
pack (> 60 kWh) since they have more battery cells that can be put in series to increase the
voltage of the pack without lowering much the number of branches and limiting this way the
current maximum going in the branches.For instance, with a 96-kWh pack of 456 cells, the 800V
architecturewill bewith 3 branches (152s3p) instead of 2 so the current will not be limited by the
battery c-rate contrary to the previously studied EV with a 70-kWh battery (Figure 6.1a). In this
chapter, we will not classify like we did in the article [126] the 400V-system EVs as fast-charging
EVs and the 800V-system EVs as ultra-fast-charging to assess the benefit of a 800V-system EVs
since we have just seen that the reality is more complex. Instead, we consider that the FC EVs
charge at a maximum of 100 kW and the UFC EVs charge at 350 kW as described in Figure 6.2.

In reality, no battery pack can charge nowadays with a power of 350 kW but we hypothesise
that in the future, this will be possible. Charging a 70-kWh battery pack at 350 kWmeans that we
need battery cell with a c-rate equals tomore than 4C and chargers providing at least 540 A (and
not only 500 A). This is possible but we can wonder if a high c-rate will not harm the battery. Still,
as wewant to assess the impact of the charging speed on the infrastructure cost and the drivers’
satisfaction, we consider as charging rate the highest power proposed in European ultra-fast
charging stations (350 kW).

We should also mention that in reality, the charging rate is not as close to the maximum
charging rate (100 or 350 kW) during the whole charge as it is in Figure 6.2 since the power
normally drops froma certain SoC (quite low, between 20 to 30%) to respect the charging profile
of the battery pack and avoid overheating the battery. However, we simplify the problem and
assume again that we consider the highest rate a charger can deliver to an EV according to it
charging rate limitation (100 or 350 kW).
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Figure 6.2: Charging curves of the 100kW and 350kW-charging EVs

6.2 . Multi-objective optimisation of the charging infrastructure
6.2.1 . Problem formulation

The problem formulation of this optimisation is similar to the one explained in Section 5.2.1
of the previous chapter, except that we perform a multi-objective optimisation: we consider
the average time spent in stations, 𝑇𝐶𝑆 , as an objective of the optimisation in addition to the
infrastructure cost 𝐷𝐸𝐴𝐶𝐹𝐶𝐼 (6.2). We test in this chapter 100 fleets of 50 EVs each (𝑁 𝑓 = 100

and 𝑁𝐸𝑉 = 50, see Section 6.1.1) to compute the average time spent in stations 𝑇𝐶𝑆 and to
check the constraint on the waiting time (6.3).

𝑂𝑏 𝑗𝑒𝑐𝑡𝑖𝑣𝑒 : min
𝑠

(
𝐷𝐸𝐴𝐶𝐹𝐶𝐼 (𝑠), 𝑇𝐶𝑆 (𝑠)

) (6.2)
𝑠.𝑡. ∀ 𝐸𝑉𝑣 , ∀ 𝐶𝑆𝑖 ∈ CS(𝑠), 𝑡𝑤𝑎𝑖𝑡 ,𝑣,𝑖 ≤ 𝑇𝑡ℎ𝑟𝑒𝑠. (6.3)

𝐵𝑖𝑛𝑒𝑞 .𝑠 < 𝑐𝑖𝑛𝑒𝑞 (6.4)
The time 𝑇𝐶𝑆 is the average time spent in stations by the EVs from the 𝑁 𝑓 fleets:

𝑇𝐶𝑆 (𝑠) =
1

𝑁 𝑓 × 𝑁𝐸𝑉

𝑁 𝑓∑︁
𝑓 =1

𝑁𝐸𝑉∑︁
𝑣=1

𝑇𝐶𝑆, 𝑓 ,𝑣 (𝑠) (6.5)
𝑇𝐶𝑆, 𝑓 ,𝑣 is the time spent in stations by 𝐸𝑉𝑣 from the fleet 𝐹 𝑓 when the infrastructure layoutis described by 𝑠.
Concerning the constraint on the charging points, contrary to theproblemdepicted in Chapter

5, we accept in this chapter that the number of charging points can be null in some service areas
to determine the optimal location of the charging stations. The expression (6.4) from the prob-
lem formulation gives the constraints on the charging station’s location to avoid an EV from the
tested fleets running out of battery. Indeed, if a service area is free of chargers, EVs will have
to drive more to reach the next station, and sometimes, they will not have enough range to do
so. Hence, we define a matrix 𝐵𝑖𝑛𝑒𝑞 and a vector 𝑐𝑖𝑛𝑒𝑞 such as: If 𝐵𝑖𝑛𝑒𝑞 .𝑠 < 𝑐𝑖𝑛𝑒𝑞 , then ∀ 𝑗 ∈
J1, 𝑁 𝑓 K, ∀ 𝐸𝑉𝑣 ∈ 𝐹𝑗 𝐸𝑉𝑣 can reach 𝑑𝑣.
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To ensure that all the EVs can reach their destination, clusters are determined according
to the fleet’s minimum range, to the SoC at the entrance of EVs, or to the SoC required when
leaving the motorway.

6.2.2 . Charging infrastructure cost 𝐷𝐸𝐴𝐶𝐹𝐶𝐼
The infrastructure cost definition is the same as in Chapter 5 and only some parameters

used to compute this cost change from a chapter to the other (see Table 6.1). Note that the
hardware costs are higher in this chapter than in Chapter 5 because we keep the value given
in [26] without applying an annual decrease of 3% and the electricity price 𝑝𝑒𝑙 for industrials islower here since the study was done at the beginning of 2022 before the electricity price rise.
The discount rate is also lower as well as the lifetime of the charger compared with Chapter
5 but the resulting coefficient, 𝑟 (1+𝑟 )𝐿

( (1+𝑟 )𝐿−1) , are approximately equals from a chapter to another
(0.131 for the coefficient in Chapter 5 and 0.129 in this present chapter). Therefore, the only
real difference between the two chapters is the hardware cost of the chargers.

Table 6.1: Values of the parameters used in this chapter

parameter description value %
𝑝𝑒𝑙

electricity price per kWhfor industrials 0.08 e
𝑝𝑐ℎ𝑎𝑟𝑔𝑒

energy price per kWh forEV drivers 0.35 e (50 kW)/ 0.59 e(150kW)/ 0.79 e (350 kW) 1
𝐶ℎ𝑎𝑟𝑑., 𝑗

hardware cost pernetworked charger 65,000 e (150 kW)/120,000 e (350 kW) 2
𝐶𝑀 maintenance cost 1% of the investment
𝑟 discount rate 5%
𝐿 lifetime of the chargers 10 years

𝑁𝑎𝑟𝑒𝑎
number of service areasalong the highway 13

𝑁 𝑓
number of fleets in thesample 100

6.2.3 . Computing 𝑇𝐶𝑆 and the waiting time per session
Weneed the simulation framework described in Chapter 3 to check thewaiting time for each

charging session and determine the average time spent in stations by all the fleets (𝑇𝐶𝑆 (𝑠)) ac-cording to the infrastructure layout 𝑠 (6.5). However, contrary to the case studies in the previous
chapters, we assume the EVs use another charging strategy, the last-reachable station strategy
(see Section 6.1.1).

Like in Chapter 5, the waiting time per session is constrained by a waiting time threshold
𝑇𝑡ℎ𝑟𝑒𝑠. that we set to 15 minutes. This threshold is lower than the ones considered in Chapter
5 (𝑇𝑡ℎ𝑟𝑒𝑠. = 20 or 30 minutes) since we accept less waiting time for a flux of EVs representing

1prices charged by Fastned [119] for charging at 150kW chargers and by Ionity in France [44] at 50 kWand 350kW chargers.2The hardware costs come from [26].
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an average traffic on the year and not a crowded day. Indeed, if we accept a high waiting time
threshold 𝑇𝑡ℎ𝑟𝑒𝑠. for the average traffic, the infrastructure saturation would be unbearable dur-
ing crowded days.

Figure 6.3 describes the process used in this chapter to optimise the infrastructure.

