Machine Learning Methods for Spoken Dialogue Simulation and Optimization - CentraleSupélec Access content directly
Book Sections Year : 2009

Machine Learning Methods for Spoken Dialogue Simulation and Optimization

Olivier Pietquin

Abstract

Computers and electronic devices are becoming more and more present in our day-to-day life. This can of course be partly explained by their ability to ease the achievement of complex and boring tasks, the important decrease of prices or the new entertainment styles they offer. Yet, this real incursion in everybody's life would not have been possible without an important improvement of Human-Computer Interfaces (HCI). This is why HCI are now widely studied and become a major trend of research among the scientific community. Designing “user-friendly” interfaces usually requires multidisciplinary skills in fields such as computer science, ergonomics, psychology, signal processing etc. In this chapter, we argue that machine learning methods can help in designing efficient speech-based humancomputer interfaces.
No file

Dates and versions

hal-00436911 , version 1 (27-11-2009)

Identifiers

  • HAL Id : hal-00436911 , version 1

Cite

Olivier Pietquin. Machine Learning Methods for Spoken Dialogue Simulation and Optimization. Abdelhamid Mellouk, Abdennacer Chebira. Machine Learning, IN-TECH, pp.167-184, 2009. ⟨hal-00436911⟩
48 View
0 Download

Share

Gmail Facebook X LinkedIn More