Large and Ultrafast Optical Response of a One-Dimensional Plasmonic-Photonic Cavity
Résumé
The resonant coupling of a localized surface plasmon mode and a cavity mode in a photonic crystal has been recently shown to strongly tailor the stationary optical response of gold nanoparticles. Here, we demonstrate that this can be further exploited for controlling light on an ultrashort time scale. The stationary and ultrafast optical responses of such a plasmonic-photonic cavity are investigated numerically. We show that the transient photo-induced change of the optical transmittance of a bare nanocomposite thin film can be amplified up to 60 times once resonantly coupled to the cavity mode in the hybrid device, despite the degradation of this mode due to absorption losses. In addition, different all-optical, ultrafast, efficient, and reversible photonic functions (increase or decrease of the signal intensity, transient spectral shift of the cavity mode) can be achieved depending on the spectral position of the transmitted mode tuned by varying the angle of incidence. The transient modification of the signal intensity is predicted to reach about 300 % after a subpicosecond rise time when the defect mode matches the plasmon resonance.