Figure 6.3: Process of the multi-objective optimisation using the simulation framework

6.2.4 . Optimisation with a differential evolution algorithm
The problem (6.2) is solved using a differential evolution algorithm to perform the mutation

and the cross-over in the population of chargers distribution while the selection of the new
population (the convergence) is done in the same way as in the NSGA-II algorithm [127] with
a non dominated sorting of the population before selection. The parameters we use for the
optimisation are given in Table 6.2.
Table 6.2: Parameters of the NSGA-II differential evolutionary algorithm for MOO

Numberof genes Populationsize
Numberitera-tions Precision Mutationcoeffi-cient

Crossingcoeffi-cient
26 (2 × 13) 104(4 × 26) 200 0.01 1 2

6.3 . Case studies
6.3.1 . Highway details

The parameters of the highway correspond to the ones of the French A6 highway (direction
Paris - Lyon) (see Figure 6.4). Unlike the other studies in this manuscript, all the entrances/exists
(51) of the highway are considered. The possible charging stations are still located in the service
areas.
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Figure 6.4: French highway A6
6.3.2 . Fleet generation

As we want to study the influence of the charging rate limit of the EVs on the service quality
and the infrastructure cost, we set the same specific characteristics for all EVs in the fleet except
for the level of charge (𝑃𝑣).We set the battery capacity to 70 kWh for all the EVs in the fleet as an average of the battery
capacity over all the EV models. This is the capacity chosen in the study by Enedis and RTE on
the infrastructure to be developed for long-distance mobility [13]. In addition, as explained in
Section 6.1.2, the maximum power an EV can handle depends on the battery’s capacity. Hence,
we need a relatively high battery capacity to reach high charging rates (≥ 60 kWh).

The characteristics of the EVs are given in Table 6.3.
Table 6.3: Characteristics of EV in the fleet

Capacity
𝐸𝑏𝑎𝑡𝑡𝑣(kWh)

MaximumPower 𝑃𝑚𝑎𝑥, 𝑣(kW)
Chargingcoeffi-cient

Speedlimit(km/h)
Consumptionrate(kWh/km)

70 100 or 350 500 130 0.25
The maximum power for the EVs 𝑃𝑚𝑎𝑥, 𝑣 is either 100 kW for the fast-charging EVs (like the

Peugeot e-208 [128]) and 350 kW for the ultra-fast-charging EVs (see Figure 6.5). Nowadays, no
EVmodel reaches 350 kWwhen charging because of the c-rate limitation of the battery cells (see
Section 6.1.2), but to mark a clear distinction between the fast-charging and ultra-fast-charging
EVs, we hypothesise that soon, some EV models will be able to charge close to 350 kW.
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Figure 6.5: Charging curves of the 100kW and350kW-charging EVs
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Figure 6.6: Entry and exit probabilities of eachentrance/exit of the highway
We determine the pareto fronts for three different percentages 𝑥350 of 350kW-charging EVs

in the fleets. The first test, with 1% of 350kW-charging EVs, could represent the current situ-
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ation with few electric vehicles able to charge above 250 kW DC, which is the closest value to
350 kW DC we can find on the roads nowadays. The second and the third situations, with re-
spectively 50 and 100% of 350kW-charging EVs, are meant to evaluate if automotive makers
should develop 350kW-charging EVs or keep lower charging rates.

The SoC of each EV at the highway entrance follows a normal distribution (80%,15%) trun-
cated at 40% and 95%. The SoC of an EV when it leaves the highway should be higher than 20%.
The entrance 𝑜𝑣 and the exit 𝑑𝑣 of each 𝐸𝑉𝑣 are selected according to the probabilities given inFigure 6.6 with the condition that 𝑜𝑣 < 𝑑𝑣.

6.4 . Pareto front results
This section presents the Pareto curves obtained after running the optimisation algorithm

(see Figure 6.3) and a discussion about the results and the parameters used for the optimisation
(Section 6.4.2).

6.4.1 . Trade-off between the daily equivalent annual cost and the time instations
The Pareto fronts found for 1%, 50% and 100% of 350kW-charging EVs in the fleet are given

in Figure 6.7. All the points on the different Pareto fronts have negative DEAC, whichmeans that
all those distributions of 150 and 350kW chargers are profitable for the charging operators.
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Figure 6.7: Pareto curves for 1%, 50% and 100% of 350kW-charging EVs in the fleet for MOO
Weobserve in Figure 6.7 that the best Pareto-front is obtained for the 100%350-kW charging

EVs share with time spent in stations running from approximately 20 minutes to 25 minutes for
benefit evaluated respectively to 910 e and 1580 e per day (−𝐷𝐸𝐴𝐶𝐶𝐼 ). This front is the bestsince all the points of the other Pareto-fronts are dominated by at least one point of the 100%
front. More generally, it appears that the increase of the share of UFC EVs in the fleet always
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decreases the average time spent in stations for optimal distributions of chargers. Indeed, if
we focus on the Pareto-front of a given percentage, all the point on other Pareto-fronts corres-
ponding to a higher share of UFC EVs are on the left of this Pareto-front. We solved another
optimisation problem close to the one studied here with a genetic algorithm and found similar
results: 100% shares of UFC EVs always lead to the best optimal infrastructure compared with
lower UFC Evs shares.

Moreover, for the same (and sometimes even lower) cost of added infrastructure, increasing
the share significantly reduce the time spent in the stations. For instance, the labelled points on
Fig. 2.11 are on different Pareto-front and correspond almost to the same equivalent annual
cost 𝐷𝐸𝐴𝐶𝐶𝐼 (approx. −1, 000𝑒) but the time spent in stations for fleets with 1% of UFC EVs is
reduced by more than 20% in the case with 50% and divided by more than 2 in the 100% case.
We even have a solution on the 100% Pareto curve (point (25 min,−1, 580 e)) where time is
reduced by 48%while guaranteeing a 27% decrease for the infrastructure DEAC compared with
the optimal solution presenting the minimum EAC (and so the maximum benefit since DEAC
< 0) in the situation with 1% (point (49 min, −1, 240 e)).
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Figure 6.8: Example of 150 and 350 kW charger distribution for the labelled points in Figure 6.7.

Supposewe look at the distribution of chargers corresponding to the labelled point in Figure
6.7. In that case, we see that the power installed per station increases with the share of 350kW-
charging EVs: 6300 kW installed for 1%, and respectively 6850 kW and 8050 kW for the 50% and
100% share (Figure 6.8). The power installed in the stations logically increaseswith the rise of the
share, but the power only grows by 27% from the 1% to the 100% case, whereas the time spent
in stations is reduced by more than 55%. Thus, the time spent in stations will be reduced with
a manageable increase in installed power. The 8 MW of installed power for the 100% share is
lower than the average installed power per station computed in the study by Enedis and RTE [13]
for the scenario with the highest power demand (12 MW). The 100% distribution does not have
any 150 kW charger, but it is not always the case for all optimal distributions found for the 100%
share: for instance, the point (25 min, −1,580 e) with the lowest 𝐷𝐸𝐴𝐶𝐹𝐶𝐼 corresponds to aninfrastructure with the installation of 150 kW chargers at several service areas.
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6.4.2 . Highlights and discussion on the results
We should bear in mind that we are not assured of finding the absolute best Pareto front

with the evolutionary algorithms we used for the multi-objective optimisations, especially for
this problem where the objective function is costly to evaluate. With 100 fleets to test for each
layout 𝑠, one evaluation of the population (one iteration) by the algorithm was lasting approx-
imately 40 minutes. However, it is possible to find manually the lowest time we can obtain for
a percentage of 350kW-charging EVs by incrementally adding 350kW chargers until the average
time spent in the stations stops decreasing. Yet, we have observed that keeping some service
areas with no chargers (like the area n°10 and 13) enables a better trade-off. Though, if the
incremental addition of 350 kW chargers is done wisely, we can at least get the abscissa limit
on the left of each Pareto front. Finding the lowest cost is more complicated. However, with the
results of the evolutionary algorithms, we can find a solution we would not think of and keep
searching manually in the same direction to get close to the absolute limit on the y-axis. Never-
theless, thanks to the studies lead in this chapter, we realise that the evolutionary algorithmswe
considered in this chapter were too long to converge and this is why we have used in Chapter
5 another algorithm, the GWO, to converge faster.

We optimised the daily equivalent annual cost of the infrastructure, so we consider the rev-
enue generated by the charge for the CPO but we did not take into account the charging cost for
the EVs in the optimisation. Consequently, for some stations where enough EV drivers stop to
generate revenue that can compensate for the higher cost of one or more 350 kW chargers, the
charging operators can obtain a lower 𝐷𝐸𝐴𝐶𝐹𝐶𝐼 by replacing some 150 kW sockets with 350
kW chargers whereas most EV models can only charge at 100 kW and do not fully benefit from
350 kW sockets. The 100kW-charging EVs will pay more when charging at the 350 kW socket
than at 150 kW sockets but will charge at the same speed as at a 150 kW socket. Therefore,
this service will not benefit the EV drivers but only the charging operator. One solution would
be to let the drivers choose the charging level best suited for their EV instead of always taking
the highest-rate socket available, as it was implemented in this study. Then, if necessary, this
solution can be combined with the consideration of the charging cost for the EV by remplacing
the objective 𝑇𝐶𝑆 with the average discontent factor 𝐷𝐹 with 𝑋 ≠ 0 (see Equation (3.4)).

