Symmetries of the rolling model - CentraleSupélec
Article Dans Une Revue Mathematische Zeitschrift Année : 2015

Symmetries of the rolling model

Yacine Chitour
M.-G. Molina
  • Fonction : Auteur
Petri Kokkonen Kokkonen
  • Fonction : Auteur

Résumé

In the present paper, we study the infinitesimal symmetries of the model of two Riemannian manifolds (M, g) and ({\hat{M}},\hat{g}) rolling without twisting or slipping. We show that, under certain genericity hypotheses, the natural bundle projection from the state space Q of the rolling model onto M is a principal bundle if and only if {\hat{M}} has constant sectional curvature. Additionally, we prove that when M and {\hat{M}} have different constant sectional curvatures and dimension n\ge 3, the rolling distribution is never flat, contrary to the two dimensional situation of rolling two spheres of radii in the proportion 1{:}3, which is a well-known system satisfying É. Cartan’s flatness condition.
Fichier principal
Vignette du fichier
pdf de symetries.pdf (310.54 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01271285 , version 1 (03-04-2020)

Identifiants

Citer

Yacine Chitour, M.-G. Molina, Petri Kokkonen Kokkonen. Symmetries of the rolling model. Mathematische Zeitschrift, 2015, 281 (4), pp.783-805. ⟨10.1007/s00209-015-1508-6⟩. ⟨hal-01271285⟩
67 Consultations
57 Téléchargements

Altmetric

Partager

More