Modelling the experimental electron density : only the synergy of various approaches can tackle the new challenge - CentraleSupélec
Article Dans Une Revue International Union of Crystallography journal Année : 2015

Modelling the experimental electron density : only the synergy of various approaches can tackle the new challenge

Résumé

Electrondensity is a fundamental quantity that enables understanding of the chemical bonding in a molecule or in a solid and the chemical/physical property of a material. Because electrons have a charge and a spin, two kinds of electron densities are available. Moreover, because electron distribution can be described in momentum or in position space, charge and spin density have two definitions and thez can be observed through Bragg (for the position space)or Compton (for the momentum space) diffraction experiments, using X-rays (charge density) or polarized neutrons (spin density). In recent years, we have witnessed many advances in this fiels, stimulated by the increased power of experimental techniques. However, an accurate modelling is still necessary to determine the desired functions from the acquired data. The improved accuracy of measurements and the possibility to combine information from differentexpirenmental techniques require even more flexibility of the models.In this short review, we analyse some of the most important topics that have emerged in the recent literature, especially the most thought-provoking at the recent IUCr general meeting in Montreal.
Fichier principal
Vignette du fichier
Modelling the experimental electron.pdf (294.45 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01263059 , version 1 (21-07-2020)

Identifiants

Citer

Piero Macchi, Jean-Michel Gillet, Francis Taulelle, Javier Campo, N. Claiser, et al.. Modelling the experimental electron density : only the synergy of various approaches can tackle the new challenge. International Union of Crystallography journal, 2015, ⟨10.1107/S205225515007538⟩. ⟨hal-01263059⟩
106 Consultations
53 Téléchargements

Altmetric

Partager

More