Another limitation concerns the hypothesis that UFC EVswith a 70-kWhbattery pack are able
to charge at power close to 350 kW during the whole charge whereas the current battery packs
and the current intensity delivered by the chargers enables a power only up to 250 kW and for
a few minutes before dropping to lower values (see Section 6.1.2). Thus, the gap between 𝑇𝐶𝑆in the scenarios with 1% UFC EVs and the one in the scenarios with 100% might be in reality
smaller than what we found in this chapter. Nevertheless, the conclusion will likely be similar if
we reduce the charging power accepted by the UFC EVs to 250 kW, since the charging service
will still be faster with 100% UFC EVs in the fleet than with 1%.

6.5 . Conclusions and perspectives
6.5.1 . Conclusion on the charging rate increase

We proposed in this chapter a methodology to evaluate the impact of developing 350kW-
charging electric vehicle models on driver satisfaction and infrastructure cost. We performed
a multi-objective optimisation using a mix of a differential evolutionary algorithm and NSGA-II.
The studies aimed to find, for some chosen shares of 350kW-charging EVs, the optimal char-
ging infrastructure layouts we should have on the French highway A6 to establish a trade-off
between time spent in the station (influencing drivers’ satisfaction) and infrastructure cost. To
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compute the time spent in the stations, 𝑇𝐶𝑆 , according to the infrastructure layout tested in thealgorithm, we simulated many different EV flows on the highway based on actual traffic data
and see how the EVs fan out in the charging stations. The time spent in stations 𝑇𝐶𝑆 and the
average annual energy consumption used to compute the installation revenue were obtained
thanks to the simulation framework described in Chapter 3.

The results showed that we could find several layouts of charging infrastructure for each
percentage of 350kW-charging Evs that are profitable (𝐷𝐸𝐴𝐶𝐹𝐶𝐼 < 0) and enable drivers to
save as much time as possible. We can conclude that increasing the use of ultra-fast-charging
EVs significantly reduces the time spent in the station for the user. At the same time, it is pos-
sible to find optimal infrastructure layouts that even lower the cost of chargers to be installed.
Moreover, the installed power of the optimal infrastructure for 100% UFC EVs in the fleet is
higher for the same 𝐷𝐸𝐴𝐶𝐹𝐶𝐼 than for the other share of UFC EVs but the increase of the in-
stalled power is not as high as the time gain the 100% UFC EVs share brings to the fleet.

6.5.2 . Perspectives
As explained in Section 6.4.2 ,the charging price is often higher on 350kW sockets (depend-

ing on the charging operator), so, for next studies, we need to consider the charging cost for
the user in the optimisation problem by setting the discontent factor as an objective of the op-
timisation instead of the sole time spent in stations. We should also allow the drivers to charge
at the power level best suited for their EV model (100kW or 350kW-charging models). Those ad-
aptations are needed when we have multiple powers possible per station as we did in Chapter
5 (when 𝑁𝑝 > 1).

We should have more fleets in the testing sample to evaluate the time spent in the station
(1000 fleets instead of 100) to get more exhaustiveness regarding traffic situations. Moreover,
we have considered a fleet size of 50 EVs to reduce the evaluation cost of the objective function
since we simulated 100 fleets of 50 EVs to compute the average time spent at stations and check
the waiting time constraint. In reality, as seen in Chapter 5, the number of EVs going on long-
distance trips can be much higher, for instance during holiday departure periods. Hence, we
should evaluate how the optimal layouts evolve according to the size of the tested fleets to see
if any trend emerges or if we need to apply the multi-objective method explains in this chapter
for each fleet size we want to consider. In addition, if a trend is found, it would be easier to
perform the infrastructure optimisation with a dynamic evolution of the number of EVs on the
roads.

As for the hypothesis we have made about the drivers following the last reachable station
scenario, we might introduce more random behaviour to study other possible distribution of
charging events over the stations and see how the optimal planning of the charging infrastruc-
ture changes to determine the more restrictive scenario.

For instance, we can consider another strategy where the drivers stopped according to the
value of their SoC. Thanks to the data retrieved from Stellantis connected vehicles, wewere able
to retrieve the SoC the connected EVs had when stopping to charge (see Figure 6.9) and we can
use those data to elaborate a strategy of charge based on SoC.

We should aslo adapt the multi-objective optimisation presented in this chapter to a multi-
objective optimisation where the FCFS communication strategy is used to compare its results to
the one found in this chapter. An adaptation of the GWO algorithm to multi-objective optim-
isation exists, the Multi-Objective Grey Wolf Optimisation (MOGWO) [129], and could be run to
perform this multi-objective optimisation with the FCFS communication strategy.
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Figure 6.9: Distribution function of an EV SoC when entering a station to charge. This curve wasextracted from Stellantis Connected EVs’ data.
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7 - Conclusion and perspectives
We have seen that the optimisation of the charging service to handle at the same time EV

drivers’ expectation and charging point operators’ point of view is a complex problem. To an-
swer the first objective of this thesis, we proposed to evaluate the performance of different con-
trol strategies and developed amulti-agent framework to perform the evaluation. We conclude
about the control strategies in Section 7.1. Concerning the second objective, we focused on the
planning of the infrastructure with and without the use of the FCFS communication strategy for
a high traffic flow (Chapter 5) to demonstrate the benefice of the FCFS communication strategy
in reducing the infrastructure cost with a mono-objective optimisation. Section 7.2.1 gives the
conclusions about this optimisation. Then, to answer the third objective, we evaluated the im-
pact of EVs’ charging power on the trade-off between the infrastructure cost and the time spent
in stations thanks to a multi-objective optimisation (Chapter 6). The communication strategy
was not used in that last optimisation, and we present the highlights on that multi-objective
optimisation in Section 7.2.2.

7.1 . Conclusions on the control strategies
7.1.1 . Optimising the charging plan

The optimisation of the complete charging plan to reduce trip time considering real-time
waiting time and non-constant charging time is a non-trivial problemwhere linear programming
is hardly possible. We compared in Chapter 3 three algorithms to optimise the charging plan.

The first solving algorithm is based on an exhaustivemethodwhere the potential charging
plans are listed and the fitness of each potential solution is evaluated. This method enables
charging only the energy required, thus giving lower optimal trip times. However, this method
depending on the number of stops can be very time-costly to run and needs lots of data as
the number of stops and of charging stations on the road increase. The second method relies
on a genetic algorithm to find the amount of energy to charge per station. This method does
not depend on the number of charging stops and can approach the global optimal value of the
charging plan. Nevertheless, the result is not deterministic, and the genetic algorithm is the
slowest method among the three studied. The third method tested is dynamic programming
(DP), where the problem is divided into sub-problems associated with each charging station.
We found a way to consider charging-plan-dependant waiting times in the dynamic program-
ming whereas we did not find it in the literature [19]. Contrary to the other methods, the DP
overestimates the energy to recover in stations, so the charging time is not the optimal one, but
the method does not depend on the number of charging stops and does not need to list all the
possible charging plans. Depending on the number of stations on the EV’s way, the DP can be
faster than the exhaustive method.

TheDP appears to be the bestmethod to optimise EV charging plans in real-world situations.
It should be tested in the simulation framework to evaluate its performance in a dynamic traffic
flow.

7.1.2 . Determining optimal charging control strategy
The introduction of communication between the EVs and the CSs to retrieve waiting time

estimation according to the information shared by the EVs is the first step to better use the
charging infrastructure and reduce the waiting time. Then, if in addition, the EVs minimise their
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total trip time on-the-move by optimising their complete charging plan, in other words where
they will charge and which amount of energy they will recover, the efficiency of the control
strategy is improved. We proposed to study and improved a strategy, the FCFS communication
strategy, that enables both the optimisation of the complete charging plan and the dynamic
share of waiting time predictions. The strategy is decentralised, thus better scalable, and it is
shown in [24] that the FCFS communication strategy performs better than the no communication
strategy.

However, the FCFS communication strategy is based on a non-cooperative game even if the
EVs are sharing their charging plan since each EV optimises its charging plan in a decentralised
manner and chooses the plan best suited to minimise its own trip time and not the average trip
time of the fleet. In addition, the priority rule in this strategy is set on a First-Come First-Served
basis so EVs cannot charge on the charging slot best suited for them. Thus, we compared the
FCFS communication strategy with a reservation strategy based on advance booking of charging
sessions (delimited in time) to ensure that the EV will charge during the time interval that best
minimise its trip time considering the bookings of other EVs. The pre-emptionwas not authorise
for reservation strategy since it could deteriorate the EV drivers’ experience with constant plug-in
and unplug-in to let EVs with higher priority charge.

