Superlinear convergence using block preconditioners for the real system formulation of complex Helmholtz equations - CentraleSupélec
Article Dans Une Revue Journal of Computational and Applied Mathematics Année : 2018

Superlinear convergence using block preconditioners for the real system formulation of complex Helmholtz equations

Résumé

Complex-valued Helmholtz equations arise in various applications, and a lot of research has been devoted to finding efficient preconditioners for the iterative solution of their discretizations. In this paper we consider the Helmholtz equation rewritten in real-valued block form, and use a preconditioner in a special two-by-two block form. We show that the corresponding preconditioned Krylov iteration converges at a mesh-independent superlinear rate.
Fichier principal
Vignette du fichier
paper.pdf (413.43 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01708720 , version 1 (09-07-2019)

Identifiants

Citer

Owe Axelsson, János Karátson, Frédéric Magoulès. Superlinear convergence using block preconditioners for the real system formulation of complex Helmholtz equations. Journal of Computational and Applied Mathematics, 2018, 340, pp.424-431. ⟨10.1016/j.cam.2018.01.029⟩. ⟨hal-01708720⟩
144 Consultations
195 Téléchargements

Altmetric

Partager

More