Symmetries of the rolling model - CentraleSupélec Access content directly
Journal Articles Mathematische Zeitschrift Year : 2015

Symmetries of the rolling model

Yacine Chitour
M.-G. Molina
  • Function : Author
Petri Kokkonen Kokkonen
  • Function : Author

Abstract

In the present paper, we study the infinitesimal symmetries of the model of two Riemannian manifolds (M, g) and ({\hat{M}},\hat{g}) rolling without twisting or slipping. We show that, under certain genericity hypotheses, the natural bundle projection from the state space Q of the rolling model onto M is a principal bundle if and only if {\hat{M}} has constant sectional curvature. Additionally, we prove that when M and {\hat{M}} have different constant sectional curvatures and dimension n\ge 3, the rolling distribution is never flat, contrary to the two dimensional situation of rolling two spheres of radii in the proportion 1{:}3, which is a well-known system satisfying É. Cartan’s flatness condition.
Fichier principal
Vignette du fichier
pdf de symetries.pdf (310.54 Ko) Télécharger le fichier
Origin Files produced by the author(s)
Loading...

Dates and versions

hal-01271285 , version 1 (03-04-2020)

Identifiers

Cite

Yacine Chitour, M.-G. Molina, Petri Kokkonen Kokkonen. Symmetries of the rolling model. Mathematische Zeitschrift, 2015, 281 (4), pp.783-805. ⟨10.1007/s00209-015-1508-6⟩. ⟨hal-01271285⟩
60 View
49 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More