According to the results of the comparison, the FCFS communication strategy performs better
than the reservation strategy since the booking of charging sessions make some EVs wait for
very long time because they have to wait for higher-prioritised EVs to charge. This is due to
the fact that, contrary to FCFS communication strategy, the first EVs to reserve do not consider
the waiting time in the balance because all time slots are available. However, throughout the
day, the number of charging time slots decrease and the EVs are compelled to choose charging
session where they know they will wait a long time before charging. Moreover, the reservation
strategymight be less flexible than the FCFS communication strategy if we take into account traffic
hazards that can delay the arrival of EVs in stations and thus reduces the remaining time to
charge during the booked time interval.

The comparison of both dynamic control strategies also show that even if the FCFS commu-
nication strategy better performs, the strategy is not sufficient to handle high saturation of the
charging network so new charging points should be added in stations to improve the drivers’
satisfaction by meeting the quality criteria set on the waiting time and the waiting queue length
in stations.

After the comparison of both dynamic control strategies, we studied the robustness of the
FCFS communication strategy when non-communicating EVs (following the no communication
strategy) are introduced in the fleet. The performances of the FCFS communication strategy in
reducing the trip time for the EVs using the strategy slowly deteriorate as the share of non-
communicating EVs increases. However, this degradation of the strategy performances is gradual
and with the presence of the communicating EVs, the overall average trip time for the fleet is
improved compared with a situation without communication at all. This result is logical as the
less the EVs are communicating, the less the stations can predict accurately the waiting time
with the charging plans shared. Thus, solutions should be foreseen to improve the dynamic
prediction of the waiting time and we suggest some ways of improvement in Section 7.3.1.

7.2 . Conclusions on the optimal charging infrastructure planning
Two of the objectives in this thesis are related to infrastructure planning according to differ-

ent optimisation objectives and different charging strategies for the evaluation of the charging
needs. We sum up the results obtained for each objective in the following sections.
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7.2.1 . Optimising the infrastructure under real-time communication
Wehave compared in Chapter 5 the optimal infrastructure deployments in a situationwhere

the EVs follow the FCFS communication strategy and another where the EVs use the no commu-
nication strategy. This study aims to quantify the benefit a control strategy that increases the use
rate of the infrastructure (FCFS communication strategy) brings to a CPO. The optimisation object-
ive is to minimise the infrastructure cost to consider the CPO’s point of view and a waiting time
threshold is set as a constraint. The problem is hardly differentiable since we need to runmulti-
agent simulations (MASs) to check the constraints under the different control strategies and the
problem is similar to a combinatorial problem so we used a evolutionary-based algorithm, the
Grey Wolf Optimiser to solve the problem. The Grey Wolf optimiser was chosen because it uses
three best solutions to converge faster which is important regarding the running-time of MASs
with the FCFS communication strategy.

We optimised the infrastructure for different EV fleets representing crowded days (500 EVs)
and tested different waiting time thresholds (20 and 30 minutes), different values of time (20
and 50e/h) for the drivers and different available power levels ({175} kW or {50, 175} kW). In all
situations, the optimal infrastructure for both communication and no communication strategies
is profitable for the CPO (the daily equivalent annual cost is negative) but it is interesting to
see how the parameters affect the results. Increasing the waiting time threshold reduces by
at least 13% the infrastructure cost with the no communication strategy and by only 4% with
the communication strategy but better infrastructure layouts might exist for the communication
strategy as we have no guarantee that the GWO gives the global optimal. Concerning the value
of time and two available powers, a value of 20e/h leads all EVs following the no communication
strategy to choose 50-kW chargers and the 50 e/h makes the drivers choose 175-kW. Thus, the
𝑣𝑜𝑡 has an important impact on the charging plan choices.

In any case, when we compare the optimal layouts induced by communication and no com-
munication strategies for a given set of parameters (waiting time threshold, available power
levels and value of time), the communication strategy always reduces the infrastructure cost
by at least 15% and can go up to 26%.

7.2.2 . Higher power rates to reduce travelling time: impact on the infra-structure cost
In Chapter 5, we have also optimised the infrastructure layout but this time, we minimised

both the trip time (time spent in stations) and the infrastructure cost according to the share
of ultra-fast charging EVs (Power ≈ 350 kW) in the fleet. We tested 100 low-traffic fleets (50
EVs) to evaluate the average time spent in stations and the waiting time constraint (15 minutes
maximum as we tested a low-traffic situation).

The ultra-fast charging EVs (UFC EVs) are randomly selected in the fleet and other EVs charge
with a lower power (100 kW). The EVs do not try to minimise their trip time and follow the last
reachable station strategy. This strategy consists in recovering themaximumof energy at the last
station in range and then pursuing the trip until the next last in range stations or the destination.

The optimisation shows that the best trade-offs between the time spent in stations and the
infrastructure cost are obtained for fleets with 100% of ultra-fast charging EVs. The lowest daily
equivalent annual cost is found for an infrastructure layout on the Pareto-front corresponding
to the 100% share of UFC EVs with an installed power per station relatively low since the faster
an EV is charging, the lower the number of needed chargers to comply with the waiting time
threshold. However, nowadays, no passenger cars with a 70-kWh battery pack can charge at
350 kW, but even if a share of 100% of UFC EVs on the road will unlikely be reached in the next
ten years, studying this situation enables us to evaluate the maximum time we can save with a

147



fleet fully adapted to a 350-kW charge and to understand how the charging power of the EVs
affect the cost of the infrastructure.

7.3 . Perspectives
7.3.1 . Improve the FCFS communication strategy

The FCFS communication strategy proves to be the best dynamic control strategy compared
with the reservation strategy. Still, the strategy can be improved to predict more accurately the
waiting time, especially when a part of the fleet is not communicating (see Section 4.6). To en-
hance the waiting time prediction, the charging stations could estimate the waiting time with all
the previous charging requests they received [71] instead of only computing the waiting time
based on the last charging requests. According to [18], using reinforcement learning based on
previous charging requests or sessions can help anticipate the affluence in stations and could
be helpful when a share of EVs is not communicating or to anticipate the potential changes
other communicating EVs will do based on their previous requests. To train the reinforcement
learning model, the training set can be historical data, if any are available or a generated train-
ing set with multi-agent simulation [18]. Using multi-agent simulation to generate training and
testing sets might be helpful, but the trip generation should bemore complex than the ones we
studied in this manuscript to avoid the model being biased by the simpler probability densities
we used.

Another possible improvement is the definition of EV’s discontent factor. As we have seen
in Section 7.2.1, the value of time represents an important parameter to be considered when
optimising the infrastructure, but other parameters can affect the charging decision of an EV
driver. For instance, the driver might choose a charging station based on the electricity carbon
footprint the station proposes, and that can be granted, for example, by a blockchain smart
contract [130].

7.3.2 . Go further in the infrastructure optimisation
We have shown the benefit of the FCFS communication strategy during the optimisation of

the infrastructure. Still, we only aimed tominimise the charging network cost, not the EV drivers’
discontent factor. Thus, we plan to perform a multi-objective optimisation of the charging in-
frastructure layout under a communication strategy to minimise both infrastructure cost and
EV drivers’ discontent factors thanks to a multi-objective GWO.

As the value of time is essential in the charging plan choice and that, in reality, contrary to
what we assume in Chapter 5, all the drivers do not have the same 𝑣𝑜𝑡, we must consider in the
multi-objective optimisation different classes of drivers according to their 𝑣𝑜𝑡 and the EV model
they drive.

To go further, more accurate and precise data would be helpful to determine the real-world
traffic flow on a specific highway during a day (departure time, entries and exits statistics in
long-distance trips, etc.) and propose a more suitable charging infrastructure for real-world
case study (Section 7.3.3).

