Weiss-Weinstein bound for MIMO radar with colocated linear arrays for SNR threshold prediction - CentraleSupélec Access content directly
Journal Articles Signal Processing Year : 2012

Weiss-Weinstein bound for MIMO radar with colocated linear arrays for SNR threshold prediction

Abstract

Several works have suggested that a multi-input multi-output (MIMO) radar system offers improvement in terms of performance in comparison with classical phased-array radar. However, under the widely spread assumption of a uniform a priori distribution for one parameter of interest, there is no result concerning lower bounds on the mean-square error in the case of a Gaussian observation model with parameterized mean. This Fast Communication fills this lack by using the Weiss-Weinstein bound (WWB) which can be calculated under this difficult scenario. As we will show, the proposed bound for MIMO Radar with colocated linear arrays has no closed-form expression. To solve this problem, we propose a closed-form approximation that, as we will show by simulations, is close to the actual bound. This approximated bound is then analyzed for a design purpose in terms of array geometry. Simulations confirm the good ability of the proposed bound to predict the mean square error (MSE) of the maximum a posteriori (MAP) in all ranges of SNR. Particularly, the tightness of the bound to predict the SNR threshold effect is shown.

Keywords

Fichier principal
Vignette du fichier
WWB_for_MIMO_Radar.pdf (256.5 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-00771395 , version 1 (15-03-2020)

Identifiers

Cite

Duy Tran Nguyen, Alexandre Renaux, Remy Boyer, Sylvie Marcos, Pascal Larzabal. Weiss-Weinstein bound for MIMO radar with colocated linear arrays for SNR threshold prediction. Signal Processing, 2012, 92 (5), pp.1353-1358. ⟨10.1016/j.sigpro.2011.10.018⟩. ⟨hal-00771395⟩
137 View
112 Download

Altmetric

Share

Gmail Facebook X LinkedIn More