Reactive Global Minimum Variance Portfolios with $k-$BAHC covariance cleaning - CentraleSupélec
Article Dans Une Revue European Journal of Finance Année : 2021

Reactive Global Minimum Variance Portfolios with $k-$BAHC covariance cleaning

Résumé

We introduce a $k$-fold boosted version of our Boostrapped Average Hierarchical Clustering cleaning procedure for correlation and covariance matrices. We then apply this method to global minimum variance portfolios for various values of $k$ and compare their performance with other state-of-the-art methods. Generally, we find that our method yields better Sharpe ratios after transaction costs than competing filtering methods, despite requiring a larger turnover.

Dates et versions

hal-02612262 , version 1 (19-05-2020)

Identifiants

Citer

Christian Bongiorno, Damien Challet. Reactive Global Minimum Variance Portfolios with $k-$BAHC covariance cleaning. European Journal of Finance, 2021, 28 (13-15), pp.1344-1360. ⟨10.1080/1351847X.2021.1963301⟩. ⟨hal-02612262⟩
148 Consultations
0 Téléchargements

Altmetric

Partager

More