Bayesian optimization using sequential Monte Carlo - CentraleSupélec
Communication Dans Un Congrès Année : 2012

Bayesian optimization using sequential Monte Carlo

Résumé

We consider the problem of optimizing a real-valued continuous function $f$ using a Bayesian approach, where the evaluations of $f$ are chosen sequentially by combining prior information about $f$, which is described by a random process model, and past evaluation results. The main difficulty with this approach is to be able to compute the posterior distributions of quantities of interest which are used to choose evaluation points. In this article, we decide to use a Sequential Monte Carlo (SMC) approach.
Fichier principal
Vignette du fichier
article_lion6.pdf (93.87 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00717195 , version 1 (12-07-2012)

Identifiants

Citer

Romain Benassi, Julien Bect, Emmanuel Vazquez. Bayesian optimization using sequential Monte Carlo. 6th International Conference on Learning and Intelligent Optimization (LION6), Jan 2012, Paris, France. pp.339-342, ⟨10.1007/978-3-642-34413-8_24⟩. ⟨hal-00717195⟩
243 Consultations
289 Téléchargements

Altmetric

Partager

More