Building Heterogeneous Models at Runtime to Detect Faults in Ambient-Intelligent Environments - CentraleSupélec
Communication Dans Un Congrès Année : 2013

Building Heterogeneous Models at Runtime to Detect Faults in Ambient-Intelligent Environments

Résumé

This paper introduces an approach for fault detection in ambient-intelligent environments. It proposes to compute predictions for sensor values, to be compared with actual values. As ambient environments are highly dynamic, one cannot pre-determine a prediction method. Therefore, our approach relies on (a) the modeling of sensors, actuators and physical effects that link them, and (b) the automatic construction at run-time of a heterogeneous prediction model. The prediction model can then be executed on a heterogeneous modeling platform such as ModHel'X, which yields predicted sensor values.
Fichier principal
Vignette du fichier
mrt.pdf (328.74 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00905275 , version 1 (18-11-2013)

Identifiants

  • HAL Id : hal-00905275 , version 1

Citer

Christophe Jacquet, Ahmed Mohamed, Frédéric Boulanger, Cécile Hardebolle, Yacine Bellik. Building Heterogeneous Models at Runtime to Detect Faults in Ambient-Intelligent Environments. MRT 2013, Sep 2013, Miami, United States. pp.52-63. ⟨hal-00905275⟩
127 Consultations
128 Téléchargements

Partager

More