Article Dans Une Revue Frontiers in Energy Année : 2015

Impact of wind power generating system integration on frequency stabilization in multi-area power system with fuzzy logic controller in deregulated environment

Résumé

Among the available options for renewable energy integration in existing power system, wind power is being considered as one of the suited options for future electrical power generation. The major constraint of wind power generating system (WPGS) is that it does not provide inertial support because of power electronic converters between the grid and the WPGS to facilitate frequency stabilization. The proposed control strategy suggests a substantial contribution to system inertia in terms of short-term active power support in a two area restructured power system. The control scheme uses fuzzy logic based design and takes frequency deviation as input to provide quick active power support, which balances the drop in frequency and tie-line power during transient conditions. This paper presents a comprehensive study of the wind power impact with increasing wind power penetration on frequency stabilization in restructured power system scenario. Variation of load conditions are also analyzed in simulation studies for the same power system model with the proposed control scheme. Simulation results advocates the justification of control scheme over other schemes.
Fichier principal
Vignette du fichier
hal-01258062.pdf (1.34 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01258062 , version 1 (29-03-2020)

Identifiants

Citer

Y. K. Bhateshvar, H. D. Mathur, H. Siguerdidjane. Impact of wind power generating system integration on frequency stabilization in multi-area power system with fuzzy logic controller in deregulated environment. Frontiers in Energy, 2015, 9 (1), pp.7-21. ⟨10.1007/s11708-014-0338-2⟩. ⟨hal-01258062⟩
67 Consultations
175 Téléchargements

Altmetric

Partager

More