Analyse Factorielle Discriminante Multi-voie
Résumé
L'analyse factorielle discriminante est étendue aux données multi-voie, c'est-à-dire aux données pour lesquelles plusieurs modalités ont été observées pour chaque variable. Les données multi-voie sont ainsi structurées en tenseur. L'extension proposée repose sur une modélisation des axes discriminants. Cette modélisation prend en compte la structure tensorielle des données. Les gains attendus par rapport aux méthodes consistant à construire un classifieur à partir de la matrice obtenue par dépliement du tenseur, sont une meilleure interprétabilité et un meilleur comportement vis-à-vis du surapprentissage, phénomène d'autant plus présent dans le contexte multi-voie que le nombre de modalités est grand. Un algorithme de directions alternées permet d'obtenir les axes discriminants. Les performances obtenues sur données simulées permettent de confirmer ces gains.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...