Influence of the undoped a-Si:H buffer layer on a-Si:H/c-Si heterojunctions from planar conductance and lifetime measurements
Résumé
In highly efficient amorphous silicon/crystalline silicon heterojunction (a-Si:H/c-Si) solar cells, the c-Si wafer is passivated by a nanometer-thin buffer layer, which is undoped amorphous silicon. Here, we report on the systematic measurement of the passivation quality (minority carrier effective lifetime) by photo-conductance decay and of the band bending in c-Si using the planar conductance technique. The thickness of the buffer layers is varied. An analytical model to calculate the band bending in c-Si is presented; it aids in understanding the influence of the buffer layer on the band bending. We find that when the buffer layer thickness increases the passivation quality increases and the band bending decreases. Therefore, we suggest that an optimum has to be found to reach good interface defect passivation and a high band bending.