Finally, we optimise the infrastructure as if the EV flow was already stable. Still, in reality,
the share of EVs on the road is rapidly growing, and we should contemplate optimising the in-
frastructure dynamically and not in a steady-state way. A dynamic evaluation would also be
interesting to consider the evolution of EV model characteristics (, battery capacity, charging
rate). However, using multi-agent simulation is time-costly, and we need to find a way to cir-
cumvent its use to plan the infrastructure according to the charging strategy followed by the
EVs. When the charging strategy is not dynamic (for instance the no communication strategy or
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the last in range strategy), the running time is much lower than for the communication strategy.
However, it is still taking time if we want to evaluate a high number of possible days to size the
infrastructure correctly. Nevertheless, to consider dynamic evolution when using the MAS, we
can, for instance, consider three fleet sizes: the first for the early years of the infrastructure op-
eration, the second for the middle of the infrastructure lifetime and the third for the last years
of the infrastructure lifetime. This way, we can compute the NPV of the infrastructure with
charging points added during the lifetime of the infrastructure to fit the different fleet sizes, like
in [50]. Obviously, the computation time will be longer, but as we perform sizing, the running
time does not represent much of a problem.

7.3.3 . EV flow accuracy
For both control strategy and infrastructure planning, we have seen that we need more ac-

curate EV trips (departure time, entries and exit statistics in long-distance trips, etc.) to either
predict the best charging behaviour or size the infrastructure on the highway according to real-
istic long-distance trips. We have detailed trip data from Stellantis-connected vehicles that are
useful for generating long-distance trips. Still, this data is insufficient to determine real-distance
trips spatially since the data come from European roads and not only from a specific highway.
A potential lead for highway-specific data collection is to contact GPS navigation app owners.
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A - First Appendix: definitions and proofs from Chapter
3
A.1 . Value of time
The value of time 𝑣𝑜𝑡 of a passenger corresponds to the price this passenger is willing to pay

to gain time when travelling. When comparing two transportation options, the utility function
of the user for solution 1 (𝑈1) and solution 2 (𝑈2) can be expressed as:

𝑈1 =𝑤𝑡 · 𝑡1 + 𝑤𝑐 · 𝑐1 (A.1)
𝑈2 =𝑤𝑡 · 𝑡2 + 𝑤𝑐 · 𝑐2 (A.2)

(A.3)
With 𝑡1 and 𝑡2, the travelling times of solutions 1 and 2 and 𝑐1, 𝑐2 are the cost of solutions 1and 2, respectively. The 𝑣𝑜 is then equal to 𝑤𝑡

𝑤𝑐
.

A.2 . Proof of waiting time computation
We corrected how the waiting time was computed in the framework for the FCFS rule, and

we prove here why with a proof by recurrence on the number of persons 𝑝 in a queue with a
fixed number 𝑠 of servers (a server is a charger in our case). It is evident that if 𝑝 ≤ 𝑠, the waiting
time is null for the 𝑝𝑡ℎ person in the queue, so we will prove the computation method for cases
where 𝑝 > 𝑠.

Proof
Inductive hypothesisFor a given queue of 𝑝 persons waiting for a service with 𝑠 servers (𝑝 > 𝑠), the 𝑝𝑡ℎ personin line waits for (𝑝 − 𝑠) persons to leave before being served. Note that the (𝑝 − 𝑠)𝑡ℎperson to leave might not be the (𝑝 − 𝑠)𝑡ℎ person in line since the service may not havethe same duration for all the persons. A person leaves after being served.
Base case: 𝑝 = 𝑠 + 1The (𝑠 + 1)𝑡ℎ person in line needs to wait for only one charger to be free because the
(𝑠 + 1)𝑡ℎ person is the next in line to be served (there are 𝑠 servers). Thus, the 𝑝𝑡ℎ (the
(𝑠+1)𝑡ℎ) person needs towait for one person to leave; in other words, that 𝑝−𝑠 = 𝑠+1−𝑠 =
1 person leaves to be served.
Inductive step: We assume the hypothesis is true for 𝑝 and we will prove it is true for
𝑝 + 1.The (𝑝 + 1)𝑡ℎ person in line needs to wait until the 𝑝𝑡ℎ person in line starts being servedto pretend for a server, so the (𝑝 + 1)𝑡ℎ person needs to wait first for 𝑝 − 𝑠 persons toleave (condition by inductive hypothesis for the 𝑝𝑡ℎ person to start being served). Then,the (𝑝 + 1)𝑡ℎ person has to wait for one more person to leave before being served. Thus,before being served, the (𝑝 + 1)𝑡ℎ person must wait for 𝑝 − 𝑠 + 1 persons to leave thestation, in other words, for (𝑝 + 1) − 𝑠 persons to leave, which proves the case for 𝑝 + 1.
Therefore, the waiting time 𝑡𝑤𝑎𝑖𝑡 , 𝑝 for the 𝑝𝑡ℎ person in the line corresponds to the time

difference between the arrival time of the 𝑝𝑡ℎ person, 𝑡𝑎𝑟𝑟 , 𝑝 , and the departure time of the
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(𝑝 − 𝑠)𝑡ℎ person leaving the station (and not the 𝑝𝑡ℎ person leaving the station as it was in the
inherited framework).

A.3 . Computation of charging time
A.3.1 . Constant charging power

In case the charging power 𝑃(𝑆𝑜𝐶) is constant on the interval [𝑆𝑜𝐶𝑖 , 𝑆𝑜𝐶𝑖+1 [, the chargingtime 𝑡𝑐ℎ𝑎𝑟𝑔𝑒 is:
𝑡𝑐ℎ𝑎𝑟𝑔𝑒 =

𝐶

3600 · 𝑃𝑐𝑠𝑡

· (𝑆𝑜𝐶𝑒𝑛𝑑 − 𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 ) (A.4)
Proof
𝑑𝐸 = 𝑃.𝑑𝑡 with 𝑑𝑡 in hour, 𝑑𝐸 (𝑡) is the energy charged during 𝑑𝑡 at the power 𝑃(𝑡) Case
𝑑𝑡 in second:

𝑑𝐸 (𝑡) =3600 · 𝑃(𝑡)𝑑𝑡

𝑑𝑆𝑜𝐶 (𝑡) = 3600

𝐸𝑏𝑎𝑡𝑡.

· 𝑃𝑐𝑠𝑡𝑑𝑡
(A.5)

So when integrating:
𝑆𝑜𝐶𝑒𝑛𝑑 − 𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 =

3600

𝐶
· 𝑃𝑐𝑠𝑡 · 𝑡𝑐ℎ𝑎𝑟𝑔𝑒 (A.6)

A.3.2 . Linear decreasing charging power
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Figure A.1: Charging power linear according to the SoC on interval [𝑆𝑜𝐶𝑖 , 𝑆𝑜𝐶𝑖+1 [

In this case (Figure A.1), the expression of the charging time 𝑡𝑐ℎ𝑎𝑟𝑔𝑒 is given by the equation(3.18).
𝑃(𝑆𝑜𝐶 (𝑡)) = 𝑎𝑖 (𝑆𝑜𝐶 (𝑡) − 𝑆𝑜𝐶𝑖) + 𝑏𝑖

with 𝑎𝑖 = (𝑃𝑖+1 − 𝑃𝑖)/(𝑆𝑜𝐶𝑖+1 − 𝑆𝑜𝐶𝑖), 𝑃𝑖+1 = 𝑃 (𝑆𝑜𝐶𝑖+1) ,
𝑃𝑖 = 𝑃 (𝑆𝑜𝐶𝑖) and 𝑏𝑖 = 𝑃𝑖
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Proof
We have:

𝑑𝑆𝑜𝐶 (𝑡) = 3600

𝐶
· 𝑃(𝑡)𝑑𝑡 (A.7)

So,
𝑑𝑆𝑜𝐶 (𝑡) = 3600

𝐶
· [𝑎𝑖 (𝑆𝑜𝐶 (𝑡) − 𝑆𝑜𝐶𝑖) + 𝑏𝑖] 𝑑𝑡 (A.8)

Resolution of the first order differential equation A.8.
The homogeneous solution computation is given by:

𝑑𝑆𝑜𝐶𝐻 (𝑡) = 3600

𝐶
· 𝑎𝑖𝑆𝑜𝐶𝐻 (𝑡)𝑑𝑡 (A.9)

𝑆𝑜𝐶𝐻 (𝑡) = 𝐴 · exp(3600
𝐶

· 𝑎𝑖 · 𝑡) (A.10)
Equation (A.11) gives the particular solution computation.

