Thermal energy transport in a surface phonon-polariton crystal - CentraleSupélec Access content directly
Journal Articles Physical Review B: Condensed Matter and Materials Physics (1998-2015) Year : 2016

Thermal energy transport in a surface phonon-polariton crystal

Jose Ordonez-Miranda
Laurent Tranchant
Younes Ezzahri
Jérémie Drevillon
Karl Joulain

Abstract

We demonstrate that the energy transport of surface phonon polaritons can efficiently be observed in a crystal made up of a three-dimensional assembly of spheroidal nanoparticles of silicon carbide. The ultralow phonon thermal conductivity of this nanostructure, along with its high surface area-to-volume ratio, allows the predominance of the polariton energy over that generated by phonons. The polariton dispersion relation, propagation length, and thermal conductance are numerically determined as functions of the size, shape, and temperature of the nanoparticles. It is shown that the thermal conductance of a crystal with prolate nanoparticles at 500 K and a minor (major) axis of 50 nm (5μm) is 0.5nWK−1, which is comparable to the quantum of thermal conductance of polar nanowires. We also show that a nanoparticle size dispersion of up to 200 nm does not change significantly the polariton energy, which supports the technological feasibility of the proposed crystal.
No file

Dates and versions

hal-01336738 , version 1 (23-06-2016)

Identifiers

Cite

Jose Ordonez-Miranda, Laurent Tranchant, Younes Ezzahri, Jérémie Drevillon, Karl Joulain, et al.. Thermal energy transport in a surface phonon-polariton crystal. Physical Review B: Condensed Matter and Materials Physics (1998-2015), 2016, 93, pp.3. ⟨10.1103/physrevb.93.035428⟩. ⟨hal-01336738⟩
119 View
0 Download

Altmetric

Share

Gmail Facebook X LinkedIn More