Parameters Estimation via Dynamic Regressor Extension and Mixing - CentraleSupélec
Communication Dans Un Congrès Année : 2016

Parameters Estimation via Dynamic Regressor Extension and Mixing

Résumé

A new way to design parameter estimators with enhanced performance is proposed in the paper. The procedure consists of two stages, first, the generation of new regression forms via the application of a dynamic operator to the original regression. Second, a suitable mix of these new regressors to obtain the final desired regression form. For classical linear regression forms the procedure yields a new parameter estimator whose convergence is established without the usual requirement of regressor persistency of excitation. The technique is also applied to nonlinear regressions with "partially" monotonic parameter dependence-giving rise again to estimators with enhanced performance. Simulation results illustrate the advantages of the proposed procedure in both scenarios.

Domaines

Automatique
Fichier principal
Vignette du fichier
hal-02378513 Parameters Estimation via Dynamic Regressor Extension and Mixing.pdf (424.63 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02378513 , version 1 (17-06-2020)

Identifiants

  • HAL Id : hal-02378513 , version 1

Citer

Stanislav Aranovskiy, Alexey Bobtsov, Romeo Ortega, Anton Pyrkin. Parameters Estimation via Dynamic Regressor Extension and Mixing. 2016 American Control Conference (ACC), Jul 2016, Boston, United States. ⟨hal-02378513⟩
220 Consultations
607 Téléchargements

Partager

More