0 =
3600

𝐶
· [𝑎𝑖 (𝑆𝑜𝐶𝑃 − 𝑆𝑜𝐶𝑖) + 𝑏𝑖] ≡ 𝑆𝑜𝐶𝑃 = 𝑆𝑜𝐶𝑖 −

𝑏𝑖

𝑎𝑖
(A.11)

It comes:
𝑆𝑜𝐶 (𝑡) = 𝐴. exp(3600

𝐶
𝑎𝑖 𝑡) + 𝑆𝑜𝐶𝑖 −

𝑏𝑖

𝑎𝑖with 𝑆𝑜𝐶 (0) = 𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡

𝑆𝑜𝐶 (𝑡) =
(
𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 − 𝑆𝑜𝐶𝑖 +

𝑏𝑖

𝑎𝑖

)
. exp(3600

𝐶
· 𝑎𝑖 · 𝑡) + 𝑆𝑜𝐶𝑖 −

𝑏𝑖

𝑎𝑖

(A.12)

Finally, after integrating:
𝑡𝑐ℎ𝑎𝑟𝑔𝑒 =

𝐶

3600 · 𝑎𝑖
· log

((
𝑆𝑜𝐶𝑒𝑛𝑑 − 𝑆𝑜𝐶𝑖 +

𝑏𝑖

𝑎𝑖

)
/
(
𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 − 𝑆𝑜𝐶𝑖 +

𝑏𝑖

𝑎𝑖

))
(A.13)
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B - Second Appendix: statistics analysis
B.1 . Iso-probabilistic transformation
To determine the time of entrance of the EVs, we use an iso-probabilistic transformation of

the cumulative density function corresponding to the traffic flow curve (Figure B.1b).
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Figure B.1: Figure (a): Average incoming vehicle flowper hour of the French highway A6 in Île-de-France [24]. The blue curve is the resulting average of the A6 highway sections in Île-de-Francetraffic flow inductive loop data counting. Figure (b):Cumulative density function 𝑃(𝑡𝑠𝑡𝑎𝑟𝑡 ≤ 𝑡)corresponding to the entering traffic flow per hour B.1a

With 𝑡 corresponding to a time, the cumulative density function 𝑃(𝑡𝑠𝑡𝑎𝑟𝑡 ≤ 𝑡) correspondingto the probability for an EV to enter the highway before 𝑡 is computed from the traffic flow curve.
We obtain Figure B.1. Then, we select a random number 𝑥 in [0, 1] and 𝑡𝑠𝑡𝑎𝑟𝑡 is the image of 𝑥
by the inverse of the cumulative density function (Figure B.1).

B.2 . Work on connected vehicles data
Some clients agree to share with Stellantis data from their connected vehicles and we used

the data feedback from the part of those vehicles that are electric vehicles. The raw data con-
tains information about the EV’s state (position, SoC, speed · · · ) at a given time. The data we
want to retrieve should be linked to a long distance trip so we need first to delimit from the raw
data the driving sessions. A driving session is delimited by the moment the EV is powered and
the moment it is shut down. All the raw data that come from the same driving session share
the same driving session id.

Then, the driving sessions should be grouped to form a trip. This time, the driving sessions
from the same trip do not share a common id since it is not possible to identify a trip from the
raw data. Therefore, we define a maximum time between two driving sessions of 2 hours. If
two driving session are spaced in time bymore than 2 hours, we consider the driver has started
a new trip. When all the trips are identified, we sort the trips that have:

• a length higher than 100 km,
• a travelling part on the highway (speed of the EV > 100 km/h),
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• at least one charging pause (the SoC between two driving sessions has increased) close
to the highway (average speed during 5 minutes before and after the charging session is
higher than 100 km/h).

The selected trips represent the long-distance trips according to our definition (Section
1.2.1). We identified 380 EVs that made at least one long distance trip during the studied year.

From the long-distance trips data, we extract the 𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 , the time of entrance on the high-
way 𝑡𝑠𝑡𝑎𝑟𝑡 and the SoC when stopping to charge. In this manuscript we only use the 𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡distribution in Case study 2 (see Section 3.3.4) but the rest of the extracted data can be used
to generate trip parameters or stopping strategies based on the SoC (see Section 6.5.2).
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C - Third Appendix: Dynamic programming for charging
plan optimisation
The aim of the dynamic method we propose in this thesis is to optimise the charging plan

of an EV to minimise its trip time. The trip time includes the driving time 𝑡𝑑𝑟𝑖𝑣𝑒, the chargingtime 𝑡𝑐ℎ𝑎𝑟𝑔𝑒 and the waiting time 𝑡𝑤𝑎𝑖𝑡 . The notations in this appendix are independent from
the notations in the rest of the manuscript.

The problem is divided in subproblems with one subproblem associated with one station.
Thus the subproblem 𝑘 corresponds to the 𝑘 𝑡ℎ station on the road. Each subproblem objective
is to determine for each possible 𝑆𝑜𝐶𝑘

𝑜𝑢𝑡 (SoC the EV has when leaving the station 𝑘) the optimal
energy to charge in station 𝑘 to minimise the EV trip time from the beginning of the trip. The
subproblem gets from the previous subproblem (subproblem 𝑘 − 1) the minimum trip time to
reach each 𝑆𝑜𝐶𝑘−1

𝑜𝑢𝑡 and the associated optimal charging plan from the beginning of the trip.
We use an example to explain the process. Let’s consider an EV entering the highway with

𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 = 55%andwewant to evaluate theminimum trip time to reach 𝑆𝑜𝐶2
𝑜𝑢𝑡 = 65% in station

2. The DP algorithm will first determine the minimum trip time from the highway entrance to
each 𝑆𝑜𝐶1

𝑜𝑢𝑡 in station 1 (subproblem 1). This part is simple as there is only on possible path to
reach each 𝑆𝑜𝐶1

𝑜𝑢𝑡 with no or one possible quantity to charge in station 1 (quantity in green inFigure C.1). If no charging quantity exists, the minimum trip time for this path is set to infinite.

Figure C.1: Computation of minimum trip times for each possible path
Secondly, the DP computes the time for the EV to go from a given 𝑆𝑜𝐶1

𝑜𝑢𝑡,𝑛 when leaving
station 1 to 𝑆𝑜𝐶2

𝑜𝑢𝑡 = 65%. This time includes the driving time, the waiting time according to the
arrival time in station 𝑡𝑘

𝑖𝑛
(𝑡𝑘
𝑖𝑛

= 𝑡𝑘−1𝑜 𝑢𝑡 + 𝑡𝑑𝑟𝑖𝑣𝑒) and the charging time needed to recover 𝑥𝑘𝑚 % of
energy. The energy to recover is:

𝑥𝑘𝑚 = 𝑆𝑜𝐶2
𝑜𝑢𝑡 − 𝑆𝑜𝐶1

𝑜𝑢𝑡 + 𝑐𝑜𝑛𝑠1→2 (C.1)
With 𝑐𝑜𝑛𝑠1→2 the consumption between station 1 and 2.
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Thus, theminimum time to reach 65%when charging 𝑥𝑘𝑚 in station 2 is theminimum time to
reach 𝑆𝑜𝐶𝑘−1

𝑜𝑢𝑡,𝑛 in station 1 (computing during subproblem 1) plus the time to go from 𝑆𝑜𝐶1
𝑜𝑢𝑡,𝑛to 𝑆𝑜𝐶2

𝑜𝑢𝑡 = 65 %.
Once all the minimum trip times are computed for all the possible path from the beginning

to reach 𝑆𝑜𝐶𝑜𝑢𝑡 = 65 %, the DP deduces the path with the global minimum trip time and re-
trieve the charging plan of this optimal path. In our example, the charging plan with the global
minimum trip time is (𝑥1, 𝑥2) = (20%, 5%) (see Figure C.2).

Figure C.2: Minimum trip time path finding
Then, theDP algorithmkeeps inmemory the globalminimum trip time and the optimal char-

ging plan to reach 𝑆𝑜𝐶2
𝑜𝑢𝑡 = 65% and proceed identically to compute the optimal charging plan

for other values of 𝑆𝑜𝐶2
𝑜𝑢𝑡 . After those calculations, the program can go to next subproblem.
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D - Fourth Appendix: Implementation adaptations and
improvements
D.1 . Charging plan update correction
As the exhaustive method updates the waiting times for each listed charging plan (step 3

on Figure 3.2) and then searches the charging plan with the minimum 𝐷𝐹 at every iteration,
the computing time will be high if the number of charging plans to update is not reduced to the
bareminimum. J. Hassler implemented a process to remove fromΩ𝑣 charging plans that are nolonger feasible (or obsolete) as the simulation goes. Those plans, 𝜔𝑜𝑏𝑠., are the ones for whichone of the stations, 𝐶𝑆𝑖𝑘 , in the list of stops, was already driven past in the simulation, and one
of the following conditions was not met:

• the EV did not stop at station 𝐶𝑆𝑖𝑘 .
• the EV stopped at station 𝐶𝑆𝑖𝑘 but did not charge the same amount of energy, 𝑥𝑖𝑘 , asindicated in 𝜔𝑜𝑏𝑠..
For the 2nd case where the EV did not charge the same amount of energy in the station as

indicated in 𝜔𝑜𝑏𝑠., the charging plan list reduction was removing charging plans with stop plans
(𝑖1, · · · 𝑖𝑁𝑚𝑖𝑛, 𝑣

) still feasible because of the way the total energy to be charged was distributed
among the station. For example, let’s consider that, at iteration 𝑡, the best charging plan for EV
is 𝜔, which details are given in (D.1) (see (3.21 for the expression of the charging plan in the
exhaustive method). The EV has already been charged at station 𝑖1 = 2. At iteration 𝑡 + 1, the EV
stopped at station 𝑖2 = 4 and is charging.

