Microwave characterization of dielectric materials using Bayesian neural networks - CentraleSupélec
Article Dans Une Revue Progress In Electromagnetics Research Année : 2008

Microwave characterization of dielectric materials using Bayesian neural networks

Résumé

This paper shows the efficiency of neural networks (NN), coupled with the finite element method (FEM), to evaluate the broadband properties of dielectric materials. A characterization protocol is built to characterize dielectric materials and NN are used in order to provide the estimated permittivity. The FEM is used to create the data set required to train the NN. A method based on Bayesian regularization ensures a good generalization capability of the NN. It is shown that NN can determine the permittivity of materials with a high accuracy and that the Bayesian regularization greatly simplifies their implementation.
Fichier principal
Vignette du fichier
Acikgoz-PIERC2008.pdf (463.33 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-00351284 , version 1 (28-01-2021)

Identifiants

Citer

Hulusi Acikgoz, Yann Le Bihan, Olivier Meyer, Lionel Pichon. Microwave characterization of dielectric materials using Bayesian neural networks. Progress In Electromagnetics Research, 2008, 03, pp.169-182. ⟨10.2528/PIERC08030603⟩. ⟨hal-00351284⟩
99 Consultations
91 Téléchargements

Altmetric

Partager

More