YBCO hot-electron bolometers dedicated to THz detection and imaging: embedding issues
Résumé
High-T-c hot-electron bolometers (HEB) are an interesting alternative to other superconducting heterodyne mixers in the terahertz frequency range because of low-cost cooling investment, ultra-wide instantaneous bandwidth and low intrinsic noise level, even at 80 K. A technological process to fabricate stacked yttrium-based (YBCO) / praseodymium-based (PBCO) ultra-thin films (in the 15 to 40 nm thickness range) etched to form 0.5 mu m x 0.5 mu m constrictions, elaborated on (100) MgO substrates, has been previously described. Ageing effects were also considered, with the consequence of increased electrical resistance, significant degradation of the regular THz response and no HEB mixing action. Electron and UV lithography steps are revisited here to realize HEB mixers based on nano-bridges covered by a log-periodic planar gold antenna, dedicated to the 1 to 7 THz range. Several measures have been attempted to reduce the conversion losses, mainly by considering the embedding issues related to the YBCO nano-bridge impedance matching to the antenna and the design of optimized intermediate frequency circuitry. Antenna simulations were performed and validated through experiments on scaled models at GHz frequencies. Electromagnetic coupling to the incoming radiation was also studied, including crosstalk between neighbour antennas forming a linear imaging array.