Communication Dans Un Congrès Année : 2016

Eigenlogic: a Quantum View for Multiple-Valued and Fuzzy Systems

Résumé

We propose a matrix model for two- and many-valued logic using families of observables in Hilbert space, the eigenvalues give the truth values of logical propositions where the atomic input proposition cases are represented by the respective eigenvectors. For binary logic using the truth values {O,1} logical observables are pairwise commuting projectors. For the truth values {+1,-1} the operator system is formally equivalent to that of a composite spin 1/2 system, the logical observables being isometries belonging to the Pauli group. Also in this approach Fuzzy logic arises naturally when considering non-eigenvectors. The fuzzy membership function is obtained by the quantum mean value of the logical projector observable and turns out to be a probability measure in agreement with recent quantum cognition models. The analogy of many-valued logic with quantum angular momentum is then established. Logical observables for three-value logic are formulated as functions of the Lz observable of the orbital angular momentum l=1. The representatitve 3-valued 2-argument logical obserrvables for the Min and Maxv connectives are explicitly obtained.
Fichier principal
Vignette du fichier
qi-Dubois-Toffano-Jul7-2016.pdf (306 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01322701 , version 1 (06-07-2016)

Identifiants

  • HAL Id : hal-01322701 , version 1

Citer

François Dubois, Zeno Toffano. Eigenlogic: a Quantum View for Multiple-Valued and Fuzzy Systems. 10th international conference on Quantum Interaction (QI 2016), Jul 2016, San Francisco, CA, United States. ⟨hal-01322701⟩
171 Consultations
252 Téléchargements

Partager

More