Generalized Fokker-Planck equation for piecewise-diffusion processes with boundary hitting resets
Résumé
This paper is concerned with the generalized Fokker-Planck equation for a class of stochastic hybrid processes, where diffusion and instantaneous jumps at the boundary are allowed. The state of the process after a jump is defined by a deterministic reset map. We establish a partial differential equation for the probability density function, which is a generalisation of the usual Fokker-Planck equation for diffusion processes. The result involves a non-local boundary condition, which accounts for the jumping behaviour of the process, and an absorbing boundary condition on the non-characteristic part of the boundary. Two applications are given, with numerical results obtained by finite volume discretization.
Loading...