Generalized Fokker-Planck equation for piecewise-diffusion processes with boundary hitting resets - CentraleSupélec
Communication Dans Un Congrès Année : 2006

Generalized Fokker-Planck equation for piecewise-diffusion processes with boundary hitting resets

Julien Bect
Hana Baili
Gilles Fleury
  • Fonction : Auteur
  • PersonId : 831677

Résumé

This paper is concerned with the generalized Fokker-Planck equation for a class of stochastic hybrid processes, where diffusion and instantaneous jumps at the boundary are allowed. The state of the process after a jump is defined by a deterministic reset map. We establish a partial differential equation for the probability density function, which is a generalisation of the usual Fokker-Planck equation for diffusion processes. The result involves a non-local boundary condition, which accounts for the jumping behaviour of the process, and an absorbing boundary condition on the non-characteristic part of the boundary. Two applications are given, with numerical results obtained by finite volume discretization.
Fichier principal
Vignette du fichier
bect-mtns-2006-ver1.pdf (336.16 Ko) Télécharger le fichier
Loading...

Dates et versions

hal-00016373 , version 1 (02-01-2006)

Identifiants

  • HAL Id : hal-00016373 , version 1

Citer

Julien Bect, Hana Baili, Gilles Fleury. Generalized Fokker-Planck equation for piecewise-diffusion processes with boundary hitting resets. MTNS 2006, Jul 2006, Kyoto, Japan. pp.1360-1367. ⟨hal-00016373⟩
301 Consultations
1074 Téléchargements

Partager

More