𝜔𝑣 =

(
𝑖1 . . . 𝑖𝑁𝑚𝑖𝑛, 𝑣

𝑥1 . . . 𝑥𝑁𝑚𝑖𝑛, 𝑣

)
=

(
2 4 6

26.3 25.4963 9.8537

)
(D.1)

Before updating its charging plan, the EV removes all the charging plans 𝜔𝑜𝑏𝑠. no longer
feasible, either the charging plan with 𝑖2, 𝑜𝑏𝑠. ≠ 4 or the charging plan with 𝑖2, 𝑜𝑏𝑠. = 4 but
𝑥2,𝑜𝑏𝑠. ≠ 𝑥2. However, in the way Ω𝑣 was built in the inherited version, even if it exists other
charging plans 𝜔′ ∈ Ω with 𝑖′1 = 𝑖1, 𝑥

′
1 = 𝑥1 and 𝑖′2 = 𝑖2, it appears that none of them verifies

𝑥′2 = 𝑥2 except for 𝜔 itself.
We give an example of 𝜔′ and 𝜔” in Ω with 𝑖′1 = 𝑖”1 = 𝑖1, 𝑥

′
1 = 𝑥”1 = 𝑥1 and 𝑖′2 = 𝑖”2 = 𝑖2but, even if 𝑥′2 and 𝑥”2 are closed to 𝑥2 they are not equal to 𝑥2 so those charging plans are

considered obsolete by the algorithm and removed from the solutions. In contrast, they could
have given more flexibility to the EV’s charging plan optimisation. In this situation, the EV will
have at iteration 𝑡 + 1 only one charging plan remaining, 𝜔, and will not have the possibility to
change its strategy and eventually stop at station 5 as proposed by the charging plans 𝜔′ and
𝜔” whereas the EV has enough SoC to do so.

𝜔′ =

(
𝑖′1 . . . 𝑖′

𝑁𝑚𝑖𝑛

𝑥′1 . . . 𝑥′
𝑁𝑚𝑖𝑛

)
=

(
2 4 5

26.3 25.3627 9.9873

)
(D.2)

𝜔” =

(
𝑖”1 . . . 𝑖”𝑁𝑚𝑖𝑛

𝑥”1 . . . 𝑥”𝑁𝑚𝑖𝑛

)
=

(
2 4 5

26.3 25.8627 9.4873

)
(D.3)

To circumvent this problem, we propose another energy distribution among the stationwith
all the charging stops having the same quantum of energy Δ𝐸 for the discretisation except for
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the last stop of the charging plan, where the EV charges the remaining energy. The energy
charged at the last station will not be a multiple of the Δ𝐸 except if the total energy 𝐸𝑡𝑜𝑡𝑎𝑙 is amultiple of Δ𝐸 . The previous charging plans presented in this section are adapted as explained
in (D.4) with a quantum of energy of Δ𝐸 = 0.5𝑘𝑊ℎ.

𝜔 =

(
2 4 6
26 25.5 10.15

)
, 𝜔′ =

(
2 4 5
26 25.5 10.15

)
(D.4)

With this improvement, the EV can now charge at stations 2 and 4, respectively, 26 kWh and
25.5 kWh and still have the choice to charge at station 5 or station 6 the remaining 10.15 kWh.

D.2 . Adaptation of the grey wolf optimiser algorithm
We use the matlab code in [121]. However, we had to correct and improve the algorithm

before using it in our simulation.
Concerning the correction, we corrected the assignment of the leading wolfs (𝛼, 𝛽 and 𝛿)

positions after sorting the positions according to the fitness value. In the original code, the
positions where not sorted before the assignment.

Concerning the improvements, as the running-time of the fitness evaluation is high, we first
implemented a system that keeps in programmemory the previous computedfitnesses to avoid
that the optimiser computes again the fitness of a position already explored. Secondly, to make
the optimiser converge faster, we introduced a possiblemutation that adds chargers in stations
where the waiting time is above the waiting time thresholds.
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Nomenclature
𝐷𝐸𝐴𝐶𝐹𝐶𝐼 (𝑠) Daily equivalent annual cost of the infrastructure layout 𝑠
𝑁𝑎𝑟𝑒𝑎 Number of service areas on the highway
Δ𝐸 Energy step when listing the charging plans in the exhaustive method or in the

dynamic programming method (kWh)
Δ𝑡 Simulation time step (min)
𝛿𝑡 Time slot: unit of time delimited by the estimated timestamp of two events that

will occur in the station
Δ𝑇𝐶𝑆 (𝐹𝑥, 𝑓 ) Average relative additional time spent in stations by the EVs of the fleet 𝐹𝑥, 𝑓
Δ𝑇𝐶𝑆 (𝐹𝑥𝑑𝑖𝑠𝑡. , 𝑓 ,𝑐𝑜𝑚.) Relative additional time spent in stations by the communicating EVs of the

fleet 𝐹𝑥𝑑𝑖𝑠𝑡 , 𝑓 compared with the FCFS communication scenario (𝑥 = 0)
Δ𝑇𝐶𝑆 (𝑣𝑥, 𝑓 ) Relative additional time spent in stations by 𝐸𝑉𝑣 in the fleet 𝐹𝑥, 𝑓 compared with

the FCFS communication scenario (𝑥 = 0)
CS Set of highway fast-charging stations
E Set of highway entrance/exits
F Fleet (set of EVs)
𝜔∗
𝑣 Optimal charging plan of 𝐸𝑉𝑣

𝜔𝑣 One charging plan of 𝐸𝑉𝑣: energy charged per station and power level used
𝜔𝑙𝑟 ,𝑣 Charging plan of 𝐸𝑉𝑣 obtained with the last-reachable strategy
Δ𝑇𝐶𝑆,𝑥,𝑐𝑜𝑚. Average relative additional time spent in stations per communicating EV accord-

ing to the percentage of disturbers 𝑥
Δ𝑇𝐶𝑆,𝑥,𝑛𝑜 𝑐𝑜𝑚. Average relative additional time spent in stations per non-communicating EV

according to the percentage of disturbers 𝑥
Δ𝑇𝐶𝑆,𝑥 Average relative additional time spent in stations per EV according to the per-

centage of disturbers 𝑥
𝜌𝑣 Consumption of 𝐸𝑉𝑣 (kWh/km)
𝜏 Time window or time interval: accumulation of adjacent time slots
𝐴.𝑇 . Estimated arrival time in a station specified in a charging request
𝐶.𝑇. Estimated charging time in a station specified in a charging request
𝑐𝑣 Charging coefficient of 𝐸𝑉𝑣 in the expression of the linearised charging curve

𝑃𝑣

𝐶𝑐ℎ𝑎𝑟𝑔𝑒 (𝜔𝑣) Total charging cost of the 𝐸𝑉𝑣 associated to the charging plan 𝜔𝑣 (e)
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𝐶𝐹𝐶𝐼 (𝑠) Cost of the fast charging infrastructure (e)
𝐶ℎ𝑎𝑟𝑑., 𝑗 Hardware cost of a charger with the power level 𝑝 𝑗 (e)
𝐶𝑖𝑛𝑠𝑡𝑎𝑙𝑙. (𝑠𝑖, 𝑗) Installation cost of a charger depending on the charging rate and the number

of charger installed in the station 𝑠𝑖, 𝑗 (e)
𝐶𝑂&𝑀 Annual operation and maintenance cost of the infrastructure (e)
𝑐𝑜𝑛𝑠.𝑘→𝑘+1 Consumption between station 𝐶𝑆𝑘 to station 𝐶𝑆𝑘+1
𝐶𝑆𝑖 𝑖𝑡ℎ charging station in CS
𝐷𝑣 Distance between 𝑜𝑣 and 𝑑𝑣 (km)
𝑑𝑣 Exit number of 𝐸𝑉𝑣 (destination)
𝑑𝑎𝑡𝑎𝑐ℎ𝑎𝑟𝑔𝑒 Database listing all the data needed to compute𝑇𝑡𝑟𝑖 𝑝 for each possible chargingplan (exhaustive method)
𝐷𝐸𝐴𝐶𝐹𝐶𝐼 (𝑠) Daily equivalent annual cost of the infrastructure layout 𝑠
𝐷𝐸𝐴𝐸𝐹𝐶𝐼 (𝑠) Daily equivalent annual expenditure of the infrastructure layout 𝑠
𝐷𝐹𝑣 (𝜔𝑣) Discontent factor of 𝐸𝑉𝑣 associated to the charging plan 𝜔𝑣

