Une pénalité de groupe pour des données multivoie de grande dimension
Résumé
Le problème de la classification supervisée de données multivoie de grande dimension avec un a priori de structure de groupes sur les variables est étudie. Plus précisément une pénalité adaptée à cette structure de données est proposée. Sans surcoût calculatoire notable, cette pénalité favorise l’interprétabilité des modèles obtenus. La pénalité est ici développée pour l’analyse discriminante et la régression logistique. Une application à l’analyse de données de neuroimagerie multimodale est présentée.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...