Solving chance-constrained games using complementarity problems - CentraleSupélec
Communication Dans Un Congrès Année : 2017

Solving chance-constrained games using complementarity problems

V.V. Singh
  • Fonction : Auteur
O. Jouini
Abdel Lisser

Résumé

In this paper, we formulate the random bimatrix game as a chance-constrained game using chance constraint. We show that a Nash equilibrium problem, corresponding to independent normally distributed payoffs, is equivalent to a nonlinear complementarity problem. Further if the payoffs are also identically distributed, a strategy pair where each player’s strategy is the uniform distribution over his action set, is a Nash equilibrium. We show that a Nash equilibrium problem corresponding to independent Cauchy distributed payoffs, is equivalent to a linear complementarity problem.
Fichier non déposé

Dates et versions

hal-02441035 , version 1 (15-01-2020)

Identifiants

Citer

V.V. Singh, O. Jouini, Abdel Lisser. Solving chance-constrained games using complementarity problems. 2016-02-25, Feb 2016, Rome, Italy. pp.52-67, ⟨10.1007/978-3-319-53982-9_4⟩. ⟨hal-02441035⟩
49 Consultations
0 Téléchargements

Altmetric

Partager

More