Application of microwave reflectometry to disordered petroleum multiphase flow study
Résumé
Microwave reflectometry is applied to multiphase flow metering in the context of oil extraction. Our sensor consists of two open-ended coaxial probes operating at complementary frequencies (at 600 MHz and around 36 GHz) and was designed to resist harsh field conditions. This paper presents and comments on results obtained in realistic dynamic conditions, on a triphasic flow loop (water-oil-gas). The main conclusions are the following: Bruggeman-Hanai's mixing rule applies to natural emulsions and can be used to determine the composition of the water-oil liquid phase; results obtained for annular flows are very sensitive to small perturbations such as bubbles or waves at the liquid-gas interface; in the case of triphasic slug flows, the composition of the liquid phase can be estimated by proper filtering of the data.