𝐸𝑏𝑎𝑡𝑡 ,𝑣 Capacity of 𝐸𝑉𝑣 ’s battery pack (kWh)
𝐸𝑡𝑜𝑡𝑎𝑙,𝑣 Total energy needed by 𝐸𝑉𝑣 to complete its trip to leave the highway with at

least 𝑆𝑜𝐶𝑡𝑎𝑟 ,𝑣

𝐸𝑉𝑣 𝑣𝑡ℎ EV in fleet F
𝐹𝑥, 𝑓 𝑓 𝑡ℎ fleet tested with 𝑥 percent of disturbers
𝐾 Position of 𝐸𝑉𝑣 in the arrival order in a station
𝐿 Life time of a charger (year)
𝑁 𝑓 Number of fleets tested during the optimisation of the infrastructure
𝑁𝑝 Number of power levels in 𝑃
𝑁𝑎𝑟𝑒𝑎 Number of service areas on the highway
𝑁𝐶𝑆 Number of highway fast-charging stations
𝑁𝑙𝑖𝑚𝑖𝑡 ,𝑣 Number of stops a charging plan of 𝐸𝑉𝑣 can have
𝑁𝑚𝑖𝑛,𝑣 Minimum number of stops a charging plan of 𝐸𝑉𝑣 can have to make 𝐸𝑉𝑣 reach

𝑑𝑣 with at least 𝑆𝑜𝐶𝑡𝑎𝑟 ,𝑣

𝑜𝑣 Entrance number of 𝐸𝑉𝑣 (origin)
𝑝𝑖 Power rate used in station 𝐶𝑆𝑖 to charge 𝑥𝑖 (in a charging plan) (kW)
𝑝 𝑗 𝑗 𝑡ℎ power level in 𝑃
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𝑃𝑣 (𝑆𝑜𝐶) Charging curve of 𝐸𝑉𝑣 (kW)
𝑝𝑐ℎ𝑎𝑟𝑔𝑒, 𝑗 Electricity price for a driver according to the power level 𝑝 𝑗 (e/kWh)
𝑃𝑐ℎ𝑎𝑟𝑔𝑒,𝑖, 𝑗 (𝑆𝑜𝐶) Real charging curve of an EV charging at the station 𝐶𝑆𝑖 on charger with level

𝑝 𝑗 (kW)
𝑝𝑐ℎ𝑎𝑟𝑔𝑒 (𝑝 𝑗) Electricity price for a driver according to the power level 𝑝 𝑗 (e/kWh)
𝑝𝑒𝑙 Industrial electricity price(e/kWh)
𝑃𝑚𝑎𝑥,𝑣 Intersection between the linearised curve 𝑃𝑣 (𝑆𝑜𝐶) and the axis 𝑥 = 0 (kW)
𝑟 Discount rate of the infrastructure investment (%)
𝑅𝑖 Charging request table of station 𝐶𝑆𝑖
𝑅𝑎𝑣𝑔 Average annual daily revenue of the infrastructure (e)
𝑠 Vector listing the number of chargers (or sockets) per station according to their

rate
𝑠𝑖, 𝑗 Number of chargers with power level 𝑝 𝑗 in station 𝐶𝑆𝑖
𝑆𝑜𝐶 State of charge (%)
𝑆𝑜𝐶𝑒𝑛𝑑,𝑣 SoC of 𝐸𝑉𝑣 when leaving the highway
𝑆𝑜𝐶𝑖𝑛,𝑖,𝑣 SoC of 𝐸𝑉𝑣 when entering the station 𝐶𝑆𝑖
𝑆𝑜𝐶𝑚𝑖𝑛 Minimum SoC
𝑆𝑜𝐶𝑜𝑢𝑡,𝑖,𝑣 SoC of 𝐸𝑉𝑣 when leaving the station 𝐶𝑆𝑖
𝑆𝑜𝐶𝑠𝑡𝑎𝑟𝑡 ,𝑣 SoC of 𝐸𝑉𝑣 when entering the highway
𝑆𝑜𝐶𝑡𝑎𝑟 ,𝑣 Target SoC of 𝐸𝑉𝑣 when leaving the highway
𝑠𝑝𝑒𝑒𝑑𝑣 Speed limit of 𝐸𝑉𝑣: minimum between 𝑠𝑝𝑒𝑒𝑑𝑟𝑜𝑎𝑑 and 𝑠𝑝𝑒𝑒𝑑𝑑𝑟𝑖𝑣𝑒𝑟 (km/h)
𝑠𝑝𝑒𝑒𝑑𝑑𝑟𝑖𝑣𝑒𝑟 Speed observed by the driver (driving style) (km/h)
𝑠𝑝𝑒𝑒𝑑𝑟𝑜𝑎𝑑 Speed limit on the road (km/h)
𝑡 Simulation time (h) or iteration represented by the time interval between time

𝑡 − 1 and time 𝑡
𝑇𝑎𝑑𝑣. Anticipation time: time before an EV enters the highway and starts the commu-

nication process
𝑡𝑐ℎ𝑎𝑟𝑔𝑒,𝑖 (𝜔𝑣) Charging time of 𝐸𝑉𝑣 in station 𝐶𝑆𝑖 according to the charging plan 𝜔𝑣 (min)
𝑇𝑐ℎ𝑎𝑟𝑔𝑒 (𝜔𝑣) Total charging time of 𝐸𝑉𝑣 according to the charging plan 𝜔𝑣 (min)
𝑇𝐶𝑆 (𝜔𝑣) Total time the 𝐸𝑉𝑣 spent orwill spend in stationswith the charging plan𝜔𝑣 (min)
𝑇𝐶𝑆 (𝑣0) Time spent in stations by 𝐸𝑉𝑣 with the FCFS communication scenario (𝑥 = 0)
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𝑇𝐶𝑆 (𝑣𝑥, 𝑓 ) Time spent in station by 𝐸𝑉𝑣 in the situation discribed by the fleet 𝐹𝑥, 𝑓
𝑡𝑖𝑛,𝑖 (𝜔𝑣) Estimated arrival time in the station 𝐶𝑆𝑖 with the charging plan 𝜔𝑣 (h)
𝑡𝑖𝑛,𝑣 Entrance time of 𝐸𝑉𝑣 on the highway
𝑇𝑜𝑡ℎ𝑒𝑟 (𝜔𝑣) Total time the 𝐸𝑉𝑣 spent or will spend stopping and plugging with the chargingplan 𝜔𝑣 (min)
𝑡𝑜𝑡ℎ𝑒𝑟 Time to stop and to plug in station (5 min)
𝑇𝑡ℎ𝑟𝑒𝑠 Waiting time threshold during the optimisation of the infrastructure (min)
𝑇𝑡𝑟𝑎𝑣𝑒𝑙 Total time the 𝐸𝑉𝑣 spent or will spend driving (min)
𝑇𝑡𝑟𝑖 𝑝 (𝜔𝑣) Total trip time of the 𝐸𝑉𝑣 associated to the charging plan 𝜔𝑣 (min)
𝑡𝑤𝑎𝑖𝑡 ,𝑣,𝑖 Waiting time of 𝐸𝑉𝑣 in station 𝐶𝑆𝑖 (min)
𝑇𝑤𝑎𝑖𝑡 (𝜔𝑣) Total waiting time of 𝐸𝑉𝑣 according to the charging plan 𝜔𝑣 (min)
𝑣𝑜𝑡 Value of time (e/h)
𝑤𝑐 Cost weight in the utility function 𝐷𝐹𝑣 of the driver
𝑤𝑡 Time weight in the utility function 𝐷𝐹𝑣 of the driver
𝑋 Coefficient giving driver’s preference between trip time 𝑇𝑡𝑟𝑖 𝑝 and the charging

cost 𝐶𝑐ℎ𝑎𝑟𝑔𝑒

𝑥𝑖 Energy charged in station 𝐶𝑆𝑖 (in a charging plan) (kWh)
𝑥𝑑𝑖𝑠𝑡. Percentage of disturbers in the fleet (%)
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